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ABSTRACT

Over the past few years, there has been an increased interest in
using FPGAs alongside CPUs and GPUs in high-performance com-
puting systems and data centers. This trend has led to a push toward
the use of high-level programming models and libraries, such as
OpenCL, both to lower the barriers to the adoption of FPGAs by
programmers unfamiliar with hardware description languages, and
to allow to deploy a single code on different devices seamlessly.
Today, both Intel and Xilinx offer toolchains to compile OpenCL
code onto FPGA. However, using OpenCL on FPGAs is compli-
cated by performance portability issues, since different devices
have fundamental differences in architecture and nature of hard-
ware parallelism they offer. Hence, platform-specific optimizations
are crucial to achieving good performance across devices.

In this paper, we propose a code transformation to improve the
performance of OpenCL codes running on FPGA. The proposed
method uses pipes to separate the memory accesses and core com-
putation within OpenCL kernels. We analyze the benefits of the ap-
proach as well as the restrictions to its applicability. Using OpenCL
applications from popular benchmark suites, we show that this code
transformation can result in higher utilization of the global memory
bandwidth available and increased instruction concurrency, thus
improving the overall throughput of OpenCL kernels at the cost of
a modest resource utilization overhead. Further concurrency can
be achieved by using multiple memory and compute kernels.
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1 INTRODUCTION

Over the past several years, there has been an increasing trend
toward using heterogeneous hardware in single machines and large-
scale computing clusters. This trend has been driven by demands
for high performance and energy efficiency. Initially, heterogeneity
has mostly involved using GPUs and Intel many-core processors
alongside multi-core CPUs [6]. More recently, due to their compute
capabilities and energy efficiency, the trend has evolved to include
Field Programmable Gate Arrays (FPGAs) [20] in high-performance
computing clusters and data centers. Today, Microsoft Azure and
Amazon Web Services include FPGAs in their compute instances
(2](3].

Hardware heterogeneity involves significant programmability
challenges. Without a unified programming interface, not only
are users required to become familiar with multiple programming
frameworks, but they also need to understand how to optimize
their code to various hardware architectures. To address this chal-
lenge, the Khronos group has introduced a unified programming
standard called OpenCL, which is intended for accelerated program-
ming across different architectures [4]. This programming model
initially targeted CPUs and GPUs. At the same time, programming
FPGAs using low-level hardware description languages (HDLs) has
traditionally been considered a specialized skill. To facilitate the
adoption of FPGAs, vendors have spent substantial resources on
the design and the development of OpenCL-to-FPGA toolchains,
including runtime libraries and compilers allowing the deployment
of OpenCL code on FPGA. Intel and Xilinx, two major FPGA ven-
dors, are now providing their own OpenCL-to-FPGA development
toolchain and runtime system [5] [11].

Although OpenCL allows portability and productivity, it does
not guarantee performance portability [24]. Specifically, due to ar-
chitectural differences across devices, an OpenCL code tailored to
one platform often performs poorly on a different one. For instance,
when porting an OpenCL application from GPU to FPGA, three
main architectural differences affect performance portability. First,
these devices offer a different form of parallelism. FPGAs leverage
deep pipelines to exploit parallelism across OpenCL work-items
alongside spatial parallelism, while GPUs rely on massive SIMD
execution of threads (or work-items). Second, the off-chip memory
bandwidth of current FPGA boards is much lower than that offered
by high-end GPUs, which results in inefficient memory operations
and low overall application performance. Third, while GPUs pro-
vide relatively efficient support for synchronization primitives like
barriers and atomic operations, barriers on FPGAs result in a full
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pipeline flush, leading to significant performance degradation. Sev-
eral papers have aimed to improve the efficiency of existing OpenCL
code (often tailored to GPUs) on FPGA through platform-agnostic
and specific compiler optimizations and scheduling techniques
[18][12][10][23].

In this work, we explore and evaluate the use of the feed-forward
design model to improve the performance of OpenCL code on FPGA.
The proposed model splits each kernel into two kernels - a memory
and compute kernel - connected through pipes. At a high level, the
model aims to increase the memory bandwidth utilization, reduce
the memory units’ congestion, and maximize the instructions con-
currency within the application. We show that the feed-forward
design model allows the offline compiler to generate designs with
more efficient memory units and increased instruction parallelism,
leading to better performance with a low resource utilization over-
head. A simplified version of this scheme has been explored in
[25] on simple micro-kernels, in most cases leading to performance
degradation over the original single work-item version of the code.
In this work, we show that, when generalized and applied to more
complex kernels with irregular compute and memory access pat-
terns, this technique can lead to significant speedups over the single
work-item version of the code.

Our exploration is structured as follows. First, based on recom-
mendations from Intel’s OpenCL-to-FPGA documentation [1], we
convert SIMD-friendly code into serial code (i.e., a single work-item
kernel). Second, we split each kernel into two kernels (memory and
compute kernels), thus separating global memory reads/writes from
the rest of the instructions inside the kernel. In order to minimize
the data communication latency, we connect these kernels through
pipes. We study the effect of loop-carried dependencies in the orig-
inal code on the applicability of the method and its performance
benefits. Lastly, we explore increasing the concurrency by having
multiple versions of memory and compute kernels working on dif-
ferent portions of the data. In our experiments, we first compare the
performance and resource utilization of the original kernels and the
versions using the feed-forward design model. We then evaluate
the effect of increasing the number of memory and compute kernels
on performance and resource utilization.

In summary, this work makes the following contributions:

e A systematic code transformation method that separates the
memory accesses and core computation within an OpenCL
kernel. The proposed approach aims to improve memory band-
width utilization and maximize instruction concurrency.

An analysis of the effect of different classes of loop-carried
dependencies on the applicability and benefits of the proposed
code transformation method.

