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Abstract
Aim: Decades of research on species distributions has revealed geographic variation 
in species-environment relationships for a given species. That is, the way a species 
uses the local environment varies across geographic space. However, the drivers un-
derlying this variation are contested and still largely unexplored. Niche traits that are 
conserved should reflect the evolutionary history of a species whereas more flexible 
ecological traits could vary at finer scales, reflecting local adaptation.
Location: North America.
Methods: We used mammal observations during a 5-year period from the iNatural-
ist biodiversity database and a local ensemble modelling approach to explore spatial 
variation in American black bear (Ursus americanus) relationships with eight ecologi-
cal correlates. We tested four biologically driven hypotheses to explain the patterns 
of local adaptation. We evaluated non-stationarity in ecological relationships using a 
Stationarity Index and tested predictive performance using an independent, national-
level animal occurrence data set.
Results: We documented considerable spatial non-stationarity in all eight environ-
mental relationships, with the greatest spatial variation occurring in bear's relation-
ship to climatic factors. Notably, the greatest variation in environmental relationships 
tended to occur along the current boundaries of the species' range, potentially 
representing the ecological limits to the species geographic range. We additionally 
documented that spatial variation in relationships with land cover and anthropogenic 
factors were best explained by niche conservatism at the subspecies level, whereas 
climatic relationships were better explained by local adaptation.
Main Conclusions: Based on these results, we propose that the current distribution 
of American black bear is determined by an evolutionary legacy of habitat relation-
ships unique to each subspecies combined with more fine-scale local adaptation to 
climatic conditions. This result suggests that black bears should be adaptable to cli-
matic changes over the 21st century and that management of habitat and human-bear 
relationships could be considered at the subspecies level.
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1  |  INTRODUC TION

Understanding the ecological determinants of species distributions 
is a core area of wildlife research. Though studying species distribu-
tions initially provided basic ecological knowledge about a species' 
relationship with environmental factors, advancements in the field 
have made results useful for conservation planning, resource manage-
ment, impact and risk assessments, and evaluating the implications of 
climate change on global biodiversity (Austin & Van Niel, 2011; Bled 
et al.,  2011; Elith & Leathwick,  2009; Loiselle et al.,  2003). The in-
creasing number of applications of studying species distributions has 
in part been facilitated by larger, open-access species occurrence da-
tabases [e.g., iNaturalist (“iNaturalist.org”, 2020), Global Biodiversity 
Information Facility (“GBIF.org”,  2020)] coupled with the increasing 
availability of higher-resolution environmental predictors (e.g., re-
mote sensing products) (Kays et al., 2020). This new era of studying 
species distributions has the potential to provide nuanced insight into 
how species use the environment across their entire geographic range 
(Maldonado et al., 2015).

Historically, studies of range-wide species distributions have as-
sumed constant spatial relationships with the environment – that a 
species responds to a given environmental factor in the same way 
across their range (Koenig, 2001; Miller, 2012; Osborne et al., 2007). 
However, a growing body of literature has challenged that assertion 
(e.g., Smith, Godsoe, et al., 2019; Sultaire et al., 2022; Ye et al., 2020), 
although the causes of within-species variation are not known and 
are often contested. For example, McNew et al. (2013) reported that 
greater prairie-chicken (Tympanuchus cupido) females varied spatially 
in their habitat selection, presumably due to individuals adapting to 
varying microsite conditions and quality across their three study 
regions; similar variable habitat selection has been documented in 
other taxa as well (Morellet et al., 2011).

The degree of ecological specialization within a species range 
reflects the extent to which its niche dimensions are evolutionary 
conserved vs locally adapted (Peterson, 2011). Most commonly, ap-
plications of species distribution models presume full niche conser-
vatism by analysing all populations of a species together (i.e. ‘global 
model’), and thus presume all animals will retain ecological character-
istics of their specie's fundamental niche (Peterson, 2011; Peterson 
et al.,  1999; Wiens et al.,  2010). Some studies have considered 
within-species differences by modelling evolutionary lineages sep-
arately (e.g., from separate Pleistocene refugia, Myers et al., 2020). 
However, most have not explicitly compared the performance of 
the lineage model to the global model (Chardon et al.,  2020) and 
have not considered lineages of different ages. Understanding the 
extent to which the evolutionary history of the populations of a spe-
cies predicts ecological relationships would be useful not only for 
creating more accurate SDMs but also for helping the populations 

persist through the rapidly changing climate and land use of the 21st 
century.

Ecological specialization could also occur at within or across ge-
netic lineages through fine-scale local adaptation or differences in 
ecological context (Sexton et al., 2009, Smith, Beever, et al., 2019, 
Pease et al., 2022). In this case, the ecological context refers to en-
vironmental characteristics that might drive local adaptation includ-
ing climate gradients, vegetation communities, human disturbance 
regimes, and competing species. Although evolutionary lineages 
of a species (i.e. subspecies) often map on major ecological zones, 
this is not necessarily the case for all aspects of ecological context 
(Waltari et al., 2007). Thus, evolutionary history and ecological con-
text can offer independent predictions for patterns of ecological 
specialization of a species. For species where ecological context has 
a greater impact on intraspecific variation we might expect ecologi-
cal boundaries such as ecoregion delineations or differing, compet-
itive ecological communities may better describe how and where a 
given species is using the environment differently (Omernik, 1987).

Here we explore how American black bear (Ursus americanus; 
hereafter, black bear) varies in its ecological relationships across 
North America. Black bears are an ideal species for exploring space-
varying effects for several reasons. First, the species is a generalist 
with a large geographic range, suggesting a high potential for local 
adaptation and plasticity (Garshelis et al., 2016). Second, the genetic 
lineage boundaries of black bear are well characterized, allowing us 
to test two degrees of evolutionary history (Pleistocene refugia and 
subspecies) to explain patterns of non-constant ecological relation-
ships (Pelton, 2003; Puckett et al., 2015). Finally, across their large 
range, black bears occupy many distinct ecoregions, coinciding with 
varying numbers of competing large carnivores and persist in many 
degrees of human disturbance, providing a means for exploring eco-
logical context as a driver of local adaptation (Boitani et al., 2018; 
Omernik & Griffith, 2014). Although this species has been the sub-
ject of hundreds of local-level ecological studies (e.g., Gould, 2020), 
black bear ecology has not been synergized at a range-wide level. 
Thus, the goal of our paper is to establish whether black bear-
environment relationships are constant across their range, and if 
not, which niche dimensions vary and rather the patterns of this 
variation are better explained by phylogenetic niche conservatism 
or ecological context.

