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Abstract

In this paper, we propose a novel Local Macroscopic Conservative (LoMaC) low rank ten-
sor method with discontinuous Galerkin (DG) discretization for the physical and phase
spaces for simulating the Vlasov-Poisson (VP) system. The LoMaC property refers to the
exact local conservation of macroscopic mass, momentum, and energy at the discrete level.
The recently developed LoMaC low rank tensor algorithm (arXiv: 2207.00518) simultane-
ously evolves the macroscopic conservation laws of mass, momentum, and energy using
the kinetic flux vector splitting; then the LoMaC property is realized by projecting the low
rank kinetic solution onto a subspace that shares the same macroscopic observables. This
paper is a generalization of our previous work, but with DG discretization to take advan-
tage of its compactness and flexibility in handling boundary conditions and its superior
accuracy in the long term. The algorithm is developed in a similar fashion as that for a
finite difference scheme, by observing that the DG method can be viewed equivalently in a
nodal fashion. With the nodal DG method, assuming a tensorized computational grid, one
will be able to (i) derive differentiation matrices for different nodal points based on a DG
upwind discretization of transport terms, and (ii) define a weighted inner product space
based on the nodal DG grid points. The algorithm can be extended to the high dimensional
problems by hierarchical Tucker (HT) decomposition of solution tensors and a correspond-
ing conservative projection algorithm. In a similar spirit, the algorithm can be extended to
DG methods on nodal points of an unstructured mesh, or to other types of discretization,
e.g., the spectral method in velocity direction. Extensive numerical results are performed to
showcase the efficacy of the method.
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1 Introduction

Numerical simulation of the Vlasov-Poisson (VP) system plays a fundamental role in
understanding complex dynamics of the plasma and has a wide range of applications in
science and engineering, such as fusion energy. The well-known challenges for VP simu-
lations include the high dimensionality of the phase space, resolution of multiple scales
in time and phase space, and preservation of physical invariants, among many others. In
this paper, we develop a novel Local Macroscopic Conservative (LoMaC) low rank tensor
method with discontinuous Galerkin (DG) discretization. The LoMaC property means that
the algorithm can conserve local densities of macroscopic observables at the discrete level.

This paper is a generalization of the LoMaC low rank tensor method with the finite dif-
ference discretization in [9]. In the introduction of [9], we have discussed the application
background and existing works on low rank approach for time-dependent dynamics. Below
we only highlight several key ingredients to realize the accuracy, the robustness, the computa-
tional efficiency, and the local conservation for macroscopic observables of the newly proposed
algorithm.

(1) Low rank representation of solutions and high order discretizations [10]. In this low rank
approach, the solution is being written in the form of Schmidt decomposition, where the
basis in each dimension are being dynamically updated from a high order discretization
of PDE:s together with a singular value type truncation for sparsity in function representa-
tion and efficiency for computational complexity. The original idea is presented in [10].
In this paper, we generalize the algorithm to nodal DG type spatial discretization on ten-
sor product of computational meshes. The nodal DG differentiation operator, as well as
the weights in the discrete inner product space, will depend on the mesh spacing and the
associated Gaussian quadrature nodes in each computational cell. The new method allows
the flexibility in mesh spacing, e.g., using a not smooth nonuniform mesh, yet achieves
high order spatial accuracy. Meanwhile, the method takes advantage of the compactness
of the DG discretization in boundary treatment. With the weighted inner product space,
we perform a scaling procedure, followed by a standard SVD truncation, and finished with
arescaling procedure to remove the redundancy for data sparsity. For time discretization,
we apply the strong-stability-preserving (SSP) multi-step time discretization [5].

(ii) Simultaneous update of macroscopic mass, moment, and energy in a locally con-
servative manner. This step is the key novelty in [9] in locally preserving mass,
momentum, and even energy in an explicit scheme. In this paper, we use a nodal
DG scheme for macroscopic conservation laws, with the numerical fluxes from tak-
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Fig. 1 Illustration of the LoMaC scheme
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ing moment integration of kinetic probability density functions via the kinetic flux
vector splitting (KFVS) fluxes [12, 14]. Meanwhile, the updated macroscopic mass,
momentum, and energy are used to correct the kinetic solutions via a macroscopic
conservative projection. Figure 1 from [9] shows the interplay between numerical
solutions for the kinetic model and the corresponding macroscopic system. The
kinetic solution fis used as the kinetic flux to advance solutions for macroscopic
systems, while the updated macroscopic mass, momentum, and energy are used to
perform a conservative correction to kinetic solution f via a macroscopic conserva-
tive projection. The newly developed low rank DG algorithm is theoretically proved
and numerically verified to be locally mass, momentum, and energy conservative.

(iii) Hierarchical Tucker (HT) representation of high dimensional tensors. We further
generalize the algorithm to high dimensional problems with the HT decomposi-
tion, which attains a storage complexity that is linearly scaled with the dimension
and polynomial scaled with the rank, mitigating the curse of dimensionality.
The HT format [6, 11] is motivated by the classical Tucker format [4, 13], but
considers a dimension tree and takes advantage of the hierarchy of the nested
subspaces. A hierarchical high order singular value decomposition (HOSVD) [6,
11] can be performed to strike a balance between data complexity and numerical
feasibility. In this paper, we use the same dimension tree as in our earlier work
[9] for the 2D2V Vlasov system, with full rank in the physical spaces, low rank
in velocity spaces, and low rank between physical and velocity spaces.

As far as we are aware of, this is the first paper on coupling the DG discretization with the
low rank tensor framework for kinetic simulations. It well combines the merits of DG dis-
cretization with that of low rank tensor approach: for the DG method in the flexibility and
the robustness in using nonuniform or unstructured meshes, in treating complex boundary
conditions, and in realizing superconvergence properties in a long time simulation, and for
the low rank tensor approach in reducing computational complexity. Although we have not
extended the algorithm to unstructured triangular meshes or for complex boundary condi-
tions here, this paper serves as a first step in this direction and shows the proof of concept
on the potential of the algorithm for complex and high dimensional problems.

