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Abstract
This paper reviews the adaptive sparse grid discontinuous Galerkin (aSG-DG) method for
computing high dimensional partial differential equations (PDEs) and its software implemen-
tation. The C++ software package called AdaM-DG, implementing the aSG-DG method, is
available on GitHub at https://github.com/JuntaoHuang/adaptive-multiresolution-DG. The
package is capable of treating a large class of high dimensional linear and nonlinear PDEs.
We review the essential components of the algorithm and the functionality of the software,
including themultiwavelets used, assembling of bilinear operators, fastmatrix-vector product
for data with hierarchical structures. We further demonstrate the performance of the package
by reporting the numerical error and the CPU cost for several benchmark tests, including
linear transport equations, wave equations, and Hamilton-Jacobi (HJ) equations.

Keywords Adaptive sparse grid · Discontinuous Galerkin · High dimensional partial
differential equation · Software development
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1 Introduction

In recent years, we initiated a line of research to develop an adaptive sparse grid discontinuous
Galerkin (aSG-DG) method for computing high dimensional partial differential equations
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(PDEs). This paper serves as a review of the fundamental philosophy behind the algorithm,
and more importantly its numerical implementation.

It is well known that any grid based solver for high dimensional PDEs suffers from the
curse of dimensionality [6]. This term refers to the fact that the computational degree of
freedom (DOF) scale as O(h−d) for a d-dimensional problem, where h denotes the mesh
size in one coordinate direction, and for a grid based method (e.g., finite difference or finite
element method) with a fixed order of accuracy k, this means the dependence of error on the
DOF scales as O(DOF−k/d).As such, when d → ∞, the exponent goes to zero regardless of
k, and this means the numerical solution will be inaccurate due to the limited computational
resources. To break the curse of dimensionality, there are several possible approaches. One is
to use a probabilistic type method, such as the Monte Carlo algorithms. The drawback of this
approach is the loss of accuracy due to the inherent statistical noise. Another approach, which
is the onewe are taking, is the sparse gridmethod [8, 14], introduced by Zenger [36]. The idea
relies on a tensor product hierarchical basis representation, which can reduce the DOF from
O(h−d) to O(h−1| log2 h|d−1) for d-dimensional problems without compromising much
accuracy. This method is very suitable for moderately high dimensional problems, offering
a balance between accuracy and computational cost, see [16] for a review.

Our work is focused on using sparse grid techniques to solve high dimensional PDEs.
Sparse grid finite element methods [8, 27, 36] and spectral methods [15, 17, 28, 29] are the
most well-developed sparse grid PDE solvers. Our research, on the other hand, is inspired
by the distinctive advantages of the DG method for transport dominated problems, and with
the sparse grid technique, our ultimate goal is the efficient computations of high-dimensional
transport dominated problems such as kinetic equations and Hamilton-Jacobi (HJ) equations.
We started by developing the sparse grid DGmethod for elliptic, linear transport, and kinetic
problems in [19, 33].We then developed the adaptive version: the aSG-DGmethod in [20]. In
[32], Tao et al. developed new interpolatory multiwavelets for piecewise polynomial spaces,
and used those multiwavelets to compute hyperbolic conservation laws [22], wave equations
[23], and nonlinear dispersive equations [24, 31]. Since the underlying mechanism of the
aSG method is multiresolution analysis, we also call the aSG-DG method the adaptive mul-
tiresolution DG method, hence the name AdaM-DG (Adaptive Multiresolution DG) as the
name of our package.

While developing and analyzing algorithms are important, we feel that the software imple-
mentation is also crucial in this project. Reducing the DOF is one thing, the success of the
reduction in the CPU cost and memory is another. Here, we outline several challenges facing
the efficient implementation of the method. First, the aSG-DG schemes rely on computations
using non-local basis functions (the multiwavelets), and this means the standard element-
wise DG implementation is no longer feasible. One has to formulate and compute the scheme
in the global sense. Second, the multiwavelets are hierarchical. This hierarchical structure
induces “orthogonality” in some sense, and it has to be exploited for fast computation. A
prominent example is the fast wavelet transform, which incurs the linear cost with respect to
the DOF. Third, the implementation has to be adaptive. It is well known that the smoothness
requirement of the sparse grid is stringent. This means that the software implementation
should be designed with the adaptivity in mind.

To address the aforementioned challenges, we developed the numerical methods and the
software AdaM-DG (available at https://github.com/JuntaoHuang/adaptive-multiresolution-
DG) with several key features. Our method uses two sets of multiwavelets: Alpert’s multi-
wavelets [2], which are L2 orthonormal and a class of interpolatory wavelets [32] for variable
coefficients and general nonlinear problems. Many key algorithms rely on fast matrix-vector
products exploring the mesh level hierarchy. The Hash table is the underlying fundamental
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data structures serving the purpose of the adaptivity. The code is written with a high level
abstraction under a uniform treatment for different dimension numbers and encompasses
a universal framework for various equations with different weak formulations. The current
package has been used to compute nonlinear hyperbolic conservation laws [22], wave equa-
tions [23], nonlinear Schrödinger equations [31], HJ equations [21], and nonlinear dispersive
equations [24], although generalizing this computational module to other applications is
achievable with a reasonable modification of the code on the high level.

There are several other sparse grid packages available on the market, mostly for high
dimensional function interpolation and integration. For computing high dimensional PDEs,
there are two other main packages. SG++ [26] is a universal toolbox for spatially adaptive
sparse grid methods and the sparse grid combination technique. It provides various low-level
and high-level sparse grid functionality allowing one to start using sparse grids with minimal
initial implementation effort. The functionality includes function interpolation, quadrature,
numerical solver for PDEs, datamining andmachine learning, and uncertainty quantification.
In terms of PDE solvers, it supports the elliptic and parabolic equations using a finite element
approach. ASGarD (Adaptive Sparse Grid Discretization) [1] is a package implementing the
adaptive sparse grid DGmethod with efficient parallel implementations for both CPU (using
OpenMP) andGPU (using CUDA). It was applied toMaxwell equation [13], linear advection
equation, diffusion equation, and advection-diffusion equations, e.g., Fokker-Planck equa-
tions. This package only considers linear equations and does not support the interpolatory
multiwavelets and the associated fast algorithms. We also mention [4], where an open source
Julia library implementing the sparse grid DG method was developed and applied to scalar
linear wave equations in high dimensions.

The goal of this paper is to illustrate themain components of the algorithm and the software
using concrete examples. Throughout the paper, we will introduce and review the concepts
used in the method first, then provide short descriptions of the associated implementations
in the AdaM-DG package. With this in mind, the rest of the paper is organized as follows.
In Sect. 2, we review the fundamentals of Alpert’s and interpolatory multiwavelets, their
implementation, and the adaptive procedure. In Sect. 3, we discuss the operators used to
assemble a PDE solver, paying particular attention to the fast algorithm. In Sect. 4, we provide
details of how to solve three types of PDEs using the package, and provide benchmark results
with CPU time. Section 5 concludes the paper by discussing the current status of the software
with future improvement.

2 Multiwavelets and Adaptivity

The building blocks of the aSG-DG method are the multiwavelet basis functions and the
associated adaptive procedures. In this section, we will review the two types of multiwavelet
basis functions used and their implementations with data structure. We will also go over the
details of the adaptive refining and coarsening procedures illustrated by code blocks.

2.1 Multiwavelets in 1D

We use two types of multiwavelet bases. We will start by reviewing the construction of
Alpert’s multiwavelet basis functions [2] on the unit interval I = [0, 1]. We define a set of

123



Commun. Appl. Math. Comput.

nested grids, where the n-th level grid Ωn consists of 2n uniform cells

I jn = (2−n j, 2−n( j + 1)], j = 0, · · · , 2n − 1

for n � 0. The usual piecewise polynomial space of degree at most k � 1 on the n-th level
grid Ωn for n � 0 is denoted by

V k
n := {v : v ∈ Pk(I jn ), ∀j = 0, · · · , 2n − 1}. (1)

Then, we have the nested structure

V k
0 ⊂ V k

1 ⊂ V k
2 ⊂ V k

3 ⊂ · · · .

We can now define the multiwavelet subspace Wk
n , n = 1, 2, · · · as the orthogonal comple-

ment of V k
n−1 in V k

n with respect to the L2 inner product on [0, 1], i.e.,
V k
n−1 ⊕ Wk

n = V k
n , Wk

n ⊥ V k
n−1.

For notational convenience, we let Wk
0 := V k

0 , which is the standard polynomial space of
degree up to k on [0, 1]. Therefore, we have V k

n = ⊕
0�l�n W

k
l .

Now we define a set of orthonormal basis associated with the space Wk
l . The case of the

mesh level l = 0 is trivial: we use the normalized shifted Legendre polynomials in [0, 1] and
denote the basis by v0i,0(x) for i = 0, · · · , k. When l > 0, the orthonormal bases in Wk

l are
presented in [2] and denoted by

v
j
i,l(x), i = 0, · · · , k, j = 0, · · · , 2l−1 − 1,

where the index l denotes the mesh level, j denotes the location of the element, and i is
the index for polynomial degrees. Note that Alpert’s multiwavelets are orthonomal, i.e.,
∫ 1
0 v

j
i,l(x)v

j ′
i ′,l ′(x) dx = δi i ′δi i ′δ j j ′ .

The second class of basis functions is the interpolatory multiwavelets introduced in [32].
Denote the set of interpolation points in the interval I = [0, 1] at the mesh level 0 by
X0 = {xi }Pi=0 ⊂ I . Here, we assume the number of points in X0 is (P + 1). Then the
interpolation points at the mesh level n � 1, Xn can be obtained correspondingly as

Xn = {x j
i,n := 2−n(xi + j), i = 0, · · · , P, j = 0, · · · , 2n − 1}.

We require the points to be nested, i.e.,

X0 ⊂ X1 ⊂ X2 ⊂ X3 ⊂ · · · . (2)

Given the interpolation points, we define the basis functions on the 0-th level grid as
Lagrange (K = 0) or Hermite (K � 1) interpolation polynomials of degree � M :=
(P + 1)(K + 1) − 1 which satisfy the property

φ
(l ′)
i,l (xi ′) = δi i ′δll ′

for i, i ′ = 0, · · · , P and l, l ′ = 0, · · · , K . Here and afterwards, the superscript (l ′) denotes
the l ′-th order derivative. It is easy to see that span{φi,l , i = 0, · · · , P, l = 0, · · · , K } = V M

0 .

