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Abstract
In this paper, we propose a novel Local Macroscopic Conservative (LoMaC) low rank ten-
sor method with discontinuous Galerkin (DG) discretization for the physical and phase 
spaces for simulating the Vlasov-Poisson (VP) system. The LoMaC property refers to the 
exact local conservation of macroscopic mass, momentum, and energy at the discrete level. 
The recently developed LoMaC low rank tensor algorithm (arXiv: 2207.00518) simultane-
ously evolves the macroscopic conservation laws of mass, momentum, and energy using 
the kinetic flux vector splitting; then the LoMaC property is realized by projecting the low 
rank kinetic solution onto a subspace that shares the same macroscopic observables. This 
paper is a generalization of our previous work, but with DG discretization to take advan-
tage of its compactness and flexibility in handling boundary conditions and its superior 
accuracy in the long term. The algorithm is developed in a similar fashion as that for a 
finite difference scheme, by observing that the DG method can be viewed equivalently in a 
nodal fashion. With the nodal DG method, assuming a tensorized computational grid, one 
will be able to (i) derive differentiation matrices for different nodal points based on a DG 
upwind discretization of transport terms, and (ii) define a weighted inner product space 
based on the nodal DG grid points. The algorithm can be extended to the high dimensional 
problems by hierarchical Tucker (HT) decomposition of solution tensors and a correspond-
ing conservative projection algorithm. In a similar spirit, the algorithm can be extended to 
DG methods on nodal points of an unstructured mesh, or to other types of discretization, 
e.g., the spectral method in velocity direction. Extensive numerical results are performed to 
showcase the efficacy of the method.
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1  Introduction

Numerical simulation of the Vlasov-Poisson (VP) system plays a fundamental role in 
understanding complex dynamics of the plasma and has a wide range of applications in 
science and engineering, such as fusion energy. The well-known challenges for VP simu-
lations include the high dimensionality of the phase space, resolution of multiple scales 
in time and phase space, and preservation of physical invariants, among many others. In 
this paper, we develop a novel Local Macroscopic Conservative (LoMaC) low rank tensor 
method with discontinuous Galerkin (DG) discretization. The LoMaC property means that 
the algorithm can conserve local densities of macroscopic observables at the discrete level.

This paper is a generalization of the LoMaC low rank tensor method with the finite dif-
ference discretization in [9]. In the introduction of [9], we have discussed the application 
background and existing works on low rank approach for time-dependent dynamics. Below 
we only highlight several key ingredients to realize the accuracy, the robustness, the computa-
tional efficiency, and the local conservation for macroscopic observables of the newly proposed 
algorithm.

	 (i)	 Low rank representation of solutions and high order discretizations [10]. In this low rank 
approach, the solution is being written in the form of Schmidt decomposition, where the 
basis in each dimension are being dynamically updated from a high order discretization 
of PDEs together with a singular value type truncation for sparsity in function representa-
tion and efficiency for computational complexity. The original idea is presented in [10]. 
In this paper, we generalize the algorithm to nodal DG type spatial discretization on ten-
sor product of computational meshes. The nodal DG differentiation operator, as well as 
the weights in the discrete inner product space, will depend on the mesh spacing and the 
associated Gaussian quadrature nodes in each computational cell. The new method allows 
the flexibility in mesh spacing, e.g., using a not smooth nonuniform mesh, yet achieves 
high order spatial accuracy. Meanwhile, the method takes advantage of the compactness 
of the DG discretization in boundary treatment. With the weighted inner product space, 
we perform a scaling procedure, followed by a standard SVD truncation, and finished with 
a rescaling procedure to remove the redundancy for data sparsity. For time discretization, 
we apply the strong-stability-preserving (SSP) multi-step time discretization [5].

	 (ii)	 Simultaneous update of macroscopic mass, moment, and energy in a locally con-
servative manner. This step is the key novelty in [9] in locally preserving mass, 
momentum, and even energy in an explicit scheme. In this paper, we use a nodal 
DG scheme for macroscopic conservation laws, with the numerical fluxes from tak-

Fig. 1   Illustration of the LoMaC scheme
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ing moment integration of kinetic probability density functions via the kinetic flux 
vector splitting (KFVS) fluxes [12, 14]. Meanwhile, the updated macroscopic mass, 
momentum, and energy are used to correct the kinetic solutions via a macroscopic 
conservative projection. Figure 1 from [9] shows the interplay between numerical 
solutions for the kinetic model and the corresponding macroscopic system. The 
kinetic solution f is used as the kinetic flux to advance solutions for macroscopic 
systems, while the updated macroscopic mass, momentum, and energy are used to 
perform a conservative correction to kinetic solution f via a macroscopic conserva-
tive projection. The newly developed low rank DG algorithm is theoretically proved 
and numerically verified to be locally mass, momentum, and energy conservative.

	 (iii)	 Hierarchical Tucker (HT) representation of high dimensional tensors. We further 
generalize the algorithm to high dimensional problems with the HT decomposi-
tion, which attains a storage complexity that is linearly scaled with the dimension 
and polynomial scaled with the rank, mitigating the curse of dimensionality. 
The HT format [6, 11] is motivated by the classical Tucker format [4, 13], but 
considers a dimension tree and takes advantage of the hierarchy of the nested 
subspaces. A hierarchical high order singular value decomposition (HOSVD) [6, 
11] can be performed to strike a balance between data complexity and numerical 
feasibility. In this paper, we use the same dimension tree as in our earlier work 
[9] for the 2D2V Vlasov system, with full rank in the physical spaces, low rank 
in velocity spaces, and low rank between physical and velocity spaces.

As far as we are aware of, this is the first paper on coupling the DG discretization with the 
low rank tensor framework for kinetic simulations. It well combines the merits of DG dis-
cretization with that of low rank tensor approach: for the DG method in the flexibility and 
the robustness in using nonuniform or unstructured meshes, in treating complex boundary 
conditions, and in realizing superconvergence properties in a long time simulation, and for 
the low rank tensor approach in reducing computational complexity. Although we have not 
extended the algorithm to unstructured triangular meshes or for complex boundary condi-
tions here, this paper serves as a first step in this direction and shows the proof of concept 
on the potential of the algorithm for complex and high dimensional problems.

This paper is organized as follows. In Sect. 2, we introduce the kinetic Vlasov model 
and the corresponding macroscopic conservation laws. Section  3 is the main section to 
introduce the proposed algorithm. We introduce the DG and nodal DG discretizations in 
Sect. 3.1; we discuss the low rank framework with the tensor product of nodal DG meshes, 
the weighted inner product spaces, and the corresponding macroscopic conservative pro-
jection and weighted SVD truncation in Sect. 3.2; we propose the LoMaC low rank DG 
algorithm in Sect.  3.3 with remarks on further generalization of the algorithm to high 
dimensional problems with the HT format and to unstructured meshes. In Sect. 4, we pre-
sent numerical results on an extensive set of 1D1V and 2D2V problems to demonstrate the 
efficacy of the proposed algorithm. We conclude in Sect. 5.

