
High-Level Synthesis of Irregular Applications: A Case Study on
Influence Maximization

Reece Neff∗

rwneff@ncsu.edu
North Carolina State University

Raleigh, NC, USA

Marco Minutoli
marco.minutoli@pnnl.gov

Pacific Northwest National Laboratory
Richland, WA, USA

Antonino Tumeo
antonino.tumeo@pnnl.gov

Pacific Northwest National Laboratory
Richland, WA, USA

Michela Becchi
mbecchi@ncsu.edu

North Carolina State University
Raleigh, NC, USA

ABSTRACT

FPGAs are promising platforms for accelerating irregular applica-
tions due to their ability to implement highly specialized hardware
designs for each kernel. However, the design and implementation of
FPGA-accelerated kernels can take several months using hardware
design languages. High Level Synthesis (HLS) tools provide fast,
high quality results for regular applications, but lack the support to
effectively accelerate more irregular, complex workloads. This work
analyzes the challenges and benefits of using a commercial state-of-
the-art HLS tool and its available optimizations to accelerate graph
sampling. We evaluate the resulting designs and their effectiveness
when deployed in a state-of-the-art heterogeneous framework that
implements the Influence Maximization with Martingales (IMM)
algorithm, a complex graph analytics algorithm. We discuss future
opportunities for improvement in hardware, HLS tools, and hard-
ware/software co-design methodology to better support complex
irregular applications such as IMM.

CCS CONCEPTS

·Hardware→High-level and register-transfer level synthe-

sis; · Mathematics of computing→ Graph algorithms.

KEYWORDS

High-Level Synthesis, Graph Algorithms, Influence Maximization

ACM Reference Format:

Reece Neff, Marco Minutoli, Antonino Tumeo, and Michela Becchi. 2023.
High-Level Synthesis of Irregular Applications: A Case Study on Influence
Maximization. In 20th ACM International Conference on Computing Frontiers

(CF ’23), May 9ś11, 2023, Bologna, Italy. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3587135.3592196

∗Also with Pacific Northwest National Laboratory.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
CF ’23, May 9ś11, 2023, Bologna, Italy

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0140-5/23/05. . . $15.00
https://doi.org/10.1145/3587135.3592196

1 INTRODUCTION

Graph theoretic frameworks naturally capture the relationships
and the behavior of highly dynamical systems by embedding their
behavior in networked models. The simplicity and expressiveness
of these formalisms enable the building of sophisticated analytics in
application domains spanning from social sciences and marketing
to biology and epidemiology. However, the algorithms and data
structures that are at the core of graph analytic methods have highly
irregular runtime behavior [35] caused by the poor spatial and
temporal locality of their data-dependent memory access patterns.

The unique characteristics of graph algorithms and,more broadly,
graph analytics have motivated the work towards their acceleration
through specialized computing devices. Tera introduced the MTA
[2], a large-scale multi-threaded machine optimized for irregular
data accesses, while EMUTechnologies [12] proposed a fine-grained
multi-threaded design with hardware support for thread migration
across the system. Due to the availability of products that can be eas-
ily integrated into cloud computing systems, Field Programmable
Gate Arrays (FPGAs) have seen renewed interest for the accelera-
tion of graph analytics workflows [3, 7, 30, 34, 36, 37]. Convey [9]
proposed a custom multi-threaded design with a parallel memory
controller optimized for irregular accesses and the programming
model to build custom accelerators on their system.

The ever-increasing pace at which new data mining and ma-
chine learning based analytics on graphs are introduced makes
traditional hardware design cycles extremely hard or impractical
for the development of custom accelerators. High-Level Synthesis
(HLS) provides methods for the automatic generation of custom
accelerators from high-level programming languages, addressing
the productivity gap and reducing the time-to-market of custom
computing devices. However, current state-of-the-art HLS tools
have been developed and optimized for the regular behavior of
signal processing systems, as that has been the core market driving
the HLS industry.

Our work explores optimization techniques for the automatic
synthesis of analytics based on graph sampling and exposes the
research gaps in the current state-of-the-art HLS approaches. We
present our analysis using parallel algorithms for the Influence
Maximization Problem. The lessons learned derived from our ex-
periments can be generalized to the entire class of approaches that
heavily rely on random walks and graph sampling (e.g., Link Pre-
diction and Graph Neural Networks).

12

CF ’23, May 9ś11, 2023, Bologna, Italy Reece Neff, Marco Minutoli, Antonino Tumeo, Michela Becchi

The Influence Maximization (IM) Problem aims to identify a set
of k seed vertices that maximize the impact (number of activations)
of a diffusion process over a network. The problem is central in
network science and has many applications to social network anal-
ysis and disease modeling and intervention [27]. This problem is
NP-hard, but has a submodular structure [19], so we can compute
approximate solutions in polynomial time. However, even with
these approximations, the computational costs remain high when
processing medium scale graphs. We base our work on current
state-of-the-art parallel implementations for homogeneous [25]
and GPU-accelerated [26] high-performance computing clusters,
focusing in particular on the IMM algorithm [33]. We use the IMM
algorithm as our case study target because it is more complex than
the simple applications typically benchmarked, modeling a real-
world use case for acceleration. These implementations are also
generalizable to a wider class of random graph walks and sampling,
allowing the takeaways from this work to be extended to other
applications not limited to influence maximization.

There are several approaches to efficiently implement graph
algorithms on FPGAs [6]. These include specific algorithmic im-
plementations, using combinatorial or sparse linear algebra for-
mulations, but typically focusing on elementary graph kernels
(breadth first search, page rank, triangle count) [3, 13, 17], graph
acceleration frameworks, typically employing gather-apply-scatter
approaches [20, 28], and specialized accelerator generation meth-
ods [24, 32]. While showcasing many possible approaches to ac-
celerate graph processing with FPGAs, all these solutions either
focus on studying relatively simple graph kernels or on accelerating
a few computational patterns, and their performance often relies
on reordering or partitioning schemes. However, Barik et al. [4]
studied the impact of these schemes on the performance of complex
graph analytics and showed that there is no improvement when
graph sampling and random walks are the constraining operations.

Our analysis aims to provide insight on the performance im-
pact of optimizations available within modern commercial HLS
frameworks, their effectiveness, and shortcomings when applied
to complex graph analytics incorporating graph sampling and ran-
dom walks. As part of our study, we provide implementations of
custom accelerators that are fully integrated within the Ripples
software package and compare the HLS-accelerated algorithms on
a Xilinx Alveo U250 to CPU-only runs and hybrid CPU-GPU runs
of the application. We discuss the challenges with the current tools
and hardware and suggest improvements to increase the quality of
results.

In summary, we make the following contributions:

• we implement custom hardware accelerators for the core com-
putational kernel of the IMM algorithm (ğ 3) that relies on ran-
dom walks (the LT model) and graph sampling (the IC diffusion
model).
• we study the effect of several well-knownHLS optimizations and
discuss their limitations when applied to two different diffusion
models (ğ 3.3).
• we analyze the achieved performance of our proposed HLS-
based accelerators (ğ 4). The final design for the LT model shows
up to a 34.8× speedup over the baseline FPGA model, while that
of the IC model shows up to a 45.5× speedup. However, when

tested in a state-of-the-art parallel heterogeneous configuration,
only the LT model outperforms the CPU setup by a factor up to
3.65×, while the IC model matches the CPU setup’s performance
and both fall behind the GPU setup.
• we discuss opportunities for improvement on the hardware,
HLS tool, and co-design methodology to make HLS-based FPGA
acceleration more suitable for complex irregular workloads (ğ 5).

To the best of our knowledge, this work represents the first
systematic study of performance optimizations for acceleration
on FPGAs using HLS of complex graph analytic algorithms using
graph sampling and random walks.

2 INFLUENCE MAXIMIZATION

The Influence Maximization (IM) Problem was originally defined
as the problem of identifying a small cohort of individuals that
maximize the outreach over a broader population through (word-
of-mouth) recommendations [11]. The seminal work of Kempe
et al. [19] showed that its objective function (𝜎 ()) is submodular
under two simple but powerful diffusion models: the Independent
Cascade (IC) model and the Linear Threshold (LT) model. Under
this optimization framework, IM is defined as follows:

Definition 1 (Inf-Max). Given a graph 𝐺 = (𝑉 , 𝐸,𝑤), a diffu-

sion model𝑀 , and a budget 𝑘 , the IM problem is to find a set 𝑆 ⊆ 𝑉 of

size at most 𝑘 such that 𝜎 (𝑆) is maximum. Where 𝜎 (𝑆) is the expected

number of activated vertices over 𝐺 when𝑀 starts from the set 𝑆 .