With the basis function at the mesh level 0, we can define the basis function at the mesh level
n � 1:

φ
j
i,l,n(x) := 2−nlφi,l(2

nx − j), i = 0, · · · , P, l = 0, · · · , K , j = 0, · · · , 2n − 1,

which is a complete basis set for V M
n .
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Next, we introduce the hierarchical representations. Define X̃0 := X0 and X̃n :=
Xn\Xn−1 for n � 1, then we have the decomposition

Xn = X̃0 ∪ X̃1 ∪ · · · ∪ X̃n .

Denote the points in X̃1 by X̃1 = {x̃i }Pi=0. Then the points in X̃n for n � 1 can be represented
by

X̃n = {x̃ j
i,n := 2−(n−1)(x̃i + j), i = 0, · · · , P, j = 0, · · · , 2n−1 − 1}.

For notational convenience, we let W̃ M
0 := V M

0 . The increment function space W̃ M
n for

n � 1 is introduced as a function space that satisfies

V M
n = V M

n−1 ⊕ W̃ M
n , (3)

and is defined through the multiwavelets ψi,l ∈ V M
1 that satisfies

ψ
(l ′)
i,l (xi ′) = 0, ψ

(l ′)
i,l (x̃i ′) = δi,i ′δl,l ′

for i, i ′ = 0, · · · , P and l, l ′ = 0, · · · , K . Then W̃ M
n is given by

W̃ M
n = span{ψ j

i,l,n := 2−(n−1)lψi,l(2
n−1x − j),

i = 0, · · · , P, l = 0, · · · , K , j = 0, · · · , 2n−1 − 1}.
The explicit expression of the interpolatorymultiwavelets basis functions can be found in [23,
32]. The algorithm converting between the point values and the derivatives at the interpolation
points to hierarchical coefficientswas given in [32], and by a standard argument in fastwavelet
transform, can be performed with linear complexity.

In the software implementation, we have a base class Basiswhich is determined by three
indices level n, suppt j , and dgree p. This is the base class denoting the basis functions in
1D. The three classes AlptBasis, LagrBasis, and HermBasis are inherited from Basis,
which denote the Alpert’s, Lagrange interpolotary, and Hermite interpolotary multiwavelets,
respectively. The values and the derivatives of the basis functions can be computed through
the member functions in the class. All the basis functions in 1D are collected in the template
class template<class T> AllBasis in a given order. The key member variable in this
class is std::vector<T>allbasis, which is composed of all the basis functions, with T
being AlptBasis, LagrBasis, or HermBasis. The total number of basis functions (i.e., the
size of allbasis) is (k + 1)2n with k being the maximum polynomial degree and n being
the maximum mesh level in the computation.

2.2 Multiwavelets in Multidimensions

The multidimensional case when d > 1 follows from a tensor-product approach. First we
recall some basic notations to facilitate the discussion. For a multi-index = (α1, · · · , αd) ∈
N
d
0 , where N0 denotes the set of nonnegative integers, and the l1 and l∞ norms are defined

as |α|1 := ∑d
m=1 αm, |α|∞ := max1�m�d αm . The component-wise arithmetic operations

and relational operations are defined as

α · β := (α1β1, · · · , αdβd), c · α := (cα1, · · · , cαd), 2α := (2α1 , · · · , 2αd ),

α � β ⇔ αm � βm, ∀m, α < β ⇔ α � β and α �= β.
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By making use of the multi-index notation, we denote by l = (l1, · · · , ld) ∈ N
d
0 the mesh

level in a multivariate sense. We define the tensor-product mesh grid Ωl = Ωl1 ⊗ · · · ⊗ Ωld
and the corresponding mesh size h l = (hl1 , · · · , hld ). Based on the grid Ωl , we denote

I j
l = {x : xm ∈ (hm jm, hm( jm + 1)),m = 1, · · · , d} as an elementary cell, and

Vk
l := {v ∈ Qk(I j

l ), 0 � j � 2l − 1} = V k
l1,x1 × · · · × V k

ld ,xd

as the tensor-product piecewise polynomial space, where Qk(I j
l ) represents the collection of

polynomials of degree up to k in each dimension on cell I j
l . If we use equal mesh refinement

of size hN = 2−N in each coordinate direction, the grid and space will be denoted by ΩN

and Vk
N , respectively.

For both the Alpert’s and the interpolatory multiwavelets, we can define their multidimen-
sional version. For example, the space corresponding to Alpert’s bases is

W k
l = Wk

l1,x1 × · · · × Wk
ld ,xd .

We can see thatVk
N = ⊕

|l|∞�N
l∈Nd

0

W k
l , while the standard sparse grid approximation space is

V̂k
N :=

⊕

|l|1�N
l∈Nd

0

W k
l ⊂ Vk

N . (4)

The dimension of V̂k
N scales as O((k+1)d2N Nd−1) [33], which is significantly less than that

of Vk
N with the exponential dependence on Nd , hence the name “sparse grid”. For the more

general case, when we use the adaptivity, the index choice for active elements is denoted
by (l, j) ∈ H , where the set H will be determined adaptively according to some specified
criteria.

Basis functions in multidimensions are also defined by tensor products. For example, for
Alpert’s multiwavelets,

v
j
i,l (x) :=

d∏

m=1

v
jm
im ,lm

(xm) (5)

for l ∈ N
d
0 , j ∈ Bl := { j ∈ N

d
0 : 0 � j � max(2l−1 − 1, 0)} and 1 � i � k + 1. In our

software, a general expression of the numerical solution uh is represented as

uh(,t) =
∑

(l, j)∈H ,
1�i�k+1

c j
i,l (t)v

j
i,l (x), (6)

and uh is stored via a class hierarchy. First, at the lowest level, template<class T>
VecMultiD is constructed to store data,which can dealwith tensors in any dimensions under a
unified framework. The class Element stores data related to each element (l, j) including the
coefficients ofAlpert’s basis functions and interpolation basis functions. For example, the data
member std::vector<VecMultiD<double>>Element::ucoe_alpt stores the coeffi-
cients c j

i,l of Alpert’s basis with VecMultiD<double>, and the index of this std::vector
is to denote the unknown variables: for a scalar equation, the size of this vector is 1; for a sys-
tem of equations, the size of this vector is the number of unknown variables. ucoe_alpt[s]
is a VecMultiD of dimension d and has the total number of DOF (k + 1)d , which corre-
sponds to the s-th unknown variable in the system. Last, we have class DGSolution at the
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top level to organize the entire DG solution. The most important data member in this class
is std::unordered_map<int, Element>dg, which stores all the active elements H and
the associated Hash keys. Here, we use the C++ container std::unordered_map to store
elements formed by combing a key value (the hash key is an int determined by the mesh
level and the support index of the element) and a content value (Element), allowing for fast
retrieval of individual elements based on their keys.

2.3 Adaptivity

To realize the adaptivity of the scheme, we implement class DGAdapt, which is derived
from DGSolution. There are two constants prescribed by the user for the fine tuning
adaptivity, namely the refinement threshold ε (DGAdapt::eps) and the coarsen threshold
η (DGAdapt::eta). In the computation, we usually take η = 0.1ε. The adaptive proce-
dure relies on two keymember functions DGAdapt::refine() and DGAdapt::coarsen().
Here, we provide the source code of DGAdapt::refine() to illustrate the algorithm.

void DGAdapt::refine()
{
// before refine, set new_add variable to be false in all elements
set_all_new_add_false();
for (auto & iter : leaf)
{
if (indicator_norm(*(iter.second)) > eps) // l2 norm
{
// loop over all its children
const std::set<std::array<std::vector<int>,2>> index_chd_elem =
index_all_chd(iter.second->level, iter.second->suppt);
for (auto const & index : index_chd_elem)
{
int hash_key = hash.hash_key(index);
// if index is not in current child index set, then add it to dg solution
if ( iter.second->hash_ptr_chd.find(hash_key) ==

iter.second->hash_ptr_chd.end())
{
Element elem(index[0], index[1], all_bas, hash);
add_elem(elem);

}
}

}
}
check_hole();
update_leaf();
update_leaf_zero_child();
update_order_all_basis_in_dgmap();

}

The concept of child and parent elements based on the hierarchical structure is defined
as follows. If an element (l ′, j ′) satisfies the conditions that: (i) there exists an integer m
such that 1 � m � d and l ′ = l + em , where em denotes the unit vector in the m-direction,
and the support of (l ′, j ′) is within the support of (l, j); (ii) ‖l ′‖∞ � N , then it is called
a child element of (l, j). Accordingly, element (l, j) is called a parent element of (l ′, j ′).
In DGAdapt, member function index_all_chd(level,suppts) returns a set of indices
(l ′, j ′) of all the child elements of the input element with index (level,suppts), i.e.,
(l, j). An element is called a leaf element if the number of its child elements in dg is less the
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maximum number of child elements it can have, i.e., at least one of its child elements are not
included in dg. DGAdapt has data member std::unordered_map<int,Element*>leaf
that organizes the leaf elements of dg. In DGAdapt::refine(), we set variable new_add to
be false for all elements. Then we traverse the unordered map leaf and compute the 
2 norm

of Alpert wavelet coefficients

(
∑

1�i�k+1

∣
∣
∣c

j
i,l

∣
∣
∣
2
) 1

2

for each element as the error indicator.

If it is larger than eps, then we refine the element by adding all its child elements to dg. The
coefficients of the newly added elements are set to zero. Then check_hole() is called to
ensure that all the parent elements of the newly added elements are in dg (i.e., no “hole” is
allowed). update_leaf() will update map leaf. Furthermore, DGAdapt has another data
member std::unordered_map<int, Element*>leaf_zero_child, which is a subset
of leaf and organizes the leaf elements with zero child elements. It plays a critical role
in function DGAdapt::coarsen(). update_leaf_zero_child() is called to update map
leaf_zero_child. Last, function update_order_all_basis_in_dgmap() will update
the ordering of all the basis in dg, which will be used when assembling the operators.