An evaluation on a set of applications from popular bench-
mark suites [9][8]. Our experiments show performance im-
provements from our method from 30% up to 86X over base-
line code at the cost of a modest resource utilization overhead.
A study based on synthetic microbenchmarks to evaluate
how the applications’ compute and memory access patterns
affect the performance improvement achievable through the
proposed code transformation.
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2 BACKGROUND
2.1 OpenCL for FPGA

OpenCL allows programmers to write platform-agnostic programs
and deploy them on a wide range of OpenCL compatible devices.
An OpenCL application consists of two types of code: host code
and device code. The host code is responsible for data allocation on
the host machine and accelerators (devices), communication setup
and data transfer between host and devices, configuration of the
accelerators, and launching the device code on them. The device
code contains the core compute kernels, is written to execute on
one or multiple platforms, and is often parallelized. In OpenCL ter-
minology, a kernel consists of multiple work-items evenly grouped
in work-groups. When deployed on GPU, work-items correspond to
threads and work-groups to thread-blocks.

OpenCL kernels can be in two forms: NDRange or single work-
item. NDRange kernels consist of multiple work-items, distinguish-
able through their local and global identifiers, launched by the host
code for parallel execution. This model is widely used for program-
ming CPUs and GPUs; on FPGAs, concurrent execution of work-
items is enabled through pipeline parallelism. Single work-item
kernels have a serial structure, with only one work-item launched
by the host code. The single work-item model is preferred when
the NDRange version of the kernel presents fine-grained data shar-
ing among work-items. Single work-item kernels are often rec-
ommended by FPGA vendors [11], partially because writing the
same kernels in NDRange fashion might require expensive atomic
operations or synchronization mechanisms to ensure correctness.
In cases that the OpenCL application is in NDRange form like the
baseline implementation of the benchmarks in [8] and [9], program-
mers can construct the single work-item version by embedding the
body of the NDRange baseline kernel within a nested loop. The
outer and inner loops must have the work-group and work-item
sizes as the loop iteration count, respectively.

Major FPGA vendors - such as Intel and AMD/Xilinx - currently
provide OpenCL-to-FPGA SDKs to facilitate FPGA adoption by a
wide range of programmers with different skills. However, the auto-
matic generation of FPGA code often incurs performance portability
issues, especially when the OpenCL code was originally optimized
for a different device, such as a GPU. To bridge the performance gap
between FPGAs and other devices, it is critical to understand the
performance limiting factors on FPGA, and design FPGA specific
optimizations.

2.2 Use of load/store units on FPGA

In order to understand the effect of compiler optimizations and
scheduling techniques on memory operations, it is essential to
know how OpenCL-to-FPGA compilers implement memory oper-
ations using load/store units (LSUs). In the rest of the paper, we
refer to Intel’s OpenCL-to-FPGA SDK as the offline compiler. The
offline compiler can instantiate several types of LSUs depending
on the inferred memory access patterns of the memory operations.
Two pieces of information used to determine the LSU type to be
used are the memory region accessed (i.e., global versus local mem-
ory) and the types of LSUs available on the target FPGA platform.
There are three LSU types available to the Intel’s offline compiler:
burst coalesced, prefetching, and pipelined LSUs. Burst coalesced
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LSUs are often used as the default type. This type of LSU is the
most resource-hungry memory module, and it is designed to buffer
memory requests until the largest possible burst of data read/write
requests can be sent to the global memory. Prefetching LSUs lever-
age a FIFO to read large blocks of data from global memory and aim
to keep the buffer full of valid data. This type best fits memory oper-
ations with a sequential memory access pattern. For local memory
accesses, the offline compiler typically instantiates pipelined LSUs,
which submit memory requests in a pipeline manner as soon as
they are received. In some cases, the offline compiler uses pipelined
LSUs as an alternative for global memory accesses, resulting in
slower but more resource-efficient memory units.

There are differences between terminologies and representa-
tions that different vendors (Xilinx/Intel) use for the OpenCL-to-
FPGA memory model. However, they both represent the same
support for memory instructions. For example, similar to a burst
coalesced LSU functionality, Xilinx leverage burst transfers auto-
matically using AXI burst transfers where applicable to improve the
performance[21]. However, unlike Intel SDK, programmers cannot
request a specific type of burst memory read, and they need to
write the code in a way that causes the compiler to infer a burst
memory read.

2.3 OpenCL pipes and channels

Pipes - OpenCL applications consisting of multiple kernels require
efficient mechanisms for inter-kernel communication. Using global
memory for this purpose requires race-free global memory accesses
or the use of atomic operations and barriers, which can be inefficient
on FPGA. The OpenCL standard provides a mechanism to pass data
between kernels, called “pipes”. Essentially, pipes represent ordered
sequences of data items. Each pipe has separate write and read
endpoints, allowing an OpenCL kernel to write to one endpoint
of the pipe while another kernel reads from the other endpoint.
By allowing concurrent execution of interconnected kernels, pipes
enable pipeline parallelism across kernels. Both FPGA vendors
(Intel/Xilinx) support pipe features as part of their OpenCL-to-FPGA
which makes this work applicable to FPGAs from both vendors. It
is worth mentioning that, in OpenCL, the host and device(s) can
also communicate through pipes, a feature not used in this paper.
Channels - Intel provides an OpenCL extension called “chan-
nels” as a mechanism for data communication between kernels.
Programmers can define the depth of the channels as an input at-
tribute. The offline compiler considers this input to be the minimum
depth of that specific channel, and may increase the depth of the
channels in two situations: first, if there is a need to balance the re-
converging paths through multiple kernels; and second, to achieve

better loop pipelining [1].

3 IMPLEMENTING THE FEED-FORWARD
DESIGN MODEL

In this section, we first motivate our work (§ 3.1). Second, we pro-
vide a high level overview of how to implement the feed-forward
design model on FPGA (§ 3.2) and illustrate it through an example
(§ 3.3). We then analyze the impact of loop-carried dependencies on
the applicability and benefits of the model (§ 3.4). At last, we present
our approach to systematically transform a generic kernel to use
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this design model, we elaborate on the strengths and weaknesses
of the method, and we propose some optimizations to it (§ 3.5). The
proposed transformation is performed on the OpenCL device code.
The transformed code is then fed to the offline compiler to generate
HDL code, which is then deployed on FPGA by using the vendor’s
synthesis, placing and routing tools.