To evaluate the variability of black bear ecology across their 
range, we first tested for evidence of spatial non-stationarity 
– the tendency for changes in the direction and/or magnitude 
of relationships of bear distribution to land cover, human den-
sities, and climate. We evaluated non-stationarity by creating 
hundreds of local spatial models and comparing these findings 
to those from a range-wide model of black bear observations 
(Fink et al.,  2010; Lloyd,  2010). While alternative approaches to 
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assessing spatial non-stationarity exist (e.g., Spatially Varying 
Coefficients, Geographic Weighted Regression), we chose this 
approach as to ease the computational burden of the geographic 
extent and volume of data in this study (Fotheringham et al., 2003, 
Gelfand et al., 2003, Pease et al., 2022). We then used the results 
of the local spatial models to test four hypotheses about drivers of 
ecological non-stationary in black bear across their range by com-
paring the spatial pattern of non-stationarity to the boundaries of: 
(1) Pleistocene lineages, (2) subspecies, (3) ecoregions, and (4) pat-
terns of competing species overlap (Figure 1). To test these ques-
tions and hypotheses, we built models using a publicly available 
database of opportunistic observations of black bear across North 
America from the iNaturalist platform and test model results with 
an independent national-scale camera trap dataset, Snapshot USA 
(Cove et al., 2021).

2  |  METHODS

2.1  |  Animal observations

We queried the iNaturalist database for observations of black bear 
across North America during 2015–2020. iNaturalist is an online so-
cial network for sharing biodiversity information to help others learn 

about nature (“iNaturalist.org”, 2020). Observations are submitted 
to the database by iNaturalist users and the iNaturalist community 
identifies the observations to the highest taxonomic resolution pos-
sible (e.g., genus, species). iNaturalist users can submit observations 
across all taxa, anywhere on earth, with no required sampling pro-
tocol; there are, however, some coordinated efforts at local scales 
(e.g., “BioBlitz”). We used iNaturalist because no structured study 
on black bears matched the accessibility, quantity, and spatial extent 
of iNaturalist.

We queried the iNaturalist Application Programming Interface 
(API) for all research-grade observations (i.e., observations that in-
clude a photograph and have confirmed and agreed identification 
by more than 2 users) of the class Mammalia within North America 
(specific bounding box: −52 degrees northeast longitude, −170 
degrees southwest longitude, 6 degrees southwest latitude, 75.5 
degrees northeast latitude). We vetted 100 random black bear 
observations to check for species identification accuracy (100% 
accurate). We removed observations that were classified as scat, 
tracks, or signs, or associated with the North American Tracking 
Database Project on iNaturalist because they could be less distin-
guishable than photographs of the animals themselves (Lonsinger 
et al., 2015). We also filtered observations that had coordinates ob-
scured (uncertainty >20 km) due to user preference or iNaturalist's 
protocol of obscuring the location of threatened or endangered 

F I G U R E  1  Visualization of four hypotheses driving non-stationarity in American black bear (Ursus americanus) ecological relationships 
across the species' current range, with an example of how a given spatial support window is assigned to a single subdivision of each 
hypothesis. The rectangle on the map shows one example spatial window, with the centroid of the spatial window shown as a black dot, 
while the grey points represent the centroid of all windows (n = 1373). The bear locations within the windows were used to build local 
models across the species' range. Each local model estimates ecological relationships based on observations within the window and was 
assigned one subdivision of each hypothesis based on its centroid. The example here shows a box centroid in the panhandle of Florida, 
USA, and is assigned to the: (1) “Eastern Temperate Forest” subdivision of the North America ecoregions; (2) “eastern” black bear lineage; 
(3) “floridanus” subspecies; and (4) no overlap with competing predators [brown bear (Ursus arctos, green), grey wolf (Canis lupus, brown), 
red wolf (Canis rufus), and cougar (Puma concolor)]. Colours for the competition subfigure represent the distribution maps for each of the top 
competitors
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species. From this North American mammal database, we then 
selected all observations of Ursus americanus that only occurred 
during our target time frame (01-Jan-2015 – 31-Dec-2019). By 
using a fuzzy search function (Wickham,  2019), our filtering also 
included observations that were assigned a subspecies name (e.g., 
“Ursus americanus altifrontalis”) but we did not differentiate among 
subspecies in any analysis. All remaining Mammalia observations 
were retained and used in addition to black bear observations as a 
proxy for iNaturalist search effort.

2.2  |  Opportunistic reporting

Opportunistic observations of biodiversity, such as those reported 
in iNaturalist, may provide valuable insights into ecological rela-
tionships but the data typically prove challenging for unbiased 
statistical inference (Bird et al.,  2014; Clare et al.,  2019; Isaac 
et al., 2014; Yackulic et al., 2013). We recognize that these obser-
vations are often clustered and positively associated with human 
population density and the lack of standardized sampling protocols 
presents complications when evaluating survey search effort (Bird 
et al.,  2014). Although human population density and accessible 
public lands such as National Parks are typically good proxies to 
account for the inherent spatial sampling biases in opportunistic 
observations (Geldmann et al., 2016), we chose to the use the iN-
aturalist database itself as a direct measure of iNaturalist user be-
haviour to evaluate the tendency for a species to be reported. We 
used the total number of iNaturalist mammal observations in each 
grid cell to reflect the relative search effort in that geographic space 
(Table 1; Phillips et al., 2009, Kéry et al., 2010). By using this meas-
ure of effort, we assume that the probability of a person reporting 
a black bear was related to the general probability of reporting any 
mammal species in the area.

Some users in the iNaturalist database clearly violate this as-
sumption if they tend to report observations of a single species only, 
so we removed their observations from our analysis. This type of be-
haviour may arise when groups (e.g., state agencies, non-profits) use 
iNaturalist as a platform for documenting observations associated 
with a given campaign such as the “Arkansas Bear Survey” promoted 
by the Arkansas Game and Fish Commission. We discovered these 
targeted efforts by calculating, for each iNaturalist user, the propor-
tion of black bear observations out of their total number of mammal 
observations, and then removing data from the top 5th percentile. 
This removed 2298 observations from 150 users in our dataset (~15 
black bear observations/user).

2.3  |  Study area

The spatial extent of black bear iNaturalist observations spanned the 
entire North American continent (Figure S1). Rather than restricting 
to a specific country, we used data from across black bear's entire 
current range (IUCN; Garshelis et al., 2016); although only currently 

occupying about 65% of their historic range, this still spans Canada, 
Mexico, and the United States though sometimes in isolated pockets 
(Garshelis et al. (2016); Figure S1).