Kempe et al. [19] show that Inf-Max is NP-hard under the IC
and LT diffusion models. However, the submodularity of the objec-
tive functions leads to efficient approximation algorithms with an
approximation guarantee of 1 − 1/𝑒 − 𝜀. A lower 𝜀 means a better
quality solution.

Borgs et al. [8] introduced the idea of reverse influence sampling
(RIS) that is foundational to the IMM algorithm from Tang et al.
[33] and its state-of-the-art parallel version fromMinutoli et al. [26]
that we extend in our work. The reverse influence sampling scheme
is better understood as a randomized experiment to identify the
most likely source of activation for each vertex in the graph. The
sampling process (Algorithm 1) consists of drawing uniformly at
random a vertex 𝑣 ∈ 𝑉 and then performing the diffusion process
𝑀 in reverse starting from 𝑣 . The sets 𝑅 of vertices visited in the
reversed diffusion process starting at 𝑣 are usually referred to as
random reverse reachable (RRR) sets. The sampling process with this
approach consists in building a collection of 𝜃 RRR sets (R). The
fundamental intuition is that highly influential seeds will be part of
many of the RRR sets in R. A maximum coverage algorithm over R
[8] gives the final seed set (𝑆).

Algorithm 1: IMM Algorithm from [33]

Input:𝐺 , 𝑘 , 𝜀
Output: 𝑆

begin

{R,𝜃 }← EstimateTheta (𝐺 , 𝑘 , 𝜀)

R← Sample (𝐺 , 𝜃 - |R |, R)

𝑆 ← SelectSeeds (𝐺 , 𝑘 , R)

return 𝑆

13

High-Level Synthesis of Irregular Applications: A Case Study on Influence Maximization CF ’23, May 9ś11, 2023, Bologna, Italy

S S.5

.3.3

.8 .1

.7

.4

.3
.7

.3

.8 .2

.4

.2

.5

S

.6

.2

.4

.3
.7

.3

.8 .2

.4

.2

.5

.6

.4

.3
.7

.3

.8 .2

.4

.2

.5

S

.9

.4

.3
.7

.3

.8 .2

.4

.2

.5

S

= Recently Activated Node = Activated Node R = Inactivated Node R = Random Number

Start Node Randomly Chosen

Compare And Activate Again

Compare Single Edge Weight with

Random Node Number

Top Right 0.2 Edge Already Tried

and Failed, 0.5 Edge Fails Too

Activate Nodes Where Edge

Weight > Random Number

Final Graph – Repeat As Needed

.5 < .9

.4

.3

.8

.3
.7

.4

.2

.5

.2 < .6

(a) IC Model

.7

θ𝑣

.7

.1

.1
.1

.1

.3 .2

.4

.3

.5
.3

.1

.1
.1

.1

.3 .2

.4

.3

.5

θ𝑣= Recently Activated Node = Activated Node θ𝑣 = Inactivated Node θ𝑣 = Threshold

Start Node Randomly Chosen,

Sum Weights In Order

Compare Combined Edge Weights

with Node Threshold & Activate

Traverse Most Recent Edge Whose

Weight Exceeded Threshold

.1

.1
.1

.1

.3 .2

.4

.3

.5

sum(weights) = .8 > .7

.3

.1

.1
.1

.1

.3 .2

.4

.3

.5

.9

.1

.1
.1

.1

.3 .2

.4

.3

.5

Compare, Activate, and Traverse

Again

Top Right 0.3 Edge and 0.5 Edge

Not Enough To Activate
Final Graph – Repeat As Needed

sum(weights) = .8 < .9sum(weights) = .4 > .3

(b) LT Model

Figure 1: Representation of the Independent Cascade and Linear Threshold diffusion models on a small graph.

Algorithm 1 shows the high level structure of the IMM algorithm
[33]. Tang et al. proved that, through a martingale strategy, the
sampling algorithm and the seed selection algorithm can be used
to compute a lower bound on the sampling effort (𝜃) required to
achieve the quality of the solution requested (controlled through 𝜀).
The estimation of 𝜃 starts by guessing an initial value and proceeds
by growing the current collection of RRR sets (R) to 𝜃 elements
and perform a seed selection step to verify that the exit condition
derived from the lower bound is satisfied and doubles 𝜃 otherwise.
Once we have a good estimate for 𝜃 , the algorithm concludes by
growing R to 𝜃 RRR sets, if needed, and computing the seed set 𝑆 .

Our work builds on the IMM parallel framework proposed by
Minutoli et al. [26] for the acceleration of the IMM algorithm on
multi-GPU systems. We extend and generalize their framework
by integrating custom hardware accelerators for FPGA generated
through HLS.

Independent Cascade (IC) Model: The IC model is the sim-
plest among the cascading models. In its settings, each newly ac-
tivated vertex 𝑣 has single attempt at activating its neighbors 𝑢
and succeeds with probability 𝑝𝑢 (𝑣), where 𝑢 is a neighbor of 𝑣 .
Despite its simplicity, the IC model has broad applicability in mod-
eling (mis)information and epidemics as it is closely related to the
Susceptible-Infectious-Recovered (SIR) model in the framework of
networked epidemiology. Fig. 1a shows a simulation of the execu-
tion of the IC model. The process evolves in a breadth-first search
(BFS) like process where only the neighbors of each active vertices
enter the next horizon with some probability. Therefore, the ran-
domized BFS-like process is not expected to go deep into the graph.
The vertices visited during this process will constitute the content
of an RRR set produced during sampling (Algorithm 1). Therefore,
the runtime behavior of the IC diffusion model is representative
of sub-graph sampling procedures commonly used in data mining
and machine learning algorithms on graphs.

Linear Threshold (LT) Model: Threshold models capture
mass behaviors. Vertices have a threshold (𝛿𝑣) in the input graph
that represents their inertia to activation. In the LT model, each
vertex 𝑣 has a threshold 𝛿𝑣 and each edge (𝑢, 𝑣) has a weight𝑤𝑢,𝑣

and a vertex 𝑣 becomes active when
∑
𝑢∈𝑁𝑎 (𝑣) 𝑤𝑢,𝑣 ≥ 𝛿𝑣 , where

𝑁𝑎 (𝑣) is the currently active neighborhood of 𝑣 . Our implemen-
tation uses the equivalent LT model in [19], as it is better suited

to implement algorithms based on RIS. Fig. 1b shows a simulation
of this equivalent LT model. The process starts from a randomly
selected node 𝑣 by generating a random threshold 𝛿𝑣 to account
for the uncertainty on the real value of the threshold. Then, the
diffusion process continues by considering the outgoing edges from
𝑣 one at a time and accumulates their weights𝑤𝑣,𝑢 . When there is
an edge (𝑣,𝑢) that makes the sum of the edge weights greater than
the threshold 𝛿𝑣 , the vertex 𝑢 is added to the next horizon of this
BFS-like traversal. Otherwise, the process stops at 𝑣 .

The graph traversal (Figure 1b) will visit only one of the vertices
𝑢 that are neighbors of 𝑣 at every step of the process. Therefore, the
LT model performs a random walk over the graph. The sets from
the LT model do not contain any cycles, but the main lessons from
this work (ğ 5) can be applied to a broader class of random walks,
including those that support cycles.

3 ACCELERATED ALGORITHMS

Minutoli et al. [25] showed that the Sampling step in Algorithm 1 is
the most computationally intensive part of the algorithm. Therefore,
we focus our analysis on the sampling algorithms that generate RRR
sets for the LT and IC diffusion models. To develop our HLS-Based
FPGA implementations, we started from the approach used for
CUDA in [26] for the LT kernel, and from the approach described
in [25] for the IC kernel. The Vitis HLS compiler supports C, C++,
and OpenCL.We used OpenCL because of its promises of portability
between accelerator systems. In our study, we target a Xilinx Alveo
U250 FPGA with 4x16GB 2400MHz DDR4 RAM. The Alveo U250 is
equipped with four Super Logic Region (SLRs) with combined SLR
resources totaling 54MB SRAM, 1.7 million look-up tables (LUTs),
3.5 million registers/flip-flops (FFs), and 12,228 DSP slices.

3.1 High Level Synthesis with OpenCL

OpenCL is one of the programming models widely adopted by HLS
tools to simplify porting from CPU/GPU applications; however,
considerable work is required towrite applications that will perform
well for the targeted platform. While HLS tools try to perform
automatic optimizations, the developer usually needs to restructure
the code and annotate it to steer the optimization process. Hence,
significant additional effort and understanding of the generated

14

CF ’23, May 9ś11, 2023, Bologna, Italy Reece Neff, Marco Minutoli, Antonino Tumeo, Michela Becchi

hardware is still required during development. While OpenCL for
CPU and GPU canmap instructions to existing hardware present on
the CPU and GPU, OpenCL for FPGA needs to generate hardware to
achieve the expected functionality, and generally requires extensive
modification of the code that isn’t needed for GPUs and CPUs. This
creates challenges for OpenCL to generate efficient hardware.