This paper is organized as follows. In Sect. 2, we introduce the kinetic Vlasov model
and the corresponding macroscopic conservation laws. Section 3 is the main section to
introduce the proposed algorithm. We introduce the DG and nodal DG discretizations in
Sect. 3.1; we discuss the low rank framework with the tensor product of nodal DG meshes,
the weighted inner product spaces, and the corresponding macroscopic conservative pro-
jection and weighted SVD truncation in Sect. 3.2; we propose the LoMaC low rank DG
algorithm in Sect. 3.3 with remarks on further generalization of the algorithm to high
dimensional problems with the HT format and to unstructured meshes. In Sect. 4, we pre-
sent numerical results on an extensive set of 1D1V and 2D2V problems to demonstrate the
efficacy of the proposed algorithm. We conclude in Sect. 5.

2 The Kinetic Vlasov Model and the Corresponding Macroscopic
Systems

In this section, we introduce the Vlasov model and the corresponding macroscopic sys-
tems. We consider the dimensionless VP system
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%+v-VXf+E(x,t)~Vuf=0, (1)

E(X’ t) = _Vx¢(xa t)’ _Axd)(xs t) = p(X7 t) - p()s (2)

which describes the dynamics of the probability distribution function f(x, v, ¢) of electrons
in a collisionless plasma. Here E is the electric field and ¢ is the self-consistent electro-
static potential determined by Poisson’s equation. f couples to the long range fields via the
charge density p(x,1) = ‘/‘Qv f(x,v,)dv, where we take the limit of uniformly distributed
infinitely massive ions in the background.

The Vlasov dynamics are well-known to conserve several physical invariants. In par-
ticular, let

charge density p(x,?) = /Q f(x, v, dv, 3)
current density J(x,7) = /Q | f(x, v, )vdy, 4)
kinetic energy density x(X,?) = %/Qv |v|2f(x, v, 1)dv, (5)
energy density e(x, ?) = k(X, 1) + %E(x)z. (6)

Then, by taking the first few moments of the Vlasov equation, the following conservation
laws of mass, momentum, and energy can be derived:

0,p+Vy-J=0, @
0J+V,-6=E, (®)
de+V,-Q=0, ©)

where 6(1,X) = [,, (v ® V)f(x,v,ndv and Q(x,1) = % Jo VIVIf(x, v, 0)dv. It is well-known
that the local conservation property is essential to capture correct entropy solutions of
hyperbolic systems such as (7)—(9).

3 A LoMaC Low Rank Tensor Approach with DG Discretizations
for the Vlasov Dynamics
For simplicity of illustrating the basic idea, we only discuss a 1D1V example in this sec-

tion. The low rank tensor approach [7] is designed based on the assumption that our solu-
tion at time ¢ has a low rank representation in the form of
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r

fevy=) (Cl(t) U, U (v, t)), (10)

=1

where { U(l)(x t)} and { U, @ (v, t)} are a set of time-dependent low rank orthonormal
=1 I=1

basis in x and v directions, respectively, C, is the coefficient for the basis U m(x nu (2)(\; 1),
and r is the representation rank. Equation (10) can be viewed as a Schmldt decomposmon
of functions in (x, v) by truncating small singular values up to rank r.

3.1 DG Discretization with Nodal Lagrangian Basis Functions

We perform a DG discretization with a piecewise Q% polynomial space for f on a truncated
ID1V domain of £ =[x, Xpa] X [=Vimaxs Vmax ) We start with a tensor product Cartesian
partition of £2 denoted by €2, with

< <)CNX+% =xmax’

“Vmax =V

A
e
A

1 e <y L=V .-
3 N\,+5 max

Denote an element as Il-j = [x._l,x 1] X [v ifly

i L ] € £, with the element size h, ;h, ; and
2

II m_

the center x-:%(xifl +x; 1) and v,
2

1
; ) 2(vj7%+vj+%). Let h, —max h and

=1 ""x,0

h, = max ' h,;- Given any non-negative integer k, we define a finite dimensional discrete
space w1th plecew1sely defined QF polynomials,

Q, = {p(x,v)eLz(Q): pl;, € Q). VI E“Qh} (b

The local space QF(I) consists of polynomials with terms in the form of x™v" with
max(m,n) < k on I € ,. To distinguish the left and right limits of a function p € QZ at
(xi+%, v), we let p;—:r%’v = limﬁ_,iop(xi% +5,v).

A semi-discrete DG method for the Vlasov equation (1) is: find f,(-,-,1) € 0%, such that
forall ¢ € Q];: and I;; € €2,

V,+l R .
/dxfhd’dxdv = / th¢xdxdv_// 2 v<fi+1 ST = i >dv
I. I Vo 2° l+5,v 2 I_E’V

i i -

ol

w ) (12)
+/thd)vd‘de_'/)C 12 E(x)<f;czi+;¢;‘j+; _fXJ—;(b:—J_;)dx.

[fj i-

¥

To implement the DG scheme under the low rank framework, we use the nodal basis to
represent functions in the discrete space Qﬁ, in conjunction with rewriting and/or approx-
imating the integrals in the schemes by numerical quadratures. We consider a reference
cell I = [—— —] X [—— —] and the tensor product of Gaussian quadrature points in each
direction {élg,njg ijg=0" We further let {a),}l o denote the corresponding quadrature

weights on the reference element. The local nodal Lagrangian basis on the reference cell is
[Ligjo &MY, o in OF(1) with

Lig!jg(gig’s 7’]_,’g') = 5ig,ig’ ig jg' ig, igl,jg,jg/ =0,k (13)
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Here 6. . is the Kronecker delta function. In fact, L;, ;,(&, 1) = L;o(§)L;,(17), where L;, and
L;, are the 1D Lagrangian nodal basis functions associated with the corresponding Gauss-

1an nodes. For a computational cell /;;, we can perform a linear transformation to the refer-

ence cell with &= xhx N = %, and denote by the shifted Gaussian nodes
xi v
Xiig = Xi +hx1§tg’ JJg Vj+hVJ’7jg'