2.4  |  Ecological covariates

We gathered environmental factors known to influence black bear 
distribution and abundance (Clark et al., 2020; Feldhamer et al., 2003; 
Pelton, 2003; Penteriani & Melletti, 2020), including land cover, cli-
mate, and human densities (Table 1). Ecological covariates were sum-
marized within 50 sq km hexagonal grid cells over an area of 2.1 million 
sq km, resulting in 502, 961 grid cells (Figure S1). We chose 50 sq km 
as a scale to reflect a typical home range of black bears (Pelton, 2003). 
Black bear distribution is typically linked to areas of contiguous for-
est cover, but the forest types used are dependent on the geographic 
location (Pelton,  2003). To capture this variation in forest types 
used, we used the Moderate Resolution Imaging Spectroradiometer 
(MODIS) Land Cover Type (MCD12Q1) product from 2019 to differ-
entiate forest types, where we included the proportion of evergreen 
needleleaf (i.e., conifer forests), deciduous broadleaf, and mixed for-
est types (Table 1). We also used the MODIS product to describe the 
proportion of cropland available as this is a dominant land cover type 
across much of the United States and black bear opportunistically for-
age in crop fields (Ditmer et al., 2018; Jones & Pelton, 2003).

We used the Gridded Population of the World (GPW 2015; 
Version 4) to calculate mean human population density per grid 
cell (Center for International Earth Science Information Network - 
CIESIN - Columbia University, 2018). Although other products exist 
(e.g., human footprint index), we chose the GPW product because we 
wanted to isolate the effect of humans and separately account for 
factors often incorporated into indices such as the human footprint 
index (e.g., cropland). Protected areas can be an important designa-
tion for a large, wide-ranging species, so we accounted for whether 
a given grid cell contained protected areas using information from 
the World Database of Protected Areas (UNEP-WCMC and IUCN 
2020). Here, “protected areas” includes a range of designations in-
cluding national forests, national parks, wildlife management areas, 
and wildlife sanctuaries with varying regulatory practices (e.g., hunt-
ing vs no hunting); these land uses typically fall into the category of 
“public lands” with varying levels of use and protection.

For climate variables, we used the Bioclimatic variables of an-
nual average temperature and annual average precipitation from 
the WorldClim database (Fick & Hijmans, 2017). We selected these 
climatic variables as they reflected variation in climate conditions 
across the continent but also are correlated with productivity (e.g., 
gross primary productivity), which may be related to the wildlife 
carrying capacity of an area that may dictate species abundance 
and richness (Hobi et al., 2017). We considered including additional 
climatic variables to describe nuanced differences across space but 
found other WorldClim variables to be highly correlated with the 
existing set of predictors; this was also true for topographic charac-
teristics such as elevation.
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2.5  |  Model description

There is a long history of fitting species distribution models using 
presence-only observations, which has become increasingly com-
mon with widespread availability of biodiversity occurrence re-
cords (Elith et al.,  2011; Elith & Leathwick,  2009; Guillera-Arroita 
et al., 2015; Kays et al., 2020). Typically, presence-only observations 
are modelled by generating so-called “background points” – random 
locations within the area of interest where a presence-only observa-
tion did not occur – and then using logistic regression (1 for locations 
with observations, 0 otherwise) to make inference about ecological 
relationships (Renner et al., 2015; Renner & Warton, 2013; Warton 
et al., 2013). The described approach is typically used when 1) mod-
elling is done in continuous space and 2) no relevant search effort 
information is available. This approach is conceptually equivalent 
to a resource selection function under a used-available framework, 
where black bear iNaturalist observations are considered “used” lo-
cations and the unused grid cells become the “available” background 
environmental conditions (Matthiopoulos et al., 2020).

In our case, we had discrete spatial units (i.e., hexagonal grids) 
and information on search effort (i.e., the number of iNaturalist 
observations in a grid cell). Because we had discrete spatial units, 

we were able to quantify the number of black bear observations 
within the a given grid cell – either 0 or more; therefore, there 
was no need to generate random background locations as we 
could simply assign a “0” to grid cells with no black bear observa-
tions. Additionally, the total number of iNaturalist observations 
recorded in each grid cell indicated whether the “0” assigned to 
a grid cell was a result of no black bear, no search effort, or both. 
By using the iNaturalist database itself, we avoided the presence-
background modelling approach of opportunistic records and con-
sidered black bear observations as discrete count data (counts of 
black bear in a grid cell) and modelled using a generalized linear 
model with Poisson distributed errors. In this case, the predicted 
response (the Poisson intensity at grid cell s, λs) represented the 
expected number of black bear reports per-unit area (where the 
area is the size of the hexagon grid cells, 50 sq km). We fit our 
models with a log link using the glm function in R version 4.0.3 
(R Core Team, 2020). The linear predictor of the model included 
all eight ecological covariates listed in Table  1. We included the 
search effort term (i.e., the number of iNaturalist mammal obser-
vations in a grid cell) in the linear predictor of the model instead 
of as an offset of the Poisson model so that a regression term is 
estimated instead of fixed at 1 (as is the case when used as an 

TA B L E  1  List of covariates used in the analysis of American black bear (Ursus americanus) iNaturalist observations during 2015–2019 
across North America

Submodel Covariate Description
Original 
grain (m) Source

Ecological Deciduous broadleaf forest Proportion of deciduous broadleaf forest 
(MODIS class 4)

500 MODISa Land Cover Type (MCD12Q1)

Coniferous forest Proportion of evergreen needleleaf forest 
(MODIS class 1)

500 MODISa Land Cover Type (MCD12Q1)

Mixed forest Proportion of mixed forest (MODIS class 5) 500 MODISa Land Cover Type (MCD12Q1)

Cropland Proportion of cropland (MODIS class 12) 500 MODISa Land Cover Type (MCD12Q1)

Temperature Annual mean temperature 1000 WorldClim

Precipitation Annual mean precipitation 1000 WorldClim

Human population density Mean human population density 1000 GPWb Version 4

Protected areas Proportion of designated protected area NA WPDAc

Observation Trail (Snapshot USA) Indicator for whether camera was deployed 
on trail

NA Deployment metadata

Camera height (Snapshot 
USA)

Categorical indicating deployment height 
(1, 2, or 3)

NA Deployment metadata

Understory vegetation 
(Snapshot USA)