Figure 1 shows the OpenCL-to-FPGA compilation and synthesis
flow with the proposed feed-forward design transformation. As
can be seen, the proposed transformation is applied to the original
OpenCL code. The transformed OpenCL code is then fed to the
vendor’s HLS compilation toolchain (Intel/Xilinx). After generating
the HDL code, the toolchain generates the FPGA bitstream. Finally,
the compiled host C/C++ code invokes kernels compiled in the
FPGA bitstream to accelerate parts of the application on the FPGA.

3.1 Motivation

Global memory accesses are known to be one of the main perfor-
mance bottlenecks for OpenCL kernels implemented on FPGAs.
Wang et al. [19] measured the memory bandwidth of sequential and
random memory accesses for different variable types and concluded
that random memory accesses within a kernel can limit the mem-
ory bandwidth achieved drastically. In addition, they observed that
severe lock and memory bandwidth overhead limit the throughput
of many of the OpenCL kernels they considered in their analysis.
Optimizing memory accesses in OpenCL code is not a trivial task.
While Intel’s SDK gives the programmer some level of control over
the type of load/store units (LSUs) instantiated by the offline com-
piler to handle memory instructions, selecting the optimal LSU
for each memory operation requires a good understanding of the
hardware and insights into the offline compiler’s operation.

By studying the memory analysis reports of the offline com-
piler for a set of real and synthetic OpenCL kernels with various
memory access patterns, we identified two significant factors af-
fecting the kernel’s performance: (i) the type and configuration of
the LSUs instantiated by the compiler to handle global memory in-
structions, and (ii) the presence of dependencies on global memory
instructions and of loop-carried dependencies on local variables.
The offline compiler associates to each loop an initiation interval (II),
which represents the number of clock cycles between the launch of
successive loop iterations. In the presence of loop-carried dependen-
cies, the offline compiler serializes the loop’s execution, resulting
in a high initiation interval and, consequently, low throughput.

In our study, we noticed that the offline compiler takes a con-
servative approach when identifying the memory dependencies
in kernels. This is mainly due to the following reasons. First, the
offline compiler cannot guarantee that the device finishes global
store instructions before load instructions to the same location in
the same or different iterations of a loop. Second, it does not gather
information from the host code at compile time. This is a common
shortcoming among different vendors. Xilinx’s compiler also fails
to identify memory dependencies in similar scenarios. This con-
servative approach limits the optimizations performed, negatively
affecting the performance of memory instructions [21].

One advantage of the feed-forward design model is that it ex-
poses information on the characteristics of the memory operations
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Figure 1: OpenCL-to FPGA compilation and synthesis flow with the proposed feed-forward design transformation

and data dependencies within a kernel to the offline compiler. Im-
portantly, using the feed-forward design model implies the absence
of unsafe loop-carried dependencies between load and store instruc-
tions on global memory. We will elaborate on unsafe loop-carried de-
pendencies in Section 3.4. In addition, using the feed-forward model
can increase the concurrency of memory instructions using multiple
load units. In turn, this technique can result in synchronization-free
kernels with high memory bandwidth utilization.

3.2 The feed-forward design model on FPGA

In the feed-forward design model, the computation is broken down
into two kernels: a memory kernel and a compute kernel. The former
is responsible for loading values from global memory, and the latter
performs computation on the loaded data and stores the result back
to global memory. In order to allow for efficient implementation,
these two kernels should be connected through a hardware mech-
anism that does not involve the use of global memory, allowing
the second kernel to avoid global memory loads. As explained in
Section 2, programmers can use pipes/channels to establish this
communication. The compute kernel can be further split in two
kernels: the first performing computation, and the second issuing
global memory writes. However, we verified that using a three-
kernel model does not add performance benefits. Therefore, in the
reminder of this paper we focus on the two-kernel (memory &
compute) model.

Previous work has explored the use of pipes to connect multiple
kernels that are already part of an application, creating efficient
kernel pipelines [13]. Our study uses pipes for a different purpose,
and also targets applications that consist of a single kernel. Specifi-
cally, our proposed transformation splits existing kernels to enable

1 for (int tid = 0; tid < max_iter; tid++) {
2 a = input0[tid];
3 b = inputl[tid];
4 c=a=+a+b « b;
5 outputO[tid] = c;
6}
(a) Baseline kernel
1 for (int tid = 0; tid < max_iter; tid++) {
2 a = input0[tid];
3 write_channel_intel(c0, a)
4 b = inputl[tid];
5 write_channel_intel(cl, b);
6}

(b) Memory kernel (feed-forward model)

for (int tid = 0; tid < max_iter; tid++) {
a = read_channel_intel (c0);
b read_channel_intel(cl);
c axa+b =« b;
outputO[tid] = c;

[ RS NS TR

(c) Compute kernel (feed-forward model)

Listing 1: Feed-forward design model example

the use of the feed-forward model, and then uses pipes to connect
the generated sub-kernels. Other work has explored the use of
pipes on simple hand-written kernels, with the goal of improving
the efficiency of their memory operations [25][19]. However, the
performance advantages reported are limited, partially due to the
simplicity and the regular memory access patterns of those ker-
nels. Our goal is to propose a general code transformation method
that allows applying the feed-forward execution model to diverse
OpenCL kernels with regular or irregular memory access patterns,
and with simple or complex control flows.

While the use of the feed-forward design model can improve the
memory bandwidth utilization of OpenCL code deployed on FPGA,
there are limitations to its applicability on iterative applications.
Specifically, loop-carried dependencies can prevent or affect the
application of this design model. However, not all loop-carried de-
pendencies are problematic, and the code transformation method
we propose can actually handle some of them. In Section 3.4, we
categorize loop-carried dependencies and discuss their effect on ap-
plying the feed-forward design model to existing OpenCL kernels.

3.3 Feed-forward code transformation example

Listing 1 shows the application of the feed forward design model
on a simple single work-item kernel. The proposed method applies
also to NDRange kernels. However, Intel recommends using single
work-item kernels when using channels and pipes [1]. The example
in Listing 1 uses syntax from the Intel OpenCL-to-FPGA SDK.