Wlth the nodal basis functions, the DG scheme (15) on a computational cell
I; can be equivalently written with the test functions being taken as L ./(&, 1),

ig',jg =0,---,k. We look for the DG solution expressed in the form of

Jnij6v, D) = zngg - f’g"g ()Lyg ;o (£(x), n(1v)), with its nodal values satisfying the following
equations:

’8\18
h”hL Imlé’w]g< fh N )

ig" jg
= hyihy j@igVijg 2 WBign ( al‘ig (Eigr )fh,z:j (f)> hy @iV e <fi+%,igLig (

N —
S——
|
S
e
<
o3
=
&
—
|
N —
S——
S——

1 2 1
By it jigEi g Z ( L/g(”fg”)ﬁﬁdg (t)> hy i@ ;. tg(JCigJ%ng(E) _fig‘/'*%ng(_§>)'

(14)
Dividing by 4, ;h, jo,,@;,, the above equation becomes
I, i Vi e 1 s 1
fhws( n= i ( Vijg z wlg”( ng(gxe”)fhg Jé(t)) Ns (ﬁ+%JgLig<§) _fi—%\/gl‘ig<_§ ) >>
’ (15)

( ngw/g”< L/Jz("jg”)f}jHS (t))_%@gwf /H(%) fm/flL/g( ;)))’

L g gL AT taken as monotone upwind fluxes and E, ;, denotes the electric

field at x;;,. In partlcular, let vt = max(v,0), v~ = min(v,0), E* = max(E,0), and
E~ = min(E, 0). Then (15) becomes the following with a simple upwind flux:

]&’

where f. 1 . and f

U@
Vijg ig"jg _ g’ Jjg 1 1 ig" jg
- L (3 )(3) =it
zg )“(Zwlg dé (flg )fhtJ hiij 87\ 2 2 fhl 14ig"
ig"jg _ rig"Jjg L 1 L 1 ig" jg L 1 L 1
Zwlzz de (‘Stg”)fhz,; hi+1,ig" _5 ig 5 +fh,ij ig" _5 ig _5
ig"

(
5 (5o S ) B
(

]Ia VJ
1 1 1
tgdg i8¢ 1878
(Zw " (’7]8” h,ij ht,/+1L]8< 2) ]g(i)"‘fh,/ L < E)ng

S
N—
I~

*5)
|
ST
N—
N——

zg xL

/S’ vy
(16)
We denote the first two terms on the RHS of (16) as
V+ .D*t f+~5xfg vo. -D~. £ 1Jg 17
ije " Priigthij ° Viig T TPxiighij * a7
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as standard 1D upwind DG discretizations of x derivative at the ig-th Gaussian node of the
i-th cell for positive/negative velocity, respectively. Here we assume that the v-grid is fixed
at the jg-th Gaussian node of the j-th cell, and

0,8 k.jg 0,8 k.jg
f:t-l,] (fhl IJ fhl lJf;zzJ ’ fh )
/8 — (08 kijg (0jg k.jg
hlJ (f;u,] f/’llJ fhl+l,} o h,i+1,7"

Similarly, the other two terms are denoted as

+ 5185+ — — ,ig,t
El 1g v,},]gf;zJ ’ Ei,zg DLllgf]:lJ ’ (18)

where

Lig,: ig,0 ig.k ig,0 lgk
f:;” (fht/ LA fhl] l’fth fhlJ

f—tg ig,0 fzg k ftg .0 fzg k

h,ij hyij’ hiij> ht/+l’ ht,]+l

Remark 1 One observation in the above formulation is that, although the DG method for-
mulates the scheme in an element-by-element fashion, the evaluation of solution deriva-
tives in x and v directions, at Gaussian nodal points of each cell, actually occurs in a
dimension-by-dimension manner. In other words, we can formulate a DG differentiation
operator D¥ by concatenating D+ . Similar comments can be applied to D¥ as the DG dif-
ferentlatlon operator for the v- derlvatlve

3.2 Nodal DG Solutions on Grid Points and Weighted SVD

In this subsection, we first set up the nodal DG solutions at Gaussian grid points on each
computational cell, which comes from a tensor product of x and v discretizations. Then we
introduce several basic tools for performing the LoMaC DG low rank tensor approach in
the next subsection. These tools include the weights and definition for the discrete inner
product space, the orthogonal projection for conservation of macroscopic observables in
the weighted inner product space, as well as the weighted singular value truncation.

The nodal grid points for the DG discretization, as the tensor product of
(k+ DN, x (k + )N, points from N, X N, computational cells, are

Xoria * Xmin <+ < (0 < <) o < Xy (19)
Vgrid: ~ Vmax < 0 < (Vj,O << Vj,k) =t < Viax- (20)
Here {x; lg}lg _o and {v JJg}]g _o are the shifted Gaussian points on the cell [x;_1,x;, 1] and

(v, LV ], respectively. DG nodal solutions on the tensor product of grids (19) are organ—

1zed as f € RWFDNXEFDN, with each of its component f,* 878 (1) being an approximation to
point values of the solution on the tensor product of grlds (19) and (20). It has a corre-
sponding low rank decomposition, similar to (10), as

@ Springer



Communications on Applied Mathematics and Computation

r

1 2 . igd e
f= Z (C, U; ) ®U§ )), or element-wise: fl.j"g = Z C vV u® ), (1)
=1

Liig = Ljjg
=1

where U;l) € R®DN: and ng) € R%*+DN, can be viewed as approximations to correspond-
ing grid point values of the basis functions in (10). Equation (21) can also be viewed as a
weighted SVD of the matrix f € R&+DNVX+DN, “where the weight

0=0,Q0, (22)
with
o, € RETDN, Opiig = Myige  i=1,+ Ny, ig=0,-k
k+DN, _ _ P
o, € RN @0 =y @, j=1,,N, jg=0, k.

