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ABSTRACT

Over the past few years, there has been an increased interest in

using FPGAs alongside CPUs and GPUs in high-performance com-

puting systems and data centers. This trend has led to a push toward

the use of high-level programming models and libraries, such as

OpenCL, both to lower the barriers to the adoption of FPGAs by

programmers unfamiliar with hardware description languages, and

to allow to deploy a single code on different devices seamlessly.

Today, both Intel and Xilinx offer toolchains to compile OpenCL

code onto FPGA. However, using OpenCL on FPGAs is compli-

cated by performance portability issues, since different devices

have fundamental differences in architecture and nature of hard-

ware parallelism they offer. Hence, platform-specific optimizations

are crucial to achieving good performance across devices.

In this paper, we propose a code transformation to improve the

performance of OpenCL codes running on FPGA. The proposed

method uses pipes to separate the memory accesses and core com-

putation within OpenCL kernels. We analyze the benefits of the ap-

proach as well as the restrictions to its applicability. Using OpenCL

applications from popular benchmark suites, we show that this code

transformation can result in higher utilization of the global memory

bandwidth available and increased instruction concurrency, thus

improving the overall throughput of OpenCL kernels at the cost of

a modest resource utilization overhead. Further concurrency can

be achieved by using multiple memory and compute kernels.
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• Software and its engineering → Software notations and

tools.
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1 INTRODUCTION

Over the past several years, there has been an increasing trend

toward using heterogeneous hardware in single machines and large-

scale computing clusters. This trend has been driven by demands

for high performance and energy efficiency. Initially, heterogeneity

has mostly involved using GPUs and Intel many-core processors

alongside multi-core CPUs [6]. More recently, due to their compute

capabilities and energy efficiency, the trend has evolved to include

Field Programmable Gate Arrays (FPGAs) [20] in high-performance

computing clusters and data centers. Today, Microsoft Azure and

Amazon Web Services include FPGAs in their compute instances

[2][3].

Hardware heterogeneity involves significant programmability

challenges. Without a unified programming interface, not only

are users required to become familiar with multiple programming

frameworks, but they also need to understand how to optimize

their code to various hardware architectures. To address this chal-

lenge, the Khronos group has introduced a unified programming

standard called OpenCL, which is intended for accelerated program-

ming across different architectures [4]. This programming model

initially targeted CPUs and GPUs. At the same time, programming

FPGAs using low-level hardware description languages (HDLs) has

traditionally been considered a specialized skill. To facilitate the

adoption of FPGAs, vendors have spent substantial resources on

the design and the development of OpenCL-to-FPGA toolchains,

including runtime libraries and compilers allowing the deployment

of OpenCL code on FPGA. Intel and Xilinx, two major FPGA ven-

dors, are now providing their own OpenCL-to-FPGA development

toolchain and runtime system [5] [11].

Although OpenCL allows portability and productivity, it does

not guarantee performance portability [24]. Specifically, due to ar-

chitectural differences across devices, an OpenCL code tailored to

one platform often performs poorly on a different one. For instance,

when porting an OpenCL application from GPU to FPGA, three

main architectural differences affect performance portability. First,

these devices offer a different form of parallelism. FPGAs leverage

deep pipelines to exploit parallelism across OpenCL work-items

alongside spatial parallelism, while GPUs rely on massive SIMD

execution of threads (or work-items). Second, the off-chip memory

bandwidth of current FPGA boards is much lower than that offered

by high-end GPUs, which results in inefficient memory operations

and low overall application performance. Third, while GPUs pro-

vide relatively efficient support for synchronization primitives like

barriers and atomic operations, barriers on FPGAs result in a full
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pipeline flush, leading to significant performance degradation. Sev-

eral papers have aimed to improve the efficiency of existing OpenCL

code (often tailored to GPUs) on FPGA through platform-agnostic

and specific compiler optimizations and scheduling techniques

[18][12][10][23].

In this work, we explore and evaluate the use of the feed-forward

designmodel to improve the performance of OpenCL code on FPGA.

The proposed model splits each kernel into two kernels - a memory

and compute kernel - connected through pipes. At a high level, the

model aims to increase the memory bandwidth utilization, reduce

the memory units’ congestion, and maximize the instructions con-

currency within the application. We show that the feed-forward

design model allows the offline compiler to generate designs with

more efficient memory units and increased instruction parallelism,

leading to better performance with a low resource utilization over-

head. A simplified version of this scheme has been explored in

[25] on simple micro-kernels, in most cases leading to performance

degradation over the original single work-item version of the code.

In this work, we show that, when generalized and applied to more

complex kernels with irregular compute and memory access pat-

terns, this technique can lead to significant speedups over the single

work-item version of the code.

Our exploration is structured as follows. First, based on recom-

mendations from Intel’s OpenCL-to-FPGA documentation [1], we

convert SIMD-friendly code into serial code (i.e., a single work-item

kernel). Second, we split each kernel into two kernels (memory and

compute kernels), thus separating global memory reads/writes from

the rest of the instructions inside the kernel. In order to minimize

the data communication latency, we connect these kernels through

pipes. We study the effect of loop-carried dependencies in the orig-

inal code on the applicability of the method and its performance

benefits. Lastly, we explore increasing the concurrency by having

multiple versions of memory and compute kernels working on dif-

ferent portions of the data. In our experiments, we first compare the

performance and resource utilization of the original kernels and the

versions using the feed-forward design model. We then evaluate

the effect of increasing the number of memory and compute kernels

on performance and resource utilization.

In summary, this work makes the following contributions:

• A systematic code transformation method that separates the

memory accesses and core computation within an OpenCL

kernel. The proposed approach aims to improvememory band-

width utilization and maximize instruction concurrency.

• An analysis of the effect of different classes of loop-carried

dependencies on the applicability and benefits of the proposed

code transformation method.

• An evaluation on a set of applications from popular bench-

mark suites [9][8]. Our experiments show performance im-

provements from our method from 30% up to 86× over base-

line code at the cost of a modest resource utilization overhead.

• A study based on synthetic microbenchmarks to evaluate

how the applications’ compute and memory access patterns

affect the performance improvement achievable through the

proposed code transformation.

2 BACKGROUND

2.1 OpenCL for FPGA

OpenCL allows programmers to write platform-agnostic programs

and deploy them on a wide range of OpenCL compatible devices.