Indicator for whether understory 
vegetation was present in camera image

NA Camera observations

Obstructed view (Snapshot 
USA)

Indicator for whether camera view was 
obstructed by natural or unnatural 
features

NA Camera observations

Total no. of reported 
mammal observations 
(iNaturalist)

The total number of reported mammal 
observations on iNaturalist (search 
restricted to Mammalia class). Used as a 
measure of search effort or tendency to 
report observations in an area

NA iNaturalist API

aModerate Resolution Imaging Spectroradiometer.
bGridded Population of the World, v4.
cWorld Database on Protected Areas.
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offset). By not fixing the effect at 1, we allowed for the possibility 
of more (regression coefficient >1) or less (regression coefficient 
<1) black bear observations than would be otherwise expected 
given the search effort in an area. Variance inflation factors were 
checked to be below 5 using the R package car in program R (v 
4.0.3) (Fox & Weisberg, 2019; James et al., 2013); we chose this 
cutoff following suggested rules when dealing with multicollinear-
ity (James et al., 2013 p. 101). We used the single set of regression 
coefficients estimated using this model, fit to all black bear obser-
vations across their range, to serve as the baseline, global model.

2.6  |  Non-stationarity in black bear-environment 
relationships

To explore non-stationarity in black bear ecological relationships we 
used an ensemble modelling procedure that used local spatial models 
within “spatial support windows” to parameterize local distribution 
models. A “spatial support window” is a user-defined geographically 
restricted sampling area (i.e., a square smaller than the total area 
of interest) where only observations and background points within 
each window are used to estimate regression coefficients. Estimates 
from overlapping spatial support windows were then averaged to 
effectively “scale up” and create an ensemble prediction across the 
entire landscape (Fink et al., 2010). We required a minimum number 
of 100 black bear observations in a given spatial support window 
for that window to be included in the ensemble model. This re-
sulted in 1373 spatial windows that were approximately 10.5 degree 
longitude by 7.5 degree latitude in extent with at least 100 black 
bear observations (range = 100–1617; mean = 512) (Figure 2) (Wisz 
et al., 2008). We determined the spatial window sizes to balance the 
geographic coverage of current black bear range with iNaturalist ob-
servation density; the spatial windows can be smaller when dense 
observations occur consistently across the study area, and window 
size increases with fewer observations. We then fit a model iden-
tical to the global model, with the same linear predictor that used 
the environmental covariates described in Table  1, but the black 
bear observations and background points were those only found in 
each window. That is, the ensemble and global models were iden-
tical in their specification (i.e., same use ecological predictors and 
response), but differed in their extent.

We compared absolute value of residual errors to quantify 
performance between the global and ensemble models (Rollinson 
et al., 2021). We calculated the residual errors by calculating the sum 
of the squared difference between the expected proportion of iNat-
uralist black bear observations out of the total number of iNatural-
ist mammal observations within a given grid cell and the predicted 
proportion of black bear observations in each grid cell for both the 
global and local (ensemble) model. We then divided the residual sum 
of squares for the ensemble model by the residual sum of squares for 
the global model to look at the amount of reduction in the residual 
sum of squares in the ensemble model (Rollinson et al., 2021). We 
additionally checked Variance Inflation Factors for every local model 

(n = 1373) as collinearity can be an issue in local modelling, even if 
it is not an issue in a global model (Dormann et al., 2013). For each 
model, we calculated Variance Inflation Factors and then summa-
rized the percentage of the Variance Inflation Factors that exceeded 
our defined threshold of five (James et al., 2013).

2.7  |  Stationarity index

Following parameter estimation of the ensemble models, we calcu-
lated a stationary index (SI) for each ecological covariate to evaluate 
whether evidence of non-stationarity existed and, if so, the magni-
tude of the variation. In the ensemble modelling approach, each eco-
logical covariate is estimated within each spatial window (n = 1373), 
so an interquartile range of the 1373 parameter estimates can be 
calculated; this represents the range or magnitude of variation in the 
parameter estimates across space (Osborne et al., 2007). The SI is 
calculated by dividing the interquartile range of a given ecological 
covariate by two times the standard error of the same ecological pa-
rameter estimated in the global model. Index values greater than one 
indicate evidence of non-stationarity, with higher values suggesting 
more spatial variation in a given ecological relationship (Osborne 
et al., 2007). Overall, the stationarity index is to indicate evidence 
of spatial non-stationarity and serve as a measure of strength of the 
non-stationarity.

We supplemented the stationarity index with a formal test of 
non-stationarity of model coefficients using a Moran test (Osborne 
et al., 2007). Given that we were using spatial support window cen-
troids for our analysis, we defined neighbours for the Moran test 
based on distances among centroids (rather than defining neigh-
bours on a grid or neighbouring polygons due to spatial support 
windows overlapping). We then defined a search radius to include 
all centroids within a given distance in the Moran test. For each 
covariate, we iterated through a sequence of 50 search radii rang-
ing from 10 km to 4000 km (4000 km is approximately the distance 
from San Francisco, CA USA to New York, NY USA; we used this as a 
maximum radius to study continental patterns). Then at each search 
radius we ran a permutation test for Moran's I statistic. From here, 
we looked for the point at which the Moran's test statistic was not 
significantly different from zero, indicating that the similarity among 
the estimated regression coefficients is “randomly dispersed”, or, in 
our case, is no longer similar to its neighbour which may be indicative 
of spatial nonstationarity.

Finally, it is possible that a signal of spatial non-stationarity can 
arise from missing covariates or interactions in the linear predictor 
as well as the spatial pattern of observations. To explore the former, 
we included interactive effects between protected status and for-
est cover types and assessed how stationary indices changed with 
the inclusion of interactive effects. To test for the latter, we con-
ducted a sensitivity test of the global model through bootstrapping. 
Specifically, we subset the full dataset 1200 times to contain 100 
black bear observations and a comparable number of grid cells as 
the local models, fit “global” models as described above, and then 
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qualitatively compared the variation in the parameter estimates 
from this approach compared to those estimated in the local models.