Next, we introduce three basic operations for the discrete weighted inner product spaces:
(i) the computation of macroscopic observations; (ii) the orthogonal projection of f for
conservation of macroscopic observables; (iii) a weighted singular value truncation.

e Macroscopic quantities of f. To perform the projection, we first compute macroscopic
quantities of f, i.e., the discrete macroscopic charge, current and kinetic energy density
p, J and k € R"x by quadrature

P r lv
— 2 (1)
V=X a(u |y |) v 23)

k| = iy
2

and the inner product (-, -), is defined as

(t.g), = Zﬁa’ggm'g“’v,i,ig’ f.g e REDY, (24)
JjJg
in analogue to the continuous inner product / o J(g(v)dv.
¢ An orthogonal projection with preservation of macroscopic densities. Following

the conservative projection idea in [8], we propose to project a kinetic solution f to a
subspace

N =span{1,,v,v*}, (25)

where 1, € R&DN. ig the vector of all ones, v is the v-grid (20) and v> € R&DV ig the
element-wise square of v. We use a weight function w,,(v) = exp(—v?/2) with expo-
nential decay to ensure proper decay of the projected function as v — oo0. We introduce
the weighted inner product and the associated norm as

(£.8w, = Z]?JgnggWMJngVJJg’ Ifllw, = /(E D)y, (26)
1J8
where wy, € ROV with wy, ;.. = wy,(v;,,) and @, ;;, is the quadrature weights for

v-integration. Correspondingly, let I%VM = {f € RN o |If|l, < oo}. With the weight
function, we first scale f as
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=1 % o 1 @

=1

where * is the element-wise product in the v-dimension. We perform an orthogonal
projection of f with respect to the inner product (26) onto the subspace N, i.e.,

(PrD.g),, =g, VeeN (28)

It can be shown that w,, % PN(f') preserves the mass, momentum, and kinetic energy
densities of f in the discrete sense. With the orthogonal project, a conservative decom-
position of f [8] can be performed as

f=wy, *x (PO +U-PYD) =w, x& +F) =f +1,, (29)
where f; can be represented as a rank three tensor

_J

fl(pM]? K) _”1 ”2 ®(WM “ ”2 ®(wM )
30)
2K‘ —cp (
2—12 ® (wWy, x (V2 - Clv)),
V=Ll
where ¢ = <|1|‘;V|IZ“’M is computed so that {1,, v, vi— c1,} forms an orthogonal set of basis
Wy,

and p, J and « are the discrete mass, momentum, and kinetic energy density of f from
(23). f, preserves the discrete mass, momentum, and kinetic energy density of f, while
the remainder part f, = f — £, has zero of them.

e Weighted SVD procedure with preservation of macroscopic observables. The
remainder part in the orthogonal decomposition f, can be shown to have zero macro-
scopic mass, momentum, and kinetic energy. To perform a singular value truncation to
remove redundancy in basis representation, as well as maintain the zero macroscopic
observables, we perform a weighted SVD truncation, where the weights come from
the quadrature weights associated with quadrature nodes as well as the weight function
w,, at quadrature nodes. A weighted SVD procedure assumes a weighted inner product
space (-, -) in the following sense:

-~ ngg ngg k+1)N X(k+1)N,
<f’ g> Z f ,J Wy ing,j,ngM,/‘,jg’ fs g€ R( Wox (DN, . (3 ])
i,i83/J8

The weighted SVD procedure consists of three steps: first a scaling step with the ele-
ment-wise multiplication by \/a)ITWM with @ in (22) and w,, as in (26), followed by a tra-

ditional SVD procedure, and finally a rescaling step with element-wise multiplication
by 4/@xw,. The associated storage cost is O(rN), where
N :=max{(k+ 1)N,,(k+ 1)N,}. The scaling and rescaling can be performed with
respect to the basis in x and v directions with the cost of O(rN). We denote this
weighted SVD truncation procedure as 7, www,- 10 the algorithm, it will be applied to
the remainder f, in (29), i.e., 7, 4y, () to realize the data sparsity. In summary, we

have the following weighted SVD truncation procedure for f, € REFDNXE+DN,,
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scaling _ f truncation| = escaling| -
=> f, = - = T.8) | = | Vo *xwy, x T 1) (32)

V@ * Wy,

with the output being

T, www,, () = @ * Wy, % T.(,). (33)

Remark 2 We now summarize by recognizing that there are three different discrete inner
product spaces we introduce in this subsection: the first is defined by (24) as a discrete
analog of a standard L? inner product in the v direction only for computing macroscopic
observables, the second is defined by (26) as a discrete analog of a weighted inner product
space in the v direction for projection purpose, and the third is defined by (31) as a discrete
analog of weighted inner product in x-v directions for weighted SVD truncation for the
remainder £, in (29) to realize the data sparsity via removing redundancy in basis represen-
tation in each dimension.

3.3 LoMacC Low Rank Approach with DG Discretization

In this subsection, we introduce the proposed LoMaC low rank approach with DG dis-
cretization. The flow chart of the algorithm is in a similar spirit to that we introduced in
[9]. We outline the scheme flow chart with a special discussion on the nodal discretization
DG spatial discretization and the corresponding weighted orthogonal decomposition and
weighted SVD truncation.

Below, we assume the solution in the form of (21) with superscript n for the solution at
.

Step (i) [nitialization. We assume that the analytic initial condition can be written as or
approximated by a linear combination of separable functions, then the DG solutions can
be constructed directly from those separable functions on Gaussian nodal points.