An OpenCL application consists of two types of code: host code

and device code. The host code is responsible for data allocation on

the host machine and accelerators (devices), communication setup

and data transfer between host and devices, configuration of the

accelerators, and launching the device code on them. The device

code contains the core compute kernels, is written to execute on

one or multiple platforms, and is often parallelized. In OpenCL ter-

minology, a kernel consists of multiple work-items evenly grouped

in work-groups. When deployed on GPU, work-items correspond to

threads and work-groups to thread-blocks.

OpenCL kernels can be in two forms: NDRange or single work-

item. NDRange kernels consist of multiple work-items, distinguish-

able through their local and global identifiers, launched by the host

code for parallel execution. This model is widely used for program-

ming CPUs and GPUs; on FPGAs, concurrent execution of work-

items is enabled through pipeline parallelism. Single work-item

kernels have a serial structure, with only one work-item launched

by the host code. The single work-item model is preferred when

the NDRange version of the kernel presents fine-grained data shar-

ing among work-items. Single work-item kernels are often rec-

ommended by FPGA vendors [11], partially because writing the

same kernels in NDRange fashion might require expensive atomic

operations or synchronization mechanisms to ensure correctness.

In cases that the OpenCL application is in NDRange form like the

baseline implementation of the benchmarks in [8] and [9], program-

mers can construct the single work-item version by embedding the

body of the NDRange baseline kernel within a nested loop. The

outer and inner loops must have the work-group and work-item

sizes as the loop iteration count, respectively.

Major FPGA vendors - such as Intel and AMD/Xilinx - currently

provide OpenCL-to-FPGA SDKs to facilitate FPGA adoption by a

wide range of programmers with different skills. However, the auto-

matic generation of FPGA code often incurs performance portability

issues, especially when the OpenCL code was originally optimized

for a different device, such as a GPU. To bridge the performance gap

between FPGAs and other devices, it is critical to understand the

performance limiting factors on FPGA, and design FPGA specific

optimizations.

2.2 Use of load/store units on FPGA

In order to understand the effect of compiler optimizations and

scheduling techniques on memory operations, it is essential to

know how OpenCL-to-FPGA compilers implement memory oper-

ations using load/store units (LSUs). In the rest of the paper, we

refer to Intel’s OpenCL-to-FPGA SDK as the offline compiler. The

offline compiler can instantiate several types of LSUs depending

on the inferred memory access patterns of the memory operations.

Two pieces of information used to determine the LSU type to be

used are the memory region accessed (i.e., global versus local mem-

ory) and the types of LSUs available on the target FPGA platform.

There are three LSU types available to the Intel’s offline compiler:

burst coalesced, prefetching, and pipelined LSUs. Burst coalesced
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LSUs are often used as the default type. This type of LSU is the

most resource-hungry memory module, and it is designed to buffer

memory requests until the largest possible burst of data read/write

requests can be sent to the global memory. Prefetching LSUs lever-

age a FIFO to read large blocks of data from global memory and aim

to keep the buffer full of valid data. This type best fits memory oper-

ations with a sequential memory access pattern. For local memory

accesses, the offline compiler typically instantiates pipelined LSUs,

which submit memory requests in a pipeline manner as soon as

they are received. In some cases, the offline compiler uses pipelined

LSUs as an alternative for global memory accesses, resulting in

slower but more resource-efficient memory units.

There are differences between terminologies and representa-

tions that different vendors (Xilinx/Intel) use for the OpenCL-to-

FPGA memory model. However, they both represent the same

support for memory instructions. For example, similar to a burst

coalesced LSU functionality, Xilinx leverage burst transfers auto-

matically using AXI burst transfers where applicable to improve the

performance[21]. However, unlike Intel SDK, programmers cannot

request a specific type of burst memory read, and they need to

write the code in a way that causes the compiler to infer a burst

memory read.

2.3 OpenCL pipes and channels

Pipes - OpenCL applications consisting of multiple kernels require

efficient mechanisms for inter-kernel communication. Using global

memory for this purpose requires race-free global memory accesses

or the use of atomic operations and barriers, which can be inefficient

on FPGA. The OpenCL standard provides a mechanism to pass data

between kernels, called łpipesž. Essentially, pipes represent ordered

sequences of data items. Each pipe has separate write and read

endpoints, allowing an OpenCL kernel to write to one endpoint

of the pipe while another kernel reads from the other endpoint.

By allowing concurrent execution of interconnected kernels, pipes

enable pipeline parallelism across kernels. Both FPGA vendors

(Intel/Xilinx) support pipe features as part of their OpenCL-to-FPGA

which makes this work applicable to FPGAs from both vendors. It

is worth mentioning that, in OpenCL, the host and device(s) can

also communicate through pipes, a feature not used in this paper.

Channels - Intel provides an OpenCL extension called łchan-

nelsž as a mechanism for data communication between kernels.

Programmers can define the depth of the channels as an input at-

tribute. The offline compiler considers this input to be the minimum

depth of that specific channel, and may increase the depth of the

channels in two situations: first, if there is a need to balance the re-

converging paths through multiple kernels; and second, to achieve

better loop pipelining [1].

3 IMPLEMENTING THE FEED-FORWARD
DESIGN MODEL

In this section, we first motivate our work (ğ 3.1). Second, we pro-

vide a high level overview of how to implement the feed-forward

design model on FPGA (ğ 3.2) and illustrate it through an example

(ğ 3.3). We then analyze the impact of loop-carried dependencies on

the applicability and benefits of the model (ğ 3.4). At last, we present

our approach to systematically transform a generic kernel to use

this design model, we elaborate on the strengths and weaknesses

of the method, and we propose some optimizations to it (ğ 3.5). The

proposed transformation is performed on the OpenCL device code.

The transformed code is then fed to the offline compiler to generate

HDL code, which is then deployed on FPGA by using the vendor’s

synthesis, placing and routing tools.

Figure 1 shows the OpenCL-to-FPGA compilation and synthesis

flow with the proposed feed-forward design transformation. As

can be seen, the proposed transformation is applied to the original

OpenCL code. The transformed OpenCL code is then fed to the

vendor’s HLS compilation toolchain (Intel/Xilinx). After generating

the HDL code, the toolchain generates the FPGA bitstream. Finally,

the compiled host C/C++ code invokes kernels compiled in the

FPGA bitstream to accelerate parts of the application on the FPGA.