We also provide the source code of DGAdapt::coarsen() to illustrate the coarsening
algorithm.

void DGAdapt::coarsen()
{
leaf.clear();
update_leaf_zero_child();
coarsen_no_leaf();
update_leaf();
update_order_all_basis_in_dgmap();

}

In this routine, first we clear the map leaf and update leaf_zero_child. Then, we
coarsen dg based on map leaf_zero_child by recursively calling the member function
coarsen_no_leaf(). In particular, similar to the refining procedure, we traverse the map
leaf_zero_child and compute the 
2 norm of Alpert wavelet coefficients for each element.
If it is less than eta, then the element is removed from dg. The coarsening procedure is
repeatedly performed until no element can be removed. Lastly, we call update_leaf() and
update_order_all_basis_in_dgmap() to update map leaf and ordering of basis in the
coarsened dg.

Now we have defined the basis class and the fundamental function approximation
module. We can use it in any place when function approximations are needed, for
example, to initialize the PDE solution. In the simple case when the initial condition
u0 = u0(x1, · · · , xd) is separable, i.e., u0(x1, · · · , xd) = ∏d

i=1 gi (xi ) or when it is

a sum of several separable functions u0(x1, · · · , xd) = ∑m
k=1

(∏d
i=1 gki (xi )

)
, we can

first project each 1D function gi or gki using numerical quadratures and then com-
pute the coefficients of the basis functions in multidimensions by a tensor product.
This is implemented in the member functions DGAdapt::init_separable_scalar()
and DGAdapt::init_separable_scalar_sum() for the scalar case and DGAdapt::in
it_separable_system() and DGAdapt::init_separable_system_sum() for the sys-
tem case. If the initial condition cannot be written in the separable form, we will use the
adaptive interpolation procedure by calling functions DGAdaptIntp::init_adaptive_
intp_Lag() or DGAdaptIntp::init_adaptive_intp_Herm() corresponding to the
Lagrange andHermite interpolation. Thenwe perform the transformation to theAlperts’mul-
tiwavelets by calling the function FastLagrInit::eval_ucoe_Alpt_Lagr()with the fast
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matrix-vector multiplication in Sect. 3.3. This is the main purpose of the class DGAdaptIntp,
which is derived from DGAdapt.

3 Basic Operators

In this section, we show the details of implementing DG weak formulations in our package.
We first introduce the operator matrix which stores the volume and interface interactions
between all the basis functions in 1D. With this in hand, we can easily assemble the matrix
for linear DG differential operators in arbitrary dimensions by recognizing the orthogonal-
ity of the Alpert’s multiwavelets. Then, we introduce a fast matrix-vector multiplication
algorithm, which plays a critical role in computational savings when we perform the basis
transformation. We also show the interpolation technique with interpolatory multiwavelets
for dealing with nonlinear terms together with the computation of bilinear forms. Last, we
describe the ODE solvers implemented in this package. The operator class described in this
section as well as the adaptive procedure discussed in the previous section is essential steps
for the adaptive evolution procedures in the algorithm.

3.1 Operator Matrix in 1D

Unlike the standard DG method, for which each element can only interact with itself and its
immediate neighbors, the interaction among multiwavelet basis is much more complicated
when assembling DG bilinear forms due to the distinct hierarchical structures. Hence, it is
critical to precompute and store the interaction information to save cost. In the package,
the template class OperatorMatrix1D<class U, class V> will compute and store the
volume and interface interactions between all the basis functions in 1D. Here, the basis func-
tions U and V can be Alpert basis (AlptBasis), Lagrange interpolation basis (LagrBasis),
or Hermite interpolation basis (HermBasis). The following code block shows how to use
this class:

// maximum mesh level
const int NMAX = 8;

// initialize all basis functions in 1D for Alpert, Lagrange and Hermite basis
AllBasis<AlptBasis> all_bas_alpt(NMAX);
AllBasis<LagrBasis> all_bas_lagr(NMAX);

// periodic boundary condition
std::string boundary_type = "period";

OperatorMatrix1D<AlptBasis,AlptBasis> oper_matx_alpt(all_bas_alpt, all_bas_alpt,
boundary_type);

OperatorMatrix1D<LagrBasis,AlptBasis> oper_matx_lagr(all_bas_lagr, all_bas_alpt,
boundary_type);

In this code block, we first declare the maximum mesh level NMAX to be 8. Then
all_bas_alpt and all_bas_lagr store the information for all the Alpert basis and
Lagrange interpolation basis functions, respectively. Under the periodic boundary con-
dition, we compute and store the operators in oper_matx_alpt and oper_matx_lagr.
For example, oper_matx_alpt.u_v stores the inner product of all the basis functions
in L2[0, 1]. In particular, oper_matx_alpt.u_v(i,j) denotes the inner product of the
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Table 1 All the operators for the basis in 1D

Variables Meaning Usage example

Volume u_v
∫ 1
0 uvdx Hyperbolic and HJ equations

u_vx
∫ 1
0 uv′dx Hyperbolic and Zakharov-Kuznetsov (ZK) equations

ux_v
∫ 1
0 u′vdx ZK equation

ux_vx
∫ 1
0 u′v′dx Diffusion and wave equations

u_vxx
∫ 1
0 uv′′dx ZK equations

u_vxxx
∫ 1
0 uv′′′dx KdV and ZK equations

Interface ulft_vjp
∑

i
u−
i+ 1

2
[v]

i+ 1
2

Hyperbolic and HJ equations

urgt_vjp
∑

i
u+
i+ 1

2
[v]

i+ 1
2

Hyperbolic and HJ equations

uxave_vjp
∑

i
{ux }i+ 1

2
[v]

i+ 1
2

Diffusion and wave equations

ujp_vxave
∑

i
[u]

i+ 1
2
{vx }i+ 1

2
Diffusion and wave equations

ujp_vjp
∑

i
[u]

i+ 1
2
[v]

i+ 1
2

Diffusion and wave equations

uxxrgt_vjp
∑

i
(uxx )

+
i+ 1

2
[v]

i+ 1
2

KdV and ZK equations

uxrgt_vxjp
∑

i
(ux )

+
i+ 1

2
[vx ]i+ 1

2
KdV and ZK equations

ulft_vxxjp
∑

i
u−
i+ 1

2
[vxx ]i+ 1

2
KdV and ZK equations

i-th basis and the j-th basis, which forms an identity matrix due to the orthogonality.
oper_matx_alpt.u_vx(i,j) denotes the inner product of the i-th basis and the derivative
of the j-th basis. We also provide operators involving the interface interactions. For exam-
ple, oper_matx_alpt.ulft_vjp stores

∑
i u

−
i+ 1

2
[v]i+ 1

2
where the summation is taken over

all the cell interfaces where the basis function v may have the discontinuity. These operator
matrices are pre-computed at the beginning of the code. Since it only involves 1D calculation,
the computational cost is negligible. We list all the operators in 1D in Table 1.

These operator matrices in 1D will be used in assembling the bilinear form in multidi-
mensions in the DG scheme. We will show further details next.

3.2 Bilinear Formwith Alpert Multiwavelets

The class BilinearFormAlpt is the base class of assembling the bilinear form with Alpert
multiwavelets. The DG bilinear forms resulted from linear equations with constant coeffi-
cients are all inherited from this class. To illustrate the main idea, we take the scalar linear
hyperbolic equations with constant coefficients in 2D as an example:

ut + ux1 + ux2 = 0. (7)
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The corresponding DG scheme in the global formulation for solving (7) is
∫

Ω

(uh)tφhdx1dx2 =
∑

i, j

∫

Ii j
(uh(φh)x1 + uh(φh)x2)dx1dx2

−
∑

i, j

∫

I j

(
ûh i+ 1

2 , j (φh)
−
i+ 1

2 , j
− ûh i− 1

2 , j (φh)
+
i− 1

2 , j

)
dx2

−
∑

i, j

∫

Ii

(
ûh i, j+ 1

2
(φh)

−
i, j+ 1

2
− ûh i, j− 1

2
(φh)

+
i, j− 1

2

)
dx1

with the upwind flux

ûh i+ 1
2 , j = uh

−
i+ 1

2 , j
, ûh i, j+ 1

2
= uh

−
i, j+ 1

2
. (8)

With the periodic boundary condition, we can simplify the scheme
∫

Ω

(uh)tφhdx1dx2 =
∑

i, j

∫

Ii j
(uh(φh)x1 + uh(φh)x2)dx1dx2 +

∑

i, j

∫

I j
uh

−
i+ 1

2 , j
[φh]i+ 1

2 , jdx2

+
∑

i, j

∫

Ii
(uh

−
i, j+ 1

2
[φh]i, j+ 1

2
)dx1 (9)

with

[φh]i+ 1
2 , j := (φh)

+
i+ 1

2 , j
− (φh)

−
i+ 1

2 , j
, [φh]i, j+ 1

2
:= (φh)

+
i, j+ 1

2
− (φh)

−
i, j+ 1

2
. (10)

Next, we present the details on the computation of the volume integral∑
i, j

∫
Ii j

uh(φh)x1dx1dx2 in (9). The other terms in (9) can be computed in similar ways.
Denote

B(u, φ) :=
∑

i, j

∫

Ii j
(uφx1)dx1dx2. (11)

Our strategy to compute this bilinear form is to compute it for every basis function, i.e.,
assemble the matrix. After the matrix is assembled, we can directly compute the residual
using the matrix-vector multiplication in the linear algebra package Eigen. By taking the
solution u and the test function φ in (11) to be u = v

j
i,l (x) = v

j1
i1,l1

(x1)v
j2
i2,l2

(x2) and

φ = v
j ′
i ′,l ′(x) = v

j ′1
i ′1,l ′1

(x1)v
j ′2
i ′2,l ′2

(x2), we obtain

B(u, φ) =
∑

i, j

∫

Ii j
(uφx1)dx1dx2

=
∫

Ω

(
v
j1
i1,l1

(x1)v
j2
i2,l2

(x2)
) d

dx1

(
v
j ′1
i ′1,l ′1

(x1)v
j ′2
i ′2,l ′2

(x2)
)
dx1dx2

=
(∫ 1

0
v
j1
i1,l1

(x1)
d

dx1
(v

j ′1
i ′1,l ′1

(x1))dx1

)

δi2,i ′2δ j2, j ′2δl2,l ′2

= (v
j1
i1,l1

, (v
j ′1
i ′1,l ′1

)′)δi2,i ′2δ j2, j ′2δl2,l ′2 .