Step (ii) Add basis and obtain an intermediate solution £'*1*. A second order multi-step
discretization of time derivative in (1) gives

n * 1 n— 3 n 3 n n n
fr = g1 4 " = S A0 () + E'0,(). (34)
Here the electric field E” is solved by a Poisson solver. Thanks to the tensor friendly

form of the Vlasov equation, assuming the low rank format of solutions at #'~2 and ",
f*1* can be represented in the following low rank format:

=2 ”
e _1 =2 ({1(Hn-2 g r@n-2) | 3 n (D g 71O
=2 3G (U, U, )+12C1(U1 ey )
=1 I=1 (35)
3

— EAI(DXUEI),n Qv X UEZ),n +E" % U;l).n ® DVUEZ)JL>’

Here, with a slight abuse of notation, v € R™ denotes the coordinates of Varid intro-
duced in (20). D, and D, represent high order spatial differentiations, and * denotes
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an element-wise multiplication operation. For example, the discretization of
DXUEI)"I RV * U;z)’" follows

DU @ vt x UP" + DTUN @ v+ UP, (36)

where D} and D7 are (k + 1)-th order conservative upwind DG discretizations of posi-
tive and negative velocities, respectively, with vt = max(v,0) and v~ = min(v, 0). For
example, see (17) for the derivative at the i-th, ig-th nodal points. Similar comments
can be applied to the D, operator in E" x UEI)’" ® DVUEZ)’".

Step (iii) Perform a macroscopic conservative decomposition. As in (29)

e = f 4, (37

Here £, is computed from (30) with the macroscopic observables computed as in (23);
f, =f—f, is the remainder term, where we apply a weight SVD truncation of the
remainder term 7 ., (f,) as in the previous subsection.

Step (iv) Conservative update of macroscopic variables. LetU = (p,J,e)", F = (J,5,Q)",
and S = (0, pE, 0)". Then the macroscopic system (7)—(9) becomes

U+F,=S8. (38)

The numerical solutions for U are denoted as p™, JM kM where M is for “macroscopic
variables”. In the DG setting, they are nodal values of DG solutions of size (k + 1)N,,
and are computed with a high order nodal DG spatial discretization coupled with the
second order SSP multi-step time integrator for system (38):

1. .- 3 3 _ _
n+l __ n—2 n + n,+ ", n
iig ZUi,ig + ZUi,ig + EAt(Dx,i,igF i + Dx,i,igF i + Si,ig

), (39)

- T - T o= o —
where U, = (o}, 1 ¢},) and ST, = (0,p] El ,0), i=1,--,N,, ig =0, k.

The F"* € R* D gre given by the kinetic flux vector splitting scheme [9] with

” vt
Fn,+ — Z C7 U;Z),n, (v+)2 Ugl),n’ (40)
1=1 %(v+)3

" v

3O

v

where vt = max(v,0), v- = min(v,0), and the weighted inner product is defined in
(24). Dfl. 1o Are defined in a similar fashion as in (17), and

n4+ nt+ L. n,+ n+ . n,+
Fi,: - (Fi—l,()’ ’Fi—l,k’Fi,O ’ ’Fi,k )’

n,— __ n—= .. n— =, n,—
Fi,: - (Fi, ’ ’Fi,k ’Fi+1,0’ ’Fi+l,k)'

From the updated U™, we can compute
iig
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ntl,M _  n+lM

1 n+1,M 2
iig iig 2 ‘E ’ (42)

i,ig
where E"*'"M is computed directly from p™*¥ via Poisson’s equation using the local
DG method [1]. Finally, we construct lew according to (30), with the macroscopic
observables from this step of macroscopic update.
Step (v) We update the low rank solution as
fH—l = fjlw + ,Z;,(o*wM(fZ)’ (43)
where leu computed from Step (iv) and the weighted SVD truncation operator Téya,*wM
as in defined (33). Here f’lw is used, as a correction to f; for local conservation of mass,
momentum, and energy densities.
In summary, the proposed LoMaC low rank DG scheme updates the VP solution by
first adding basis through traditional high order nodal DG discretizations for spatial/
velocity derivatives and an SSP multi-step time integrator. Then we perform an orthog-
onal decomposition, with respect to a weighted inner product space, for preservation
of macroscopic observables. Meanwhile, we update macroscopic conservation laws
using KFVS fluxes for local conservation of macroscopic mass, momentum, and energy
density. Finally, we correct the solution via (43) with macroscopic densities agree with
those from macroscopic updates and with a weighted SVD truncation on the remain-
der term to realize optimal data sparsity. Note that Steps (iii) and (iv) above can be
implemented in parallel, i.e., no need to be in a sequential order. We have the following
proposition for local and global macroscopic conservation properties of the proposed
scheme.

Proposition 1 (Local mass, momentum, and energy conservation) The proposed LoMaC
low rank DG algorithm locally conserves the macroscopic mass, momentum, and energy.

Proof The proof follows directly from the construction of the algorithm, and the fact that
the DG algorithm for macroscopic systems locally conserve the mass, momentum, and
energy.

Finally, we comment on the algorithm extension of the above proposed LoMaC low
rank DG algorithm to a general setting. In a high dimensional setting (e.g., 2D2V), the
above DG algorithm can be generalized using the HT format as in [9]. If the mesh for
spatial discretization comes from the tensor product of 1D discretization, then the algo-
rithm can be directly generalized following the steps in [9], but with DG discretization
on spatial/velocity derivatives and using a weighted inner product space on DG nodal
solutions. We will not repeat the details, but refer to [9]. Alternatively, one could con-
sider nodal DG solutions on an unstructured mesh for the spatial dimensions for flex-
ibility in geometry and boundary conditions, and use an HT dimension tree with full
rank in spatial dimensions, but low rank between spatial and velocity dimensions, and
within velocity dimensions. Further, it is possible to use the DG for spatial discretiza-
tion for compact boundary treatment and use spectral methods for high order accuracy
in velocity directions. Similar LoMaC property can be achieved for the corresponding
high dimensional algorithm.

@ Springer



Communications on Applied Mathematics and Computation

4 Numerical Results

In this section, we present a collection of numerical examples to demonstrate the efficacy
of the proposed LoMaC low rank tensor DG methods. The second order SSP multi-step
method is employed for time integration. We numerically verify the LoMaC property by
tracking the time evolution of total mass, total momentum, and total energy.