3.1 Motivation

Global memory accesses are known to be one of the main perfor-

mance bottlenecks for OpenCL kernels implemented on FPGAs.

Wang et al. [19] measured the memory bandwidth of sequential and

randommemory accesses for different variable types and concluded

that random memory accesses within a kernel can limit the mem-

ory bandwidth achieved drastically. In addition, they observed that

severe lock and memory bandwidth overhead limit the throughput

of many of the OpenCL kernels they considered in their analysis.

Optimizing memory accesses in OpenCL code is not a trivial task.

While Intel’s SDK gives the programmer some level of control over

the type of load/store units (LSUs) instantiated by the offline com-

piler to handle memory instructions, selecting the optimal LSU

for each memory operation requires a good understanding of the

hardware and insights into the offline compiler’s operation.

By studying the memory analysis reports of the offline com-

piler for a set of real and synthetic OpenCL kernels with various

memory access patterns, we identified two significant factors af-

fecting the kernel’s performance: (i) the type and configuration of

the LSUs instantiated by the compiler to handle global memory in-

structions, and (ii) the presence of dependencies on global memory

instructions and of loop-carried dependencies on local variables.

The offline compiler associates to each loop an initiation interval (II),

which represents the number of clock cycles between the launch of

successive loop iterations. In the presence of loop-carried dependen-

cies, the offline compiler serializes the loop’s execution, resulting

in a high initiation interval and, consequently, low throughput.

In our study, we noticed that the offline compiler takes a con-

servative approach when identifying the memory dependencies

in kernels. This is mainly due to the following reasons. First, the

offline compiler cannot guarantee that the device finishes global

store instructions before load instructions to the same location in

the same or different iterations of a loop. Second, it does not gather

information from the host code at compile time. This is a common

shortcoming among different vendors. Xilinx’s compiler also fails

to identify memory dependencies in similar scenarios. This con-

servative approach limits the optimizations performed, negatively

affecting the performance of memory instructions [21].

One advantage of the feed-forward design model is that it ex-

poses information on the characteristics of the memory operations
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Figure 1: OpenCL-to FPGA compilation and synthesis flow with the proposed feed-forward design transformation

and data dependencies within a kernel to the offline compiler. Im-

portantly, using the feed-forward design model implies the absence

of unsafe loop-carried dependencies between load and store instruc-

tions on globalmemory.Wewill elaborate on unsafe loop-carried de-

pendencies in Section 3.4. In addition, using the feed-forward model

can increase the concurrency ofmemory instructions usingmultiple

load units. In turn, this technique can result in synchronization-free

kernels with high memory bandwidth utilization.

3.2 The feed-forward design model on FPGA

In the feed-forward design model, the computation is broken down

into two kernels: amemory kernel and a compute kernel. The former

is responsible for loading values from global memory, and the latter

performs computation on the loaded data and stores the result back

to global memory. In order to allow for efficient implementation,

these two kernels should be connected through a hardware mech-

anism that does not involve the use of global memory, allowing

the second kernel to avoid global memory loads. As explained in

Section 2, programmers can use pipes/channels to establish this

communication. The compute kernel can be further split in two

kernels: the first performing computation, and the second issuing

global memory writes. However, we verified that using a three-

kernel model does not add performance benefits. Therefore, in the

reminder of this paper we focus on the two-kernel (memory &

compute) model.

Previous work has explored the use of pipes to connect multiple

kernels that are already part of an application, creating efficient

kernel pipelines [13]. Our study uses pipes for a different purpose,

and also targets applications that consist of a single kernel. Specifi-

cally, our proposed transformation splits existing kernels to enable

1 for ( in t t i d = 0 ; t i d < max_ i t e r ; t i d ++) {
2 a = inpu t 0 [ t i d ] ;
3 b = inpu t 1 [ t i d ] ;
4 c = a ∗ a + b ∗ b ;
5 ou tpu t0 [ t i d ] = c ;
6 }

(a) Baseline kernel

1 for ( in t t i d = 0 ; t i d < max_ i t e r ; t i d ++) {
2 a = inpu t 0 [ t i d ] ;
3 w r i t e _ c h a n n e l _ i n t e l ( c0 , a )
4 b = inpu t 1 [ t i d ] ;
5 w r i t e _ c h a n n e l _ i n t e l ( c1 , b ) ;
6 }

(b) Memory kernel (feed-forward model)

1 for ( in t t i d = 0 ; t i d < max_ i t e r ; t i d ++) {
2 a = r e a d _ c h a nn e l _ i n t e l ( c0 ) ;
3 b = r e a d _ c h a nn e l _ i n t e l ( c1 ) ;
4 c = a ∗ a + b ∗ b ;
5 ou tpu t0 [ t i d ] = c ;
6 }

(c) Compute kernel (feed-forward model)

Listing 1: Feed-forward design model example

the use of the feed-forward model, and then uses pipes to connect

the generated sub-kernels. Other work has explored the use of

pipes on simple hand-written kernels, with the goal of improving

the efficiency of their memory operations [25][19]. However, the

performance advantages reported are limited, partially due to the

simplicity and the regular memory access patterns of those ker-

nels. Our goal is to propose a general code transformation method

that allows applying the feed-forward execution model to diverse

OpenCL kernels with regular or irregular memory access patterns,

and with simple or complex control flows.

While the use of the feed-forward design model can improve the

memory bandwidth utilization of OpenCL code deployed on FPGA,

there are limitations to its applicability on iterative applications.

Specifically, loop-carried dependencies can prevent or affect the

application of this design model. However, not all loop-carried de-

pendencies are problematic, and the code transformation method

we propose can actually handle some of them. In Section 3.4, we

categorize loop-carried dependencies and discuss their effect on ap-

plying the feed-forward design model to existing OpenCL kernels.

3.3 Feed-forward code transformation example

Listing 1 shows the application of the feed forward design model

on a simple single work-item kernel. The proposed method applies

also to NDRange kernels. However, Intel recommends using single

work-item kernels when using channels and pipes [1]. The example

in Listing 1 uses syntax from the Intel OpenCL-to-FPGA SDK.