In the example code, the baseline kernel performs two global
memory loads (pointers input0 and input1), calculates the sum of the
squares of the values read, and writes the results to a different global
memory location (pointer output0). Applying the feed-forward de-
sign model will split the baseline kernel in two kernels. The memory
kernel contains the instructions required to load values from global
memory. These include load instructions and computation that af-
fects the control path of load instructions and the memory addresses
they access. The compute kernel contains all the computation and
store instructions. Data transfers between these two kernels are
performed through channels, and global memory loads within the

Baseline Kernel Memory Kernel Compute Kernel

Compute
(axa+ bxb)

m

| |
Global Memory & Constant Memol
‘ Global Memory & Constant Memory ‘ v e

Device Device

(a) Baseline kernel (b) Transformed design

Figure 2: Illustration of the kernels in Listing 1
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for tid < max_iter; tid++) {
nt i = 0; i < 5;
= inputO[tid-i];
= a;

i++) {

+

outputO[tid] = r

[ e N N

(a) Baseline kernel

(int tid = 5; tid < max_iter;
for (int i = 0; i < 5; i++) {
a = inputO[tid-i];

write_channel_intel(c0, a);

for tid++) {

[ S NN

(b) Memory kernel (feed-forward model)

for (int tid = 5; tid < max_iter;
r o=

for

tid++) {

= 0; i < 5; i++) {
d_channel_intel(c0);

int

- ®~o

i
= rea
+= a;
}
outputO[tid] = r

[ e N N

(c) Compute kernel (feed-forward model)

Listing 2: Data loop-carried dependency example

compute kernels are replaced by reads from assigned channels. Fig-
ure 2 illustrates the general hardware structure of the original and
transformed kernels.

3.4 Loop carried dependencies analysis

Loop-carried dependencies are a key factor affecting the applica-
bility of the proposed feed-forward code transformation method
and its performance benefits. Here, we categorize loop-carried de-
pendencies in data loop-carried dependencies (DLCDs) and memory
loop-carried dependencies (MLCDs), and study the impact of these
dependencies on the proposed code transformation method.

Data LCD - A Data LCD (DLCD) occurs when a local variable
updated in one loop iteration is read in a different iteration (RAW
dependency). The offline compiler serializes loops containing DL-
CDs. Listing 2 shows an example of DLCD. Updating variable r at
line 5 of Listing 2a creates a DLCD on this variable for the inner
loop. We note that this DLCD does not affect the control flow path
of the global memory load instruction at line 4 or the memory ad-
dress accessed by it (i.e., the input0 array’s index). However, in the
presence of this dependency, compilers will serialize the inner loop.
Serialization prevents pipeline parallelism and reduces memory
bandwidth utilization, ultimately limiting kernel performance.

Transforming the kernel to the feed-forward model using our
proposed code transformation often removes DLCDs from the mem-
ory kernel. In these cases, after the transformation, the loop with
the DLCD becomes part of the compute kernel, which is free from
global memory instructions. Removing DLCDs from the memory
kernel allows the offline compiler to schedule load instructions
more efficiently. While the DLCD is still present in the compute
kernel, the serialized loop in the compute kernel will only load data
from channels, which have low latency and high throughput - an ad-
vantage over the baseline version. Listings 2b and 2c show that the
DLCD in the loop in Listing 2a is present only in the compute kernel,
allowing the offline compiler to schedule the memory instructions
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for (int tid = 1; tid < max_iter;
a = output[tid -1];
b = input[tid];
output[tid] = a « b;

tid++) {

GR W N =

}

Listing 3: Unsafe memory loop-carried dependency example

in the memory kernel in a pipelined manner. We note that DLCDs
cannot be removed from the memory kernel when they affect the
control flow of load instructions or the memory addresses that they
access. In those cases, while the feed-forward transformation is
still safe to perform, it might not benefit the kernel’s performance.
Kernels with this characteristic can still benefit from using multiple
memory & compute kernels, as discussed in Section 3.5.

Memory LCD - A Memory LCD (MLCD) occurs when a global
memory location updated in one loop iteration is read in a different
iteration (RAW dependency). In the presence of MLCDs, the com-
piler needs to schedule the load and store instructions serially to
guarantee correctness. We categorize MLCDs into safe and unsafe
dependencies. Using the feed-forward design model on kernels
with safe MLCDs guarantees correctness, while using this transfor-
mation on kernels with unsafe MLCDs can affect correctness and
needs additional considerations.

An unsafe MLCD happens when a global load instruction on
iteration j loads the value stored in the same location in iteration
i, where: j— i > 0 or j— i is unknown at compile time. Otherwise,
we consider the MLCD to be safe. Unsafe MLCDs require manual
intervention on the baseline code to be removed, thus allowing the
feed forward code transformation while preserving correctness.

Programmers can use two methods to identify loop-carried de-
pendencies within their kernels. First, OpenCL-to-FPGA compilers
generate report files highlighting all the loop-carried dependen-
cies inside each kernel. Programmers can parse these report files
to extract loop-carried dependencies. Second, programmers can
generate the LLVM IR for each kernel (for example, using the Clang
compiler). Having the LLVM IR, programmers can create the data
dependence graphs for each kernel using the LLVM analysis tool.
In LLVM, dependence graphs include all the dependencies between
instructions. Each cycle in the dependence graph indicates a loop-
carried dependency. In this work, we used the first approach to
extract loop-carried dependencies for each kernel in the code.

There are two common cases when unsafe MLCDs can be either
disregarded or removed (i.e., made safe) through standard code
transformations. The first case is when the distance between j and i
is a function of the kernel input(s), and analyzing the kernel inputs
or knowing their characteristics can determine this distance. In
these cases, programmers can use their knowledge of the inputs
to determine whether an unsafe MLCD at compile time is safe at
runtime. The second case is when the distance between j and iis a
positive integer known at compile time. Programmers can use shift
registers to change these unsafe MLCDs to DLCDs [1]. However,
the presence of an MLCD with a positive distance still hinders
leveraging spatial parallelism with multiple memory and compute
kernels, which we discuss in Section 3.5.