4.1 Linear Advection: Convergence and Superconvergence

Example 1 We solve the following simple 2D linear advection problem:
u+u, +u, =0, x,x €[0,2n] (44)

with periodic boundary conditions. We choose the initial condition
u(xy, x,,t = 0) = sin(x; + x,),

and the exact solution is known as
u(xy, x,, 1) = sin(x; +x, — 2t),

which is smooth and stays very low rank over time. We make use of this example to inves-
tigate the convergence and superconvergence of the proposed low rank DG method. It is
well known that the full grid DG solution is superconvergent in the negative-order norm
with order 2k + 1, based on which the DG solution over a translation invariant grid can be
post-processed so that the convergence order is enhanced from k + 1 to 2k + 1 in the L?
norm [2]. In the simulation, we let k =1 and employ a set of uniform meshes with

N

1.

., =N,,- The time step is chosen as At = (%) ’ to minimize the effect of temporal
errors. The truncation threshold is set to be £ = 107, We solve the problem up to t = 1. At
the end of the computation, we post-process the low rank DG solutions by convolving the
bases UV and U® with the kernel given in [2]. The numerical results are summarized in
Table 1. It is observed that the low rank solution before post-processing is second order
accurate (k + 1); after post-processing the low rank DG solution, the accuracy is enhanced
to third order (2k + 1). The CPU time approximately scales as 2! with mesh refinement,
indicating that the curse of dimensionality is avoided for this problem. In Fig. 2, we plot
the errors before and after post-processing, and it is observed that the errors of the low rank
DG solutions are highly oscillatory before post-processing, implying that the solution is
superconvergent in the negative-order norm. After post-processing, the error plots become

Table 1 Example 1. = 1, k = 1. Convergence study

N, XN,  Before post-processing After post-processing CPU/s

L? -error Order L%®-error Order L2 -error Order L*-error  Order

16 x 16 1.59E-01 5.55E-02 3.24E-02 7.33E-03 0.28
32x32 3.73E-02 2.09 1.34E-02 2.05 4.20E-03 2.95 9.48E—-04 2.95 0.45
64 x 64 9.03E-03 2.05 3.29E-03 2.03 5.35E-04 297 1.21E-04 297 1.22
128 x 128 2.22E-03 2.02 8.13E-04 2.02 6.75E-05 2.99 1.52E-05 2.99 3.06
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(d) Nuy X Nap = 16 x 16 (€) Nuy X N, =32 x 32 (f) Nauy X Nap = 64 x 64

Fig.2 Example 1. Error plots before and after post-processing at = 1. k = 1, = 10~

Fig.3 Example 1. The time 4 T T T u e
evolution of ranks of the DG o 32i32
solutions. k =1, = 10~ 6464
—128x128
3
x
5 2
14
1t i
o .
0 0.2 0.4 0.6 0.8 1.0

Time

Table 2 Example 1 with inflow boundary conditions at x; = 0 and x, = 0 and outflow boundary conditions
at x; = 2m and x, = 2x. t = 1. Convergence study

N, XN, k=1 k=2
L? -error Order L* -error Order L? -error Order L* -error Order
16 x 16 8.72E-02 3.87E-02 5.09E-03 2.97E-03

32x32 2.18E-02  2.00 1.11IE-02  1.80 6.46E-04  2.98 3.70E-04  3.00
64 x 64 5.50E-03 1.99 2770E-03  2.04 8.13E-05  2.99 457E-05  3.02
128 x 128  1.40E-03 1.97 6.76E-04  2.00 1.02E-05  3.00 5.69E-06  3.01

much smoother, and the magnitude is reduced significantly. Lastly, we plot the time histo-
ries of the ranks of the DG solution in Fig. 3, and we can see that the representation ranks
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Fig.4 Example 1 with inflow boundary conditions at x; = 0 and x, = 0 and outflow boundary conditions
at x, = 2n and x, = 2. The time evolution of ranks of the DG solutions. k = 1 (a), and k = 2 (b). £ = 10~

of the solutions stay two during the time evolution for all sets of meshes used. The numeri-
cal evidence indicates that the proposed low rank DG method with the adding and remov-
ing basis procedure preserves the superconvergence property of the standard DG method.
The superconvergence phenomenon due to the DG discretization is preserved well under
the low rank truncation setting, if the solution stays low rank.

Last, we solve (44) with the same initial condition but a different boundary condition. In
particular, at x;, = 0 and x, = 0 we impose the inflow boundary conditions as follows:

u(x;,x, =0,¢) =sin(x; —2t), ux; =0,x,,1) = sin(x, — 21),

and we impose outflow boundary conditions at x; = 2x and x, = 2x. Hence, the exact solu-
tion remains the same. As mentioned, the proposed low rank DG method is able to handle
such boundary conditions conveniently. We summarize the convergence study in Table 2,
and (k + 1)-th order of convergence is observed as expected. The time histories of the ranks
of the DG solutions are plotted in Fig. 4. Similar to the case of periodic boundary condi-
tions, the DG solutions remain very low rank during the time evolution. Additionally, when
the solution is under-resolved, the numerical error from DG discretization may contribute
to an increase of rank.

4.2 1D1V Vlasov-Poisson System

Example 2 (A forced VP system [3]) We simulate the following forced VP system:

0
0% +vf, + Ef, = w(x,v,1),

Ex.1), = p(x,1) = \/x.

where the source y is defined as
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w(x,v,1) =<<(4 T+ Z)V - (271: + \/;c)) sin(2x — 2xt) + ﬁ(i - v) sin(4x — 471:[))

exp (_(4v— 1)2>
— )

so that the system has the exact solution

— 2
Sfx, v, 1) = (2 = cos(2x — 2mr)) exp <_M>

4
\r
E(x,t) = e sin(2x — 2xt).

Periodic boundary conditions are imposed. Note that the forced system satisfies the follow-
ing the macroscopic system:

\/E

op+1J, = T(l — 4m) sin(2x — 2mt),
Vr . T
oJ+o0,=pE+ EG + 4\/% — 4m) sin(2x — 2mt) — 6 sin(4x — 4xr),
.o
de+Q, = %(7 + 84/ — 12m) sin(2x — 27r) — % sin(4x — 4nr)

\/_

+ %(2 — (1 = 4m) cos(2x — 2mt))E.