For example, even with OpenCL, memory is managed very dif-
ferently depending on the target devices. CPUs only leverage data
caching. Modern GPUs have configurable on-chip memories that
can act both as caches (transparently) or as scratchpad, but making
use of them to prefetch and reorganize data is directly supported
by the programming model. OpenCL for FPGAs, instead, needs
explicit and specialized declarations (including parameters) of on-
chip memory, since it needs to instantiate and reserve Block RAM
(BRAM) from the available resources, and explicit data movements.
Inference of BRAM caches is possible only for very simple kernels.
ğ 3.2 and ğ 3.3 detail the challenges and work required to create a
more efficient OpenCL kernel targeting FPGAs.

Algorithm 2: Baseline LT Kernel

Input:𝐺 , 𝑃 , 𝑆 // 𝑃 = PRNG States, 𝑆 = Num of Sets

Output: R

1 for 𝑖 ← 0 to 𝑆 do

2 {𝑣𝑐𝑢𝑟𝑟 , 𝑃𝑖 } ←GenRandomInt (𝑃𝑖)

3 while NotFinished (R𝑡𝑒𝑚𝑝) do

4 {𝑡, 𝑃𝑖 } ←GenRandomThreshold (𝑃𝑖)

5 for 𝑣𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 of 𝑣𝑐𝑢𝑟𝑟 do

6 𝑡 ← 𝑡−Weight (𝐺, 𝑣𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟)

7 if 𝑡 ≤ 0 and NotVisited (𝑣𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ,R𝑡𝑒𝑚𝑝) then

8 if |R𝑡𝑒𝑚𝑝 | < 8 then

9 𝑣𝑐𝑢𝑟𝑟 = 𝑣𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟

10 R𝑡𝑒𝑚𝑝 ← R𝑡𝑒𝑚𝑝 ∪ {𝑣𝑐𝑢𝑟𝑟 }

11 else

12 R𝑡𝑒𝑚𝑝 ← 𝜁 // 𝜁 = Invalid

13 break

14 R← R𝑡𝑒𝑚𝑝 ∪ R

15 return R

We set our baseline by startingwith anNDRange implementation
of the LT kernel to a single work-item kernel. An NDRange kernel
operates similarly to a CUDA kernel call, where the number of
work-items and work-groups are specified in the call (equivalently
called threads and thread-blocks in CUDA), and a single work-item
implementation calls a kernel with a single work-item, and the
amount of work is specified as a scalar kernel argument rather
than in the NDRange call. Vitis recommends implementing kernels
as a single work-item, as it allows for more fine-grained control
and optimization [1]. This kernel operates similarly to the GPU
version with a max walk size of eight, exploiting the observation
that 99% of the RRR sets for the LT model contains fewer than ten
nodes[26]. When an RRR set grows beyond eight nodes, the FPGA
marks that RRR set as invalid, and the FPGA moves to the next LT
walk to simulate. When the CPU is transferring the RRR sets from
the FPGA into host memory, it identifies the invalid sets and replays
them on the CPU, each invalid set corresponding to a single set
generated by an LT random walk. This invalidation is performed

BS Go TC Ok LJ

Graph Datasets

0

20

40

60

80

100

N
o
n
 B

u
rs

t
A

c
c
e
s
s
e
s
 p

e
r

R
R

R
 V

e
rt

e
x

LT

IC

Figure 2: LT vs IC Memory Access Characterization

to: (1) Allow the majority of sets to be generated without memory
constraints, as allocating 𝑆 ×𝑉 for storing results becomes quickly
infeasible with 32k walks queued per call, and (2) Allows the visited
nodes to be stored in on-chip memory so the FPGA can quickly
determine whether a node has been previously visited. The baseline
LT kernel is shown in Algorithm 2. We ported the IC kernel from
the C++ implementation as a single work-item kernel, modifying
the memory access pattern and the operation order as discussed
in ğ 3.3. Figure 2 shows the difference in the number of memory
access per vertex without burst transactions between LT and IC,
with a burst transaction being an aggregation of multiple memory
transactions into a single request. This memory access data was
collected by identifying accesses that weren’t synthesized as burst
accesses, counting the occurrences of those memory access, and
dividing by the number of visited vertices.

We dispatched workloads to accelerators, loading 32 work-items
at a time for CPU, and 32,768 work-items at a time for GPU and
FPGA on the LT model. The LT model has such a small execution
time that the workloads are balanced between the FPGA compute
units on multiple compute unit architectures. For the IC model,
work-items were dispatched to CPU one at a time, GPU 32 at a
time, and on FPGA between 1-16 work-items per compute unit.
The workload distribution for IC is more granular due to its wider
variation in execution time. Each CPU core manages a separate
accelerator (denoted as "GPU/FPGA Workers") and, if there are
more cores than accelerators, the extra CPU cores will also gen-
erate RRR sets ("Denoted as CPU Workers"). On the host, there is
a global atomic variable that tracks the number of RRR sets that
have or are in the process of being generated. For each batch, the
CPU core managing either an accelerator or itself will perform an
atomic fetch_add to determine the amount of work that needs to
be done, finishing if the total number of RRR sets requested has
been reached by the global atomic variable. Once all workers finish,
the algorithm will progress to the "SelectSeeds" step (Algorithm 1).
This method provides dynamic workload balancing between ac-
celerators, allowing different architectures (such as CPU/GPU and
CPU/FPGA, as tested in this work) to concurrently generate RRR
sets. While it is possible to design a heterogeneous implementation
that simultaneously runs on CPU, GPU, and FPGA, this is outside
the focus of this work.

3.2 Acceleration Challenges

There are several challenges in accelerating and optimizing these
kernels on FPGA, connected with the irregular memory accesses
and control flow typical of graph processing. The kernels incur

15

High-Level Synthesis of Irregular Applications: A Case Study on Influence Maximization CF ’23, May 9ś11, 2023, Bologna, Italy

many fine-grained memory reads to unpredictable locations due
to the irregular nature of each graph traversal in the kernel as
discussed in ğ 2. Graphs must be stored in high-latency off-chip
memory (DRAM) since they are too large to be stored in on-chip
memory (BRAM). Most recent FPGA devices have on-chip memory
with sizes in the order of the tens of megabytes. For the IC kernel,
the frontier queue, visited array, and output all have to be stored
in off-chip DRAM as well, due to their size; consequently, they
increase the pressure on the off-chip memory (Fig. 2). While storing
metadata on-chip is possible, it restricts the size of the input dataset,
which limits overall portability. Graph pre-processing to improve
locality on FPGAs has been explored by Sabet et al. [29], but their
approach would not be effective in the case of IMM because of
unique traits of this method. In fact, a case study on the IMM
Algorithm by Barik et al. [4] did not show significant performance
benefit from the application of various vertex reordering techniques
due to the randomness of its graph traversals. Moreover, during
our performance analysis, we discovered that Vitis HLS is unable
to pipeline the LT model due to a read-after-write (RAW) data
dependency. This inability to pipeline increases the overall kernel
latency, prompting the exploration of other optimizations to further
improve performance.

3.3 Acceleration Optimizations

Below are optimizations applied to the kernels. Algorithm-specific

optimizations are those that require a better understanding of the
code and have significant code modifications to implement, and
general optimizations are those that are more easily applied and
can be done more generally regardless of the targeted code. For
algorithm-specific optimizations, we describe: how the optimization
is automatically applied by Vitis HLS, denoted as "With Vitis", and
what are the codemodifications required to trigger the optimization,
denoted as "Modifications".