Listing 3 shows an example of an unsafe MLCD in which the
statement at line 2 depends on the result of the execution of the
statement at line 4 in the previous iteration (RAW with a distance
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of one). Using shift registers will remove the MLCD on the global
memory pointer and move the dependency to a variable in either
local or shared memory.

1 for (int tid = 0; tid < max_iter; tid++) {
2 if (inputo[tid] == -1) {
3 start = inputl[tid];
4 if (tid + 1 < max_iter)
5 end = inputl[tid+1];
6 else
7 end = max_end;
8 r = 0;
9 for (int j = start; j < end; j++) {
10 if (input2[j] == -1)
11 r = r + input3[j];
12 }
13 outputl[tid] = r;
14 }
15 }
(a) Baseline

1 for (int tid = 0; tid < max_iter; tid++) {
2 in0 = input0[tid];
3 write_channel_intel (c0, in0);
4 if (in0 == -1) {
5 start = inputl[tid];
6 write_channel_intel(cl, start);
7 if (tid + 1 < max_iter)
8 end = inputl[tid+1];
9 else
10 end = max_end;
11 write_channel_intel (c2, end);
12 for (int j = start; j < end; j++) {
13 in2 = input2[j];
14 write_channel_intel (c3, in2);
15 if (in2 == -1) {
16 in3 = input3[j];
17 write_channel_intel(c4, in3);
18 }
19 }
20}
21 }

(b) Feed-forward design memory kernel
1 for (int tid = 0; tid < max_iter; tid++) {
2 in0 = read_channel_intel(c0);
3 if (in0 == -1) {
4 start = read_channel_intel(cl);
5 end = read_channel_intel(c2);
6 r = 0;
7 for (int j = start; j < end; j++) {
8 in2 = read_channel_intel (c3);
9 if (in2 == -1)
10 r = r + read_channel_intel(c4);
11 }
12 outputl[tid] = r;
13 }
14}

(c) Feed-forward design compute kernel
Listing 4: Feed-forward transformation example

3.5 Code transformation method

Listing 4 illustrates our proposed code transformation method on a
more complex kernel. Our method consists of the following steps:

@ Identify instructions that read from global memory (lines 2, 3,
5,10, & 11 of the baseline kernel in Listing 4a).

@ Use the LLVM analysis tool or the offline compiler report to
find all the MLCDs inside the kernel. Note that the list of
loop-carried dependencies identified by the offline compiler
is provided in the compiler’s report. Unless resolved (using
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inferring shift registers or runtime analysis), unsafe MLCDs
prevent the safe application of the method.

@ Allocate a local variable for each load instruction used in the
condition of a conditional statement or a loop and replace all
its usages with the local variable (similar to lines 2 & 13 in
Listing 4b).

@ Copy the baseline kernel into two different kernels, namely,
the memory kernel and compute kernel (Listings 4b & 4c).

@ Define a channel for each global load instruction using the
proper data type. If the same data item is loaded repeatedly in
the baseline kernel, only assign a single channel to it.

@ Add to the memory kernel a write-to-channel instruction for
each read from global memory unless the loaded value is only
used as an index by another load instruction (lines 3, 6, 11,
14, & 17 of Listing 4b). Coherently with step ), if a data
item is loaded repeatedly in the baseline kernel, write the
corresponding channel only once.

@ In the compute kernel, replace instances of reading from global
memory with a read from the assigned channel (lines 2, 4, 5, 8,
and 10 in Listing 4c).

Use manual or automatic compiler analysis to mark all the
instruction that does not affect the loads from global memory.

@ Remove instruction marked in the previous step from the mem-
ory kernel.

Remove from the resulting kernels empty control flow paths
and values not used (i.e., apply a dead code elimination pass).

@ Instantiate memory kernel and compute kernel multiple times
to increase concurrency and adjust the main loop trip counts
accordingly (more details provided below).

@ Repeat step (0.

@ Replace the baseline kernel launch inside the host code with
invocations of the memory and compute kernels on separate
queues.

We note that this technique can generate a memory kernel with
a simplified control flow graph (CFG) compared to the original
(baseline) kernel. A less complex CFG results in fewer stalls for
global memory reads, hence leading to a higher memory bandwidth
utilization. This, in turn, can lead to better overall performance.

Enabling feed-forward design model with multiple mem-
ory and compute kernels - The most significant advantage of our
proposed technique is enabling the feed-forward design model to in-
crease the memory bandwidth utilization for load instructions. This
approach can achieve more performance advantages by increasing
concurrency among memory operations. In the feed-forward de-
sign model, data moves from the memory kernel to the compute
kernel in one or multiple words. For each word written on a pipe
by the memory kernel, the compute kernel will process the data
and free up the memory space assigned to the channel. Having
multiple memory and compute kernels can potentially increase the
global memory bandwidth achieved by the application, increasing
performance at a limited resource utilization overhead.

As mentioned earlier, safe LCDs allow applying the proposed
code transformation while preserving correctness. However, there
are two cases where safe LCDs hinder using multiple memory and
compute kernels to improve the performance of an OpenCL kernel.
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Table 1: Benchmarks applications and datasets

Benchmark Dwarves Pattern | Dataset
Breadth-First Search (BFS) | Graph Traversal Irregular | #nodes=2M
Hotspot (HS) Structured Grid Regular Size=8192
k-Nearest Naighbors (NN) | Dense Linear Algebra Regular Size=8.3M
Hotspot 3D (HS-3D) Structured Grid Regular Size=8192
Needleman-Wunsch (NW) | Dynamic Programming | Regular Size=8192
Back Propogation (BP) Unstructured Grid Regular Size=12.8M
Floyd-Warshall (FW) Graph Traversal Irregular | Size=512
2/:)8\;11351) Independent Graph Traversal Irregular | Size=1.58M
Page Rank (PR) Graph Traversal Irregular | Size=1.58M
Graph Coloring (GC) Graph Traversal Irregular | Size=1.58M

The first case is when a DLCD is present in the outermost loop of a
single work-item kernel. The second case is when an unsafe MLCD
is resolved using shift registers.