It is easily verified that the total mass, total momentum, and total energy of the system are
conserved. For this example, we test the accuracy of the proposed low rank DG method and
justify its ability to conserve the physical invariants. In the simulation, we set the trunca-
tion threshold £ = 1073 and set the computational domain [—r, t] X [-L,,L,]with L, = 4.
The convergence study is summarized in Table 3, and (k + 1)-th order of convergence is
observed for both L? and L™ errors. To showcase the flexibility of DG meshes, we perturb
the uniform mesh randomly by up to 10%. In Figs. 5 and 6, we report the time histories of
numerical ranks of the low rank DG solutions together with relative deviation of the total
mass, total momentum, and total energy for k = 1 and k = 2, respectively. It is observed
that for k = 1, the ranks of the numerical solution over a coarser mesh (N, X N, = 16 X 32)
are higher than that over a finer mesh and also increase over time, which is attributed to
the large DG discretization error. For k = 2, the ranks of the numerical solutions stay four

Table 3 Example 2. r = 1. Convergence study. The non-uniform meshes are obtained by randomly perturb-
ing the element boundaries of uniform meshes up to 10%

N, XN, k=1 k=2
L? -error Order L* -error Order L? -error Order L* -error Order
16 x 32 1.37E-01 1.33E-01 6.07E—03 9.73E-03

32x64 3.83E-02 1.83 3.32E-02  2.01 9.15E-04  2.73 1.52E-03  2.68
64 % 128 433E-03  3.15 6.31E-03  2.39 1.07E-04  3.10 191E-04  2.99
128 x256  1.12E-03 1.95 1.57E-03  2.01 1.23E-05  3.11 2.26E-05  3.08
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Fig.5 Example 2. The time evolution of ranks of the numerical solutions (a), relative deviation of total
mass (b), total momentum (c), and total energy (d). k = 1. £ = 1073

during the time evolution. Hence, it is advantageous to employ a higher order DG discre-
tization for this problem. Here the rank four comes from the rank one from the exact solu-
tion, and rank three from conservative projection for mass, momentum, and energy. We
can observe that total mass, total momentum, and total energy are conserved up to machine
precision for both k = 1 and k = 2 with all mesh sizes, indicating that the MaLoC property
of the proposed method is independent of the degree k and mesh size used.

Example 3 (Weak Landau damping) We simulate the weak Landau damping test with the
initial condition

2
FGovt = 0) = ——(1 + acos (kx) exp <—V—>, 45)
V2rn 2
where & = 0.01 and k = 0.5. The computational domain is set to be [0, L,] X [-L,, L,] with

L,=2n/kand L, = 6. We set e = 107> for truncation. In the simulation, we employ a set
of non-uniform meshes by randomly perturbing uniform meshes up to 10%. In Fig. 7, we
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Fig.6 Example 2. The time evolution of ranks of the numerical solutions (a), relative deviation of total
mass (b), total momentum (c), and total energy (d). k = 2. £ = 1073

report the time histories of the electric energy and numerical ranks of the low rank DG
solutions for k = 1 and k = 2. It is observed that the low rank method is able to predict the
correct damping rate of the electric energy. In addition, the method of larger k over a finer
mesh can better track the damping phenomenon with lower numerical ranks, justifying the
computational advantages of using higher order DG discretization. In Fig. 8, we further
report the time histories of relative deviation of the total mass and total energy, together
with absolute derivation of total momentum. We can see that the method is able to con-
serve the total mass, momentum, and energy up to the machine precision.

Example 4 (Strong Landau damping) For this example, we simulate another benchmark
problem, namely the strong Landau damping test. The initial condition is the same as (45)
but with parameters « = 0.5 and k = 0.5. Unlike the previous example, due to the large per-
turbation, the electric energy would decay at first and then start to increase until reaching
saturation due to the large perturbation. The computational domain is set to be the same as
in the previous example. In the simulation, the truncation threshold is set to be £ = 1073,
and we employ non-uniform meshes obtained by randomly perturbing uniform meshes up

@ Springer



Communications on Applied Mathematics and Computation

102 102
N\ -4
[\ 1
104} ’\ 0*r 1
| \(‘ l s \ \
I 10 F \ |
> | [ > i N
§w0°r| || g M“\ U AN A
5 2 u | A
) o 108F { [l AN
= £ [
8 108F ‘ 8 |
w w 10-10{ 1
1070 F——16x32 1 10_12[f16x32 1
—32x64 —32x64
64 %128 64 %128
10-12 n n n n n n n 10-14 n n n n n n n
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Time Time
(a) k= (b) k=2
40 40
——16x32 ——16x32
35| ——32x64 i 35| ——32x64
64x128 64x128
30t g 30t
25 « 251
~ x
€ 20 1 €20t 1
['4 o
* | i Fh—ﬂﬁ
4 L A A
10 0F
I
5 1 5 1
0 . . . . . . . 0 . . . . . . .
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Time Time
() k=1 (d) k=2

Fig.7 Example 3. The time evolution of electric energy (a, b) and ranks of the low rank DG solutions (c,
b).e = 107
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Fig.8 Example 3. The time evolution of relative deviation of total mass (a, d), absolute deviation of total
momentum (b, e), and relative deviation of total energy (c, f). € = 107>
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Fig. 10 Example 4. The time evolution of relative deviation of total mass (a, d), absolute deviation of total

momentum (b, e), and relative deviation of total energy (c, f). € = 1073
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to 10%. We summarize the simulation results in Figs. 9 and 10. It is observed that the
proposed low rank DG method can adapt the numerical ranks to efficiently capture Vlasov
dynamics. Furthermore, the method is able to conserve the physical invariants as expected
up to machine precision as expected.