2 � The Kinetic Vlasov Model and the Corresponding Macroscopic 
Systems

In this section, we introduce the Vlasov model and the corresponding macroscopic sys-
tems. We consider the dimensionless VP system



	 Communications on Applied Mathematics and Computation

1 3

which describes the dynamics of the probability distribution function f (x, v, t) of electrons 
in a collisionless plasma. Here E is the electric field and � is the self-consistent electro-
static potential determined by Poisson’s equation. f couples to the long range fields via the 
charge density �(x, t) = ∫

�v
f (x, v, t)dv , where we take the limit of uniformly distributed 

infinitely massive ions in the background.
The Vlasov dynamics are well-known to conserve several physical invariants. In par-

ticular, let

Then, by taking the first few moments of the Vlasov equation, the following conservation 
laws of mass, momentum, and energy can be derived:

where 𝜎(t, x) = ∫
𝛺v
(v⊗ v)f (x, v, t)dv and Q(x, t) =

1

2
∫
�v

v|v|2f (x, v, t)dv . It is well-known 
that the local conservation property is essential to capture correct entropy solutions of 
hyperbolic systems such as (7)–(9).

3 � A LoMaC Low Rank Tensor Approach with DG Discretizations 
for the Vlasov Dynamics

For simplicity of illustrating the basic idea, we only discuss a 1D1V example in this sec-
tion. The low rank tensor approach [7] is designed based on the assumption that our solu-
tion at time t has a low rank representation in the form of

(1)
�f

�t
+ v ⋅ ∇

x
f + E(x, t) ⋅ ∇

v
f = 0,

(2)E(x, t) = −∇x�(x, t), −Δx�(x, t) = �(x, t) − �0,

(3)charge density �(x, t) = ∫
�v

f (x, v, t)dv,

(4)current density J(x, t) = ∫
�v

f (x, v, t)vdv,

(5)kinetic energy density �(x, t) =
1

2 ∫
�v

|v|2f (x, v, t)dv,

(6)energy density e(x, t) = �(x, t) +
1

2
E(x)2.

(7)

(8)

(9)
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where 
{
U

(1)

l
(x, t)

}r

l=1
 and 

{
U

(2)

l
(v, t)

}r

l=1
 are a set of time-dependent low rank orthonormal 

basis in x and v directions, respectively, Cl is the coefficient for the basis U(1)

l
(x, t)U

(2)

l
(v, t) , 

and r is the representation rank. Equation (10) can be viewed as a Schmidt decomposition 
of functions in (x, v) by truncating small singular values up to rank r.

3.1 � DG Discretization with Nodal Lagrangian Basis Functions

We perform a DG discretization with a piecewise Qk polynomial space for f on a truncated 
1D1V domain of � = [xmin, xmax] × [−vmax, vmax] . We start with a tensor product Cartesian 
partition of � denoted by �h with

Denote an element as Iij = [x
i−

1

2

, x
i+

1

2

] × [v
j−

1

2

, v
j+

1

2

] ∈ �h with the element size hx,ihv,j and 

the center xi =
1

2
(x

i−
1

2

+ x
i+

1

2

) and vj =
1

2
(v

j−
1

2

+ v
j+

1

2

) . Let hx = max
Nx

i=1
hx,i and 

hv = max
Nv

j=1
hv,j . Given any non-negative integer k, we define a finite dimensional discrete 

space with piecewisely defined Qk polynomials,

The local space Qk(I) consists of polynomials with terms in the form of xmvn with 
max(m, n) ⩽ k on I ∈ �h . To distinguish the left and right limits of a function p ∈ Qk

h
 at 

(x
i+

1

2

, v) , we let p±
i+

1

2
,v
= lim�→±0 p(xi+ 1

2

+ �, v).

A semi-discrete DG method for the Vlasov equation (1) is: find fh(⋅, ⋅, t) ∈ Qk
h
 , such that 

for all � ∈ Qk
h
 and Iij ∈ �h,

To implement the DG scheme under the low rank framework, we use the nodal basis to 
represent functions in the discrete space Qk

h
 , in conjunction with rewriting and/or approx-

imating the integrals in the schemes by numerical quadratures. We consider a reference 
cell I = [−

1

2
,
1

2
] × [−

1

2
,
1

2
] and the tensor product of Gaussian quadrature points in each 

direction {�ig, �jg}kig,jg=0 . We further let {�l}
k
l=0

 denote the corresponding quadrature 
weights on the reference element. The local nodal Lagrangian basis on the reference cell is 
{Lig,jg(�, �)}

k
ig,jg=0

 in Qk(I) with

(10)f (x, v, t) =

r∑
l=1

(
Cl(t) U

(1)

l
(x, t)U

(2)

l
(v, t)

)
,

xmin = x 1

2

< x 3

2

< ⋯ < x
Nx+

1

2

= xmax,

−vmax = v 1

2

< v 3

2

< ⋯ < v
Nv+

1

2

= vmax.

(11)Qk
h
=
{
p(x, v) ∈ L2(�)∶ p|Iij ∈ Qk(Iij), ∀Iij ∈ �h

}
.

(12)
∫Iij

𝜕tfh𝜙dxdv = ∫Iij

vfh𝜙xdxdv − ∫
v
j+

1
2

v
j−

1
2

v

(
f̂
i+

1

2
,v𝜙

−

i+
1

2
,v
− f̂

i−
1

2
,v𝜙

+

i−
1

2
,v

)
dv

+ ∫Iij

Efh𝜙vdxdv − ∫
x
i+

1
2

x
i−

1
2

E(x)

(
f̂
x,j+

1

2

𝜙−

x,j+
1

2

− f̂
x,j−

1

2

𝜙+

x,j−
1

2

)
dx.

(13)Lig,jg(�ig� , �jg� ) = �ig,ig��jg,jg� , ig, ig�, jg, jg� = 0,⋯ , k.
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Here �
⋅,⋅′ is the Kronecker delta function. In fact, Lig,jg(�, �) = Lig(�)Ljg(�), where Lig and 

Ljg are the 1D Lagrangian nodal basis functions associated with the corresponding Gauss-
ian nodes. For a computational cell Iij , we can perform a linear transformation to the refer-
ence cell with � =

x−xi

hx,i
, � =

v−vj

hv,j
 , and denote by the shifted Gaussian nodes 

xi,ig = xi + hx,i�ig , vj,jg = vj + hv,j�jg.
With the nodal basis functions, the DG scheme (15) on a computational cell 

Iij can be equivalently written with the test functions being taken as Lig�,jg� (�, �) , 
ig�, jg� = 0,⋯ , k . We look for the DG solution expressed in the form of 
fh,i,j(x, v, t) =

∑k

ig,jg=0
f
ig,jg

h,i,j
(t)Lig,jg(�(x), �(v)) , with its nodal values satisfying the following 

equations:

Dividing by hx,ihv,j�ig�jg , the above equation becomes

where f̂
i±

1

2
,jg and f̂

ig,j±
1

2

 are taken as monotone upwind fluxes and Ei,ig denotes the electric 
field at xi,ig . In particular, let v+ = max(v, 0) , v− = min(v, 0) , E+ = max(E, 0) , and 
E− = min(E, 0) . Then (15) becomes the following with a simple upwind flux:

We denote the first two terms on the RHS of (16) as

(14)

hx,ihv,j𝜔ig𝜔jg

(
d

dt
f
ig,jg

h,i,j
(t)
)

= hx,ihv,j𝜔jgvj,jg

∑
ig��

𝜔ig��

(
d

dx
Lig(𝜉ig�� )f

ig��,jg

h,i,j
(t)
)
− hv,j𝜔jgvj,jg

(
f̂
i+

1

2
,jgLig

(
1

2

)
− f̂

i−
1

2
,jgLig

(
−
1

2

))

+ hx,ihv,j𝜔igEi,ig

∑
jg��

𝜔jg��

(
d

dv
Ljg(𝜂jg�� )f

ig,jg��

h,i,j
(t)
)
− hx,i𝜔igEi,ig

(
f̂
ig,j+

1

2

Ljg

(
1

2

)
− f̂

ig,j−
1

2

Ljg

(
−
1

2

))
.

(15)

d

dt
f
ig,jg

h,ij
(t) =

1

𝜔ig

(
vj,jg

∑
ig��

𝜔ig��

(
d

dx
Lig(𝜉ig�� )f

ig�� ,jg

h,i,j
(t)
)
−

vj,jg

hx,i

(
f̂
i+

1

2
,jg
Lig

(
1

2

)
− f̂

i−
1

2
,jg
Lig

(
−
1

2

)))

+
1

𝜔jg

(
Ei,ig

∑
jg��

𝜔jg��

(
d

dv
Ljg(𝜂jg�� )f

ig,jg��

h,i,j
(t)
)
−

Ei,ig

hv,j

(
f̂
ig,j+

1

2

Ljg

(
1

2

)
− f̂

ig,j−
1

2

Ljg

(
−
1

2

)))
,

(16)

�tf
ig,jg

h,i,j
(t)

=
v+
j,jg

�ighx,i

(∑
ig��

�ig��

dLig

d�
(�ig� )f

ig��,jg

h,i,j
− f

ig��,jg

h,i,j
Lig��

(
1

2

)
Lig

(
1

2

)
− f

ig��,jg

h,i−1,j
Lig��

(
1

2

)
Lig

(
−
1

2

))

+
v−
j,jg

�ighx,i

(∑
ig��

�ig��

dLig

d�
(�ig�� )f

ig��,jg

h,i,j
− f

ig��,jg

h,i+1,j
Lig��

(
−
1

2

)
Lig

(
1

2

)
+ f

ig��,jg

h,i,j
Lig��

(
−
1

2

)
Lig

(
−
1

2

))

+
E+
i,ig

�jghv,j

(∑
jg��

�jg��

dLjg

d�
(�jg�� )f

ig,jg��

h,i,j
− f

ig,jg��

h,i,j
Ljg�� (

1

2
)Ljg

(
1

2

)
+ f

ig,jg��

h,i,j−1
Ljg��

(
1

2

)
Ljg

(
−
1

2

))

+
E−
i,ig

�jghv,j

(∑
jg��

�jg��

dLjg

d�
(�jg�� )f

ig,jg��

h,i,j
− f

ig,jg��

h,i,j+1
Ljg��

(
−
1

2

)
Ljg

(
1

2

)
+ f

ig,jg��

h,i,j
Ljg��

(
−
1

2

)
Ljg

(
−
1

2

))
.

(17)v+
j,jg

⋅ D+
x,i,ig

f
+,∶,jg

h,i,j
, v−

j,jg
⋅ D−

x,i,ig
f
−,∶,jg

h,i,j
,
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as standard 1D upwind DG discretizations of x derivative at the ig-th Gaussian node of the 
i-th cell for positive/negative velocity, respectively. Here we assume that the v-grid is fixed 
at the jg-th Gaussian node of the j-th cell, and

Similarly, the other two terms are denoted as

where

Remark 1  One observation in the above formulation is that, although the DG method for-
mulates the scheme in an element-by-element fashion, the evaluation of solution deriva-
tives in x and v directions, at Gaussian nodal points of each cell, actually occurs in a 
dimension-by-dimension manner. In other words, we can formulate a DG differentiation 
operator D±

x
 by concatenating D±

x,i,ig
 . Similar comments can be applied to D±

v
 as the DG dif-

ferentiation operator for the v-derivative.

3.2 � Nodal DG Solutions on Grid Points and Weighted SVD

In this subsection, we first set up the nodal DG solutions at Gaussian grid points on each 
computational cell, which comes from a tensor product of x and v discretizations. Then we 
introduce several basic tools for performing the LoMaC DG low rank tensor approach in 
the next subsection. These tools include the weights and definition for the discrete inner 
product space, the orthogonal projection for conservation of macroscopic observables in 
the weighted inner product space, as well as the weighted singular value truncation.

The nodal grid points for the DG discretization, as the tensor product of 
(k + 1)Nx × (k + 1)Nv points from Nx × Nv computational cells, are

Here {xi,ig}kig=0 and {vj,jg}kjg=0 are the shifted Gaussian points on the cell [x
i−

1

2

, x
i+

1

2

] and 
[v

j−
1

2

, v
j+

1

2

], respectively. DG nodal solutions on the tensor product of grids (19) are organ-
ized as f ∈ ℝ(k+1)Nx×(k+1)Nv with each of its component f ig,jg

h,i,j
(t) being an approximation to 

point values of the solution on the tensor product of grids (19) and (20). It has a corre-
sponding low rank decomposition, similar to (10), as

{
f
+,∶,jg

h,i,j
= (f

0,jg

h,i−1,j
,⋯ , f

k,jg

h,i−1,j
, f

0,jg

h,i,j
,⋯ , f

k,jg

h,i,j
),

f
−,∶,jg

h,i,j
= (f

0,jg

h,i,j
,⋯ , f

k,jg

h,i,j
, f

0,jg

h,i+1,j
,⋯ , f

k,jg

h,i+1,j
).

(18)E+
i,ig

⋅ D+
v,j,jg

f
+,ig,∶

h,i,j
, E−

i,ig
⋅ D−

v,i,ig
f
−,ig,∶

h,i,j
,

{
f
+,ig,∶

h,i,j
= (f

ig,0

h,i,j−1
,⋯ , f

ig,k

h,i,j−1
, f

ig,0

h,i,j
,⋯ , f

ig,k

h,i,j
),

f
−,ig,∶

h,i,j
= (f

ig,0

h,i,j
,⋯ , f

ig,k

h,i,j
, f

ig,0

h,i,j+1
,⋯ , f

ig,k

h,i,j+1
).