Having multiple memory and compute kernels requires mak-
ing various decisions regarding their number, the load balancing
mechanism, and the buffer management scheme to be adopted.
Kernel replication adds concurrency while increasing complexity
and resource utilization. Intel recommends limiting the number
of channels used in the design, as they can add complexity and
limit overall performance. In addition, having a large number of
kernels reading data from global memory concurrently can increase
memory congestion and result in poor global memory bandwidth
utilization. We explored using a single memory kernel with mul-
tiple compute kernels and vice versa. Results indicate that having
separate memory and compute kernels communicating directly
yields higher concurrency than having one memory kernel send
data to multiple compute kernels.

Different load balancing mechanisms can be used to distribute
the work across multiple memory/compute kernels. These mecha-
nisms can be classified as either static or dynamic. Unlike dynamic
mechanisms, static load balancing schemes do not consider the sys-
tem’s state when making decisions. Many dynamic load balancing
schemes require busy-wait or feedback mechanism implementa-
tions involving kernels polling on non-blocking channels. This
form of busy-wait can result in performance degradation on FPGA.
This work uses static load balancing to connect memory and com-
pute kernels. When using multiple memory/compute kernels, we
partitioned the input workload consecutively and equally across dif-
ferent memory-compute pairs. By using this approach, we achieved
two goals. First, we avoided busy waits and feedback paths be-
tween the memory and compute kernels. Second, we preserved the
existing regular memory accesses within the application.

4 EXPERIMENTAL EVALUATION

4.1 Experimental setup

Hardware and Software Setup - We ran our experiments on an
Intel programmable acceleration card (PAC) with an Arria® GX
FPGA. This board contains two 4 GB DDR-4 SDRAMs memory
banks with a maximum bandwidth of 34.1 GB/s, and 128 MB of
flash memory. This FPGA includes 65.7 Mb of on-chip memory,
1150k logic elements (ALUTs), and 1518 digital signal processing
(DSP) blocks. On the host side, the machine is equipped with an Intel
Xeon® CPU model E5-1607 v4 with a maximum clock frequency
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of 3.1 GHz. We used the Intel FPGA SDK for OpenCL version 19.4
and Ubuntu 18.04.6 LTS.

Benchmarks - We evaluated our method on widely used open-
source benchmarks from Rodinia [9] and Pannotia [8]. These bench-
mark suites contain applications from different domains, and have
been used in previous work on OpenCL for FPGA [23] [14][24] [13].
Table 1 summarizes the main characteristics of these applications,
including the nature of their memory access patterns (column 3).

In the second set of experiments, we used automatically gener-
ated microbenchmark kernels to evaluate the impact of the kernel
characteristics (namely, memory access patterns and branch diver-
gence) on the efficacy of the proposed method. We will elaborate
on the features of these microbenchmarks in section 4.2.1.

Performance Metrics - For performance, we report the speedup
over the original single work-item version of each benchmark. For
resource utilization, we report the logic utilization and use of block
RAMs (BRAM:s) of each implementation. The logic utilization rep-
resents an estimate of the number of half-adaptive logic modules
(ALMs) used by the compiler to deploy the OpenCL kernels on
FPGA. ALMs are hardware logic blocks. The simplest version of
ALMs contains a lookup table (LUT) and a register. The compiler re-
ports the logic utilization as a percentage of the total number of half
ALMs on the FPGA board. To evaluate improvements in memory
bandwidth utilization and instruction parallelism resulting from
the feed-forward design transformation, we also report the total
memory bandwidth utilization and initiation intervals of the main
loops before and after applying the proposed code transformation.

4.2 Experimental results

Single memory/single compute kernels - Table 2 shows the
performance impact of applying the feed-forward design model
to the considered benchmark applications when using a single
memory and a single compute kernels. In all cases, we used the
baseline code without any optimizations in order to isolate the
impact of the feed-forward model on performance. We report the
best results from running the same experiments using channels with
three depths: 1, 100, and 1000. We recall that the depth parameter
passed to the offline compiler indicates the minimum depth of
that specific channel, but the compiler might increase the depth
to improve efficiency. Our experiments showed that the channel
depth parameter’s setting does not affect performance significantly,
proving that the Intel compiler does a good job of adjusting the
channel depth.

As shown in Table 2, among the benchmarks we explored, BFS,
FW, BP, MIS, and NW benefit significantly from applying the feed-
forward model. For all these benchmarks, the main driver for the
speedup is the removal of safe LCDs on variables located in the
device’s global memory. To better understand the effect of the feed-
forward design on the generated hardware design, we include in
the table the initiation interval (I) and memory bandwidth uti-
lization of the designs. We recall that the II indicates the number
of clock cycles between two consecutive loop iterations and is an
indicator of the efficiency of the hardware pipeline generated by
the compiler. The high II in the baseline code of the five applica-
tions denotes serialization inside the implementation as the offline
compiler finds LCDs inside the kernels. This serialization results in
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Table 2: Resource utilization and throughput comparison of the feed-forward design (FFD) model against the baseline code

. . - Logic Utilization BRAM Frequency Main Loop II' | Memory Bandwidth (MB/s)
Benchmark | Baseline Execution Time (ms) | FFD Speedup Baseline | FFD | Baseline | FFD | Baseline | FFD | Baseline | FFD | Baseline FFD
BFS 6422 13.84 18.63 20.00 578 596 253 267 166 1 273 3687
HS 22553 0.85 16.14 17.25 517 522 313 257 1 1 8655 7340
NN 18.27 1.03 16.04 16.46 376 376 289 298 1 1 3468 3463
HS-3D 31967 0.88 16.45 17.95 542 536 294.63 258.13 1 1 10586 9315
NwW 26036 50.95 16.10 18.86 506 407 267.23 266.02 283 1 660 2232
BP 140601 44.54 24.67 26.68 674 646 275.7 263.57 416 1 17087 21603
Fw 41760 64.95 16.21 16.47 482 465 266 301 285 1 629 3129
MIS 2166 6.47 21.77 24.44 803 807 226 247 >=1 1 207 2116
PR 8430 0.96 20.43 22.52 703 709 272 261 1 1 2566 2283
GC 453 1.02 17.78 19.48 651 656 246 253 1 1 3345 3490

sub-optimal memory bandwidth utilization. After applying the pro-
posed transformation, the offline compiler generates designs with
an IT of one, indicating a fully pipelined implementation. Hence, the
transformed codes enjoy better throughput and improved memory
bandwidth utilization over the baseline.