In the example code, the baseline kernel performs two global

memory loads (pointers input0 and input1), calculates the sum of the

squares of the values read, and writes the results to a different global

memory location (pointer output0). Applying the feed-forward de-

sign model will split the baseline kernel in two kernels. Thememory

kernel contains the instructions required to load values from global

memory. These include load instructions and computation that af-

fects the control path of load instructions and thememory addresses

they access. The compute kernel contains all the computation and

store instructions. Data transfers between these two kernels are

performed through channels, and global memory loads within the

(a) Baseline kernel (b) Transformed design

Figure 2: Illustration of the kernels in Listing 1
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1 for ( in t t i d = 5 ; t i d < max_ i t e r ; t i d ++) {
2 r = 0 ;
3 for ( in t i = 0 ; i < 5 ; i ++) {
4 a = inpu t 0 [ t i d − i ] ;
5 r += a ;
6 }
7 ou tpu t0 [ t i d ] = r
8 }

(a) Baseline kernel

1 for ( in t t i d = 5 ; t i d < max_ i t e r ; t i d ++) {
2 for ( in t i = 0 ; i < 5 ; i ++) {
3 a = inpu t 0 [ t i d − i ] ;
4 w r i t e _ c h a n n e l _ i n t e l ( c0 , a ) ;
5 }
6 }

(b) Memory kernel (feed-forward model)

1 for ( in t t i d = 5 ; t i d < max_ i t e r ; t i d ++) {
2 r = 0 ;
3 for ( in t i = 0 ; i < 5 ; i ++) {
4 a = r e a d _ c h a nn e l _ i n t e l ( c0 ) ;
5 r += a ;
6 }
7 ou tpu t0 [ t i d ] = r
8 }

(c) Compute kernel (feed-forward model)

Listing 2: Data loop-carried dependency example

compute kernels are replaced by reads from assigned channels. Fig-

ure 2 illustrates the general hardware structure of the original and

transformed kernels.

3.4 Loop carried dependencies analysis

Loop-carried dependencies are a key factor affecting the applica-

bility of the proposed feed-forward code transformation method

and its performance benefits. Here, we categorize loop-carried de-

pendencies in data loop-carried dependencies (DLCDs) and memory

loop-carried dependencies (MLCDs), and study the impact of these

dependencies on the proposed code transformation method.

Data LCD - A Data LCD (DLCD) occurs when a local variable

updated in one loop iteration is read in a different iteration (RAW

dependency). The offline compiler serializes loops containing DL-

CDs. Listing 2 shows an example of DLCD. Updating variable r at

line 5 of Listing 2a creates a DLCD on this variable for the inner

loop. We note that this DLCD does not affect the control flow path

of the global memory load instruction at line 4 or the memory ad-

dress accessed by it (i.e., the input0 array’s index). However, in the

presence of this dependency, compilers will serialize the inner loop.

Serialization prevents pipeline parallelism and reduces memory

bandwidth utilization, ultimately limiting kernel performance.

Transforming the kernel to the feed-forward model using our

proposed code transformation often removes DLCDs from the mem-

ory kernel. In these cases, after the transformation, the loop with

the DLCD becomes part of the compute kernel, which is free from

global memory instructions. Removing DLCDs from the memory

kernel allows the offline compiler to schedule load instructions

more efficiently. While the DLCD is still present in the compute

kernel, the serialized loop in the compute kernel will only load data

from channels, which have low latency and high throughput - an ad-

vantage over the baseline version. Listings 2b and 2c show that the

DLCD in the loop in Listing 2a is present only in the compute kernel,

allowing the offline compiler to schedule the memory instructions

1 for ( in t t i d = 1 ; t i d < max_ i t e r ; t i d ++) {
2 a = ou tpu t [ t i d − 1 ] ;
3 b = inpu t [ t i d ] ;
4 ou tpu t [ t i d ] = a ∗ b ;
5 }

Listing 3: Unsafe memory loop-carried dependency example

in the memory kernel in a pipelined manner. We note that DLCDs

cannot be removed from the memory kernel when they affect the

control flow of load instructions or the memory addresses that they

access. In those cases, while the feed-forward transformation is

still safe to perform, it might not benefit the kernel’s performance.

Kernels with this characteristic can still benefit from using multiple

memory & compute kernels, as discussed in Section 3.5.

Memory LCD - A Memory LCD (MLCD) occurs when a global

memory location updated in one loop iteration is read in a different

iteration (RAW dependency). In the presence of MLCDs, the com-

piler needs to schedule the load and store instructions serially to

guarantee correctness. We categorize MLCDs into safe and unsafe

dependencies. Using the feed-forward design model on kernels

with safe MLCDs guarantees correctness, while using this transfor-

mation on kernels with unsafe MLCDs can affect correctness and

needs additional considerations.

An unsafe MLCD happens when a global load instruction on

iteration j loads the value stored in the same location in iteration

i, where: j − i > 0 or j − i is unknown at compile time. Otherwise,

we consider the MLCD to be safe. Unsafe MLCDs require manual

intervention on the baseline code to be removed, thus allowing the

feed forward code transformation while preserving correctness.

Programmers can use two methods to identify loop-carried de-

pendencies within their kernels. First, OpenCL-to-FPGA compilers

generate report files highlighting all the loop-carried dependen-

cies inside each kernel. Programmers can parse these report files

to extract loop-carried dependencies. Second, programmers can

generate the LLVM IR for each kernel (for example, using the Clang

compiler). Having the LLVM IR, programmers can create the data

dependence graphs for each kernel using the LLVM analysis tool.

In LLVM, dependence graphs include all the dependencies between

instructions. Each cycle in the dependence graph indicates a loop-

carried dependency. In this work, we used the first approach to

extract loop-carried dependencies for each kernel in the code.

There are two common cases when unsafe MLCDs can be either

disregarded or removed (i.e., made safe) through standard code

transformations. The first case is when the distance between j and i

is a function of the kernel input(s), and analyzing the kernel inputs

or knowing their characteristics can determine this distance. In

these cases, programmers can use their knowledge of the inputs

to determine whether an unsafe MLCD at compile time is safe at

runtime. The second case is when the distance between j and i is a

positive integer known at compile time. Programmers can use shift

registers to change these unsafe MLCDs to DLCDs [1]. However,

the presence of an MLCD with a positive distance still hinders

leveraging spatial parallelism with multiple memory and compute

kernels, which we discuss in Section 3.5.