(19)xgrid∶ xmin < ⋯ < (xi,0 < ⋯ < xi,k)⋯ < xmax,

(20)vgrid∶ − vmax < ⋯ < (vj,0 < ⋯ < vj,k)⋯ < vmax.
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where U(1)

l
∈ ℝ(k+1)Nx and U(2)

l
∈ ℝ(k+1)Nv can be viewed as approximations to correspond-

ing grid point values of the basis functions in (10). Equation (21) can also be viewed as a 
weighted SVD of the matrix f ∈ ℝ(k+1)Nx×(k+1)Nv , where the weight

with

Next, we introduce three basic operations for the discrete weighted inner product spaces: 
(i) the computation of macroscopic observations; (ii) the orthogonal projection of f for 
conservation of macroscopic observables; (iii) a weighted singular value truncation.

•	 Macroscopic quantities of f . To perform the projection, we first compute macroscopic 
quantities of f , i.e., the discrete macroscopic charge, current and kinetic energy density 
� , J and � ∈ ℝNx by quadrature 

and the inner product ⟨⋅, ⋅⟩v is defined as 

in analogue to the continuous inner product ∫
�v

f (v)g(v)dv.
•	 An orthogonal projection with preservation of macroscopic densities. Following 

the conservative projection idea in [8], we propose to project a kinetic solution f to a 
subspace 

where 1v ∈ ℝ(k+1)Nv is the vector of all ones, v is the v-grid (20) and v2 ∈ ℝ(k+1)Nv is the 
element-wise square of v . We use a weight function wM(v) = exp(−v2∕2) with expo-
nential decay to ensure proper decay of the projected function as v → ∞ . We introduce 
the weighted inner product and the associated norm as 

where wM ∈ ℝ(k+1)Nv with wM,j,jg = wM(vj,jg) and �v,j,jg is the quadrature weights for 
v-integration. Correspondingly, let l2

wM
= {f ∈ ℝ(k+1)Nv ∶ ‖f‖wM

< ∞} . With the weight 
function, we first scale f as 

(21)f =

r∑
l=1

(
Cl U

(1)

l
⊗ U

(2)

l

)
,

(
or element-wise: f

ig,jg

i,j
=

r∑
l=1

Cl U
(1)

l,i,ig
U

(2)

l,j,jg

)
,

(22)� = �x ⊗ �v

�x ∈ ℝ
(k+1)Nx , �x,i,ig = hx,i�ig, i = 1,⋯ ,Nx, ig = 0,⋯ , k,

�v ∈ ℝ
(k+1)Nv , �v,j,jg = hv,j�jg, j = 1,⋯ ,Nv, jg = 0,⋯ , k.

(23)
⎛⎜⎜⎝

�

J

�

⎞⎟⎟⎠
=

r�
l=1

Cl

�
U

(2)

l
,

⎛⎜⎜⎝

1v
v
1

2
v2

⎞⎟⎟⎠

�

v

U
(1)

l
,

(24)⟨f, g⟩v ≐
�
j,jg

fj,jggj,jg�v,j,jg, f, g ∈ ℝ
(k+1)Nv ,

(25)N ≐ span{1v, v, v
2},

(26)⟨f, g⟩wM
=
�
j,jg

fj,jggj,jgwM,j,jg�v,j,jg, ‖f‖wM
=
�

⟨f, f⟩wM
,
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where ⋆ is the element-wise product in the v-dimension. We perform an orthogonal 
projection of f̃ with respect to the inner product (26) onto the subspace N  , i.e., 

It can be shown that wM ⋆ PN(f̃) preserves the mass, momentum, and kinetic energy 
densities of f in the discrete sense. With the orthogonal project, a conservative decom-
position of f [8] can be performed as 

where f1 can be represented as a rank three tensor 

where c =
⟨1v,v2⟩wM
‖1v‖2wM

 is computed so that {1v, v, v2 − c1v} forms an orthogonal set of basis 

and � , J and � are the discrete mass, momentum, and kinetic energy density of f from 
(23). f1 preserves the discrete mass, momentum, and kinetic energy density of f , while 
the remainder part f2 = f − f1 has zero of them.

•	 Weighted SVD procedure with preservation of macroscopic observables. The 
remainder part in the orthogonal decomposition f2 can be shown to have zero macro-
scopic mass, momentum, and kinetic energy. To perform a singular value truncation to 
remove redundancy in basis representation, as well as maintain the zero macroscopic 
observables, we perform a weighted SVD truncation, where the weights come from 
the quadrature weights associated with quadrature nodes as well as the weight function 
wM at quadrature nodes. A weighted SVD procedure assumes a weighted inner product 
space ⟨⋅, ⋅⟩ in the following sense: 

The weighted SVD procedure consists of three steps: first a scaling step with the ele-
ment-wise multiplication by 1√

�⋆wM

 with � in (22) and wM as in (26), followed by a tra-
ditional SVD procedure, and finally a rescaling step with element-wise multiplication 
by 

√
� ⋆ wM  . The associated storage cost is O(rN) , where 

N ∶= max{(k + 1)Nx, (k + 1)Nv} . The scaling and rescaling can be performed with 
respect to the basis in x and v directions with the cost of O(rN) . We denote this 
weighted SVD truncation procedure as T𝜀,�⋆wM

 . In the algorithm, it will be applied to 
the remainder f2 in (29), i.e., T𝜀,�⋆wM

(f2) to realize the data sparsity. In summary, we 
have the following weighted SVD truncation procedure for f2 ∈ ℝ(k+1)Nx×(k+1)Nv:

(27)f̃ =
1

wM

⋆ f =

r∑
l=1

(
Cl U

(1)

l
⊗

(
1

wM

⋆ U
(2)

l

))
,

(28)⟨PN(f̃), g⟩wM
= ⟨f̃, g⟩wM

, ∀g ∈ N.

(29)f = wM ⋆ (PN(f̃) + (I − PN)(f̃)) ≐ wM ⋆ (f̃1 + f̃2) ≐ f1 + f2,

(30)

f1(�, J,�) =
�

‖1
v
‖2
w

M

⊗ (w
M
⋆ 1

v
) +

J

‖v‖2
w

M

⊗ (w
M
⋆ v)

+
2� − c�

‖v2 − c1
v
‖2
w

M

⊗ (w
M
⋆ (v2 − c1

v
)),

(31)⟨f, g⟩ ≐ �
i,ig;j,jg

f
ig,jg

i,j
g
ig,jg

i,j
�x,i,ig�v,j,jgwM,j,jg, f, g ∈ ℝ

(k+1)Nx×(k+1)Nv .
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with the output being 

Remark 2  We now summarize by recognizing that there are three different discrete inner 
product spaces we introduce in this subsection: the first is defined by (24) as a discrete 
analog of a standard L2 inner product in the v direction only for computing macroscopic 
observables, the second is defined by (26) as a discrete analog of a weighted inner product 
space in the v direction for projection purpose, and the third is defined by (31) as a discrete 
analog of weighted inner product in x-v directions for weighted SVD truncation for the 
remainder f2 in (29) to realize the data sparsity via removing redundancy in basis represen-
tation in each dimension.