3.3.1 Algorithm-Specific Optimizations. Pipelining. Loop pipelin-
ing is one of the key features exploited in FPGA acceleration to
improve throughput. With Vitis: Vitis HLS automatically tries to
pipeline loops with variable bounds or loops greater than 64 iter-
ations, so the baseline version already includes this optimization.
We were able to perform pipelining only on loops with small in-
struction counts such as the burst access loops described in the
next section. Vitis HLS is unable to pipeline the LT model due to
loop-carried dependencies. In fact, there is a RAW dependency on
the threshold variable in the loop from Line 6 through Line 13 in
Algorithm 2. Vitis HLS could, however, pipeline the correspond-
ing IC kernel loop since there is no dependency on its threshold
variable. Modifications: To expose more pipelining opportunities
in the IC model, we were able to reorder (and eliminate) a loop-
carried dependency by allowing duplicate entries in the frontier
queue and eliminating them in later loop iterations. This reordering
reduced the initiation interval (II), which is the number of cycles
that pass before issuing each new loop iteration, of the IC model
from 142 to 5 cycles (out of total pipeline depths of 291 and 290
cycles, respectively). Further II reduction was not possible as the
linear congruential generator takes 5 cycles to generate a new pseu-
dorandom number. Using a faster method such as a linear feedback

FPGA

SLR

C

U

C

U

C

U

C

U

DDR

SLR

C

U

C

U

C

U

C

U

DDR

SLR

C

U

C

U

C

U

C

U

DDR

SLR

C

U

C

U

C

U

C

U

DDR

D

D

R

B

R

A

M

B
u

rst R
e

a
d

P
R

N
G

 S
ta

te

512

D
iffu

sio
n

 M
o

d
e

l

P
ip

e
lin

e

B
u

rst W
rite

 P
R

N
G

S
ta

te
 &

 R
R

R
 S

e
t

512

D

D

R

B

R

A

M

B
u

rst R
e

a
d

P
R

N
G

 S
ta

te

512 D
iffu

sio
n

 C
o

m
p

u
te

 P
ip

e
lin

e
B

u
rst W

rite
 P

R
N

G
 S

ta
te

 &

R
R

R
 S

e
t

512

D
iffu

sio
n

 M
e

m
o

ry

P
ip

e
lin

e

FIFO

FIFO

FIFO

Figure 3: High level architecture and data transfers of imple-

mented optimizations. The left compute unit is with pipes,

and the middle compute unit is without pipes.

shift register would change the random behavior of the walk com-
pared to the CPU and GPU, so the pseudorandom number generator
(PRNG) method was kept the same. For the LT model, it is possible
to perform efficient pipelining, but requires major code restruc-
turing and a detailed knowledge of what the hardware is capable
of. Because the resulting code is barely distinguishable from the
baseline, this is out of the scope of this work, where we focus on
optimizations more easily available to the higher level user.

In addition to refactoring for data dependencies, we performed
array partitioning to prepare for pipelining. To achieve a lower II,
this must also occur in pipelines where the same BRAM is accessed
more than twice, as the on-chip BRAM only has two ports. Partition-
ing increases the number of BRAMs and, therefore, memory ports.
This allows more pipeline stages to concurrently access on-chip
memory without incurring resource contention. Each CU shown
in Fig. 3 is a set of three main components: (1) a burst read unit to
access the PRNG states, (2) a diffusion model unit to perform the
random walk, and (3) a burst write unit to write back PRNG states
and the resulting set(s). Further II details are reported in ğ 4.
Burst Memory Accesses. Burst memory access can reduce the
number of clock cycles required to retrieve data from external
DRAM, increasing throughput. With Vitis: To achieve burst mem-
ory access in Vitis, arraysmust be declared statically to act as buffers
for the memory being accessed externally. The loop performing
the burst access must also have an II of 1, and can only be one read
or write in a contiguous sequence for Vitis HLS to infer a burst
memory access from the loop. In the baseline implementation, a
single pseudorandom number generator (PRNG) state used in a
linear congruential generator for threshold values [5] is read from
external memory once per RRR set, so the burst accesses cannot
be inferred. Modifications: The Alveo U250 has a maximum burst
length of 1024. To take advantage of this burst length, we imple-
mented burst memory accesses to move a batch of data to local
memory in the form of on-chip BRAM that can be accessed at a
lower latency than data stored in off-chip DRAM. Both PRNG data
reads/writes and LT result writes are accessed contiguously, so they
can be burst accessed.

16

CF ’23, May 9ś11, 2023, Bologna, Italy Reece Neff, Marco Minutoli, Antonino Tumeo, Michela Becchi

// Declare pipe, set depth to 1024

pipe float weight_pipe

__attribute__((xcl_reqd_pipe_depth(1024)));

// Memory Kernel Section

for(int i = start_edge; i < end_edge; i++){

float weight = global_weights[i];

// Write weight to buffer

write_pipe_block(weight_pipe, &weight);

[...] // Mirror control flow of compute kernel

}

// Compute Kernel Section

for(int i = start_edge; i < end_edge; i++){

float weight;

// Read weight from buffer

read_pipe_block(weight_pipe, &weight);

[...] // Continue with computation

}

Listing 1: Pipes sample code

To promote more contiguous accesses as opposed to a single
access per iteration, the kernel was refactored to run in batch cycles,
loading 1024 data values at a time in the case of LT and running that
batch of 1024, burst offloading the buffer to external memory, and
obtaining the next batch to be loaded into the buffer. In Algorithm 2,
a for loop loading all the PRNG states into a buffer and writing
the states from the buffer to global memory was added at the be-
ginning and at the end of the algorithm outside the outer for loop.
The burst access and data movement is visualized in Fig. 3. Burst
accesses support accessing up to 1024 values at a time, reducing
the memory overhead for accessing each item individually between
loop iterations.
Pipes. Pipes split memory access and compute operations into sep-
arate kernels, introducing a buffer between the two kernels. We
experimented using pipes to pipeline DRAM accesses and compu-
tation. With Vitis: To insert pipes via kernel splitting, the control
flow must be replicated on the kernel handling external memory
accesses. Modifications: We divided the OpenCL kernels into 2 ker-
nels connected through pipes: a DRAM-read, and a compute/write

kernel. Breaking the last kernel into a compute and write kernel
was unnecessary since the DRAM-write kernel would only operate
at the end, resulting in a similar run time with higher resource
utilization for an extra kernel. The first kernel reads the required
data from DRAM and feeds them to the compute kernel, and the
compute kernel performs the computations and then writes the
final result to DRAM at the end. Figure 3 shows how the two ker-
nels run and transfer data concurrently, and Listing 1 shows a code
sample of the pipes optimization with communicating edge weights
across the FIFO buffer instantiated with OpenCL pipes. We used
blocking pipes with a capacity of 1024 elements each to avoid any
pipeline starvation as this was the batch size used for burst accesses.
We observed performance improvements over the baseline OpenCL
kernels, but higher resource utilization from replicating the control

flow and no performance advantage over the burst optimization
(which does not require additional resources).

3.3.2 General Optimizations. Loop Unrolling. Loop unrolling al-
lows increasing throughput by exposing higher instruction level
parallelism deriving from multiple loop iterations at the cost of
increased resource utilization. When Vitis is instructed to perform
loop unrolling by a factor of 𝑥 in conjunction with array parti-
tioning by a factor of 𝑥 or 𝑥/2, the compiler attempts to partition
the buffers created for the burst memory transfers into multiple
BRAMs. This reduces the structural conflicts that may arise from
concurrent reads from a single BRAM. Because the LT model can-
not achieve pipeline parallelism due to data dependencies, we turn
to loop unrolling to achieve operator level parallelism. In an effort
to improve the accelerator’s throughput, we requested the compiler
to unroll it by a factor of 16 since the external memory transaction
width is 512 bits, which would allow processing 16 32-bit values at
a time. We remind that a complete unroll is not possible because
the number of iterations is unknown at synthesis time. This un-
rolling was performed on Line 1 in Algorithm 2 as this loop does
not contain any loop-carried dependencies.
ComputeUnit Replication.We use spatial replication to increase
parallelism. We replicated the kernel’s compute unit (CU - the
generated kernel in OpenCL terminology) by a factor of four or
eight. These CUs reside in one Super Logic Region (SLR), so they
all share a single DRAM module, reducing the need for duplicate
information; however, this causes DRAM contention among the
CUs, which can be detrimental to performance.