For FW, the unsafe loop-carried dependencies detected by the
offline compiler resulted in a large initiation interval (I) of 285 for
the main loop inside the kernel. As often done on global memory
loads, the offline compiler used the burst coalesced LSU type to
implement load instructions, resulting in low memory bandwidth
for instructions with regular memory access patterns. The use of the
feed-forward design model had two effects. First, resolving those
unsafe loop-carried dependencies allowed converting the main loop
to a fully pipelined loop with an IT of 1. Second, it enabled the offline
compiler to use a prefetching LSU for one of the three global load
operations with a regular memory access pattern and increased
the maximum global memory bandwidth of the kernel from 630
MB/s to 3130 MB/s. These changes resulted in a speedup up to 65X
compared to the baseline kernel.

BP benefits from the feed-forward implementation similarly. In
the original kernel, the performance is limited by the main loop,
which exhibits an II of 416. In the feed-forward version of the kernel,
the same loop is fully pipelined with an II of one. This decrease in
the II also increased the maximum global memory bandwidth used
by the kernel and resulted in a significant speedup of 44X over the
baseline version of the kernel. Similar trends were observed on the
other three benchmarks (BFS, MIS, and NW) benefiting from the
feed-forward model.

We should note that the baseline version of NW carries an unsafe
MLCD inside the main loop of the kernel. However, this MLCD is
entangled to a load instruction in iteration K, which is dependent
on a store instruction in iteration K-1. In this case, this MLCD
can be resolved in the baseline kernel using a local variable in
the private memory of the device. Storing the dependency value
at the end of each iteration can remove the existing loop-carried
dependency. As a result, the kernel can read the same value at the
beginning of the next iteration (except the first iteration). Adding
this private variable results in a single work-item baseline kernel
with no MLCDs. Then, applying the feed-forward design model
allows achieving a 50X speedup by decreasing the II of the main
loop and increasing the global memory bandwidth of the kernel.

The feed-forward model reports minor performance improve-
ments on NN and GC, and small performance degradation on HS,

HS-3D, and PR (see Table 2). For these applications, the Intel pro-
filer’s report reveals the presence of one or multiple LSUs with high
“occupancy”. The LSU occupancy is an indicator of the percentage
of the execution time where the LSU is not stalled. A high LSU
occupancy (i.e., low number of memory stalls) is desirable, and
indicates that the kernel is already making good use of the memory
bandwidth and memory accesses do not need further optimization.

As reported in Table 2, our code transformation introduces only
a modest resource utilization overhead. On average, our method
only increases the logic utilization by 9% and even has a positive
effect on BRAM usage on some benchmarks (at the expense of using
more registers). The profiling and resource utilization reports from
the offline compiler show that our method can optimize the load
units from both the throughput and resource utilization point of
view. This limits the overhead associated with transforming one
kernel to two kernels. Moreover, channels are implemented using
on-chip memory, hence, they introduce a very small overhead on
resource utilization.

Multiple memory/compute kernels - The feed-forward de-
sign model enables using multiple memory and compute kernels to
increase concurrency, at the cost of a resource utilization overhead.
Figure 3 shows the speedup and resource utilization overhead from
using two memory and two compute kernels (M2C2) over a single
memory/single compute kernel implementation (M1C1). The re-
sults show an average speedup of 39% over the M1C1 baseline with
only a 31% average increase in logic utilization and a 26% average
increase in the number BRAMs used. In the case of PR and BP, the
profiling data from the M1C1 version indicate highly optimized
memory operations with high global memory bandwidth utiliza-
tion. This characteristic hinders further performance improvements
from using multiple memory and compute kernels. Further, we ex-
plored using four memory and four compute kernels (M4C4) for
benchmarks that benefited from the M2C2 transformation. Except
for a performance improvement of ~20% on HS and BFS and of
~15% on GC, we did not observe additional performance benefits.
Using more memory and compute kernels to work concurrently on
different portions of the data increases the memory bandwidth uti-
lization of the application. However, the added concurrency leads
to increased contention on the memory units and introduces more
stalls and lower occupancy for the LSUs inside the kernel. Our
experiments show that M4C4 implementations have, on average,
68% more stalls on LSUs than M2C2 kernels. Taking the associated
resource utilization overhead into consideration, M2C2 results in
the best multiple memory/compute kernels configuration. When
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Figure 3: M2C2 speedup and resource utilization overhead compared to a single memory/single compute implementation

comparing the M1C1 and M2C2 code versions, we did not identify a
uniform trend in the clock frequency. However, as expected, M4C4
implementations had lower frequencies than M2C2 ones.

4.2.1 Experiments on Microbenchmarks. We designed two sets of
automatically generated microbenchmarks to explore the impact of
two code features on the performance of the feed-forward design
model. The first feature is the access pattern of the load instructions,
and the second is the control flow divergence in the main loop of the
single work-item kernel. The first set of microbenchmarks targets
memory access patterns. We use two kernels with no control flow
divergence across main loop iterations, eight load instructions from
global memory, and eighty arithmetic operations (i.e., the arithmetic
intensity of 10). These two kernels only differ in the behavior of
their load instructions. The first benchmark in this set, called M
AII0 R, has load instructions with regular memory access patterns,
and the second one, called M AI10 IR, has load instructions with
irregular memory access patterns.

The second set of microbenchmarks targets the presence of con-
trol flow divergence within the main loop in a single work-item
kernel. To this end, we designed two kernels with the same charac-
teristics as the first set; however, we added an inner loop alongside
a conditional statement inside the inner loop to add divergence to
the first set of microbenchmarks. To further show the impact of
the feed-forward design model on kernels with DLCD, we added
a reduction operation inside the inner loop to add data dependen-
cies across different iterations of the inner loop. We also decreased
the number of arithmetic operations inside the kernels to increase
the control flow divergence impact on the execution time of the
kernel. The first microbenchmark, called M AI6 for-if R, has load
instructions with regular, and another, called M AI6 for-if IR, has
load instructions with irregular memory access patterns.