3.3 � LoMaC Low Rank Approach with DG Discretization

In this subsection, we introduce the proposed LoMaC low rank approach with DG dis-
cretization. The flow chart of the algorithm is in a similar spirit to that we introduced in 
[9]. We outline the scheme flow chart with a special discussion on the nodal discretization 
DG spatial discretization and the corresponding weighted orthogonal decomposition and 
weighted SVD truncation.

Below, we assume the solution in the form of (21) with superscript n for the solution at 
tn . 

Step (i)	 Initialization. We assume that the analytic initial condition can be written as or 
approximated by a linear combination of separable functions, then the DG solutions can 
be constructed directly from those separable functions on Gaussian nodal points.

Step (ii)	 Add basis and obtain an intermediate solution fn+1,∗ . A second order multi-step 
discretization of time derivative in (1) gives 

Here the electric field En is solved by a Poisson solver. Thanks to the tensor friendly 
form of the Vlasov equation, assuming the low rank format of solutions at tn−2 and tn , 
fn+1,∗ can be represented in the following low rank format: 

Here, with a slight abuse of notation, v ∈ ℝNv denotes the coordinates of vgrid intro-
duced in (20). Dx and Dv represent high order spatial differentiations, and ⋆ denotes 

(32)f2
scaling

⟹ f̃2 ≐ f2√
� ⋆ wM

truncation

⟹ T𝜀(f̃2)
rescaling

⟹

√
� ⋆ wM ⋆ T𝜀(f̃2)

(33)T𝜀,�⋆wM
(f2) ≐ √

� ⋆ wM ⋆ T𝜀(f̃2).

(34)f n+1,∗ =
1

4
f n−2 +

3

4
f n −

3

2
Δt

(
v�x(f

n) + En�v(f
n)
)
.

(35)
fn+1,∗ =

1

4

rn−2∑
l=1

Cn−2
l

(
U

(1),n−2

l
⊗ U

(2),n−2

l

)
+

3

4

rn∑
l=1

Cn
l

(
U

(1),n

l
⊗ U

(2),n

l

)

−
3

2
Δt

(
DxU

(1),n

l
⊗ v ⋆ U

(2),n

l
+ En

⋆ U
(1),n

l
⊗ DvU

(2),n

l

)
,
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an element-wise multiplication operation. For example, the discretization of 
DxU

(1),n

l
⊗ v ⋆ U

(2),n

l
 follows 

where D+
x
 and D−

x
 are (k + 1)-th order conservative upwind DG discretizations of posi-

tive and negative velocities, respectively, with v+ = max(v, 0) and v− = min(v, 0) . For 
example, see (17) for the derivative at the i-th,  ig-th nodal points. Similar comments 
can be applied to the Dv operator in En

⋆ U
(1),n

l
⊗ DvU

(2),n

l
.

Step (iii)	Perform a macroscopic conservative decomposition. As in (29) 

Here f1 is computed from (30) with the macroscopic observables computed as in (23); 
f2 = f − f1 is the remainder term, where we apply a weight SVD truncation of the 
remainder term T𝜖,w⋆wM

(f2) as in the previous subsection.
Step (iv)	Conservative update of macroscopic variables. Let U ≐ (𝜌, J, e)⊤ , F ≐ (J, 𝜎,Q)⊤ , 

and S = (0, 𝜌E, 0)⊤. Then the macroscopic system (7)–(9) becomes 

The numerical solutions for U are denoted as �M , JM , �M , where M is for “macroscopic 
variables”. In the DG setting, they are nodal values of DG solutions of size (k + 1)Nx , 
and are computed with a high order nodal DG spatial discretization coupled with the 
second order SSP multi-step time integrator for system (38): 

where Un
i,ig

= (𝜌n
i,ig
, Jn

i,ig
, en

i,ig
)⊤ and Sn

i,ig
= (0, 𝜌n

i,ig
En
i,ig
, 0)⊤ , i = 1,⋯ ,Nx , ig = 0,⋯ , k . 

The Fn,± ∈ ℝ(k+1)Nx are given by the kinetic flux vector splitting scheme [9] with 

where v+ = max(v, 0) , v− = min(v, 0), and the weighted inner product is defined in 
(24). D±

x,i,ig
 are defined in a similar fashion as in (17), and 

From the updated Un+1
i,ig

 , we can compute 

(36)D+
x
U

(1),n

l
⊗ v+ ⋆ U

(2),n

l
+ D−

x
U

(1),n

l
⊗ v− ⋆ U

(2),n

l
,

(37)fn+1,∗ = f1 + f2.

(38)Ut + Fx = S.

(39)Un+1
i,ig

=
1

4
Un−2

i,ig
+

3

4
Un

i,ig
+

3

2
Δt(D+

x,i,ig
F
n,+

i,∶
+ D−

x,i,ig
F
n,−

i,∶
+ Sn

i,ig
),

(40)Fn,+ =

rn�
l=1

Cn
l

�
U

(2),n

l
,

⎛⎜⎜⎝

v+

(v+)2

1

2
(v+)3

⎞⎟⎟⎠

�

v

U
(1),n

l
,

(41)Fn,− =

rn�
l=1

Cn
l

�
U

(2),n

l
,

⎛⎜⎜⎝

v−

(v−)2

1

2
(v−)3

⎞⎟⎟⎠

�

v

U
(1),n

l
,

F
n,+

i,∶
= (Fn,+

i−1,0
,⋯ ,F

n,+

i−1,k
,F

n,+

i,0
,⋯ ,F

n,+

i,k
),

F
n,−

i,∶
= (Fn,−

i,0
,⋯ ,F

n,−

i,k
,F

n,−

i+1,0
,⋯ ,F

n,−

i+1,k
).
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where En+1,M is computed directly from �n+1,M via Poisson’s equation using the local 
DG method [1]. Finally, we construct fM

1
 according to (30), with the macroscopic 

observables from this step of macroscopic update.
Step (v)	 We update the low rank solution as 

where fM
1

 computed from Step (iv) and the weighted SVD truncation operator T𝜀,�⋆wM
 

as in defined (33). Here fM
1

 is used, as a correction to f1 for local conservation of mass, 
momentum, and energy densities.

In summary, the proposed LoMaC low rank DG scheme updates the VP solution by 
first adding basis through traditional high order nodal DG discretizations for spatial/
velocity derivatives and an SSP multi-step time integrator. Then we perform an orthog-
onal decomposition, with respect to a weighted inner product space, for preservation 
of macroscopic observables. Meanwhile, we update macroscopic conservation laws 
using KFVS fluxes for local conservation of macroscopic mass, momentum, and energy 
density. Finally, we correct the solution via (43) with macroscopic densities agree with 
those from macroscopic updates and with a weighted SVD truncation on the remain-
der term to realize optimal data sparsity. Note that Steps (iii) and (iv) above can be 
implemented in parallel, i.e., no need to be in a sequential order. We have the following 
proposition for local and global macroscopic conservation properties of the proposed 
scheme.