The performance improvement provided by spatial replication
comes with a price in resource utilization. With the LT kernels,
external memory stalling increased with CU replication, but not at
the levels observed in IC. The reason is that the LT kernel allows
allocating more data structures into the on-chip memory, while the
IC kernel depends mainly on external memory, as detailed in Fig. 2.
This provided moderate performance gains with further CU replica-
tion. When compared with the optimizations previously described,
the spatial replication of CUs incurs the highest cost in terms of re-
source utilization on the FPGA. This process requires synthesizing
multiple CUs and enqueuing multiple tasks. To achieve CU repli-
cation, we use an out-of-order command queue to queue separate
tasks which are then assigned by the Xilinx Runtime (the runtime
for facilitating the host ↔ FPGA interactions) to each available
CU. Work is partitioned in each kernel launch in contiguous blocks
to ensure memory is accessed contiguously for bursting. For LT,
the host array must be broken up into sub-buffers and assigned
to each SLR - this ensures each SLR writes to its own sub-buffer,
and the host only has to read one array at the end. Due to the
execution time variance of the IC model, each CU was processed
independently of one another in its own buffers and managed with
our asynchronous handler on the host side. We use OpenCL events
to operate asynchronously, allowing memory reads, writes, and
kernel enqueues to overlap as long as they are independent.
Multiple Super Logic Regions. Xilinx FPGAs can have multiple
SLRs, an SLR being a single FPGA die. Since each SLR has its own
DRAM module, DRAM contention does not increase with respect
to replicating CUs in other SLRs. Up until this point, all CUs were
synthesized in a single SLR. We replicated the CUs across all four

17

High-Level Synthesis of Irregular Applications: A Case Study on Influence Maximization CF ’23, May 9ś11, 2023, Bologna, Italy

Table 1: SNAP Graphs

Graph # Nodes # Edges Avg. Degree

web-BerkStan (BS) 685,230 7,600,595 22.18
web-Google (Go) 875,713 5,105,039 11.66
soc-pokec-relationships (PR) 1,632,803 30,622,564 37.51
wiki-topcats (TC) 1,791,489 28,511,807 31.83
com-Orkut (Ok) 3,072,441 117,185,083 76.28
soc-LiveJournal1 (LJ) 4,847,571 68,993,773 28.47

SLRs of the Alveo U250, creating a total of 16 and 32 CUs. Each SLR
accesses a different memory bank, so all the data structures need
to be replicated across the four off-chip memories, increasing the
setup overhead. This optimization further increases parallelism and,
ideally, throughput. In Vitis, each global array for each CU must
be declared for its respective SLR and DRAM modules to ensure
the CU is synthesized on the appropriate SLR. We utilize OpenCL
events to ensure the asynchronous execution and memory transfers
discussed with CU replication. Figure 3 shows the layout of the
CUs, SLRs, and external memory within the FPGA fabric.
NDRangeKernel. The Xilinx Vitis platform also supports OpenCL
NDRange kernels, which are the ones typically used on GPU plat-
forms. The underlying kernel is the same as shown in Algorithm 2,
but with the inner for-loop on Line 1 removed, as 𝑆 , the number of
RRR sets to generate, is defined in the NDRange kernel call instead
in the form of work-items and work-groups (the CUDA equivalent
of threads and thread-blocks). Enabling the burst optimization on
NDRange kernels required making the kernels łflexiblež (i.e., adding
an outer grid-stride loop allowing kernel invocations with flexible
thread configurations [15]). We performed this optimization within
a flexible NDRange kernel for the LT model, as it contains up to 32k
work-items that can be assigned, compared to the 1 to 16 assignable
in the IC model. Assigning more work-items to the FPGA led to
performance degradation due to the FPGA causing starvation on
the CPU cores that were concurrently generating RRR sets.

4 EXPERIMENTAL EVALUATION

Our prototypes have been implemented using the OpenCL synthesis
flow in the Vitis Unified Software Platform version 2020.2. We
targeted a frequency of 300MHz for all the designs. The system
used in our experiments is equipped with two Intel Xeon E5-2637 v4
CPUswith 8x32GB 2400MHzDDR4 RAM and the Xilinx Alveo U250
described previously (ğ 3). The designs that were synthesized for a
single SLR use only the DRAM module (16 GB) directly connected
to it. For our real-world heterogeneous system comparison, we have
three configurations, all based on the same state-of-the-art parallel
framework described in [25, 26]. The base configuration is 7 CPU
cores working together along with: (i) another CPU core for a full
parallel state-of-the-art CPU configuration in OpenMP [25] using
all eight cores, (ii) one CPU core managing the Alveo U250 FPGA
Data Center Accelerator Card (using our HLS-accelerated design),
and (iii) one CPU core managing an NVIDIA Tesla P100 (12 GB
GDDR5) written in CUDA [26]. Energy consumption is measured
using RAPL w/perf for CPU, nvidia-smi for GPU, and the Vitis
power profiler for FPGA. We use the same input graphs (Table 1) of
[25, 26]. These networks are from the SNAP data set collection and
contain real-world social networks [22]. We report performance as

Table 2: LT (top) and IC (bottom) Kernel Synthesis Results

Config FFs LUTs BRAMs II/Depth Freq

Baseline 11771 (0.37%) 7843 (0.51%) 8 (0.35%) 1/1 300.0 MHz
Burst 10158 (0.32%) 6997 (0.45%) 18 (0.78%) 2/2 300.0 MHz
ND Burst 10039 (0.32%) 7676 (0.50%) 8 (0.35%) 1/1 300.0 MHz
Unroll 40918 (1.30%) 33980 (2.20%) 23 (1.00%) 2/2 300.0 MHz
4 CU 44118 (1.40%) 32599 (2.11%) 96 (4.18%) 3/3 300.0 MHz
8 CU 87985 (2.79%) 65337 (4.23%) 192 (8.36%) 3/3 300.0 MHz
16C4S 173960 (5.52%) 130412 (8.45%) 384 (16.72%) 3/3 164.2 MHz
32C4S 347920 (11.04%) 260824 (16.91%) 768 (33.43%) 3/3 161.3 MHz1

Baseline 6033 (0.19%) 4848 (0.31%) 2 (0.09%) 142/291 300.0 MHz
Reorder 6476 (0.21%) 5319 (0.34%) 2 (0.09%) 5/290 300.0 MHz
Burst 25708 (0.82%) 16724 (1.08%) 15 (0.65%) 6/291 300.0 MHz
Unroll 141383 (4.49%) 114304 (7.41%) 15 (0.65%) 5/293 215.3 MHz
4 CU 57451 (1.82%) 39515 (2.56%) 8 (0.35%) 6/291 300.0 MHz
16C4S 229080 (7.27%) 158024 (10.24%) 32 (1.39%) 6/291 161.3 MHz
32C4S 454866 (15.54%) 314347 (22.45%) 64 (3.84%) 6/291 162.6 MHz1

the average of the results over three consecutive runs. The standard
deviation across the three runs for total RRR set generation of the
CPU, GPU, and FPGA version remained under 1%, 24%, and 6% of
the average for LT, respectively. The GPU observed larger deviation
on its runs that took a short amount of time (under 8 seconds on LT),
with the remaining runs staying under 7% of the average runtime.
For the IC runs, all versions had standard deviations less than 1%
of the average runtime for IC for all versions.

4.1 Linear Threshold Evaluation

Figure 4a reports each LTmodel optimization’s average runtime per
batch of RRR Sets to generate (typically 32k). The numbers above
the bars denote the speedup of the best performing optimization
over the baseline. Burst optimization marginally helped, but spatial
parallelism techniques such as CU Replication and Multi SLR

showed the best speedup by increasing external memory bandwidth
utilization and increasing the number of available memory banks,
respectively. Speedup for 32CU 16SLR (NP) specifically ranged from
32.2× to 34.8× over the baseline, showing good scalability. External
memory stalling showed a similar trend as IC’s stalling (Figure 4c),
but had much lower stall ratios, peaking around 25%. External
memory stalling increased with CU replication as DRAM pressure
went up. Surprisingly, Multi SLR configurations show a reduction
in external memory pressure. This unexpected behavior is due to
the 1.88× reduction in clock frequency induced by the intellectual
property (IP) block that the synthesis flow includes to collect pro-
filing information (Table 2). The profiling IP performs expensive
inter-SLR communication, causing the resulting design to incur
timing violations at the 300MHz target and lower the frequency
around 160MHz to meet constraints. The consequential frequency
drop reduces the rate of external memory transactions and reduces
memory pressure. Moreover, we suspect that the profiling IP sends
all memory and stall trace data to a single memory bank rather
than the originating one. We disabled the profiling IP and noted
that the frequency of the synthesized accelerator went up to the
300MHz target in the Multi SLR configuration (denoted as "NP"),
but this prevents the collection of memory stall data as a result.
Our experiments suggest that the stalling ratio in this configura-
tion should follow the common trend and increase. However, we

1Frequency is 300MHz and 291.3MHzwhen synthesized without profiling, respectively.