Table 3 shows the impact of the feed-forward design model
with two memory kernels and two compute kernels on these sets
of microbenchmarks. The results suggest that kernels containing
load instructions with regular memory access patterns would often
benefit more from the feed-forward design model. This compar-
ison indicates that higher memory contention for irregular load
instructions in the feed-forward design with multiple memory ker-
nels leads to lower memory bandwidth utilization. Moreover, the
feed-forward design model improves performance for kernels with
control flow divergence and DLCD. The baseline version of these
microbenchmarks has a low memory bandwidth utilization due to
a more complex control flow and the presence of DLCD. As we
recall from Section 3, using the feed-forward design model removes
the DLCD from the memory kernel and improves the performance
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of the design on the FPGA. Furthermore, having multiple memory
and compute kernels increases the concurrency among memory
instructions. These changes result in significantly higher memory
bandwidth utilization and better execution time.

5 RELATED WORK

Zohouri et al. [24] and Nourian et al. [14] studied several optimiza-
tion techniques on applications from Rodinia benchmark suite and
finite automata traversal, respectively, while focusing on perfor-
mance and power consumption. Their analysis confirms the per-
formance portability gap while porting a GPU-optimized OpenCL
implementation to FPGA and indicates a need for FPGA-specific
optimizations. Krommydas et al. [12] performed a similar analysis
on several OpenCL kernels investigating pipeline parallelism on
single work-item kernels, manual and compiler vectorization, static
coalescing, pipeline replication, and inter-kernel channels. Hassan
etal. [10] explored FPGA-specific optimizations in their work. Their
benchmarks were chosen from irregular OpenCL applications suf-
fering from unpredictable control flows, irregular memory accesses,
and work imbalance among work-items. Their work exploits par-
allelism at different levels, floating-point optimizations, and data
movement overhead across the memory hierarchy.

There have been several efforts targeting the decoupling of mem-
ory accesses and computations on FPGA kernels [16] [7] [17].
Purkayastha et al. [16] explored the impact of decoupling part
or all of the memory accesses from the computation. Their solu-
tion achieves more than 2X speedup for a subset of the consid-
ered OpenCL applications. While their automated process to detect
decouplable variables can ease the transformation for program-
mers, following the steps we proposed, programmers can decouple
memory instructions from computation in more cases, resulting
in performance improvement in a larger set of applications. Char-
itopoulos et al. [7] explored decoupling memory accesses from
execution on FPGA devices. They showed that using separate fetch
units that access memory for load/store operations can result in per-
formance improvements of 2x compared to the optimized HLS for
three target applications in simulation. Unfortunately, no on-board
comparison for HLS code is provided.

Several previous works have tried to leverage pipes to improve
the performance of their implementations by increasing the concur-
rency among the instructions. Purkayastha et al. [15] applied pipes
only to global variables whose access pattern and control flow is
known at compile time, restricting the memory accesses that are
optimized. Given this restriction, they don’t require a complex data
transformation that handles loops and complex control flows inside
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Table 3: M2C2 Speedup and resource utilization comparison for microbenchmarks

Benchmark Baseline Speedup Logic Utilization | Logic Utilization | BRAM | BRAM
Execution Time (ms) Baseline M2C2 Baseline | M2C2
M AI10 R 232 1.55x 17.69 25.39 612 892
M AI10 IR 440 1.00x 17.91 24.60 817 1215
M AI6 for-if R 10780 1.90x 18.13 25.39 664 892
M AI6 for-if IR 11500 1.84x 17.71 24.35 799 1161
the memory kernel. Sanaullah et al. [18] proposed an empirically ACKNOWLEDGEMENT

guided optimization framework for OpenCL to FPGA. They lever-
aged channels to convert a single kernel implementation to multiple
kernels, each working as a separate processing element. In their
work, they used channels for data communication among kernels.
However, their analysis indicates that using channels in their im-
plementation can result in lower performance, mainly due to the
data dependency among kernels and the need for synchronization.
Wang et al. [22] leveraged using task kernels and channels to design
a multi-kernel approach to reduce the lock overhead. Mainly their
work was focused on data partitioning workload. Yang et al. [19]
used channels to implement a molecular dynamic application.

In a more recent work, Liu et al. [13] proposed a compiler scheme
to optimize different types of multi-kernel workloads. They intro-
duced a novel algorithm to find an efficient implementation for
each kernel to balance the throughput of a multi-kernel design.
Additionally, they explored bitstream splitting to separate multiple
kernels into more than one bitstream to enable more optimizations
for individual kernels.

6 CONCLUSION

In summary, in this work we explored using the feed-forward design
model to improve the performance of OpenCL kernels on FPGA.
We proposed a code transformation to apply this model to existing
OpenCL kernels. We evaluated the benefits and limitations of our
method, as well as its applicability in the presence of different
classes of loop-carried dependencies.

Our results emphasize the importance of LCDs (especially on
global memory) and their impact on performance. In particular,
we showed that avoiding MLCDs results in efficient pipelined im-
plementations. Our study shows that OpenCL-to-FPGA compilers
take a conservative approach when identifying MLCDs within ker-
nels, leading to serial loop execution even for loops that could be
pipelined. Using our code transformation, programmers can im-
prove the performance of their FPGA applications in two ways.
First, they can remove false loop-carried dependencies, resulting
in a speedup up to 64x over the baseline code. Second, they can
leverage this transformation to exploit spatial parallelism on the
FPGA by increasing the number of memory and compute kernels.
Our experimental results show that this can further improve the
performance of applications by up to 93% at the cost of a modest
resource utilization overhead. The proposed code transformation
can be integrated in a source-to-source compiler. However, to allow
the applicability of the method on a broader set of kernels, it is
important to incorporate code annotations to identify unsafe ML-
CDs that can be disregarded or removed at run-time (but cannot
be handled at compile time).
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