Listing 3 shows an example of an unsafe MLCD in which the

statement at line 2 depends on the result of the execution of the

statement at line 4 in the previous iteration (RAW with a distance
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of one). Using shift registers will remove the MLCD on the global

memory pointer and move the dependency to a variable in either

local or shared memory.

1 for ( in t t i d = 0 ; t i d < max_ i t e r ; t i d ++) {
2 i f ( i npu t 0 [ t i d ] == −1) {

3 s t a r t = i npu t 1 [ t i d ] ;
4 i f ( t i d + 1 < max_ i t e r )
5 end = inpu t 1 [ t i d + 1 ] ;
6 e l se
7 end = max_end ;
8 r = 0 ;
9 for ( in t j = s t a r t ; j < end ; j ++) {
10 i f ( i npu t 2 [ j ] == −1)

11 r = r + inpu t 3 [ j ] ;
12 }
13 ou tpu t1 [ t i d ] = r ;
14 }
15 }

(a) Baseline

1 for ( in t t i d = 0 ; t i d < max_ i t e r ; t i d ++) {
2 in0 = inpu t 0 [ t i d ] ;

3 w r i t e _ c h a n n e l _ i n t e l ( c0 , i n0 ) ;
4 i f ( i n0 == −1) {
5 s t a r t = i npu t 1 [ t i d ] ;
6 w r i t e _ c h a n n e l _ i n t e l ( c1 , s t a r t ) ;
7 i f ( t i d + 1 < max_ i t e r )
8 end = inpu t 1 [ t i d + 1 ] ;
9 e l se
10 end = max_end ;
11 w r i t e _ c h a n n e l _ i n t e l ( c2 , end ) ;
12 for ( in t j = s t a r t ; j < end ; j ++) {
13 in2 = inpu t 2 [ j ] ;

14 w r i t e _ c h a n n e l _ i n t e l ( c3 , i n2 ) ;
15 i f ( i n2 == −1) {
16 in3 = inpu t 3 [ j ] ;
17 w r i t e _ c h a n n e l _ i n t e l ( c4 , i n3 ) ;
18 }
19 }
20 }
21 }

(b) Feed-forward design memory kernel

1 for ( in t t i d = 0 ; t i d < max_ i t e r ; t i d ++) {
2 in0 = r e a d _ c h a nn e l _ i n t e l ( c0 ) ;
3 i f ( i n0 == −1) {
4 s t a r t = r e a d _ c h a nn e l _ i n t e l ( c1 ) ;

5 end = r e a d _ c h a nn e l _ i n t e l ( c2 ) ;
6 r = 0 ;
7 for ( in t j = s t a r t ; j < end ; j ++) {
8 in2 = r e a d _ c h a nn e l _ i n t e l ( c3 ) ;
9 i f ( i n2 == −1)
10 r = r + r e a d _ c h a nn e l _ i n t e l ( c4 ) ;
11 }
12 ou tpu t1 [ t i d ] = r ;
13 }
14 }

(c) Feed-forward design compute kernel

Listing 4: Feed-forward transformation example

3.5 Code transformation method

Listing 4 illustrates our proposed code transformation method on a

more complex kernel. Our method consists of the following steps:

1 Identify instructions that read from global memory (lines 2, 3,

5, 10, & 11 of the baseline kernel in Listing 4a).

2 Use the LLVM analysis tool or the offline compiler report to

find all the MLCDs inside the kernel. Note that the list of

loop-carried dependencies identified by the offline compiler

is provided in the compiler’s report. Unless resolved (using

inferring shift registers or runtime analysis), unsafe MLCDs

prevent the safe application of the method.

3 Allocate a local variable for each load instruction used in the

condition of a conditional statement or a loop and replace all

its usages with the local variable (similar to lines 2 & 13 in

Listing 4b).

4 Copy the baseline kernel into two different kernels, namely,

the memory kernel and compute kernel (Listings 4b & 4c).

5 Define a channel for each global load instruction using the

proper data type. If the same data item is loaded repeatedly in

the baseline kernel, only assign a single channel to it.

6 Add to the memory kernel a write-to-channel instruction for

each read from global memory unless the loaded value is only

used as an index by another load instruction (lines 3, 6, 11,

14, & 17 of Listing 4b). Coherently with step 5○, if a data

item is loaded repeatedly in the baseline kernel, write the

corresponding channel only once.

7 In the compute kernel, replace instances of reading from global

memory with a read from the assigned channel (lines 2, 4, 5, 8,

and 10 in Listing 4c).

8 Use manual or automatic compiler analysis to mark all the

instruction that does not affect the loads from global memory.

9 Remove instruction marked in the previous step from themem-

ory kernel.

10 Remove from the resulting kernels empty control flow paths

and values not used (i.e., apply a dead code elimination pass).

11 Instantiate memory kernel and compute kernel multiple times

to increase concurrency and adjust the main loop trip counts

accordingly (more details provided below).

12 Repeat step 10○.

13 Replace the baseline kernel launch inside the host code with

invocations of the memory and compute kernels on separate

queues.

We note that this technique can generate a memory kernel with

a simplified control flow graph (CFG) compared to the original

(baseline) kernel. A less complex CFG results in fewer stalls for

global memory reads, hence leading to a higher memory bandwidth

utilization. This, in turn, can lead to better overall performance.

Enabling feed-forward design model with multiple mem-

ory and compute kernels - The most significant advantage of our

proposed technique is enabling the feed-forward design model to in-

crease the memory bandwidth utilization for load instructions. This

approach can achieve more performance advantages by increasing

concurrency among memory operations. In the feed-forward de-

sign model, data moves from the memory kernel to the compute

kernel in one or multiple words. For each word written on a pipe

by the memory kernel, the compute kernel will process the data

and free up the memory space assigned to the channel. Having

multiple memory and compute kernels can potentially increase the

global memory bandwidth achieved by the application, increasing

performance at a limited resource utilization overhead.