18

CF ’23, May 9ś11, 2023, Bologna, Italy Reece Neff, Marco Minutoli, Antonino Tumeo, Michela Becchi

BS Go PR Tc Ok LJ

Graph Datasets

0

100

200

300

400

500

A
v
e
ra

g
e
 T

im
e
 P

e
r

B
a
tc

h
 (

m
s
)

33.3x
34.8x

32.2x

33.9x

32.4x

32.9x

Baseline

Burst

ND Burst

Unroll

4CU

8CU

16CU 4SLR

32CU 4SLR

32CU 4SLR (NP)

(a) LT Compute Unit Runtime

BS Go PR Tc Ok LJ

Graph Datasets

0

5

10

15

20

A
v
e
ra

g
e
 T

im
e
 P

e
r

Ta
s
k
 (

s
)

21.7x 20.5x

45.5x
40.0x

41.6x

39.7x

Baseline

Reorder

Burst

Unroll

4CU

16CU 4SLR

32CU 4SLR

32CU 4SLR (NP)

(b) IC Compute Unit Runtime

BS Go PR Tc Ok LJ

Graph Datasets

0.0

0.1

0.2

0.3

0.4

0.5

S
ta

ll
 R

a
ti

o

Baseline

Reorder

Burst

Unroll

4CU

16CU 4SLR

32CU 4SLR

(c) IC External Memory Stalls

BS Go PR Tc Ok LJ

Graph Datasets

0

1

2

3

4

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
c
e
 v

s
 F

P
G

A CPU LT

CPU IC

GPU LT

GPU IC

(d) Relative Performance vs FPGA

Figure 4: LT and IC performance data of various optimizations (𝑘 = 100, 𝜀 = 0.5).

did not observe any performance degradation in this configura-
tion. We predict that, for LT, the stalling ratio was low enough
to not cause performance degradation. ND Burst showed a slight
decrease in performance and increased resource utilization, while
Piping/Channeling performed the same as Burst but required
66.98% more LUTs, 79.15% more FFs, and 94% more BRAM. This is
due to both the memory and compute kernels having to replicate
the control flow of the original kernel, as the control flow has mem-
ory dependencies relating to values retrieved and computed within
the kernel run. Loop Unrolling showed no benefit, as Vitis HLS
scheduled the loop iterations serially instead of in parallel. This
is due to Vitis HLS utilizing the same memory port per unrolled
iteration rather than inferring the creation of one port per iteration,
causing resource contention. Vitis HLS does not warn the user about
reuse during synthesis, but the issue was evident after inspecting
the schedule viewer in the GUI and correlating this with the Vitis
HLS report showing an unexpectedly low number of instantiated
ports in the design. Despite the low resource utilization footprint
shown in Table 2, further scaling is limited by hardware constraints
(mainly the number of ports assignable to DRAM). Increasing the
number of ports can allow for better scalability.

4.2 Independent Cascade Evaluation

Figure 4b reports the runtime of IC kernel optimizations per task.
Reorder and Burst optimizations show a speedup from 1.2× to
3.3× over the baseline, with the majority of speedup also from
spatial replication. We note that external memory stalling (Fig. 4c)
shows a similar trend as LT with respect to spatial parallelism and
frequency, but at higher overall stalling. The workload variation and
nature of the IC diffusion model also require the FPGA to perform
more non-burst DRAM accesses per node (Fig. 2) since the frontier
queue and visited array are too large for on-chip memory and

BS Go PR Tc Ok LJ

Graph Datasets

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

R
e
a
d
 B

a
n
d
w

id
th

 U
ti

li
z
a
ti

o
n
 R

a
ti

o
 v

s
 F

P
G

A

FPGA

GPU

CPU

Figure 5: LT read bandwidth utilization compared to FPGA’s

160MHz 32CU 4SLR version, 16CU 4SLR on com-Orkut

(Achieved bandwidth / Max theoretical bandwidth)

must be stored in DRAM, resulting in more costly off-chip accesses.
Performance improvements between the ≈160MHz 32CU version
and the ≈290MHz 32CU (NP) version are limited, as the stalling
ratio for the ≈160MHz version is already high (≈20-50%). Loop
Unrolling encounters the same issue experienced in the LT results
with an added frequency reduction, and shows higher stalling due
to more irregular read patterns on the same port compared to a
single traversal. Table 2 shows minimal resource utilization, but
the memory stalling prohibits further performance improvements,
even by utilizing replication.

4.3 CPU and GPU Comparison

Figure 4d compares the best FPGA implementation obtained with
HLS tools to state-of-the-art CPU and GPU implementations. On LT,
the FPGA setup outperforms the CPU setup on all input datasets,

19

High-Level Synthesis of Irregular Applications: A Case Study on Influence Maximization CF ’23, May 9ś11, 2023, Bologna, Italy

ranging from 1.73× to 3.7× speedup. This is due to the use of
spatial parallelism by FPGA to keep DRAM occupied; however, the
GPU setup outperforms FPGA’s 32CU 4SLR (NP) version between
1.24× and 3.65×. A frequency 8× faster, 10× the peak memory
bandwidth, GPU’s thousands of threads compared to FPGA’s 32 CUs,
and the inability of the complex algorithm to be easily pipelined
due to a RAW dependency on threshold calculations do not allow
the FPGA to reach the same performance. While the GPU also
encounters the same RAW dependency, all LT walks occur for
each thread on the GPU in parallel while the FPGA, in the 32
CU setup, has to perform up to 1024 LT walks per compute unit.
The GPU can also take advantage of its memory subsystem with
automatically utilizing 32 to 128-byte cache lines, depending on
coalescing behavior. This allows the GPU to easily refer to up to 8-
32 cached neighbors while traversing them, depending on memory
alignment and number of neighbors, reducing the latency cost
between loop iterations of cached neighbors. An implementation
similar to this would have to be manually added in the FPGA and
isn’t inherently supported by the compiler (either automatically or
through a templated cache system supplied by the HLS tools). The
lack of pipelining forces the FPGA to process each LT walk serially
rather than in a pipelined manner, limiting its effectiveness. While
there are methods to efficiently perform pipelining on the LT model,
it requires major restructuring of the code and a detailed knowledge
of the hardware and compiler for the compiler to perform the
intended analysis and optimization. Improvement opportunities
are discussed in ğ 5.

The energy consumption savings over the CPU setup ranges
from 1.1× to 3.3×. The average power consumption of the entire
FPGA setup (7 CPU Cores + 1 FPGA performing sampling + 1 CPU
core managing the FPGA) is higher than the CPU-only setup (8
CPU cores performing sampling). Due to this, more power is used
overall, but the speedup is enough to garner energy savings. The
GPU setup shows the best energy savings, but only because of the
large performance increase, as it uses the most power out of the
three setups.

For IC, the FPGA’s added power consumption vs a single CPU
core and its similar performance to the CPU setup keeps the FPGA
from outperforming either device in energy savings. The GPU out-
performs both FPGA and CPU on all graphs as it utilizes a modified
version of the NVIDIA library’s BFS, performing a parallel BFS
across the GPU with atomic operations (unsupported on Xilinx
FPGAs) rather than one BFS per CU/thread. Even the pipelining
on the FPGA is not fast enough compared to the GPU’s superior
memory bandwidth, clock speed, and massive amount of concur-
rent threads to process each frontier compared to the FPGA’s 32
compute units, even when pipelined. Figure 5 shows the utilization
of available bandwidth between the CPU and GPU relative to the
FPGA implementation on the LT model (with the FPGA’s 16 CU 4
SLR version on com-Orkut, and the 32CU 4 SLR 160MHz version for
the others, as the 300MHz version was unable to perform profiling).
Most notably, the FPGA and GPU trade on utilization, showing the
memory bandwidth as a limiting factor for performance. In addition
to improved hardware, easy-to-use HLS tool support for improved
memory subsystems such as those described in ğ 5 can help the
FPGA compete with the GPU.

5 DISCUSSION

We showed that exploiting spatial parallelism andmaximizing mem-
ory utilization are key performance optimization techniques when
dealing with highly irregular workloads, such as our IMM case
study. When optimizing the sparser LT model, we found that usage
of on-chip memory greatly improved performance, as it halved
the number of nonburst memory accesses when compared to the
denser IC model. The relatively small execution time of each work-
item on LT also enabled better static workload balancing for spa-
tial parallelism. From our experiments, it clearly emerges that the
architectural decisions of the current state-of-the-art tools and
their optimization pipelines target regular workloads or very small
workloads that can fit in on-chip memory. Such design decisions
compromise the performance of sparse and irregular applications.

While previous works claim current HLS tools can be used to
accelerate irregular applications, many existing approaches impose
stringent limitations such as a maximum possible node out-degree,
walk size, or graph size to be used (ğ 6). In real-world applications,
these constraints are impractical. Our IMM use-case shows that
graph analytics on real-world inputs require most, if not all, data
structures to be located in off-chip memory. In contrast to the
current literature, we have shown that traditional HLS optimization
methods targeted at improving operation-level parallelism and
spatial replication alone are ineffective.