Proposition 1  (Local mass, momentum, and energy conservation) The proposed LoMaC 
low rank DG algorithm locally conserves the macroscopic mass, momentum, and energy.

Proof  The proof follows directly from the construction of the algorithm, and the fact that 
the DG algorithm for macroscopic systems locally conserve the mass, momentum, and 
energy.

Finally, we comment on the algorithm extension of the above proposed LoMaC low 
rank DG algorithm to a general setting. In a high dimensional setting (e.g., 2D2V), the 
above DG algorithm can be generalized using the HT format as in [9]. If the mesh for 
spatial discretization comes from the tensor product of 1D discretization, then the algo-
rithm can be directly generalized following the steps in [9], but with DG discretization 
on spatial/velocity derivatives and using a weighted inner product space on DG nodal 
solutions. We will not repeat the details, but refer to [9]. Alternatively, one could con-
sider nodal DG solutions on an unstructured mesh for the spatial dimensions for flex-
ibility in geometry and boundary conditions, and use an HT dimension tree with full 
rank in spatial dimensions, but low rank between spatial and velocity dimensions, and 
within velocity dimensions. Further, it is possible to use the DG for spatial discretiza-
tion for compact boundary treatment and use spectral methods for high order accuracy 
in velocity directions. Similar LoMaC property can be achieved for the corresponding 
high dimensional algorithm.

(42)�
n+1,M

i,ig
= e

n+1,M

i,ig
−

1

2

|||E
n+1,M

i,ig

|||
2

,

(43)fn+1 = fM
1
+ T𝜀,�⋆wM

(f2),
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4 � Numerical Results

In this section, we present a collection of numerical examples to demonstrate the efficacy 
of the proposed LoMaC low rank tensor DG methods. The second order SSP multi-step 
method is employed for time integration. We numerically verify the LoMaC property by 
tracking the time evolution of total mass, total momentum, and total energy.

4.1 � Linear Advection: Convergence and Superconvergence

Example 1  We solve the following simple 2D linear advection problem:

with periodic boundary conditions. We choose the initial condition 

and the exact solution is known as

which is smooth and stays very low rank over time. We make use of this example to inves-
tigate the convergence and superconvergence of the proposed low rank DG method. It is 
well known that the full grid DG solution is superconvergent in the negative-order norm 
with order 2k + 1 , based on which the DG solution over a translation invariant grid can be 
post-processed so that the convergence order is enhanced from k + 1 to 2k + 1 in the L2 
norm [2]. In the simulation, we let k = 1 and employ a set of uniform meshes with 

Nx1
= Nx2

 . The time step is chosen as Δt =
(

hx

3

)1.5

 to minimize the effect of temporal 
errors. The truncation threshold is set to be � = 10−4 . We solve the problem up to t = 1 . At 
the end of the computation, we post-process the low rank DG solutions by convolving the 
bases U(1) and U(2) with the kernel given in [2]. The numerical results are summarized in 
Table 1. It is observed that the low rank solution before post-processing is second order 
accurate ( k + 1 ); after post-processing the low rank DG solution, the accuracy is enhanced 
to third order ( 2k + 1 ). The CPU time approximately scales as 21.5 with mesh refinement, 
indicating that the curse of dimensionality is avoided for this problem. In Fig. 2, we plot 
the errors before and after post-processing, and it is observed that the errors of the low rank 
DG solutions are highly oscillatory before post-processing, implying that the solution is 
superconvergent in the negative-order norm. After post-processing, the error plots become 

(44)ut + ux1 + ux2 = 0, x1, x2 ∈ [0, 2π]

u(x1, x2, t = 0) = sin(x1 + x2),

u(x1, x2, t) = sin(x1 + x2 − 2t),

Table 1   Example 1. t = 1 , k = 1 . Convergence study

N
x1
× N

x2
Before post-processing After post-processing CPU/s

L
2 -error Order L

∞ -error Order L
2 -error Order L

∞ -error Order

16 × 16 1.59E−01 5.55E−02 3.24E−02 7.33E−03 0.28
32 × 32 3.73E−02 2.09 1.34E−02 2.05 4.20E−03 2.95 9.48E−04 2.95 0.45
64 × 64 9.03E−03 2.05 3.29E−03 2.03 5.35E−04 2.97 1.21E−04 2.97 1.22
128 × 128 2.22E−03 2.02 8.13E−04 2.02 6.75E−05 2.99 1.52E−05 2.99 3.06
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much smoother, and the magnitude is reduced significantly. Lastly, we plot the time histo-
ries of the ranks of the DG solution in Fig. 3, and we can see that the representation ranks 

V

X

V

X

V

X

V

X

V

X

V

X

0.010

-0.010

Fig. 2   Example 1. Error plots before and after post-processing at t = 1 . k = 1 , � = 10−4

Fig. 3   Example 1. The time 
evolution of ranks of the DG 
solutions. k = 1 , � = 10−4

R
an

k

Time
1.0

Table 2   Example 1 with inflow boundary conditions at x1 = 0 and x2 = 0 and outflow boundary conditions 
at x1 = 2π and x2 = 2π . t = 1 . Convergence study

N
x1
× N

x2
k = 1 k = 2

L
2 -error Order L

∞ -error Order L
2 -error Order L

∞ -error Order

16 × 16 8.72E−02 3.87E−02 5.09E−03 2.97E−03
32 × 32 2.18E−02 2.00 1.11E−02 1.80 6.46E−04 2.98 3.70E−04 3.00
64 × 64 5.50E−03 1.99 2.70E−03 2.04 8.13E−05 2.99 4.57E−05 3.02
128 × 128 1.40E−03 1.97 6.76E−04 2.00 1.02E−05 3.00 5.69E−06 3.01
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of the solutions stay two during the time evolution for all sets of meshes used. The numeri-
cal evidence indicates that the proposed low rank DG method with the adding and remov-
ing basis procedure preserves the superconvergence property of the standard DG method. 
The superconvergence phenomenon due to the DG discretization is preserved well under 
the low rank truncation setting, if the solution stays low rank.

Last, we solve (44) with the same initial condition but a different boundary condition. In 
particular, at x1 = 0 and x2 = 0 we impose the inflow boundary conditions as follows:

and we impose outflow boundary conditions at x1 = 2π and x2 = 2π . Hence, the exact solu-
tion remains the same. As mentioned, the proposed low rank DG method is able to handle 
such boundary conditions conveniently. We summarize the convergence study in Table 2, 
and (k + 1)-th order of convergence is observed as expected. The time histories of the ranks 
of the DG solutions are plotted in Fig. 4. Similar to the case of periodic boundary condi-
tions, the DG solutions remain very low rank during the time evolution. Additionally, when 
the solution is under-resolved, the numerical error from DG discretization may contribute 
to an increase of rank.