(12)

Here, (·, ·) denotes the inner product in the unit interval [0, 1]. From this, we can see that
the bilinear form could be nonzero, only if i2 = i ′2, j2 = j ′2, and l2 = l ′2, i.e., the indices of
the basis functions are the same in the x2-dimension. Moreover, to compute it, only the inner
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product of theAlpert basis and the derivative of theAlpert basis (i.e., the operatormatrix in 1D
oper_matx_alpt.u_vx) will be used. This indicates that the computation of the matrix only
depends on one operator matrix in 1D and the specific dimension of the bilinear form. This
is also true for equations in higher dimensions. With these properties, the matrix can be fast
assembled by the function void BilinearFormAlpt::assemble_matrix_alpt(). We
note that all the classes to assemble thematrix for the bilinear forms are inherited from the base
class BilinearFormAlpt and call the function void BilinearFormAlpt::assemble
_matrix_alpt() at the lower level. The current package includes the derived classes
DiffusionAlpt and DiffusionZeroDirichletAlpt for the Laplace operator using the
interior penalty DG method [3] with periodic and zero Dirichlet boundary conditions, and
KdvAlpt, ZKAlpt, SchrodingerAlpt for ultra weak DG methods for KdV equations [10],
ZK equations [24], and Schrödinger equations [9]. It is easy to generalize to new weak
formulations by following the similar line.

3.3 Fast Algorithm of Matrix-Vector Multiplication

In this part, we describe the fast algorithm of the matrix-vector multiplication. Since the
multiwavelet basis functions are hierarchical, the evaluation of the residual yields a denser
matrix than those obtained by standard local DG bases, if the interpolatory multiwavelets
are applied for the nonlinear terms and no longer have the orthogonality. Efficient imple-
mentations are therefore essential to ensure that the computational cost is on par with the
element-wise implementation of traditional DG schemes. Our work extends the fast matrix-
vector multiplication in [28, 29] to an adaptive index set.

3.3.1 2D Case

For simplicity, we first show the main idea in the 2D case while it can be easily generalized
to the arbitrary dimension in the next part.

Consider the matrix-vector multiplication in this form:

fn1,n2 =
∑

0�n′
1,n

′
2�N

f ′
n′
1,n

′
2
t (1)n′

1,n1
t (2)n′

2,n2
, 0 � n1, n2 � N . (13)

Here F = { fn1,n2}0�n1,n2�N ∈ R
(N+1)×(N+1) and F′ = { f ′

n1,n2}0�n1,n2�N ∈ R
(N+1)×(N+1)

are matrices. T (i) = {t (i)n′,n}0�n′,n�N ∈ R
(N+1)×(N+1) for i = 1, 2 denote the transformation

matrix in 1D in x1 and x2 dimensions.
We can compute (13) dimension by dimension: first do the transformation in the x1

dimension

gn1,n′
2

=
∑

0�n′
1�N

f ′
n′
1,n

′
2
t (1)n′

1,n1
, 0 � n1, n

′
2 � N , (14)

and then do the transformation in the x2 dimension

fn1,n2 =
∑

0�n′
2�N

gn1,n′
2
t (2)n′

2,n2
, 0 � n1, n2 � N . (15)

Here, the intermediate matrix is denoted by {gn1,n2}0�n1,n2�N ∈ R
(N+1)×(N+1). It is easy

to verify that (14)–(15) is equivalent to (13). Moreover, if we first do the transformation in
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the x2 dimension

gn′
1,n2

=
∑

0�n′
1�N

f ′
n′
1,n

′
2
t (2)n′

2,n2
, 0 � n1, n

′
2 � N , (16)

and then do the transformation in the x1 dimension

fn1,n2 =
∑

0�n′
2�N

gn′
1,n2

t (1)n′
1,n1

, 0 � n1, n2 � N , (17)

which is also equivalent to (13).
Next, we extend the same idea to the matrix-vector multiplication with a different range

of indices:

fn1,n2 =
∑

0�n′
1+n′

2�N

f ′
n′
1,n

′
2
t (1)n′

1,n1
t (2)n′

2,n2
, 0 � n1 + n2 � N . (18)

Here, fn1,n2 and f ′
n1,n2 are only defined for 0 � n1 + n2 � N .

We try to compute (18) in the same way: first do the transformation in the x1 dimension

gn1,n′
2

=
∑

0�n′
1�N−n′

2

f ′
n′
1,n

′
2
t (1)n′

1,n1
, 0 � n1 + n′

2 � N , (19)

and then do the transformation in the x2 dimension

fn1,n2 =
∑

0�n′
2�N−n1

gn1,n′
2
t (2)n′

2,n2
, 0 � n1 + n2 � N . (20)

Here, the intermediate variable gn1,n2 is only defined for 0 � n1 + n2 � N .
By plugging (19) into (20), we have

fn1,n2 =
∑

0�n′
1�N−n′

2,0�n′
2�N−n1

f ′
n′
1,n

′
2
t (1)n′

1,n1
t (2)n′

2,n2
, 0 � n1 + n2 � N . (21)

Notice that the summation set {(n′
1, n

′
2) | 0 � n′

1 � N − n′
2, 0 � n′

2 � N − n1} in (21) is
different from the original one {(n′

1, n
′
2) | 0 � n′

1 + n′
2 � N } in (18). Therefore, the two

algorithms (18) and (19)–(20) are not equivalent. However, under the condition that T (1)

is a lower triangular matrix or T (2) is an upper triangular matrix, (18) and (19)–(20) are
equivalent. This will be illustrated and proved in Proposition 1.

We can also choose to do the transformation in the x2 dimension first

gn′
1,n2

=
∑

0�n′
2�N−n′

1

f ′
n′
1,n

′
2
t (2)n′

2,n2
, 0 � n′

1 + n2 � N , (22)

and then do the transformation in the x1 dimension

fn1,n2 =
∑

0�n2�N−n′
1

gn′
1,n2

t (1)n′
1,n1

, 0 � n1 + n2 � N . (23)

Similar as before, under the condition that T (1) is the upper triangular matrix or T (2) is
the lower the triangular matrix, (18) and (22)–(23) are equivalent. This is also shown in
Proposition 1.

Proposition 1 (Equivalence of matrix-vector multiplication in 2D)

(i) Under any of the following two conditions:

123



Commun. Appl. Math. Comput.

(a) T (1) is a lower triangular matrix, i.e., t (1)n′
1,n1

= 0 for n′
1 < n1;

(b) T (2) is an upper triangular matrix, i.e., t (2)n′
2,n2

= 0 for n′
2 > n2,

the matrix-vector multiplication in (18) is equivalent to first doing transformation in the
x1 dimension in (19) and then in the x2 dimension in (20).

(ii) Under any of the following two conditions:

(a) T (1) is an upper triangular matrix, i.e., t (1)n′
1,n1

= 0 for n′
1 > n1;

(b) T (2) is a lower triangular matrix, i.e., t (2)n′
2,n2

= 0 for n′
2 < n2,

the matrix-vector multiplication in (18) is equivalent to first doing transformation in the
x2 dimension in (22) and then in the x1 dimension in (23).

Proof We only give the proof for the first case in (i)(a) and other cases can be proved along
the same line.

If T (1) is a lower triangular matrix, i.e., t (1)n′
1,n1

= 0 for n′
1 < n1, then the summation set

in (21) will be reduced to {(n′
1, n

′
2) | 0 � n′

1 � N − n′
2, 0 � n′

2 � N − n1} ∩ {(n′
1, n

′
2) |

n′
1 � n1} = {(n′

1, n
′
2) | n1 � n′

1 � N , 0 � n′
2 � N − n′

1}. The original summation set in
(18) will be reduced to {(n′

1, n
′
2) | 0 � n′

1 + n′
2 � N } ∩ {(n′

1, n
′
2) | n′

1 � n1} = {(n′
1, n

′
2) |

n1 � n′
1 � N , 0 � n′

2 � N − n′
1}. Therefore, these two summation sets are equivalent.

Motivated by Proposition 1, we first decompose T (1) into

T (1) = L(1) +U (1), (24)

where L(1) = {l(1)n′
1,n1

} andU (1) = {u(1)
n′
1,n1

} are the lower and upper parts of T (1), respectively.

Note that the diagonal part of T (1) can be either put in L(1) orU (1). Then, we decompose the
summation (18) to

fn1,n2 =
∑

0�n′
1+n′

2�N

f ′
n′
1,n

′
2
(l(1)n′

1,n1
+ u(1)

n′
1,n1

)t (2)n′
2,n2

=
∑

0�n′
1+n′

2�N

f ′
n′
1,n

′
2
l(1)n′

1,n1
t (2)n′

2,n2
+

∑

0�n′
1+n′

2�N

f ′
n′
1,n

′
2
t (2)n′

2,n2
u(1)
n′
1,n1

.
(25)

To compute the first term
∑

0�n′
1+n′

2�N f ′
n′
1,n

′
2
l(1)n′

1,n1
t (2)n′

2,n2
, we first do transformation in the

x1 dimension as in (19) and then in the x2 dimension as in (20). To compute the second term
∑

0�n′
1+n′

2�N f ′
n′
1,n

′
2
t (2)n′

2,n2
u(1)
n′
1,n1

, we first doing transformation in the x2 dimension as in (22)

and then in the x1 dimension as in (23). Note that here we can also decompose T (2) into the
lower and upper parts.

3.3.2 Multidimensional Case and Adaptive Sparse Grid

To generalize the 2D case to the multidimensional case and the adaptive sparse grid method,
we consider the matrix-vector multiplication in the following form:

fn1,n2,··· ,nd =
∑

(n′
1,n

′
2,··· ,n′

d )∈G
f ′
n′
1,n

′
2,··· ,n′

d
t (1)n′

1,n1
t (2)n′

2,n2
· · · t (d)

n′
d ,nd

, (n1, n2, · · · , nd) ∈ G,

(26)
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where ni = (li , ji , ki ) and n′
i = (l ′i , j ′i , k′

i ) ∈ N
3
0 for i = 1, 2, · · · , d . In the adaptive sparse

grid, li , ji , and ki denote the mesh level, the support index, and the polynomial degree, in
the i-th dimension, respectively.

For any two indices ni = (li , ji , ki ) and n′
i = (l ′i , j ′i , k′

i ), we define the order:

(i) ni � n′
i (or ni ≺ n′

i ) if and only if li � l ′i (or li < l ′i );
(ii) ni � n′

i (or ni � n′
i ) if and only if li � l ′i (or li > l ′i ).