2.8  |  Evaluating drivers of non-stationarity

For any ecological covariate with evidence of non-stationarity 
(based on SI values >1) we separately tested four hypotheses 
(ecoregions, lineages, subspecies, or competing species) to explain 
the spatial pattern of non-stationarity (Figure  1). We did this for 
each covariate to allow that the drivers of non-stationarity may be 
different across land use, anthropogenic effects, and climatic re-
sponses. For the ecoregion hypothesis, we used the EPA Level 1 
ecoregion delineations which are based on similar vegetation, cli-
mate, hydrology, land use, geology, landforms, and soils (Commission 
for Environmental Cooperation,  1997; Omernik,  1987; Omernik & 
Griffith,  2014). Pleistocene lineages were delineated following 
phylogeographic analyses by Puckett et al.  (2015) and subspecies, 
representing evolutionary linages forming since the Pleistocene, 

described by Larivière (2001). The competition hypothesis describes 
whether a given spatial support centroid is within the current range 
of large North American predators [brown bears (Ursus arctos), 
grey wolf (Canis lupus), red wolf (Canis rufus), or cougar (Puma con-
color)], which were determined using each species' IUCN range map 
(Boitani et al., 2018; McLellan et al., 2017); overlap with each spe-
cies resulted in a nominal predictor of 1–4 (depending on the num-
ber of overlapped ranges). We included these four species because 
they are typically competitive with black bear, either dominantly 
(e.g., brown bear) or indirectly through kleptoparasitism (e.g., cou-
gar) (Apps et al., 2006; Ballard et al., 2003; Latham & Boutin, 2011; 
McLellan, 2011).

We first generated centroids of each spatial support window 
and then assigned each centroid to the hypothesis subdivisions with 
each centroid, such that each centroid was assigned to one subdivi-
sion of each hypothesis (Figure 1). The hypotheses were then tested 
by fitting linear models with the response (i.e., dependent variable) 
as the ensemble estimated coefficient (n =  1373 coefficient esti-
mates for each covariate, one from each spatial window) and the 

F I G U R E  2  Local ensemble models 
were developed using restricted spatial 
support windows across observations of 
American black bear (Ursus americanus) 
reported on iNaturalist during 2015–2019 
(orange dots). Spatial support windows 
(black-outlined boxes) (total = 1373; 
n = 50 presented here for illustration) 
serve as bounds for observations and 
background points in the ensemble 
modelling approach and were included 
only if they included >100 bear 
observations. Results from overlapping 
boxes are averaged to effectively “scale 
up” to the range of black bear
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subdivision of each hypothesis as a categorical predictor variable. 
Thus, for each covariate, we fit four linear models with different 
groupings of observations and determined hypothesis support using 
Akaike's Information Criterion (AIC) (Akaike, 1998).

2.9  |  Model assumptions and verification

2.9.1  |  Assumptions

There are many assumptions inherent to wildlife sampling that are 
typically not met in opportunistic, presence-only databases (Bird 
et al., 2014; Hochachka et al., 2012; Yackulic et al., 2013). One key 
assumption is that sampling is either random or representative of the 
environmental conditions throughout the area of interest (Yackulic 
et al., 2013). We explored whether the spatial distribution of iNatu-
ralist mammal observations was representative of land cover condi-
tions across North America using the MODIS land cover product. 
Using a used-available framework (akin to resource selection func-
tions), we created a categorical classification indicating whether 
an iNaturalist observation occurred in a grid cell; cell values were 
1 if an iNaturalist observation occurred and 0 otherwise. We then 
computed the most common land cover type within each hexago-
nal grid cell and assigned that land cover class to the hexagonal grid 
cell. Using this information, we compared use vs available across all 
16 land cover classes described by the MODIS product using a chi-
square test of homogeneity, testing the null hypothesis that differ-
ent populations (used vs available) have the same proportions of land 
cover classifications (Thomas & Taylor, 1990).

2.9.2  |  Verification

An important step in modelling animal occurrence records is deter-
mining how well a model describes where a species occurs. That is, 
predictive performance of such models is often an essential summary 
when evaluating model diagnostics (Elith et al., 2006). Typically, this 
is done by withholding a set of occurrence records, fitting a model 
without those observations, and then evaluating the model predic-
tions to those locations (“testing points”). However, for the most 
reliable validation, the testing points should be independent of the 
observations used to train the model (“training points”); this stand-
ard is rarely met because an additional, independent data source is 
usually not available (Hijmans, 2012).

Here, however, we took advantage of a recent, large-scale an-
imal monitoring effort – Snapshot USA – as an independent data 
source to verify parameter estimates from our modelling efforts 
(Cove et al.,  2021). Snapshot USA is a coordinated camera trap-
ping network across the United States, with an overall project goal 
of sampling terrestrial wildlife in all 50 states during the same time 
each year. This project required participants to follow a standardized 
sampling protocol (e.g., camera spacing, length of deployment) along 
with guidance on where cameras were deployed. We used camera 

trap observations from 2019 Snapshot USA as a structured data 
source to compare parameters estimated using iNaturalist observa-
tions of black bear and to test whether the model fit using iNaturalist 
observations could predict black bear occurrences in the Snapshot 
USA database. We assumed that Snapshot USA would suffer less 
form observer bias and would therefore be a reliable data source to 
compare estimates made using data from iNaturalist.

The Snapshot USA database includes camera trap observations 
from 1509 camera deployments within 110 sampling arrays (non-
independent camera clusters) from all 50 U.S. states during 17-
Aug-2019 through 24-Nov-2019. From these camera deployments, 
we created daily detection histories and used this as our detection 
matrix in modelling. We fit single-species, single-season occupancy 
models to the Snapshot USA camera observations using the same 
ecological covariates as used in the global iNaturalist model. Given 
repeated observations at a camera site, we were able to explicitly 
account for imperfect animal detection through occupancy models 
(MacKenzie et al., 2017). We used four categorical detection vari-
ables that covaried across the camera deployments, including the 
height a camera was deployed, whether a camera was deployed 
on a trail, and indicators for obstructed view and understory pres-
ence in a camera image. Although estimating species occupancy 
probability is different from our analyses of iNaturalist black bear 
observations, there is evidence that species occupancy and spe-
cies abundance are related, at least for species that are not particu-
larly abundant, and believe that the benefits of an external dataset 
outweigh the use of a proxy for our particular dataset (Steenweg 
et al., 2018).

We assumed a significant difference in regression coefficients 
between the iNaturalist model and the Snapshot USA occupancy 
model if the 95% confidence intervals did not overlap zero. We then 
used the regression coefficients from global model estimated using 
iNaturalist observations to predict the occurrence of black bear at 
the Snapshot USA locations. We evaluated the predictions using 
the area under the Receiver Operating Characteristics (ROC) curve 
(AUC) and considered sufficient predictive performance if the AUC 
was greater than 0.7; we calculated the AUC using the verification 
package (v 1.42) in program R (v 4.0.3) (Laboratory, 2015).