As mentioned earlier, safe LCDs allow applying the proposed

code transformation while preserving correctness. However, there

are two cases where safe LCDs hinder using multiple memory and

compute kernels to improve the performance of an OpenCL kernel.
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Table 1: Benchmarks applications and datasets
Benchmark Dwarves Pattern Dataset

Breadth-First Search (BFS) Graph Traversal Irregular #nodes=2M

Hotspot (HS) Structured Grid Regular Size=8192

k-Nearest Naighbors (NN) Dense Linear Algebra Regular Size=8.3M

Hotspot 3D (HS-3D) Structured Grid Regular Size=8192

Needleman-Wunsch (NW) Dynamic Programming Regular Size=8192

Back Propogation (BP) Unstructured Grid Regular Size=12.8M

Floyd-Warshall (FW) Graph Traversal Irregular Size=512

Maximal Independent

Set (MIS)
Graph Traversal Irregular Size=1.58M

Page Rank (PR) Graph Traversal Irregular Size=1.58M

Graph Coloring (GC) Graph Traversal Irregular Size=1.58M

The first case is when a DLCD is present in the outermost loop of a

single work-item kernel. The second case is when an unsafe MLCD

is resolved using shift registers.

Having multiple memory and compute kernels requires mak-

ing various decisions regarding their number, the load balancing

mechanism, and the buffer management scheme to be adopted.

Kernel replication adds concurrency while increasing complexity

and resource utilization. Intel recommends limiting the number

of channels used in the design, as they can add complexity and

limit overall performance. In addition, having a large number of

kernels reading data from global memory concurrently can increase

memory congestion and result in poor global memory bandwidth

utilization. We explored using a single memory kernel with mul-

tiple compute kernels and vice versa. Results indicate that having

separate memory and compute kernels communicating directly

yields higher concurrency than having one memory kernel send

data to multiple compute kernels.

Different load balancing mechanisms can be used to distribute

the work across multiple memory/compute kernels. These mecha-

nisms can be classified as either static or dynamic. Unlike dynamic

mechanisms, static load balancing schemes do not consider the sys-

tem’s state when making decisions. Many dynamic load balancing

schemes require busy-wait or feedback mechanism implementa-

tions involving kernels polling on non-blocking channels. This

form of busy-wait can result in performance degradation on FPGA.

This work uses static load balancing to connect memory and com-

pute kernels. When using multiple memory/compute kernels, we

partitioned the input workload consecutively and equally across dif-

ferent memory-compute pairs. By using this approach, we achieved

two goals. First, we avoided busy waits and feedback paths be-

tween the memory and compute kernels. Second, we preserved the

existing regular memory accesses within the application.

4 EXPERIMENTAL EVALUATION

4.1 Experimental setup

Hardware and Software Setup - We ran our experiments on an

Intel programmable acceleration card (PAC) with an Arria® GX

FPGA. This board contains two 4 GB DDR-4 SDRAMs memory

banks with a maximum bandwidth of 34.1 GB/s, and 128 MB of

flash memory. This FPGA includes 65.7 Mb of on-chip memory,

1150k logic elements (ALUTs), and 1518 digital signal processing

(DSP) blocks. On the host side, themachine is equippedwith an Intel

Xeon® CPU model E5-1607 v4 with a maximum clock frequency

of 3.1 GHz. We used the Intel FPGA SDK for OpenCL version 19.4

and Ubuntu 18.04.6 LTS.

Benchmarks - We evaluated our method on widely used open-

source benchmarks from Rodinia [9] and Pannotia [8]. These bench-

mark suites contain applications from different domains, and have

been used in previous work on OpenCL for FPGA [23] [14][24] [13].

Table 1 summarizes the main characteristics of these applications,

including the nature of their memory access patterns (column 3).

In the second set of experiments, we used automatically gener-

ated microbenchmark kernels to evaluate the impact of the kernel

characteristics (namely, memory access patterns and branch diver-

gence) on the efficacy of the proposed method. We will elaborate

on the features of these microbenchmarks in section 4.2.1.

PerformanceMetrics - For performance, we report the speedup

over the original single work-item version of each benchmark. For

resource utilization, we report the logic utilization and use of block

RAMs (BRAMs) of each implementation. The logic utilization rep-

resents an estimate of the number of half-adaptive logic modules

(ALMs) used by the compiler to deploy the OpenCL kernels on

FPGA. ALMs are hardware logic blocks. The simplest version of

ALMs contains a lookup table (LUT) and a register. The compiler re-

ports the logic utilization as a percentage of the total number of half

ALMs on the FPGA board. To evaluate improvements in memory

bandwidth utilization and instruction parallelism resulting from

the feed-forward design transformation, we also report the total

memory bandwidth utilization and initiation intervals of the main

loops before and after applying the proposed code transformation.

4.2 Experimental results

Single memory/single compute kernels - Table 2 shows the

performance impact of applying the feed-forward design model

to the considered benchmark applications when using a single

memory and a single compute kernels. In all cases, we used the

baseline code without any optimizations in order to isolate the

impact of the feed-forward model on performance. We report the

best results from running the same experiments using channels with

three depths: 1, 100, and 1000. We recall that the depth parameter

passed to the offline compiler indicates the minimum depth of

that specific channel, but the compiler might increase the depth

to improve efficiency. Our experiments showed that the channel

depth parameter’s setting does not affect performance significantly,

proving that the Intel compiler does a good job of adjusting the

channel depth.

As shown in Table 2, among the benchmarks we explored, BFS,

FW, BP, MIS, and NW benefit significantly from applying the feed-

forward model. For all these benchmarks, the main driver for the

speedup is the removal of safe LCDs on variables located in the

device’s global memory. To better understand the effect of the feed-

forward design on the generated hardware design, we include in

the table the initiation interval (II) and memory bandwidth uti-

lization of the designs. We recall that the II indicates the number

of clock cycles between two consecutive loop iterations and is an

indicator of the efficiency of the hardware pipeline generated by

the compiler. The high II in the baseline code of the five applica-

tions denotes serialization inside the implementation as the offline

compiler finds LCDs inside the kernels. This serialization results in
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Table 2: Resource utilization and throughput comparison of the feed-forward design (FFD) model against the baseline code
Logic Utilization BRAM Frequency Main Loop II Memory Bandwidth (MB/s)

Benchmark Baseline Execution Time (ms) FFD Speedup
Baseline FFD Baseline FFD Baseline FFD Baseline FFD Baseline FFD

BFS 6422 13.84 18.63 20.00 578 596 253 267 166 1 273 3687

HS 22553 0.85 16.14 17.25 517 522 313 257 1 1 8655 7340

NN 18.27 1.03 16.04 16.46 376 376 289 298 1 1 3468 3463

HS-3D 31967 0.88 16.45 17.95 542 536 294.63 258.13 1 1 10586 9315

NW 26036 50.95 16.10 18.86 506 407 267.23 266.02 283 1 660 2232

BP 140601 44.54 24.67 26.68 674 646 275.7 263.57 416 1 17087 21603

FW 41760 64.95 16.21 16.47 482 465 266 301 285 1 629 3129

MIS 2166 6.47 21.77 24.44 803 807 226 247 >=1 1 207 2116

PR 8430 0.96 20.43 22.52 703 709 272 261 1 1 2566 2283

GC 453 1.02 17.78 19.48 651 656 246 253 1 1 3345 3490

sub-optimal memory bandwidth utilization. After applying the pro-

posed transformation, the offline compiler generates designs with

an II of one, indicating a fully pipelined implementation. Hence, the

transformed codes enjoy better throughput and improved memory

bandwidth utilization over the baseline.