Based on this order relation, we say

(i) T (i) = {t (i)n′
i ,ni

} is (strictly) lower triangular if and only if t (i)n′
i ,ni

= 0 for n′
i ≺ ni

(n′
i � ni );

(ii) T (i) = {t (i)n′
i ,ni

} is (strictly) upper triangular if and only if t (i)n′
i ,ni

= 0 for n′
i � ni

(n′
i � ni ).

We assume that G satisfies the requirement that it is downward closed, i.e., for any basis
function with some index in the set G, the index corresponding to the basis function in its
parent element is also in G. Note that this requirement is enforced in our adaptive procedure.

Next, we try to do the transformation dimension by dimension as in the 2D case. We start
with the transformation along the x1 dimension

g(1)
n1,n′

2,··· ,n′
d

=
∑

(n′
1,n

′
2,··· ,n′

d )∈G
f ′
n′
1,n

′
2,··· ,n′

d
t (1)n′

1,n1
, (n1, n′

2, n
′
3, · · · , n′

d) ∈ G, (27)

then the x2 dimension

g(2)
n1,n2,n′

3,··· ,n′
d

=
∑

(n1,n′
2,··· ,n′

d )∈G
g(1)
n1,n′

2,··· ,n′
d
t (2)n′

2,n2
, (n1, n2, n′

3, · · · , n′
d) ∈ G, (28)

and all the way up to the xd dimension

fn1,n2,n3,··· ,nd =
∑

(n1,n2,··· ,nd−1,n′
d )∈G

g(d−1)
n1,n2,··· ,nd−1,n′

d
t (d)

n′
d ,nd

, (n1, n2, n3, · · · , nd) ∈ G.

(29)

We try to plug the first equation (27) into the second one (28) and all the way up to the last
one (29):

fn1,n2,··· ,nd =
∑

(n′
1,n

′
2,··· ,n′

d )∈S f

f ′
n′
1,n

′
2,··· ,n′

d
t (1)n′

1,n1
t (2)n′

2,n2
· · · t (d)

n′
d ,nd

, (n1, n2, n3, · · · , nd) ∈ G,

(30)

where the overall summation set is

S f := {(n′
1, n

′
2, · · · , n′

d−1, n
′
d) | (n′

1, n
′
2, · · · , n′

d−1, n
′
d) ∈ G, · · · ,

(n1, n′
2, · · · , n′

d−1, n
′
d) ∈ G, · · · , (n1, n2, · · · , nd−1, n′

d) ∈ G}
for (n1, n2, · · · , nd) ∈ G. Generally, S f is only a subset of the orginal summation set

S := {(n′
1, n

′
2, · · · , n′

d−1, n
′
d) | (n′

1, n
′
2, · · · , n′

d−1, n
′
d) ∈ G}. (31)

However, if we assume that, for some integer 1 � k � d , T (i) for i = 1, · · · , k−1 are lower
triangular and T (i) for i = k + 1, · · · , d are upper triangular, then these two constrains are
equivalent, i.e., S f = S. This is proved in the following proposition.
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Proposition 2 Suppose that there exists some integer 1 � k � d such that T (i) for i =
1, · · · , k − 1 are lower triangular and T (i) for i = k + 1, · · · , d are upper triangular, then
the algorithm (26) are equivalent to the computation (27)–(29) dimension by dimension.

Proof We show the proof in the case of d = 3 and T (1) and T (2) are both lower triangular
matrix. The other cases follow the same line.

Since T (1) and T (2) are both lower triangular matrices, we have the extra constraint

n′
1 � n1, n′

2 � n2. (32)

Take any index (n′
1, n

′
2, n

′
3) ∈ S. Since n′

1 � n1, there are only two cases: the first is that the
basis functionwith the index (n1, n′

2, n
′
3) belongs to the parent (or parent’s parent) element of

(n′
1, n

′
2, n

′
3) and thus (n1, n′

2, n
′
3) ∈ G; the second is that the supports of two basis functions

with the indices (n′
1, n

′
2, n

′
3) and (n1, n′

2, n
′
3) have empty intersection and thus t (1)n′

1,n1
= 0.

Due to n′
2 � n2, we have similar conclusions as the x1 dimension. Therefore, either S ⊆ S f

or the two summations are equivalent.

Motivated by Proposition 2, we can decompose the matrix in the first (d − 1) dimensions
into the lower and upper parts:

fn1,n2,··· ,nd
=

∑

(n′
1,n

′
2,··· ,n′

d )∈G
f ′
n′(l

(1)
n′
1,n1

+ u(1)
n′
1,n1

)(l(2)n′
2,n2

+ u(2)
n′
2,n2

) · · · (l(d−1)
n′
d−1,nd−1

+ u(d−1)
n′
d−1,nd−1

)t (d)

n′
d ,nd

(33)

for (n1, n2, · · · , nd) ∈ G. Here L(i) = {l(i)n′
i ,ni

} and U (i) = {u(i)
n′
i ,ni

} for i = 1, 2, · · · , d − 1

denote the lower and upper parts of T (i), respectively. Then, wemultipy every term out, which
will result in 2d−1 terms for the summation. For each term, we can perform the multiplication
dimension by dimension. The order is that first do the lower triangular matrix, and then the
full matrix in between, and follows the upper triangular matrix. Here we list the case of d = 3
as an example:

fn1,n2,n3 =
∑

(n′
1,n

′
2,n

′
3)∈G

f ′
n′
1,n

′
2,n

′
3
(l(1)n′

1,n1
+ u(1)

n′
2,n1

)(l(2)n′
2,n2

+ u(2)
n′
2,n2

)t (3)n′
3,n3

=
∑

(n′
1,n

′
2,n

′
3)∈G

f ′
n′
1,n

′
2,n

′
3
l(1)n′

1,n1
l(2)n′

2,n2
t (3)n′

3,n3
+

∑

(n′
1,n

′
2,n

′
3)∈G

f ′
n′
1,n

′
2,n

′
3
l(1)n′

1,n1
t (3)n′

3,n3
u(2)
n′
2,n2

+
∑

(n′
1,n

′
2,n

′
3)∈G

f ′
n′
1,n

′
2,n

′
3
l(2)n′

2,n2
t (3)n′

3,n3
u(1)
n′
1,n1

+
∑

(n′
1,n

′
2,n

′
3)∈G

f ′
n′
1,n

′
2,n

′
3
t (3)n′

3,n3
u(1)
n′
1,n1

u(2)
n′
2,n2

.

The fast matrix-vector multiplication is implemented in void FastMultiplyLU::
transform_1D(), which does the multiplication dimension by dimension. The base class
FastMultiplyLU will be inherited by other classes and used in the interpolation, computa-
tional of the residuals. We will show this in details in the later sections.

3.4 Computing Nonlinear Terms

The interpolation operator is applied when dealing with nonlinear terms. It is implemented
in the base class Interpolation and its inheritance class LagrInterpolation and
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HermInterpolation. As an example, we consider scalar hyperbolic conservation laws
in 2D:

ut + fx1(u) + gx2(u) = 0. (34)

The semi-discrete DG scheme is
∫

Ω

(uh)tφdx1dx2 =
∑

i, j

∫

Ii j
( f (uh)φx1 + g(uh)φx2)dx1dx2

−
∑

i, j

∫

I j

(
f̂i+ 1

2 , jφ
−
i+ 1

2 , j
− f̂i− 1

2 , jφ
+
i− 1

2 , j

)
dx2

−
∑

i, j

∫

Ii

(
ĝi, j+ 1

2
φ−
i, j+ 1

2
− ĝi, j− 1

2
φ+
i, j− 1

2

)
dx1.

(35)

Here, we use the global Lax-Friedrichs flux

f̂ (u−, u+) = 1

2
( f (u−) + f (u+)) − α

2
(u+ − u−) (36)

and

ĝ(u−, u+) = 1

2
(g(u−) + g(u+)) − α

2
(u+ − u−). (37)

In the classic DG methods, the integrals over elements and edges are often approximated
by numerical quadrature rules on each cell [12]. However, in the sparse grid DG method,
this naive approach would result in the computational cost that is proportional to the number
of fundamental elements, i.e., O(h−d), and is still subject to the curse of dimensionality. To
evaluate the integrals over elements and edges more efficiently with a cost proportional to the
DOF of the underlying finite element space, we propose to interpolate the nonlinear function
f (uh) by using the multiresolution Lagrange (or Hermite) interpolation basis functions [22].
Therefore, the semidiscrete DG scheme with interpolation is

∫

Ω

(uh)tφdxdy =
∑

i, j

∫

Ii j
(I[ f (uh)]φx1 + I[g(uh)]φx2)dx1dx2

−
∑

i, j

∫

I j

(
I[ f̂ ]i+ 1

2 , jφ
−
i+ 1

2 , j
− I[ f̂ ]i− 1

2 , jφ
+
i− 1

2 , j

)
dx2

−
∑

i, j

∫

Ii

(
I[ĝ]i, j+ 1

2
φ−
i, j+ 1

2
− I[ĝ]i, j− 1

2
φ+
i, j− 1

2

)
dx1.

(38)

Now we show the main procedure to interpolation f (uh). This is implemented in the
function void HermInterpolation::nonlinear_Herm_2D_fast() with the Hermite
interpolation in 2D. The main procedure of the function is presented in the following:

{
fastHerm.eval_up_Herm();

eval_fp_Her_2D(func, func_d1, func_d2, is_intp);

pw1d.clear();

eval_fp_to_coe_D_Her(is_intp);
}
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The first step in this function fastHerm.eval_up_Herm() is to read the values (and
derivatives) of uh at the interpolation points, i.e., transform the coefficients of the Alpert basis
in uh to the values (and derivatives) at the interpolation points. Here, the fast matrix-vector
multiplication is used. The second step eval_fp_Her_2D(func, func_d1, func_d2,
is_intp) is to compute the values (and derivatives) of f (uh) at the interpolation points.
This part is local in the sense that the computation of each point is independent of other
points. Here, the value and derivatives of the scalar function f (x) will be used. The last step
eval_fp_to_coe_D_Her(is_intp) is to transform the values (and derivatives) of f (uh)
at the interpolation points to the coefficients of the interpolatory multiwavelets. Here, we use
the fast matrix-vector multiplication again. The detailed algorithm is illustrated in [32].