3  |  RESULTS

3.1  |  iNaturalist observations

The iNaturalist query resulted in 676,007 terrestrial Mammalia ob-
servations during 01-January-2015 – 31-October-2020, with 14,099 
observations of black bear. We removed all iNaturalist observa-
tions that were flagged as animal tracks or scat, had an accuracy 
uncertainty >20,000 m, were missing coordinates, or were the re-
sult of a presumed targeted search effort. We additionally buffered 
the current IUCN black bear range map by 100 km and removed 
observations outside of this area (n =  5 observations). We chose 
100 km because this is a reasonable distance that black bears may 
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be consistently found outside of their current IUCN range, based on 
home range, dispersal distances, and potential range shifts (Karelus 
et al., 2016; Koehler & Pierce, 2003; Schwartz & Franzmann, 1992). 
This brought the total number of Mammalia observations to 558,113 
with 7643 black bear observations. Black bear observations oc-
curred in 4049 grid cells across North America (min = 1, max = 183, 
mean =  2 observations per grid cell). Mammalia observations oc-
curred in 56,961 grid cells (min =  1, max =  44,082, mean =  10). 
Overall, iNaturalist mammal observations were representative of 
the available land cover types across North America (�2

14
= 0.101, 

p-value = 1; Figure S2).

3.2  |  Modelling results

3.2.1  |  Range-wide iNaturalist model

Results from the global, range-wide model of black bear iNatural-
ist observations indicated that public land status had the strongest 
positive effect on the number of black bear observations relative to 
all other mammals across their range (Figure 3; Table S1). The global 
model indicated greater black bear occurrence with greater forest 
cover, regardless of forest cover type (conifer, deciduous, and mixed) 
but bear occurrence was lower where human population density and 
cropland cover were greater (Figure 3; Table S1). At the continen-
tal scale, black bear observations were more common in areas with 

greater precipitation, but there was no apparent effect of tempera-
ture (Figure 3; Table S1).

Global regression coefficients from iNaturalist agreed direction-
ally with Snapshot USA, which explicitly accounted for detection 
probability, in 88 percent of the covariates (Figure 3; Table S1). The 
greatest discrepancy between the iNaturalist and Snapshot USA 
model occurred in the estimated effect of mean annual tempera-
ture, where the iNaturalist model estimated no effect (i.e., point 
estimate = −0.01 with 95% CIs overlapping zero) but the Snapshot 
USA modelled estimated a negative effect, with non-overlapping 
95% confidence intervals for the latter (Figure 3; Table S1). Despite 
this discrepancy, there was a prediction accuracy of 73% when using 
the iNaturalist global model to predict the Snapshot USA black bear 
occurrences (AUC = 0.73).

3.2.2  |  Local ensemble model

We fit 1373 regression models geographically restricted to obser-
vations and environmental conditions within each spatial support 
window (Figure 4). Through the local ensemble model, the iNatural-
ist database documented areas of black bear occurrence that range 
beyond the current IUCN range boundaries (Figure 4). Although all 
models converged, 200 had at least one standard error estimate 
greater than 10, which we deemed as erroneous and discarded 
from the ensemble predictions, bringing the total number of spatial 

F I G U R E  3  A comparison of regression 
coefficient estimated using a global 
Poisson regression model fit using 
American black bear (Ursus americanus) 
observations from the iNaturalist 
database during 2015–2020 (blue dots 
and lines) and a single-species, single-
season occupancy model fit using camera 
observations from the 2019 snapshot 
USA monitoring initiative (orange dots and 
lines). Dots represent point estimates and 
bars indicate 95% confidence intervals
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support windows to 1173. The percentage of Variance Inflation 
Factors exceeding our threshold of five had a maximum value of 
three percent across all covariates (temperature and precipitation), 

but six of the eight covariates had Variance Inflation Factors that ex-
ceeded five in less than 1 percent of the local models (Table S2). The 
local ensemble approach reduced residual sum of square errors by 

F I G U R E  4  Predicted intensity from an 
ensemble modelling approach estimated 
using 1173 geographically restricted 
spatial support windows and observations 
of American black bear (Ursus americanus) 
reported on iNaturalist during 2015–
2019. Dotted outlines represent current 
known black bear species range. Areas of 
white colouring represent regions beyond 
the range of black bear or regions of the 
species range where windows had less 
than 100 black bear observations and 
were omitted from analysis

F I G U R E  5  Regression coefficients 
estimates (violins; n = 1173) from the 
local Poisson regression models fit to 
iNaturalist black bear (Ursus americanus) 
observations during 2015–20 across 
North America. Violins represent the 
coefficient estimates across all spatial 
support windows. Also included for 
comparison is the 95% confidence 
intervals (dot and bars) from the global 
model. Solid horizontal black line is a 
marker for zero, and the dashed horizontal 
line is the median value of the coefficient 
estimates for the local models. All 
covariates were scaled and centered prior 
to analysis. iNaturalist records represents 
the regression coefficient for the search 
effort term in the model
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11.3 percent compared to the global regression model. Additionally, 
the local ensemble modelling approach indicated strong support 
for spatially varying ecological relationships (Figure 5). Each of the 
eight ecological covariates had stationary indices greater than one 
(range 9–64), with responses to climatic conditions (i.e., mean annual 
temperature and precipitation) being the most variable across black 
bear's range (Figure  5). Additionally, we documented little change 
in the stationary indices when interactive effects were included in 
the linear predictor of the local models (Table S3). Finally, all but one 
(temperature) covariate failed to reject the null hypothesis of ran-
dom dispersion (Figure S3). The range at which the autocorrelation 
was no longer present varied across the covariates but ranged from 
1800–3600 km (Figure S3).

The ensemble model results showed notable variation in the spa-
tial patterns of the eight coefficient estimates (Figure 6). The great-
est variation in response to climatic conditions – the two ecological 
covariates with the greatest SI – tended to occur along the Midwest 
divide in the species' range, particularly in and around Arkansas, 
Oklahoma, Texas, and Louisiana (Figure 6). The sensitivity test we 
conducted on the global model exhibited the same median direc-
tional effects as the local models, with the individual bootstrapped 
estimates spanning negative and positive effects – similar to our 
results from the local models – albeit less variation than the local 
models. The spatial pattern hypothesis comparison indicated the 
greatest support for the subspecies hypothesis in five of the eight 
ecological covariates; responses to climatic conditions (i.e., mean 
annual temperature and precipitation) were best explained by the 
ecoregion hypothesis and responses to human population density 
was best explained by the competition hypothesis (Table 2; Figure 7; 
Table S4).