Example 5 (Bump on tail) As the last 1D1V test, we simulate the bump-on-tail problem
with the initial condition

)
fG,v,t=0)=(1+acos (kx))(np exp <_v2_2> + ny, exp <—%>>, (46)

where a = 0.04, k = 0.3, n, = u=4.5, v,=0.5. The weight function

9 2
ovar " T TovaR
w() = exp(—?) is chosen. The domain is set to be [0,L,] X [-L,,L,] with L, = 2x/k and
L, = 13, and the truncation threshold is chosen as ¢ = 10~>. We simulate the problem up to
t = 30 and plot the contours of the low rank DG solutions with a set of non-uniform meshes
obtained by perturbing uniform meshes by 10%. The results are consistent with those
reported in the literature, and a method with larger k and over a finer mesh can provide bet-
ter resolution as expected (Fig. 11). In Figs. 12 and 13, we report the time histories of elec-
tric energy, numerical ranks, together with relative derivation of total mass, total momen-
tum, and total energy. The observation is similar to the strong Landau damping test that the
filamentation structures are well captured by the proposed method with rank adaptivity,
and the physical invariants are conserved up to the machine precision.
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Fig. 11 Example 5. Contour plots of the low rank DG solutions at 7 = 30. £ = 107>
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b).e = 107

01 101 1012
E
g10' H 5
H ﬂgw“ " g1
3 2 fid o ] w
) E
3. . \‘ ummM"WW RN WL WMM WM'M“‘
: g
§ € 1015 g 10718 ‘
: H il el \HH\ b il
g - \wp \ \H H At
:
: £ il £ e
Zuon H § 1632
& 32x64
64 x 128
.
1o o 0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time Time
(b) k= (© k=1
101 101 101
5 s
8107 € 13
g 8101 81t
: g H
1o s s
: 3 g
5 1015 510
- 5 2
2 B 10 2 0
Ew‘s %mm %mm —16x32
‘ : i
64128 X
1o ‘QO 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time Time Time
(d) k=2 (e) k=2 () k=2
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Fig. 15 Example 6. The time evolution of electric energy (a), hierarchical ranks of the numerical solution

of mesh size N> X N? =

absolute total momentum J, (e), and relative deviation of total energy (f). e = 104 k=2

4.3 2D2V Vlasov-Poisson System

642 x 1282 (b), relative deviation of total mass (c), absolute total momentum J, (d),

Example 6 (Weak Landau damping) We consider the 2D2V version of the weak Landau
damping. The initial condition is
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d
1 IvI?
fXx,v,t=0)= i 1+amz=‘1005 (kx,,) )exp <_T> 47)

where d = 2, @ = 0.01, and k = 0.5. We set the computation domain as [0, L ]*> x [-L,, L,]?,
where L, = 2 and L, = 6, and the truncation threshold € = 10~%. As with the 1D1V case,
the electric energy will decay exponentially fast over time. To mitigate the curse of the
dimensionality, we represent the four-dimensional solution in the third order HT tensor for-
mat, without further decomposition in the spatial directions. In Figs. 14 and 15, we report
the time evolution of the electric energy, hierarchical ranks of the numerical solution, rela-
tive deviation of total mass and energy together with absolute deviation of total momen-
tum J; and J,. It is known that the solution processes low rank structures on phase space,
and hence we expect the proposed low rank DG method can efficiently avoid the curse
of dimensionality. The CPU cost for the simulation with meshes 162 x 322, 322 x 642,
642 % 128%is for 550's, 1 092's,3 047 s fork =1 and 556s, 1 143s, and 4 435 s fork =2
with serial implementation. Furthermore, the LoMaC low rank DG method can conserve
the physical invariants up to machine precision.

Example 7 (Two-stream instability) The last example is the 2D2V two-stream instability
with the initial condition

Electric energy

L T Y
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(d) (e) )
Fig. 16 Example 7. The time evolution of electric energy (a), hierarchical ranks of the numerical solu-

tion of mesh size N> X N? = 642 x 1287 (b), relative deviation of total mass (c), absolute deviation of total
momentum J, (d) and total momentum J, (e), and relative deviation of total energy (f). € = 105 k=1
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Fig. 177 Example 7. The time evolution of electric energy (a), hierarchical ranks of the numerical solu-
tion of mesh size N> X N = 642 x 128 (b), relative deviation of total mass (¢), absolute deviation of total
momentum J, (d) and total momentum J, (e), and relative deviation of total energy (f). € = 105, k=2

d
1
fovi=0)= o 1+am2=‘1cos(kxm)
(48)
4 W, — Vo) (v, + vp)?
nl;[l exp T + exp _T> s

where d =2, a =107, vo =24, and k=0.2. The computation domain is set as
[0,L.1*> X [-L,,L,]*, where L= 2k—” and L, = 8, and the truncation threshold is £ = 107,
In Figs. 16 and 17, we report the time evolution of the electric energy, hierarchical ranks
of the numerical solution of mesh size Nf X Nf = 1282 x 2562, relative deviations of total
mass and energy together with absolute derivations of total momentums J, and J,. The
results of the electric energy evolution agree with those reported in the literature. In addi-
tion, the dynamics are efficiently captured by the low rank DG method, observing that the
hierarchical ranks of the solution remain very low until approximately t = 17 and then start
to increase due to the instability developed. Lastly, the proposed method conserves the
total mass, momentum, and energy.

5 Conclusion

In this paper, we proposed a LoMaC low rank tensor approach with nodal DG discretiza-
tion for performing high dimensional deterministic Vlasov simulations. The introduction of
DG and nodal DG discretizations opens up the potential of the low rank tensor algorithm in
using general nonsmooth, nonuniform, or unstructured meshes and for handling complex
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boundary conditions. The locally macroscopic conservation property, realized by a mac-
roscopic conservative projection and correction of the kinetic solution, preserves globally
total mass, momentum, and energy at the discrete level using an explicit scheme. The algo-
rithm is extended to the 2D2V VP system by an HT structure with full rank (no reduction)
in the physical space and low rank reduction for the phase space as well as for the linkage
between phase and physical spaces. Further work includes the extension to unstructured
mesh and in resolving complex boundary conditions arising from applications.
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