Now we will show how to compute the bilinear form after the interpolation of f (uh) is
expressed in terms of interpolatory multiwavelets. As an example, we show the computation
of the volume integral

∫
Ω
I[ f (uh)]φx1dx1dx2. After the interpolation of f (uh), we obtain

I[ f (uh)] =
∑

(l, j)∈H ,
1�i�k+1

c j
i,lψ

j
i,l (x) =

∑

(l, j)∈H ,
1�i�k+1

c j
i,lψ

j1
i1,l1

(x1)ψ
j2
i2,l2

(x2). (39)

Take the test function φ = v
j ′
i ′,l ′(x) = v

j ′1
i ′1,l ′1

(x1)v
j ′2
i ′2,l ′2

(x2),

∫

Ω

I[ f (uh)]φx1dx1dx2 =
∫

Ω

∑

(l, j)∈H ,
1�i�k+1

c j
i,lψ

j1
i1,l1

(x1)ψ
j2
i2,l2

(x2)
d

dx1
v
j ′1
i ′1,l ′1

(x1)v
j ′2
i ′2,l ′2

(x2)dx1dx2

=
∑

(l, j)∈H ,
1�i�k+1

c j
i,l

∫

Ω

ψ
j1
i1,l1

(x1)ψ
j2
i2,l2

(x2)
d

dx1
v
j ′1
i ′1,l ′1

(x1)v
j ′2
i ′2,l ′2

(x2)dx1dx2

=
∑

(l, j)∈H ,
1�i�k+1

c j
i,l

(∫ 1

0
ψ

j1
i1,l1

(x1)
d

dx1
v
j ′1
i ′1,l ′1

(x1)dx1

)

×
(∫ 1

0
ψ

j2
i2,l2

(x2)v
j ′2
i ′2,l ′2

(x2)dx2

)

.

This can be efficiently computed using the fast matrix-vector multiplication in Sect. 3.3.
In particular, the function void HyperbolicHermRHS::rhs_vol_scalar() in the class
HyperbolicHermRHS is to compute this residual using the fast algorithm implemented in
the base class FastRHS.

3.5 ODE Solvers

We implement the commonly used ODE solvers in the base class ODESolver and its inheri-
tance classes. Here, we use the linear algebra package Eigen [18] to perform matrix-vector
multiplication and linear solvers. For the explicit RK method, the package includes the
first-order Euler forwardmethod in ForwardEuler, the second-order and third-order strong-
stability-preserving (SSP) RK method [30] in RK2SSP and RK3SSP, the classic fourth-order
RK method in RK4. The explicit multistep method includes the second-order and fourth-
orderNewmarkmethod [34] in Newmark2nd and Newmark4th. The implicit-explicit (IMEX)
method includes the third-order IMEX RK method [25] in IMEX43.
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4 Examples

In this section, we use several examples to illustrate how to use this package and the code
performance.Due to the page limit,weonly present several representative equations including
the linear equation with constant coefficients, the HJ equations, and the wave equations.
There are also other examples available in the GitHub repository, such as the Schrödinger
equations, the Korteweg-de Vries (KdV) equation and its two-dimensional generalization,
the ZK equation. We will show the sample code and the CPU time. All the test cases are run
in the High Performance Computing Center (HPCC) at Michigan State University with the
AMDEPYC 7H12 Processor@2.595GHz. The single nodewith themulti-thread (OpenMP)
and the GCC 8.3.0 compiler is used.

4.1 Linear Hyperbolic Equation with Constant Coefficients

We consider the linear hyperbolic equation with constant coefficients in the domain Ω =
[0, 1]d with periodic boundary conditions

ut +
d∑

i=1

uxi = 0 (40)

and the initial condition

u(x1, · · · , xd , 0) = cos

(

2π

(
d∑

i=1

xi

))

. (41)

As the first example, we show the sparse grid DG method without the adaptivity.
The code is in the GitHub repository ./example/02_hyperbolic_01_scalar_const
_coefficient.cpp. Here, we present the main part of the code for solving this problem.

The first part of the code is to declare some basic parameters in the package including the
dimension of the problem, the polynomial degrees of the Alpert basis and interpolation basis,
themaximummesh level, the CFL number and the final time and so on. Note that this code has
uniform treatment with different dimensions. One can simply modify the dimension in this
part and most of the functions in the package are consistent with arbitrary dimensions. How-
ever, we would also like to point out an implementation shortcoming of the current version of
our package. Since many variables (e.g., HermBasis::PMAX and HermBasis::msh_case)
in the package are declared as static variables in C++, they have to be declared even if they
are not really used when solving the linear equation (40).

// --- Part 1: preliminary part ---
// static variables
const int DIM = 4;

AlptBasis::PMAX = 2;

LagrBasis::PMAX = 5;
LagrBasis::msh_case = 1;

HermBasis::PMAX = 3;
HermBasis::msh_case = 1;

Element::PMAX_alpt = AlptBasis::PMAX; // max polynomial degree for Alpert basis
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Element::PMAX_intp = LagrBasis::PMAX; // max polynomial degree for interpolation
basis

Element::DIM = DIM; // dimension
Element::VEC_NUM = 1; // num of unknown variables in PDEs

DGSolution::DIM = Element::DIM;
DGSolution::VEC_NUM = Element::VEC_NUM;

Interpolation::DIM = DGSolution::DIM;
Interpolation::VEC_NUM = DGSolution::VEC_NUM;

DGSolution::ind_var_vec = {0};
DGAdapt::indicator_var_adapt = {0};

Element::is_intp.resize(Element::VEC_NUM);
for (size_t num = 0; num < Element::VEC_NUM; num++)
{Element::is_intp[num] = std::vector<bool>(Element::DIM, true);}

// constant variable
int NMAX = 4;
int N_init = NMAX;
int is_sparse = 1;
const std::string boundary_type = "period";
double final_time = 1.0;
const double cfl = 0.1;
const bool is_adapt_find_ptr_alpt = true; // variable control if need to

adaptively find out pointers related to Alpert basis in DG operators
const bool is_adapt_find_ptr_intp = false; // variable control if need to

adaptively find out pointers related to interpolation basis in DG operators

// adaptive parameter
// if need to test code without adaptive, just set refine_eps large number 1e6,

then no refine
// and set coarsen_eta negative number -1, then no coarsen
const double refine_eps = 1e10;
// const double coarsen_eta = refine_eps/10.;
const double coarsen_eta = -1;

OptionsParser args(argc, argv);
args.AddOption(&NMAX, "-N", "--max-mesh-level", "Maximum mesh level");
args.AddOption(&is_sparse, "-s", "--sparse-grid", "sparse grid (1) or full grid

(0)");
args.AddOption(&final_time, "-tf", "--final-time", "Final time; start time is

0.");
args.Parse();
if (!args.Good())
{

args.PrintUsage(std::cout);
return 1;

}
args.PrintOptions(std::cout);

N_init = NMAX;
bool sparse = (is_sparse == 1) ? true : false;

// hash key
Hash hash;

LagrBasis::set_interp_msh01();
HermBasis::set_interp_msh01();
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AllBasis<AlptBasis> all_bas_alpt(NMAX);
AllBasis<LagrBasis> all_bas_lagr(NMAX);
AllBasis<HermBasis> all_bas_herm(NMAX);

// operator matrix
OperatorMatrix1D<AlptBasis,AlptBasis> oper_matx(all_bas_alpt, all_bas_alpt,

boundary_type);
OperatorMatrix1D<HermBasis, HermBasis> oper_matx_herm_herm(all_bas_herm,

all_bas_herm, boundary_type);
OperatorMatrix1D<LagrBasis, LagrBasis> oper_matx_lagr_lagr(all_bas_lagr,

all_bas_lagr, boundary_type);

Part 2 of the code is to project the initial condition to the sparse grid DG space. Here,
although the initial function is low rank, we still use the function DGAdaptIntp::init
_adaptive_intp(). for a general solution. The first step in this function is to do adap-
tive Lagrange interpolation and update coefficients of interpolation basis (Element::ucoe_
intp in DG solution). The second step is to transform coefficients of the Lagrange basis to
those of the Alpert basis where the fast matrix-vector multiplication is applied.

// --- Part 2: initialization of DG solution ---
DGAdaptIntp dg_solu(sparse, N_init, NMAX, all_bas_alpt, all_bas_lagr,

all_bas_herm, hash, refine_eps, coarsen_eta, is_adapt_find_ptr_alpt,
is_adapt_find_ptr_intp, oper_matx_lagr_lagr, oper_matx_herm_herm);

// initial condition
// u(x,0) = cos(2 * pi * (sum_(d=1)DIM x_d)
auto init_non_separable_func = [=](std::vector<double> x, int i)
{

double sum_x = 0.;
for (int d = 0; d < DIM; d++) {sum_x += x[d];};

return cos(2*Const::PI*sum_x);
};

dg_solu.init_adaptive_intp(init_non_separable_func);

After the initial condition is projected, we do the time evolution. First, we assemble the
matrix for the DG bilinear form using the function void HyperbolicAlpt::assemble
_matrix_scalar(). Then we use the third-order SSP RK time integrator [30] to do the
time marching.

// --- Part 3: time evolution ---
// coefficients in the equation are all 1:
// u_t + \sum_(d=1)DIM u_(x_d) = 0
const std::vector<double> hyperbolicConst(DIM, 1.);

const int max_mesh = dg_solu.max_mesh_level();
const double dx = 1./pow(2., max_mesh);
double dt = dx * cfl / DIM;
int total_time_step = ceil(final_time/dt) + 1;
dt = final_time/total_time_step;

HyperbolicAlpt dg_operator(dg_solu, oper_matx);
dg_operator.assemble_matrix_scalar(hyperbolicConst);

RK3SSP odesolver(dg_operator, dt);
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odesolver.init();

std::cout << "--- evolution started ---" << std::endl;
// record code running time
Timer record_time;
double curr_time = 0;
for (size_t num_time_step = 0; num_time_step < total_time_step; num_time_step++)
{

odesolver.step_rk();
curr_time += dt;

// record code running time
if (num_time_step % 10 == 0)
{

std::cout << "num of time steps: " << num_time_step
<< "; time step size: " << dt
<< "; curr time: " << curr_time
<< "; DoF: " << dg_solu.get_dof()
<< std::endl;

record_time.time("elasped time in evolution");
}

}
odesolver.final();

The final part is to compute the L2 error between the numerical solution and the exact
solution. Since the evaluation of the error using theGaussian quadrature in the high dimension
is too costly, we again use adaptive interpolation to approximate the exact solution at final
time, then transform them to the coefficients of the Alpert basis.