4  |  DISCUSSION

Despite the mounting evidence that species-environment relation-
ships can vary across space, the key drivers of the variation and 
the characteristics of the species exhibiting non-stationarity are 
relatively unknown (Miller, 2012, Smith, Beever, et al., 2019, Pease 
et al., 2022). Understanding these patterns is important because it 
may provide nuanced insight into a species' ecology, directly inform-
ing how regional management and conservation approaches could 
differ, and potentially informing how a species could respond to fu-
ture environmental change. Our results show that black bear ecol-
ogy varies across their range in their relationships with all types of 
covariates tested: land cover, human density, and climate. Black bear 
subspecies boundaries best explained differences in bear responses 
to five land cover variables, ecoregion boundaries best described 
variation in climatic conditions, and responses of bears to human 
population density was most related to the number of co-occurring 
competitors. We found no support for niche conservatism at the 
level of Pleistocene lineages. Our results demonstrate the complex-
ity of spatial variation in ecological relationships with subspecies-
level local adaptation to landcover and finer-scale adaptation to 

climate. We additionally document the interplay of human popula-
tion densities and the number of top competitors (e.g., wolves, griz-
zlies), and how that affects the way black bears use the landscape. 
Future applications of large-scale SDMs (e.g., regional or continen-
tal) should work to account for varied relationships across space 
using biologically relevant delineations across the area of interest.

The ecological relationships of a local population reflect a bal-
ance between the population's potential to adapt to local conditions 
vs. the phylogenetic constraints associated with the population's ge-
netic legacy. The ecology of black bears is variable across their range 
in terms of diet (Bull et al., 2001; Graber & White, 1983), hibernation 
(Gould, 2020; Johnson et al., 2018), and, as we show here, in their 
ecological relationships with landcover, humans, and climate. The 
fact that subspecies boundaries, and not Pleistocene lineages, were 
the best explanation for intraspecific variation in the response to 
land cover helps us understand the temporal scale of this local adap-
tation. The 16 subspecies represent evolutionary change after black 
bears expanded out of four Pleistocene refugia (2.6–0.012 Ma) into 
their current range. We propose that ecological adaptations during 
this time led to the differences we see today in the suitability of dif-
ferent forest types for different bear populations. The fact that the 
spatial pattern of these relationships did not better align with more 
fine-scale delineations of habitat type (ecoregion) suggests there 
is some genetic niche conservatism within these factors, and most 
are similar morphologically, with minor differences in cranial shape 
(Larivière, 2001; Puckett et al., 2015).

The two climatic variables we considered, mean annual tempera-
ture and precipitation, had the strongest signal of non-stationarity 
and the most localized spatial patterns, best explained by ecoregions. 
This is strong support that black bears are locally adapting to climatic 
conditions, regardless of their evolutionary history. The strongest 
relationships with these climate variables occurred on the bound-
aries of black bear's range (e.g., Missouri, southern Minnesota), and 
the magnitude of the effects suggested strong avoidance and attrac-
tion to climatic conditions, depending on the geographic region. For 
example, black bears were relatively more common in cooler con-
ditions in Arkansas, Oklahoma, and east Texas, but at warmer con-
ditions at the northern boundary of the species' range. Black bear's 
extensive geographical range and the inherent broad climatic niche 
associated with this range, coupled with evidence of local adaptation 
to climatic conditions, suggests a lack of vulnerability to forecasted 
climatic variation in much of their range.

The final variable we tested, human population density, was the 
only variable best explained by the competition hypothesis, where 
the varied effect of human population density was explained by the 
number of competing, sympatric predators in an area. This finding 
may be indicative of the situation black bears are forced into in 
modern day – one of simultaneous avoidance of competitors and, 
in many places, humans. In areas of high natural food availability, 
black bear tend to avoid humans and human-altered landscapes 
(Beckmann & Berger, 2003). In areas of range overlap with compet-
ing, sympatric grizzly bear, black bear's avoidance of grizzlies has 
been documented to result in increased temporal and spatial overlap 
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with human activity (Apps et al.,  2006; Belant et al.,  2010; Ladle 
et al., 2018). In contrast, in areas where black bear overlap with cou-
gars, human avoidance may be heightened due to supplemental food 
availability from cached carcasses by cougars cached carcasses by 
cougars; black bear are known to exhibit kleptoparasitism and heav-
ily scavenge on these caches (Elbroch & Kusler, 2018; Engebretsen 
et al., 2021). There are of course areas where black bear do not avoid 

increasing human population densities despite a lack of sympatric 
competitors (e.g., Urban areas in Appalachia; Gould, 2020) and addi-
tional factors contributing to differing black bear-environment rela-
tionships in these areas are likely at play (e.g., protected area status; 
hunting status of an area). We suggest that our finding that bears re-
spond to human densities and that this variation is best explained by 
the existence of sympatric competitors is the result of a combination 

F I G U R E  6  Estimated regression coefficients from the local ensemble models (n = 1173) using American black bear (Ursus americanus) 
iNaturalist observations during 2015–2020 across North America. Each subfigure shows the spatial variation of each ecological relationship 
where the legend represents the range of the estimated coefficients for each covariate. Stationary index (SI) values greater than one indicate 
support for non-stationarity
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of niche conservatism (i.e., genetic predisposition) in how different 
populations respond to potential predators (such as humans or griz-
zlies), and local differences in bear management plans and human 
behaviour.

We also found an interesting spatial pattern in the relationship 
with public lands status. In most of their range, black bears are 
typically more common inside protected areas, particularly in the 
presence of high human disturbance, but in the Ouachita Mountain 

TA B L E  2  Model comparisons testing which non-stationarity hypothesis best explains variation in each ecological covariate's spatial 
pattern

Covariate Top model R-squared

Delta AIC

Lineage Subspecies Ecoregion Competition

Coniferous forests Subspecies .24 302 0 100 197

Deciduous forests Subspecies .29 383 0 248 314

Mixed forests Subspecies .16 106 0 49 82

Cropland Subspecies .22 210 0 163 209

Human population density Competition .13 66 40 101 0

Protected area status Subspecies .35 288 0 261 391

Mean annual temperature Ecoregion .32 424 274 0 195

Mean annual precipitation Ecoregion .09 32 6 0 41

Note: R-squared column indicates the coefficient of determination for the top model, a measure of relative importance of regression vs. residual 
variation. Delta AIC values indicate the change in AIC from the top model.