The roofline model from Calore and Schifano [10] shows that
better memory technologies are needed to compete with the GPU
implementation. In fact, the LTmodel shows an estimated 1.1 FLOPS
per 4-byte word for each memory transaction, and the IC model
presents an even lower ratio. While high bandwidth memory (HBM)
provides an immediate mitigation (top of the line FPGA boards al-
ready support it), the HBM protocol is optimized for large (regular)
memory transactions. Therefore, technology geared towards effi-
ciently supporting small memory transactions in HLS flows can
become a fundamental break-through in the acceleration of irregu-
lar applications. Su et al. [31] implemented a random walk for GNN
sampling in Verilog HDL using an Alveo U280 equipped with HBM,
but was still outperformed by a Tesla V100 by 4.79×-5.07×.

Although HLS tools have greatly improved over time, their user
experience is still far from what software compilers offer. As pre-
viously mentioned, the current state-of-the-art tools significantly
lack details in reporting crucial information to their users. The HLS
compiler fails to report when optimizations requested on specific
loops via pragma annotations fail or cannot be applied. In fact, to
detect that loop unrolling was not successfully applied, we had to
carefully inspect the interconnect and the schedule of operations.
The compiler and documentation also failed to report that multi-
SLR profiling added inter-SLR connections, resulting in a drop in
frequency to ≈160MHz. Close inspection of the timing report was
required to identify the connections belonging to the profiling IPs.

Commercial HLS tools provides optimizations mainly target-
ing regular computation and code patterns typical of digital signal
processing. Their key optimizations (such as loop unrolling and
loop pipelining) focus on extracting instruction level parallelism.
Introducing compiler-level optimizations for irregular applications,
which traverse pointer-based data structures, is much more com-
plicated due to the lack of effective compiler analysis passes. As

20

CF ’23, May 9ś11, 2023, Bologna, Italy Reece Neff, Marco Minutoli, Antonino Tumeo, Michela Becchi

demonstrated by our paper, OpenCL implementations of graph
algorithms for GPUs (or their equivalent in CUDA) do not directly
translate to good FPGA designs (if they even work, since not all
the functionalities of the OpenCL standard are supported, such as
atomic operations). The main optimization possible with commer-
cial tools is replicating the compute unit, which is a simple way to
extract more task-level parallelism and, consequently, memory level
parallelism, which are abundant in these applications. However,
there are no optimizations for task-level parallelism, nor to sup-
port fine-grained memory accesses. An alternative solution would
be to resort to Xilinx’s HLS libraries in C++ that can define spe-
cialized hardware components (arbitrary precision, stream buffers,
and split/merge units [18]) which can then be integrated in the
overall architecture, but require explicit use of the functions in the
libraries and thus may need significant change to the algorithms. A
more effective approach, however, requires employing a different
programming model than OpenCL. An example of this would be
Svelto [24], which combines support for task level parallelism with
specialized hardware templates that are instantiated with pragma
annotations in the code typical of parallel programming. The hard-
ware templates connect replicated accelerators to a dynamic task
scheduler and a multi-ported memory interface that can support
multiple memory transactions in parallel. The approach generates
accelerators with multiple contexts that allow tolerating memory
access latency while keeping the system utilized.

6 RELATEDWORK

Parallel Influence Maximization.Minutoli et al. [25] proposed
the first parallel and scalable algorithm for shared memory and dis-
tributed memory systems based on the IMM algorithm of Tang et al.
[33]. The same authors later extended their framework to support
multi-GPU systems by introducing a custom dispatching engine
that dynamically distributes work units among all the available
CPU cores and GPUs. We extend their framework by introducing
FPGA workers into the same engine that offloads work to custom
accelerators. Our objective is studying the impact of HLS tools and
optimizations on a real-world application.

Göktürk and Kaya [14] proposed INFUSER a parallel IM algo-
rithm based on CELF [21]. INFUSER uses fusion and vectorization
techniques to increase the parallel efficiency of the algorithm. The
approach leverages direction-oblivious pseudo-random number
generators to fuse the sampling step and the computation of the
influence score. It also attempts at reducing the memory pressure by
reusing each edge access for multiple simulations through batching
and instruction-level parallelism. Finally, the approach suggests the
use of memorization to speed up the computation of the marginal
gains in the CELF based algorithm. However, their approach is
limited to undirected graphs.

FPGA Optimizations of OpenCL codes. Liu et al. [23] per-
form BFS optimizations for OpenCL to FPGA by implementing a
five-stage pipeline, memory coalescing, on-board buffering, and
level update shifting. While each diffusion model in the IMM algo-
rithm’s sampling stage is based on BFS, the proposed local buffer
optimizations other than pipelining are incompatible with the dif-
fusion model’s implementations. The proposed memory coalescing
does not work due to unique graph traversal of each thread (see

ğ 3.2 for more details). Local buffering and level update shifting
both rely on large on-chip BRAM memory to store data for the
entire graph, but the U250’s ∼13.5MB per SLR does not support
larger graph sizes. Hassan et al. [16] explore FPGA specific opti-
mizations for irregular OpenCL applications running on Intel FPGA.
Their analysis includes breadth-first search, compares the single
work-item and NDRange implementations of this algorithm, and
evaluates CU replication, loop unrolling, and the use of BRAM to
store the set of active states. They observed noticeable performance
improvements only when using a single work-item implementation
and storing the active set in BRAM which is infeasible in larger
graphs with active sets larger than available BRAM.

CustomFPGA Implementations ofGraphAlgorithms. Sev-
eral efforts [3, 7, 30, 34, 36, 37] proposed custom FPGA implementa-
tions of graph algorithms, often written in Verilog and VHDL. These
works focus on simple conventional kernels such as breadth-first
search, single source shortest path, weekly connected components,
and page rank. We target a larger application leveraging random-
ization that exacerbates the irregularity of memory accesses.

7 CONCLUSION

This paper discusses the challenges and opportunities of using HLS
tools to accelerate complex irregular applications. Through Vitis
HLS, we designed a custom accelerator for influence maximization
algorithms and deployed it on a system that integrates a Xilinx
Alveo U250 FPGA board. We explored a wide set of optimizations
allowed by the HLS tool.We discussed the challenges of accelerating
the emerging class of graph analytics, represented by the IMM
algorithm, which use (sub)graph sampling and random walks. To
the best of our knowledge, this is the first systematic study of the
performance optimizations available within HLS tools on FPGA
for this class of graph analytics. We discuss current limitations
and future opportunities for improvement and expect our analysis
to help guide future HLS development in expanding support for
irregular applications.

ACKNOWLEDGEMENT

The research is supported in part by the U.S. DOE Exascale Com-
puting Project’s (ECP) (17-SC-20-SC) ExaGraph codesign center
and Laboratory Directed Research and Development Program at
Pacific Northwest National Laboratory (PNNL), and by NSF award
CNS-1812727 at North Carolina State University.

REFERENCES
[1] 2021. Vitis Unified Software Platform Documentation: Application Acceleration

Development. https://www.xilinx.com/support/documentation/sw_manuals/
xilinx2020_2/ug1393-vitis-application-acceleration.pdf

[2] Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz, Allan Porter-
field, and Burton Smith. 1990. The Tera computer system. In Proceedings of the
4th International Conference on Supercomputing. 1ś6.

[3] Osama G. Attia, Tyler Johnson, Kevin Townsend, Philip Jones, and Joseph Zam-
breno. 2014. CyGraph: A Reconfigurable Architecture for Parallel Breadth-First
Search. In IPDPS ’14. 228ś235. https://doi.org/10.1109/IPDPSW.2014.30

[4] Reet Barik, Marco Minutoli, Mahantesh Halappanavar, Nathan R Tallent, and
Ananth Kalyanaraman. 2020. Vertex reordering for real-world graphs and ap-
plications: An empirical evaluation. In 2020 IEEE International Symposium on
Workload Characterization (IISWC). IEEE, 240ś251.