// --- Part 4: calculate error between numerical solution and exact solution ---
std::cout << "calculating error at final time" << std::endl;
record_time.reset();

// compute the error using adaptive interpolation
{

// construct anther DGsolution v_h and use adaptive Lagrange interpolation to
approximate the exact solution

const double refine_eps_ext = 1e-6;
const double coarsen_eta_ext = -1;
OperatorMatrix1D<HermBasis, HermBasis> oper_matx_herm_herm(all_bas_herm,

all_bas_herm, boundary_type);
OperatorMatrix1D<LagrBasis, LagrBasis> oper_matx_lagr_lagr(all_bas_lagr,

all_bas_lagr, boundary_type);

DGAdaptIntp dg_solu_ext(sparse, N_init, NMAX, all_bas_alpt, all_bas_lagr,
all_bas_herm, hash, refine_eps_ext, coarsen_eta_ext,
is_adapt_find_ptr_alpt, is_adapt_find_ptr_intp, oper_matx_lagr_lagr,
oper_matx_herm_herm);

auto final_func = [=](std::vector<double> x, int i)
{

double sum_x = 0.;
for (int d = 0; d < DIM; d++) { sum_x += x[d]; };
return cos(2.*Const::PI*(sum_x - DIM * final_time));

};
dg_solu_ext.init_adaptive_intp(final_func);

// compute L2 error between u_h (numerical solution) and v_h (interpolation to
exact solution)
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double err_l2 = dg_solu_ext.get_L2_error_split_adaptive_intp_scalar(dg_solu);
std::cout << "L2 error at final time: " << err_l2 << std::endl;

}

We report the convergence study of the sparse grid method at t = 1 in Table 2, includ-
ing the L2 errors and the associated orders of accuracy. It is observed that the sparse grid
method has about half-order reduction from the optimal (k+1)-th order for high-dimensional
computations, which is expected from our analysis [19].

To further demonstrate the efficiency of the sparse grid algorithm, we report the L2 errors
versus the average CPU cost per time step for k = 1, 2 and d = 2, 3, 4 in Fig. 1. It is
observed that, to achieve a desired level of accuracy, the sparse grid DGmethod with a larger
k requires less CPU time as expected. Moreover, the CPU time is approximately proportional
to the DOF. In addition, the slopes for all the lines in Fig. 1 are approximately the same with
different dimensions. This indicates that our method has potential in the computations in
high dimensions.

4.2 HJ Equation

In this example, we consider the following Hamilton-Jacobi-Bellman (HJB) equation [7]:

⎧
⎪⎨

⎪⎩

φt + max
β∈B

(
d∑

m=1

bm · ∇φ

)

= 0, x ∈ [0, 1]d ,
φ(x, 0) = g(‖x − a‖),

(42)

Table 2 Linear hyperbolic equation with constant coefficients, L2-error and convergence order at t = 1

k = 1 k = 2
N DOF L2-error Order N DOF L2-error Order

d = 2 5 448 1.59E−2 – 4 432 1.50E−3 –

6 1 024 3.84E−3 2.05 5 1 008 3.95E−4 1.93

7 2 304 9.80E−4 1.97 6 2 304 3.54E−5 3.48

8 5 120 2.75E−4 1.84 7 5 184 6.70E−6 2.40

9 11 264 7.33E−5 1.91 8 11 520 7.10E−7 3.24

d = 3 5 2 176 1.48E−1 – 4 2 808 8.92E−3 –

6 5 504 3.30E−2 2.16 5 7 344 1.66E−3 2.42

7 13 568 7.55E−3 2.13 6 18 576 3.85E−4 2.11

8 32 768 2.15E−3 1.82 7 45 792 4.29E−5 3.17

9 77 824 6.16E−4 1.80 8 110 592 1.07E−5 2.00

d = 4 5 8 832 5.19E−1 – 4 15 552 3.44E−2 –

6 24 320 2.12E−1 1.29 5 44 712 6.08E−3 2.50

7 64 768 5.50E−2 1.94 6 123 120 1.20E−3 2.35

8 167 936 1.24E−2 2.15 7 327 888 2.77E−4 2.11

9 425 984 3.91E−3 1.66 8 850 176 5.90E−5 2.23
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Fig. 1 Linear hyperbolic equation with constant coefficients. L2-error versus CPU time per time step. Sparse
grid DG. t = 1

where a = (0.5, 0.5, · · · , 0.5) and B = {β = (b1, b2, · · · , bd), bm = ±1, m = 1, · · · , d}
is a set of 2d vectors corresponding to 2d possible controls. The function g(z) is given by

g(z) = 1

r0
(z2 − r20 ) (43)

with r0 = 1
8 . Note that this HJB equation is equivalent to the following HJ equation:

⎧
⎪⎨

⎪⎩

φt +
d∑

m=1

|φxm | = 0, x ∈ [0, 1]d ,
φ(x, 0) = g(‖x − a‖).

(44)

The exact solution can be hence derived from (44):

φ(x, t) = g(‖(x − a))�t ‖).
Here, for a vector c, c�

t := min(max(0, c− t), c+ t) in the component-wise sense. We apply
the adaptive algorithm to simulate (44). The outflow boundary conditions are imposed. Note
that the Hamiltonian is nonsmooth and in [21] we regularize the absolute function to ensure
the stability:

H̃(∇φ) =
{
H(∇φ), if ‖∇φ‖ � δ,
1
2δ H(∇φ)2 + 1

2 δ, otherwise.
(45)

It can be easily verified that H̃ is C1. In the simulation, we choose δ = 2h, where h is the
mesh size, and hence the regularization will not affect the accuracy of the original method.

This numerical test has been already examined in [21] by a local DG (LDG) method and
here, we only present the sample code and focus on the CPU time study. The code is included
in the GitHub repository ./example/04_hamilton_jacobi_adapt_hjb.cpp. Due to the
page limit, we will only present the time evolution code.

The first part in the time evolution is to compute the time step size based on the finest mesh
size in all the dimensions. Note that we use adaptive finite element space, so the finest mesh
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size is changing during the time evolution. The second part is to use the Euler forward time
stepping to predict the numerical solution in the next time step. Here we use the LDGmethod
in [35] to reconstruct the first-order derivatives of φ, i.e., φxm , m = 1, · · · , d . In particular,
the LDGmethod computes two auxiliary variables in each dimension, which approximate the
first-order derivatives with opposite one-sided numerical fluxes. Therefore, there are totally
(2d+1) unknown variables in the scheme including the unknownφ and the other 2d auxiliary
variables. For the 2d auxiliary variables, the LDG bilinear forms are linear, and we evolve
them by assembling the matrices stored in grad_linear in the code. For the evolution of
φ, we first use the Lagrangian interpolation basis to approximate the nonlinear Hamiltonian
nonlinear_Lagr_fast and then apply fast matrix-vector multiplication. Since the assem-
bling matrix is independent for each auxiliary variable, we use OpenMP here to improve
the computational efficiency. After this, we call the function and then rhs_nonlinear to
evaluate the residual, i.e., the right-hand side of the weak formulation of φ and then call the
time integrator to update the solution φ in the next time step.

The third part is to refine the numerical solution based on the prediction. After this refine-
ment, the fourth part is to do the time evolution using the third-order SSP RK method [30].
Note that this part is similar to the prediction part by calling the same function. The only
difference is to use RK3SSP instead of ForwardEuler. At the end of the time evolution, we
do coarsening to remove the redundant elements.

while (curr_time < final_time)
{

auto start_evolution_time = std::chrono::high_resolution_clock::now();

// --- part 1: calculate time step dt ---
const std::vector<int> & max_mesh = dg_solu.max_mesh_level_vec();

// dt = cfl/(c1/dx1 + c2/dx2 + ... + c_dim/dx_dim)
double sum_c_dx = 0.; // this variable stores (c1/dx1 + c2/dx2 + ... +

c_dim/dx_dim)
for (size_t d = 0; d < DIM; d++)
{

sum_c_dx += std::pow(2., max_mesh[d]);
}
double dt = cfl / sum_c_dx;
dt = std::min(dt, final_time - curr_time);

// --- part 2: predict by Euler forward ---
{

std::vector<HJOutflowAlpt> grad_linear(2 * DIM, HJOutflowAlpt(dg_solu,
oper_matx_alpt, oper_matx_alpt_inside, 1));

omp_set_num_threads(2 * DIM);
#pragma omp parallel for

for (int d = 0; d < 2 * DIM; ++d) // 2 * DIM matrices for computing the
gradient of phi via LDG

{
int sign = 2 * (d % 2) - 1;
int dd = d / 2;
grad_linear[d].assemble_matrix_flx_scalar(dd, sign, -1);
grad_linear[d].assemble_matrix_vol_scalar(dd, -1);

}
HamiltonJacobiLDG HJ(grad_linear, DIM);
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// before Euler forward, copy Element::ucoe_alpt to
Element::ucoe_alpt_predict

dg_solu.copy_ucoe_to_predict();

ForwardEuler odeSolver(dg_solu, dt);
odeSolver.init_HJ(HJ);

dg_solu.set_rhs_zero();

odeSolver.compute_gradient_HJ(HJ); // compute the gradient of phi

interp.nonlinear_Lagr_fast(LFHamiltonian, is_intp, fastintp); //
interpolate the LFHamiltonian

fastRHShj.rhs_nonlinear();

odeSolver.rhs_to_eigenvec("HJ");

odeSolver.step_stage(0);

odeSolver.final_HJ(HJ);
}

// --- part 3: refine base on Element::ucoe_alpt
dg_solu.refine();
const int num_basis_refine = dg_solu.size_basis_alpt();

// after refine, copy Element::ucoe_alpt_predict back to Element::ucoe_alpt
dg_solu.copy_predict_to_ucoe();

// --- part 4: time evolution
std::vector<HJOutflowAlpt> grad_linear(2 * DIM, HJOutflowAlpt(dg_solu,

oper_matx_alpt, oper_matx_alpt_inside, 1));
omp_set_num_threads(2 * DIM);