For FW, the unsafe loop-carried dependencies detected by the

offline compiler resulted in a large initiation interval (II) of 285 for

the main loop inside the kernel. As often done on global memory

loads, the offline compiler used the burst coalesced LSU type to

implement load instructions, resulting in low memory bandwidth

for instructions with regular memory access patterns. The use of the

feed-forward design model had two effects. First, resolving those

unsafe loop-carried dependencies allowed converting the main loop

to a fully pipelined loop with an II of 1. Second, it enabled the offline

compiler to use a prefetching LSU for one of the three global load

operations with a regular memory access pattern and increased

the maximum global memory bandwidth of the kernel from 630

MB/s to 3130 MB/s. These changes resulted in a speedup up to 65×

compared to the baseline kernel.

BP benefits from the feed-forward implementation similarly. In

the original kernel, the performance is limited by the main loop,

which exhibits an II of 416. In the feed-forward version of the kernel,

the same loop is fully pipelined with an II of one. This decrease in

the II also increased the maximum global memory bandwidth used

by the kernel and resulted in a significant speedup of 44× over the

baseline version of the kernel. Similar trends were observed on the

other three benchmarks (BFS, MIS, and NW) benefiting from the

feed-forward model.

We should note that the baseline version of NW carries an unsafe

MLCD inside the main loop of the kernel. However, this MLCD is

entangled to a load instruction in iteration K, which is dependent

on a store instruction in iteration K-1. In this case, this MLCD

can be resolved in the baseline kernel using a local variable in

the private memory of the device. Storing the dependency value

at the end of each iteration can remove the existing loop-carried

dependency. As a result, the kernel can read the same value at the

beginning of the next iteration (except the first iteration). Adding

this private variable results in a single work-item baseline kernel

with no MLCDs. Then, applying the feed-forward design model

allows achieving a 50× speedup by decreasing the II of the main

loop and increasing the global memory bandwidth of the kernel.

The feed-forward model reports minor performance improve-

ments on NN and GC, and small performance degradation on HS,

HS-3D, and PR (see Table 2). For these applications, the Intel pro-

filer’s report reveals the presence of one or multiple LSUs with high

łoccupancyž. The LSU occupancy is an indicator of the percentage

of the execution time where the LSU is not stalled. A high LSU

occupancy (i.e., low number of memory stalls) is desirable, and

indicates that the kernel is already making good use of the memory

bandwidth and memory accesses do not need further optimization.

As reported in Table 2, our code transformation introduces only

a modest resource utilization overhead. On average, our method

only increases the logic utilization by 9% and even has a positive

effect on BRAM usage on some benchmarks (at the expense of using

more registers). The profiling and resource utilization reports from

the offline compiler show that our method can optimize the load

units from both the throughput and resource utilization point of

view. This limits the overhead associated with transforming one

kernel to two kernels. Moreover, channels are implemented using

on-chip memory, hence, they introduce a very small overhead on

resource utilization.

Multiple memory/compute kernels - The feed-forward de-

sign model enables using multiple memory and compute kernels to

increase concurrency, at the cost of a resource utilization overhead.

Figure 3 shows the speedup and resource utilization overhead from

using two memory and two compute kernels (M2C2) over a single

memory/single compute kernel implementation (M1C1). The re-

sults show an average speedup of 39% over the M1C1 baseline with

only a 31% average increase in logic utilization and a 26% average

increase in the number BRAMs used. In the case of PR and BP, the

profiling data from the M1C1 version indicate highly optimized

memory operations with high global memory bandwidth utiliza-

tion. This characteristic hinders further performance improvements

from using multiple memory and compute kernels. Further, we ex-

plored using four memory and four compute kernels (M4C4) for

benchmarks that benefited from the M2C2 transformation. Except

for a performance improvement of ≈20% on HS and BFS and of

≈15% on GC, we did not observe additional performance benefits.

Using more memory and compute kernels to work concurrently on

different portions of the data increases the memory bandwidth uti-

lization of the application. However, the added concurrency leads

to increased contention on the memory units and introduces more

stalls and lower occupancy for the LSUs inside the kernel. Our

experiments show that M4C4 implementations have, on average,

68% more stalls on LSUs than M2C2 kernels. Taking the associated

resource utilization overhead into consideration, M2C2 results in

the best multiple memory/compute kernels configuration. When
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Figure 3: M2C2 speedup and resource utilization overhead compared to a single memory/single compute implementation

comparing the M1C1 and M2C2 code versions, we did not identify a

uniform trend in the clock frequency. However, as expected, M4C4

implementations had lower frequencies than M2C2 ones.

4.2.1 Experiments on Microbenchmarks. We designed two sets of

automatically generated microbenchmarks to explore the impact of

two code features on the performance of the feed-forward design

model. The first feature is the access pattern of the load instructions,

and the second is the control flow divergence in the main loop of the

single work-item kernel. The first set of microbenchmarks targets

memory access patterns. We use two kernels with no control flow

divergence across main loop iterations, eight load instructions from

global memory, and eighty arithmetic operations (i.e., the arithmetic

intensity of 10). These two kernels only differ in the behavior of

their load instructions. The first benchmark in this set, called M

AI10 R, has load instructions with regular memory access patterns,

and the second one, called M AI10 IR, has load instructions with

irregular memory access patterns.