4.2 � 1D1V Vlasov‑Poisson System

Example 2  (A forced VP system [3]) We simulate the following forced VP system:

where the source � is defined as

u(x1, x2 = 0, t) = sin(x1 − 2t), u(x1 = 0, x2, t) = sin(x2 − 2t),

⎧⎪⎨⎪⎩

�f

�t
+ vfx + Efv = �(x, v, t),

E(x, t)x = �(x, t) −
√
π,
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Fig. 4   Example 1 with inflow boundary conditions at x1 = 0 and x2 = 0 and outflow boundary conditions 
at x1 = 2π and x2 = 2π . The time evolution of ranks of the DG solutions. k = 1 (a), and k = 2 (b). � = 10−4
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so that the system has the exact solution

Periodic boundary conditions are imposed. Note that the forced system satisfies the follow-
ing the macroscopic system:

It is easily verified that the total mass, total momentum, and total energy of the system are 
conserved. For this example, we test the accuracy of the proposed low rank DG method and 
justify its ability to conserve the physical invariants. In the simulation, we set the trunca-
tion threshold � = 10−3 and set the computational domain [−π, π] × [−Lv, Lv] with Lv = 4 . 
The convergence study is summarized in Table 3, and (k + 1)-th order of convergence is 
observed for both L2 and L∞ errors. To showcase the flexibility of DG meshes, we perturb 
the uniform mesh randomly by up to 10%. In Figs. 5 and 6, we report the time histories of 
numerical ranks of the low rank DG solutions together with relative deviation of the total 
mass, total momentum, and total energy for k = 1 and k = 2 , respectively. It is observed 
that for k = 1 , the ranks of the numerical solution over a coarser mesh ( Nx × Nv = 16 × 32 ) 
are higher than that over a finer mesh and also increase over time, which is attributed to 
the large DG discretization error. For k = 2 , the ranks of the numerical solutions stay four 

�(x, v, t) =
���

4
√
π + 2

�
v −

�
2π +

√
π
��

sin(2x − 2πt) +
√
π
�
1

4
− v

�
sin(4x − 4πt)

�

exp

�
−
(4v − 1)2

4

�
,

f (x, v, t) = (2 − cos(2x − 2πt)) exp

�
−
(4v − 1)2

4

�
,

E(x, t) = −

√
π

4
sin(2x − 2πt).

�t� + Jx =

√
π

4
(1 − 4π) sin(2x − 2πt),

�tJ + �x = �E +

√
π

16
(3 + 4

√
π − 4π) sin(2x − 2πt) −

π

16
sin(4x − 4πt),

�te +Qx =

√
π

128
(7 + 8

√
π − 12π) sin(2x − 2πt) −

π

64
sin(4x − 4πt)

+

√
π

8
(2 − (1 − 4π) cos(2x − 2πt))E.

Table 3   Example 2. t = 1 . Convergence study. The non-uniform meshes are obtained by randomly perturb-
ing the element boundaries of uniform meshes up to 10%

N
x
× N

v
k = 1 k = 2

L
2 -error Order L

∞ -error Order L
2 -error Order L

∞ -error Order

16 × 32 1.37E−01 1.33E−01 6.07E−03 9.73E−03
32 × 64 3.83E−02 1.83 3.32E−02 2.01 9.15E−04 2.73 1.52E−03 2.68
64 × 128 4.33E−03 3.15 6.31E−03 2.39 1.07E−04 3.10 1.91E−04 2.99
128 × 256 1.12E−03 1.95 1.57E−03 2.01 1.23E−05 3.11 2.26E−05 3.08
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during the time evolution. Hence, it is advantageous to employ a higher order DG discre-
tization for this problem. Here the rank four comes from the rank one from the exact solu-
tion, and rank three from conservative projection for mass, momentum, and energy. We 
can observe that total mass, total momentum, and total energy are conserved up to machine 
precision for both k = 1 and k = 2 with all mesh sizes, indicating that the MaLoC property 
of the proposed method is independent of the degree k and mesh size used.

Example 3  (Weak Landau damping) We simulate the weak Landau damping test with the 
initial condition

where � = 0.01 and k = 0.5 . The computational domain is set to be [0,Lx] × [−Lv, Lv] with 
Lx = 2π∕k and Lv = 6 . We set � = 10−5 for truncation. In the simulation, we employ a set 
of non-uniform meshes by randomly perturbing uniform meshes up to 10%. In Fig. 7, we 

(45)f (x, v, t = 0) =
1√
2π

(1 + � cos (kx)) exp

�
−
v2

2

�
,

R
an

k

Time

Time Time

Time
1.0

1.0 1.0

1.0

R
e

A

R
e

Fig. 5   Example 2. The time evolution of ranks of the numerical solutions (a), relative deviation of total 
mass (b), total momentum (c), and total energy (d). k = 1 . � = 10−3
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report the time histories of the electric energy and numerical ranks of the low rank DG 
solutions for k = 1 and k = 2 . It is observed that the low rank method is able to predict the 
correct damping rate of the electric energy. In addition, the method of larger k over a finer 
mesh can better track the damping phenomenon with lower numerical ranks, justifying the 
computational advantages of using higher order DG discretization. In Fig. 8, we further 
report the time histories of relative deviation of the total mass and total energy, together 
with absolute derivation of total momentum. We can see that the method is able to con-
serve the total mass, momentum, and energy up to the machine precision.

Example 4  (Strong Landau damping) For this example, we simulate another benchmark 
problem, namely the strong Landau damping test. The initial condition is the same as (45) 
but with parameters � = 0.5 and k = 0.5 . Unlike the previous example, due to the large per-
turbation, the electric energy would decay at first and then start to increase until reaching 
saturation due to the large perturbation. The computational domain is set to be the same as 
in the previous example. In the simulation, the truncation threshold is set to be � = 10−3 , 
and we employ non-uniform meshes obtained by randomly perturbing uniform meshes up 
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Fig. 6   Example 2. The time evolution of ranks of the numerical solutions (a), relative deviation of total 
mass (b), total momentum (c), and total energy (d). k = 2 . � = 10−3
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Fig. 7   Example 3. The time evolution of electric energy (a, b) and ranks of the low rank DG solutions (c, 
b). � = 10−5
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Fig. 8   Example 3. The time evolution of relative deviation of total mass (a, d), absolute deviation of total 
momentum (b, e), and relative deviation of total energy (c, f). � = 10−5
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Fig. 9   Example 4. The time evolution of electric energy (a, b) and ranks of the low rank DG solutions (c, 
b). � = 10−3

Time Time Time

Time Time Time

R
e

R
e

R
e

R
e

A
A

Fig. 10   Example 4. The time evolution of relative deviation of total mass (a, d), absolute deviation of total 
momentum (b, e), and relative deviation of total energy (c, f). � = 10−3
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to 10%. We summarize the simulation results in Figs.  9 and 10. It is observed that the 
proposed low rank DG method can adapt the numerical ranks to efficiently capture Vlasov 
dynamics. Furthermore, the method is able to conserve the physical invariants as expected 
up to machine precision as expected.