[5] Heiko Bauke. 2021. Tina’s Random Number Generator Library. https://www.
numbercrunch.de/trng/trng.pdf

21

High-Level Synthesis of Irregular Applications: A Case Study on Influence Maximization CF ’23, May 9ś11, 2023, Bologna, Italy

[6] Maciej Besta, Dimitri Stanojevic, Johannes De Fine Licht, Tal Ben-Nun, and
Torsten Hoefler. 2019. Graph Processing on FPGAs: Taxonomy, Survey, Chal-
lenges. arXiv:1903.06697 [cs.DC]

[7] Brahim Betkaoui, Yu Wang, David B. Thomas, and Wayne Luk. 2012. A Reconfig-
urable Computing Approach for Efficient and Scalable Parallel Graph Exploration.
In ASAP ’12. 8ś15. https://doi.org/10.1109/ASAP.2012.30

[8] Christian Borgs, Michael Brautbar, Jennifer Chayes, and Brendan Lucier. 2014.
Maximizing Social Influence in Nearly Optimal Time. In Proc. of SODA ’14. SIAM,
946ś957. https://doi.org/Portland,Oregon

[9] TonyM. Brewer. 2010. Instruction Set Innovations for the ConveyHC-1 Computer.
IEEE Micro 30, 2 (2010), 70ś79. https://doi.org/10.1109/MM.2010.36

[10] Enrico Calore and Sebastiano Fabio Schifano. 2021. Performance assessment of
FPGAs as HPC accelerators using the FPGA Empirical Roofline. In Proc. of FPL
’21. 83ś90. https://doi.org/10.1109/FPL53798.2021.00022

[11] Pedro M. Domingos and Matthew Richardson. 2001. Mining the network value
of customers. In Proc. of KDD ’01. ACM, 57ś66.

[12] Timothy Dysart, Peter Kogge, Martin Deneroff, Eric Bovell, Preston Briggs, Jay
Brockman, Kenneth Jacobsen, Yujen Juan, Shannon Kuntz, Richard Lethin, Janice
McMahon, Chandra Pawar, Martin Perrigo, Sarah Rucker, John Ruttenberg, Max
Ruttenberg, and Steve Stein. 2016. Highly Scalable Near Memory Processing
with Migrating Threads on the Emu System Architecture. In 2016 6th Workshop
on Irregular Applications: Architecture and Algorithms (IA3). 2ś9. https://doi.org/
10.1109/IA3.2016.007

[13] Iman Firmansyah, Du Changdao, Norihisa Fujita, Yoshiki Yamaguchi, and Taisuke
Boku. 2019. FPGA-Based Implementation ofMemory-Intensive Application Using
OpenCL (HEART 2019). ACM, New York, NY, USA, Article 16, 4 pages.

[14] Gökhan Göktürk and Kamer Kaya. 2020. Boosting Parallel Influence-
Maximization Kernels for Undirected Networks with Fusing and Vectorization.
CoRR abs/2008.03095 (2020). arXiv:2008.03095 https://arxiv.org/abs/2008.03095

[15] Mark Harris. 2013. CUDA Pro Tip: Write Flexible Kernels with Grid-Stride
Loops. https://developer.nvidia.com/blog/cuda-pro-tip-write-flexible-kernels-
grid-stride-loops/.

[16] Mohamed W. Hassan, Ahmed E. Helal, Peter M. Athanas, Wu-Chun Feng, and
Yasser Y. Hanafy. 2018. Exploring FPGA-specific Optimizations for Irregular
OpenCL Applications. In ReConFig ’18. 1ś8. https://doi.org/10.1109/RECONFIG.
2018.8641699

[17] Sitao Huang, Mohamed El-Hadedy, Cong Hao, Qin Li, Vikram S. Mailthody,
Ketan Date, Jinjun Xiong, Deming Chen, Rakesh Nagi, and Wen-mei Hwu. 2018.
Triangle Counting and Truss Decomposition using FPGA. In HPEC ’18. 1ś7.

[18] Vinod Kathail. 2020. Xilinx Vitis Unified Software Platform. In Proc. of FPGA
’20, Stephen Neuendorffer and Lesley Shannon (Eds.). ACM, 173ś174. https:
//doi.org/10.1145/3373087.3375887

[19] David Kempe, Jon Kleinberg, and Éva Tardos. 2003. Maximizing the Spread of
Influence through a Social Network. In Proc. of KDD ’03. ACM, New York, NY,
USA, 137ś146. https://doi.org/10.1145/956750.956769

[20] Kartik Lakhotia, Rajgopal Kannan, Sourav Pati, and Viktor Prasanna. 2020. GPOP:
A Scalable Cache- and Memory-Efficient Framework for Graph Processing over
Parts. TOPC ’20 7, 1, Article 7 (March 2020), 24 pages.

[21] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne Van-
Briesen, and Natalie Glance. 2007. Cost-effective outbreak detection in networks.
In KDD. ACM, 420ś429.

[22] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.

[23] Cheng Liu, Xinyu Chen, Bingsheng He, Xiaofei Liao, Ying Wang, and Lei Zhang.
2019. OBFS: OpenCL Based BFS Optimizations on Software Programmable FPGAs.
In ICFPT ’19. 315ś318. https://doi.org/10.1109/ICFPT47387.2019.00056

[24] Marco Minutoli, Vito Giovanni Castellana, Nicola Saporetti, Stefano Devecchi,
Marco Lattuada, Pietro Fezzardi, Antonino Tumeo, and Fabrizio Ferrandi. 2022.
Svelto: High-Level Synthesis of Multi-Threaded Accelerators for Graph Analytics.
IEEE Trans. Comput. 71, 3 (2022), 520ś533. https://doi.org/10.1109/TC.2021.
3057860

[25] Marco Minutoli, Maurizio Drocco, Mahantesh Halappanavar, Antonino Tumeo,
and Ananth Kalyanaraman. 2020. CuRipples: Influence Maximization on Multi-
GPU Systems. In Proc. of ICS ’20. ACM. https://doi.org/10.1145/3392717.3392750

[26] Marco Minutoli, Mahantesh Halappanavar, Ananth Kalyanaraman, Arun Satha-
nur, Ryan Mcclure, and Jason McDermott. 2019. Fast and Scalable Implemen-
tations of Influence Maximization Algorithms. In CLUSTER ’19. 1ś12. https:
//doi.org/10.1109/CLUSTER.2019.8890991

[27] Marco Minutoli, Prathyush Sambaturu, Mahantesh Halappanavar, Antonino
Tumeo, Ananth Kalyananaraman, and Anil Vullikanti. 2020. PREEMPT: Scalable
Epidemic Interventions Using Submodular Optimization on Multi-GPU Systems.
In SC20: International Conference for High Performance Computing, Networking,
Storage and Analysis. 1ś15. https://doi.org/10.1109/SC41405.2020.00059

[28] Tayo Oguntebi and Kunle Olukotun. 2016. GraphOps: A Dataflow Library for
Graph Analytics Acceleration. In Proc. of FPGA ’16. 111ś117.

[29] Amir Hossein Nodehi Sabet, Junqiao Qiu, and Zhijia Zhao. 2018. Tigr: Trans-
forming Irregular Graphs for GPU-Friendly Graph Processing. In Proc. of ASPLOS
’18. ACM. https://doi.org/10.1145/3173162.3173180

[30] K. Sridharan, T. K. Priya, and P. Rajesh Kumar. 2009. Hardware architecture for
finding shortest paths. In TENCON ’09. 1ś5. https://doi.org/10.1109/TENCON.
2009.5396155

[31] Chunyou Su, Hao Liang,Wei Zhang, Kun Zhao, Baole Ai, Wenting Shen, and Zeke
Wang. 2021. Graph Sampling with Fast Random Walker on HBM-enabled FPGA
Accelerators. In 2021 31st International Conference on Field-Programmable Logic
and Applications (FPL). 211ś218. https://doi.org/10.1109/FPL53798.2021.00042

[32] Mingxing Tan, Gai Liu, Ritchie Zhao, Steve Dai, and Zhiru Zhang. 2015. Elas-
ticFlow: A complexity-effective approach for pipelining irregular loop nests. In
ICCAD ’15. 78ś85.

[33] Youze Tang, Yanchen Shi, and Xiaokui Xiao. 2015. InfluenceMaximization in Near-
Linear Time: A Martingale Approach. In Proc. 2015 ACM SIGMOD International
Conference on Management of Data. ACM, 1539ś1554.

[34] Matti Tommiska and Jorma Skyttä. 2001. Dijkstra’s Shortest Path Routing Algo-
rithm in Reconfigurable Hardware. In Proc. of FPL ’01. Springer-Verlag, Berlin,
Heidelberg, 653ś657.

[35] Antonino Tumeo and John Feo. 2015. Irregular applications: From architectures
to algorithms [guest editors’ introduction]. Computer 48, 8 (2015), 14ś16.

[36] Shijie Zhou, Charalampos Chelmis, and Viktor K. Prasanna. 2015. Optimizing
memory performance for FPGA implementation of pagerank. In ReConFig ’15.
1ś6. https://doi.org/10.1109/ReConFig.2015.7393332

[37] Shijie Zhou, Charalampos Chelmis, and Viktor K. Prasanna. 2016. High-
Throughput and Energy-Efficient Graph Processing on FPGA. In FCCM ’16. 103ś
110. https://doi.org/10.1109/FCCM.2016.35

22