F I G U R E  7  Comparison of estimated regression coefficients from local ensemble modelling approach across each of the eight focal 
ecological covariates, grouped by the best supported spatial pattern hypothesis (Pleistocene lineage, subspecies, ecoregion, or competition). 
For covariates best supported by the subspecies hypothesis, colour groupings indicate lineages associated with each subspecies. The two 
climatic responses (bottom row) were best explained by ecoregions. Subspecies subdivisions: (a) americanus, (b) floridanus, (c) luteolus, (d) 
altifrontalis, (e) amblyceps, (f) californiensis, (g) cinnamonum, (h) carlotte, (i) kermodei, and (j) vancouveri. Ecoregion subdivisions: (1) eastern 
temperate forests, (2) great plains, (3) marine west coast forest, (4) Mediterranean California, (5) north American deserts, (6) northern 
forests, (7) northwestern forested mountains, and (8) water dominated
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range of Oklahoma, Arkansas, and northern Louisiana, bears were 
less commonly reported on public lands. Several large national for-
ests exist in this region but many iNaturalist observations occurred 
beyond those boundaries. Unlike some western regions with strong, 
positive effects of public lands, the contiguous forest cover of the 
Ouachita region extends beyond public land boundaries, supporting 
black bear occurrence beyond these areas, resulting in an apparent 
negative relationship of public lands.

4.1  |  Testing assumptions of iNaturalist data

The use of iNaturalist observations to study wildlife ecology is in its 
infancy, and there is much debate over the validity of using such op-
portunistic, presence-only, citizen science observations to describe 
ecological relationships (Bird et al.,  2014; Hochachka et al.,  2012). 
Given that we are one of the few to use these data to study North 
American mammals, and used them as a measure of relative abun-
dance index, we were explicit about our assumptions, and took extra 
measures to test them. Our assumptions were that (1) the observa-
tions were accurately identified, (2) the spatial distribution of records 
was representative of land cover classes across North America and 
(3) how ecological findings match results from an independent but 
systematic camera trap survey. Our verification efforts resulted in 
three interesting findings. First, the community identified records 
with photographs of black bears perfectly (100% accuracy of black 
bear photographs). This is perhaps not surprising, given black bears 
are large and not hard to identify, but is much more accurate than re-
ported for other groups (e.g., termites Hochmair et al., 2020). Second, 
mammal observations from the iNaturalist database were represent-
ative of the available land cover conditions across North America. 
Third, we compared the iNaturalist results to an independent nation-
wide camera trap survey and the returned similar ecological relation-
ships in global models, which closely matched those found using the 
Snapshot USA database. Together, these results show that iNatural-
ist records are suitable for studying ecological relationships of black 
bears across their range with spatial resolution and geographic cover-
age unparalleled by other available data.

The parameter estimates from the global regression model fit using 
iNaturalist records agreed with those estimates from an occupancy 
model fit using Snapshot USA observations. The one clear exception 
was the estimated effect of mean annual temperature on black bear 
distribution. iNaturalist observations resulted in an estimated coeffi-
cient of approximately zero while Snapshot USA suggested a significant, 
negative effect. We believe this may be due to the restricted sampling 
extent of Snapshot USA, where the observations were sampling a com-
paratively small portion of the climatic gradients across North America; 
iNaturalist observations occurred almost completely across the entire 
latitudinal gradient of black bear's current range. Despite this conflict, 
estimated effects of land cover conditions and human population den-
sity agreed, lending further verification to iNaturalist as a potentially 
important source of ecological information for wildlife.

Using the presence-only observations of iNaturalist, we were 
unable to account for an important source of sampling bias – im-
perfect detection of black bear (Kéry & Schmidt, 2008). Imperfect 
detection of a species – that is, the tendency to not detect a species 
given it is present – can lead to biased parameter estimates and po-
tentially conflate ecological effects with the observation process. 
For black bear, we believe this source of bias is reduced (albeit not 
eliminated) because its large body size and diurnal habits make it 
conspicuous. We attempted to account for reporting probability 
through the use of sampling effort and occurrence probability using 
a suite of ecological covariates known to affect the species, thus we 
believe our ecological findings are reflective of the species' ecology. 
Further, we were able to explicitly account for imperfect detection 
in the Snapshot USA through hierarchical modelling, and param-
eter estimates from those modelling efforts mirrored the ecolog-
ical findings of our iNaturalist model, suggesting that the bias of 
imperfect detection may be minimal for iNaturalist black bear ob-
servations taken at the 50-km2 scale. Additionally, we do not have 
any way of detecting non-independence of iNaturalist observations 
(e.g., pictures/observations of the same bear). We believe this may 
be accounted for by modelling of observation density – which is 
different from actual black bear density – but it is possible that this 
non-independence may be influencing covariate relationships.

5  |  CONCLUSION

Our research contributes to the increasing evidence that species-
environment relationships are not constant over space, and whether 
niche conservatism or local adaptation to ecological context ex-
plains the variation depends on the environmental conditions being 
evaluated (e.g., land use vs climatic) (Smith, Beever, et al.,  2019, 
Pease et al., 2022). Although we documented support for subspe-
cies delineations, local adaptation may be occurring at a finer scale 
than tested here and future research should look to fine-scale driv-
ers such as human pressure or species-specific management regimes 
as drivers of local adaptation. Future work should also explore this 
question across taxa over large geographic space.

The strong ties we found to subspecies and ecoregions sug-
gest that ecological relationships are dynamic over a relatively 
fine spatial scale. Our findings have implications for studying how 
species-environment relationships may change over time, and we 
encourage the acknowledgement of such variation in correlative 
assessments of species distribution, abundance, and richness; 
local spatial modelling and ensemble modelling are promising ways 
to explore this variation. We also believe that persistent research 
on the validity and use of opportunistic, presence-only databases 
such as iNaturalist will continue to lead to interesting, nuanced 
ecological findings not apparent in studies conducted over re-
stricted geographic areas, and that the role of these databases 
in data fusion is likely to become increasingly important (Miller 
et al., 2019; Pacifici et al., 2017).
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Looking forward, we believe ignoring spatial and/or temporal 
variation in large-scale modelling exercises is a missed opportunity 
to understand how species are changing their local behaviours with 
the changing world. Ignoring this variation may not only result in mis-
leading inference, but could also result in overlooked species adapta-
tions right before our eyes (Thompson, 1998). This is not to say that 
past range-wide modelling efforts are invalid, but rather to highlight 
the exciting path forward in understanding species distributions as 
we continue to accumulate billions of species occurrence vouchers 
with up-to-date, high-resolution environmental information.
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