The second set of microbenchmarks targets the presence of con-

trol flow divergence within the main loop in a single work-item

kernel. To this end, we designed two kernels with the same charac-

teristics as the first set; however, we added an inner loop alongside

a conditional statement inside the inner loop to add divergence to

the first set of microbenchmarks. To further show the impact of

the feed-forward design model on kernels with DLCD, we added

a reduction operation inside the inner loop to add data dependen-

cies across different iterations of the inner loop. We also decreased

the number of arithmetic operations inside the kernels to increase

the control flow divergence impact on the execution time of the

kernel. The first microbenchmark, called M AI6 for-if R, has load

instructions with regular, and another, called M AI6 for-if IR, has

load instructions with irregular memory access patterns.

Table 3 shows the impact of the feed-forward design model

with two memory kernels and two compute kernels on these sets

of microbenchmarks. The results suggest that kernels containing

load instructions with regular memory access patterns would often

benefit more from the feed-forward design model. This compar-

ison indicates that higher memory contention for irregular load

instructions in the feed-forward design with multiple memory ker-

nels leads to lower memory bandwidth utilization. Moreover, the

feed-forward design model improves performance for kernels with

control flow divergence and DLCD. The baseline version of these

microbenchmarks has a low memory bandwidth utilization due to

a more complex control flow and the presence of DLCD. As we

recall from Section 3, using the feed-forward design model removes

the DLCD from the memory kernel and improves the performance

of the design on the FPGA. Furthermore, having multiple memory

and compute kernels increases the concurrency among memory

instructions. These changes result in significantly higher memory

bandwidth utilization and better execution time.

5 RELATEDWORK

Zohouri et al. [24] and Nourian et al. [14] studied several optimiza-

tion techniques on applications from Rodinia benchmark suite and

finite automata traversal, respectively, while focusing on perfor-

mance and power consumption. Their analysis confirms the per-

formance portability gap while porting a GPU-optimized OpenCL

implementation to FPGA and indicates a need for FPGA-specific

optimizations. Krommydas et al. [12] performed a similar analysis

on several OpenCL kernels investigating pipeline parallelism on

single work-item kernels, manual and compiler vectorization, static

coalescing, pipeline replication, and inter-kernel channels. Hassan

et al. [10] explored FPGA-specific optimizations in their work. Their

benchmarks were chosen from irregular OpenCL applications suf-

fering from unpredictable control flows, irregular memory accesses,

and work imbalance among work-items. Their work exploits par-

allelism at different levels, floating-point optimizations, and data

movement overhead across the memory hierarchy.

There have been several efforts targeting the decoupling of mem-

ory accesses and computations on FPGA kernels [16] [7] [17].

Purkayastha et al. [16] explored the impact of decoupling part

or all of the memory accesses from the computation. Their solu-

tion achieves more than 2× speedup for a subset of the consid-

ered OpenCL applications. While their automated process to detect

decouplable variables can ease the transformation for program-

mers, following the steps we proposed, programmers can decouple

memory instructions from computation in more cases, resulting

in performance improvement in a larger set of applications. Char-

itopoulos et al. [7] explored decoupling memory accesses from

execution on FPGA devices. They showed that using separate fetch

units that access memory for load/store operations can result in per-

formance improvements of 2× compared to the optimized HLS for

three target applications in simulation. Unfortunately, no on-board

comparison for HLS code is provided.

Several previous works have tried to leverage pipes to improve

the performance of their implementations by increasing the concur-

rency among the instructions. Purkayastha et al. [15] applied pipes

only to global variables whose access pattern and control flow is

known at compile time, restricting the memory accesses that are

optimized. Given this restriction, they don’t require a complex data

transformation that handles loops and complex control flows inside
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Table 3: M2C2 Speedup and resource utilization comparison for microbenchmarks

Benchmark
Baseline

Execution Time (ms)
Speedup

Logic Utilization

Baseline

Logic Utilization

M2C2

BRAM

Baseline

BRAM

M2C2

M AI10 R 232 1.55x 17.69 25.39 612 892

M AI10 IR 440 1.00x 17.91 24.60 817 1215

M AI6 for-if R 10780 1.90x 18.13 25.39 664 892

M AI6 for-if IR 11500 1.84x 17.71 24.35 799 1161

the memory kernel. Sanaullah et al. [18] proposed an empirically

guided optimization framework for OpenCL to FPGA. They lever-

aged channels to convert a single kernel implementation to multiple

kernels, each working as a separate processing element. In their

work, they used channels for data communication among kernels.

However, their analysis indicates that using channels in their im-

plementation can result in lower performance, mainly due to the

data dependency among kernels and the need for synchronization.

Wang et al. [22] leveraged using task kernels and channels to design

a multi-kernel approach to reduce the lock overhead. Mainly their

work was focused on data partitioning workload. Yang et al. [19]

used channels to implement a molecular dynamic application.

In a more recent work, Liu et al. [13] proposed a compiler scheme

to optimize different types of multi-kernel workloads. They intro-

duced a novel algorithm to find an efficient implementation for

each kernel to balance the throughput of a multi-kernel design.

Additionally, they explored bitstream splitting to separate multiple

kernels into more than one bitstream to enable more optimizations

for individual kernels.

6 CONCLUSION

In summary, in this workwe explored using the feed-forward design

model to improve the performance of OpenCL kernels on FPGA.

We proposed a code transformation to apply this model to existing

OpenCL kernels. We evaluated the benefits and limitations of our

method, as well as its applicability in the presence of different

classes of loop-carried dependencies.

Our results emphasize the importance of LCDs (especially on

global memory) and their impact on performance. In particular,

we showed that avoiding MLCDs results in efficient pipelined im-

plementations. Our study shows that OpenCL-to-FPGA compilers

take a conservative approach when identifying MLCDs within ker-

nels, leading to serial loop execution even for loops that could be

pipelined. Using our code transformation, programmers can im-

prove the performance of their FPGA applications in two ways.

First, they can remove false loop-carried dependencies, resulting

in a speedup up to 64× over the baseline code. Second, they can

leverage this transformation to exploit spatial parallelism on the

FPGA by increasing the number of memory and compute kernels.

Our experimental results show that this can further improve the

performance of applications by up to 93% at the cost of a modest

resource utilization overhead. The proposed code transformation

can be integrated in a source-to-source compiler. However, to allow

the applicability of the method on a broader set of kernels, it is

important to incorporate code annotations to identify unsafe ML-

CDs that can be disregarded or removed at run-time (but cannot

be handled at compile time).
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