Example 5  (Bump on tail) As the last 1D1V test, we simulate the bump-on-tail problem 
with the initial condition

where � = 0.04 , k = 0.3 , np =
9

10
√
2π

 , nb =
2

10
√
2π

 , u = 4.5 , vt = 0.5 . The weight function 

w(v) = exp(−
v2

7
) is chosen. The domain is set to be [0,Lx] × [−Lv, Lv] with Lx = 2π∕k and 

Lv = 13 , and the truncation threshold is chosen as � = 10−5 . We simulate the problem up to 
t = 30 and plot the contours of the low rank DG solutions with a set of non-uniform meshes 
obtained by perturbing uniform meshes by 10%. The results are consistent with those 
reported in the literature, and a method with larger k and over a finer mesh can provide bet-
ter resolution as expected (Fig. 11). In Figs. 12 and 13, we report the time histories of elec-
tric energy, numerical ranks, together with relative derivation of total mass, total momen-
tum, and total energy. The observation is similar to the strong Landau damping test that the 
filamentation structures are well captured by the proposed method with rank adaptivity, 
and the physical invariants are conserved up to the machine precision.

(46)f (x, v, t = 0) = (1 + � cos (kx))

(
np exp

(
−
v2

2

)
+ nb exp

(
−
(v − u)2

2vt

))
,

Fig. 11   Example 5. Contour plots of the low rank DG solutions at t = 30 . � = 10−5
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Fig. 12   Example 5. The time evolution of electric energy (a, b) and ranks of the low rank DG solutions (c, 
b). � = 10−5
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Fig. 13   Example 5. The time evolution of relative deviation of total mass (a, d), total momentum (b, e), and 
total energy (c, f). � = 10−5
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4.3 � 2D2V Vlasov‑Poisson System

Example 6  (Weak Landau damping) We consider the 2D2V version of the weak Landau 
damping. The initial condition is

Time Time Time
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Fig. 14   Example 6. The time evolution of electric energy (a), hierarchical ranks of the numerical solution 
of mesh size N2

x
× N

2

v
= 642 × 1282 (b), relative deviations of total mass (c), absolute total momentums J1 

(d), absolute total momentum J2 (e), and relative deviations of total energy (f). � = 10−4 . k = 1
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Fig. 15   Example 6. The time evolution of electric energy (a), hierarchical ranks of the numerical solution 
of mesh size N2

x
× N

2

v
= 642 × 1282 (b), relative deviation of total mass (c), absolute total momentum J1 (d), 

absolute total momentum J2 (e), and relative deviation of total energy (f). � = 10−4 . k = 2
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where d = 2 , � = 0.01 , and k = 0.5 . We set the computation domain as [0,Lx]2 × [−Lv, Lv]
2 , 

where Lx =
2π

k
 and Lv = 6 , and the truncation threshold � = 10−4 . As with the 1D1V case, 

the electric energy will decay exponentially fast over time. To mitigate the curse of the 
dimensionality, we represent the four-dimensional solution in the third order HT tensor for-
mat, without further decomposition in the spatial directions. In Figs. 14 and 15, we report 
the time evolution of the electric energy, hierarchical ranks of the numerical solution, rela-
tive deviation of total mass and energy together with absolute deviation of total momen-
tum J1 and J2 . It is known that the solution processes low rank structures on phase space, 
and hence we expect the proposed low rank DG method can efficiently avoid the curse 
of dimensionality. The CPU cost for the simulation with meshes 162 × 322 , 322 × 642 , 
642 × 1282 is for 550 s, 1 092 s, 3 047 s for k = 1  and 556 s, 1 143s, and 4 435 s for k = 2 
with serial implementation. Furthermore, the LoMaC low rank DG method can conserve 
the physical invariants up to machine precision.

Example 7  (Two-stream instability) The last example is the 2D2V two-stream instability 
with the initial condition

(47)f (x, v, t = 0) =
1

(2π)d∕2

(
1 + �

d∑
m=1

cos
(
kxm

))
exp

(
−
|v|2
2

)
,
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Fig. 16   Example 7. The time evolution of electric energy (a), hierarchical ranks of the numerical solu-
tion of mesh size N2

x
× N

2

v
= 642 × 1282 (b), relative deviation of total mass (c), absolute deviation of total 

momentum J1 (d) and total momentum J2 (e), and relative deviation of total energy (f). � = 10−5 . k = 1
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where d = 2 , � = 10−3 , v0 = 2.4 , and k = 0.2 . The computation domain is set as 
[0,Lx]

2 × [−Lv,Lv]
2 , where Lx =

2π

k
 and Lv = 8 , and the truncation threshold is � = 10−4 . 

In Figs. 16 and 17, we report the time evolution of the electric energy, hierarchical ranks 
of the numerical solution of mesh size N2

x
× N2

v
= 1282 × 2562 , relative deviations of total 

mass and energy together with absolute derivations of total momentums J1 and J2 . The 
results of the electric energy evolution agree with those reported in the literature. In addi-
tion, the dynamics are efficiently captured by the low rank DG method, observing that the 
hierarchical ranks of the solution remain very low until approximately t = 17 and then start 
to increase due to the instability developed. Lastly, the proposed method conserves the 
total mass, momentum, and energy.

5 � Conclusion

In this paper, we proposed a LoMaC low rank tensor approach with nodal DG discretiza-
tion for performing high dimensional deterministic Vlasov simulations. The introduction of 
DG and nodal DG discretizations opens up the potential of the low rank tensor algorithm in 
using general nonsmooth, nonuniform, or unstructured meshes and for handling complex 

(48)

f (x, v, t = 0) =
1

2d(2π)d∕2

(
1 + �

d∑
m=1

cos
(
kxm

))

⋅

d∏
m=1

(
exp

(
−
(vm − v0)

2

2

)
+ exp

(
−
(vm + v0)

2

2

))
,

Time Time Time

Time Time Time

E H

R
R

AA

JJ

r
r
r
r

Fig. 17   Example 7. The time evolution of electric energy (a), hierarchical ranks of the numerical solu-
tion of mesh size N2

x
× N
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v
= 642 × 1282 (b), relative deviation of total mass (c), absolute deviation of total 

momentum J1 (d) and total momentum J2 (e), and relative deviation of total energy (f). � = 10−5 . k = 2
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boundary conditions. The locally macroscopic conservation property, realized by a mac-
roscopic conservative projection and correction of the kinetic solution, preserves globally 
total mass, momentum, and energy at the discrete level using an explicit scheme. The algo-
rithm is extended to the 2D2V VP system by an HT structure with full rank (no reduction) 
in the physical space and low rank reduction for the phase space as well as for the linkage 
between phase and physical spaces. Further work includes the extension to unstructured 
mesh and in resolving complex boundary conditions arising from applications.
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