#pragma omp parallel for
for (int d = 0; d < 2 * DIM; ++d) // 2 * DIM matrices for computing the

gradient of phi via LDG
{

int sign = 2 * (d % 2) - 1;
int dd = d / 2;
grad_linear[d].assemble_matrix_flx_scalar(dd, sign, -1);
grad_linear[d].assemble_matrix_vol_scalar(dd, -1);

}
HamiltonJacobiLDG HJ(grad_linear, DIM);

RK3SSP odeSolver(dg_solu, dt);
odeSolver.init_HJ(HJ);

for (int stage = 0; stage < odeSolver.num_stage; ++stage)
{

dg_solu.set_rhs_zero();

odeSolver.compute_gradient_HJ(HJ); // compute the gradient of phi

interp.nonlinear_Lagr_fast(LFHamiltonian, is_intp, fastintp); //
interpolate the LFHamiltonian

fastRHShj.rhs_nonlinear();

odeSolver.rhs_to_eigenvec("HJ");
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odeSolver.step_stage(stage);

odeSolver.final_HJ(HJ);
}

// --- part 5: coarsen
dg_solu.coarsen();
const int num_basis_coarsen = dg_solu.size_basis_alpt();

curr_time += dt;
}

In this example, the viscosity solution is C1, and a rarefaction wave opens up at the center
of the domain, which is well captured by the adaptive sparse method, see the solution profile
in [21]. In Table 3, we summarize the convergence study for d = 2, 3, 4 and k = 1, 2. Note
that when ε = 10−6, the error does not decay, and the reason is that the error has saturated
already with the maximum level N = 7. In Fig. 2, we plot the L2 errors versus the average
CPU cost per time step. It is again observed that, the errors with larger polynomial degree k
decay faster when reducing the refinement threshold ε and thus increasing DOF. The slopes
with the same polynomial degrees in Fig. 2 are almost the same with different dimensions.
This again domonstrates the capability of our method in high dimensions.

4.3 Wave Equation

In this example, we consider the isotropic wave propagation in heterogeneous media [11] in
the domain [0, 1]d with periodic boundary conditions:

utt = ∇ · (c2(x)∇u). (46)

Table 3 HJ equation, d = 2, 3, 4, k = 1, 2. Adaptive sparse grid. T = 0.1 and the maximum mesh level
N = 7

k = 1 k = 2
ε DOF L2-error Rε RDOF DOF L2-error Rε RDOF

d = 2 1E−3 204 4.17E−3 – – 63 8.62E−3 – –

1E−4 444 1.62E−3 0.41 1.21 135 1.89E−3 0.66 1.99

1E−5 860 7.01E−4 0.36 1.27 207 6.26E−4 0.48 2.59

1E−6 876 6.43E−4 0.04 4.69 459 4.24E−4 0.17 0.49

d = 3 1E−3 608 5.44E−3 – – 270 1.12E−2 – –

1E−4 1 328 2.12E−3 0.41 1.20 594 2.98E−3 0.58 1.68

1E−5 2 576 9.15E−4 0.37 1.27 918 7.89E−4 0.58 3.05

1E−6 2 624 8.39E−4 0.04 4.74 2 052 4.36E−4 0.26 0.74

d = 4 1E−3 1 616 6.65E−3 – – 1 053 1.35E−2 – –

1E−4 3 536 2.60E−3 0.41 1.20 1 701 6.17E−3 0.34 1.63

1E−5 6 864 1.12E−3 0.37 1.27 2 997 1.24E−3 0.70 2.84

1E−6 6 992 1.02E−3 0.04 4.69 6 237 4.90E−4 0.40 1.26
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For the 2D case, the domain Ω = [0, 1]2 is composed of two subdomains Ω1 = [ 14 , 3
4 ] ×

[0, 1] and Ω2 = Ω\Ω1. The coefficient c2 is a constant in each subdomain:

c2 =
{
1, in Ω1,
5
37 , in Ω2.

(47)

With this setup, the exact solution is a standing wave

u =
{
sin(

√
20π t) cos(4π x1) cos(2π x2), in Ω1,

sin(
√
20π t) cos(12π x1) cos(2π x2), in Ω2.

(48)

For the 3D case, Ω1 = [ 14 , 3
4 ] × [0, 1] × [0, 1] and Ω2 = Ω\Ω1,

c2 =
{
1, in Ω1,
3
19 , in Ω2.

(49)

In this case, the exact solution is a standing wave

u =
{
sin(

√
24π t) cos(4π x1) cos(2π x2) cos(2π x3), in Ω1,

sin(
√
24π t) cos(12π x1) cos(2π x2) cos(2π x3), in Ω2.

(50)

This numerical example has been presented in [23]. Here, we show the sample code and
focus more on the CPU cost study.

The main code is included in the GitHub repository. /example/03_wave_02_heter_
media.cpp. Since the refinement and coarsening procedures are the same as the HJ equation,
we only present the time evolution part. Here, we use the interior penalty DG [3] for the
spatial discretization. In the weak formulation, we assemble the matrix for the linear part
− σ

h

∑
i, j [u]i+ 1

2 , j+ 1
2
[v]i+ 1

2 , j+ 1
2
where σ is the penalty constant, h is the mesh size, u is the

solution, and v is the test function. Then, we use the Lagrangian interpolation to approximate
c2ux , c2uy , (c2)−u, and (c2)+u, and apply the fast matrix-vector multiplication to evaluate
the residual terms.

Fig. 2 HJ equation. L2-error versus CPU time per time step. Sparse grid DG. t = 1
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// --- part 4: time evolution
// -sigma/h * [u] * [v]
DiffusionAlpt operator_ujp_vjp(dg_solu, oper_matx_alpt, sigma_ipdg);
operator_ujp_vjp.assemble_matrix_flx_ujp_vjp();

dg_solu.set_source_zero();

RK4ODE2nd odesolver(operator_ujp_vjp, dt);
odesolver.init();

for (size_t stage = 0; stage < odesolver.num_stage; stage++)
{

dg_solu.set_rhs_zero();

// interpolation of k * u_x and k * u_y
interp.var_coeff_gradu_Lagr_fast(coe_func, is_intp, fastLagr);

diffuseRHS.rhs_flx_gradu();
diffuseRHS.rhs_vol();

// interpolation of k- * u
interp.var_coeff_u_Lagr_fast(coe_func_minus, is_intp_d0, fastLagr);
diffuseRHS.rhs_flx_k_minus_u();

// interpolation of k+ * u
interp.var_coeff_u_Lagr_fast(coe_func_plus, is_intp_d0, fastLagr);
diffuseRHS.rhs_flx_k_plus_u();

odesolver.rhs_to_eigenvec();

// [u] * [v]
odesolver.add_rhs_matrix(operator_ujp_vjp);

odesolver.step_stage(stage);

odesolver.final();
}

In Table 4, we show the convergence study for d = 2, 3 and k = 1, 2, 3. For d = 2, 3
with k = 1, the errors saturate because we use ε = 10−5. Moreover, to reach the same
magnitude of error, the DOF with a higher polynomial degree will be much less than that
with a lower polynomial degree. In Fig. 3, we plot the L2-errors versus the average CPU cost
per time step. It is again observed that, the errors with larger polynomial degree k decays
faster when reducing the refinement threshold ε and thus increasing DOF. The slopes with
the same polynomial degrees in Fig. 3 are almost the same with different dimensions. This
indicates that the proposed method is resistant to the curse of dimensionality.

5 Conclusions and FutureWork

In this paper,we showcased themain components of our adaptive sparse gridDGC++package
AdaM-DG for solving PDEs. We focused on the details of the implementation, including the
data structure, assembling of the operators, and fast algorithms, and further demonstrated
how to implement the package by three examples.
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Table 4 Wave equation with d = 2, 3 and k = 1, 2, 3. Adaptive sparse grid DG. N = 8, t = 0.01

d = 2 d = 3
ε DOF L2-error Rε RDOF DOF L2-error Rε RDOF

k = 1 1E−1 784 1.97E−3 – – 3 840 4.96E−3 – –

1E−2 2 816 4.17E−4 0.68 1.22 16 832 1.24E−3 0.60 0.94

1E−3 8 496 7.31E−5 0.76 1.58 70 656 1.37E−4 0.96 1.54

1E−4 24 384 4.18E−5 0.24 0.53 249 664 3.86E−5 0.55 1.00

1E−5 56 960 4.10E−5 0.01 0.02 862 528 3.19E−5 0.08 0.15

k = 2 1E−1 3 204 7.72E−3 – – 5 238 1.12E−3 – –

1E−2 13 842 1.17E−3 0.82 1.29 16 794 1.71E−4 0.82 1.61

1E−3 23 544 1.12E−4 1.02 4.42 43 416 3.33E−5 0.71 1.72

1E−4 40 320 1.39E−5 0.91 3.88 117 558 5.32E−6 0.80 1.84

1E−5 75 042 6.32E−6 0.34 1.26 691 632 1.10E−6 0.69 1.73

k = 3 1E−1 1 472 3.29E−3 – – 2 304 5.59E−4 – –

1E−2 3 904 8.00E−5 0.61 1.45 7 040 1.28E−4 0.64 1.32

1E−3 8 256 7.71E−5 1.02 3.13 18 176 1.65E−5 0.89 2.16

1E−4 23 488 1.47E−5 0.72 1.58 41 472 1.55E−6 1.03 2.87

1E−5 39 360 1.15E−6 1.11 4.94 92 928 2.58E−7 0.78 2.22

Fig. 3 Wave equation with d = 2, 3 and k = 1, 2, 3. L2-error versus CPU time per time step. Adaptive sparse
grid DG. N = 8, t = 0.01

We would like to emphasize that this is still an on-going project, and many efforts are still
needed to improve the software in various aspects. In particular, in the near term,wewould like
to improve some details of the code, including a more flexible definition of the computational
domain, C++ implementation to further improve the memory and CPU time efficiency, clear
and comprehensive code documentation, a user-friendly Python interface, and amore efficient
linear/nonlinear solver such as PETSc [5]. More importantly, we would like to generalize the
code to an HPC platform with efficient parallel implementations on multicore CPU (using
MPI) and GPU (using CUDA). Many aspects of the computational algorithms can also be
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further developed, including the hybridization with other numerical discretizations and a
multi-domain approach which is more friendly to heterogeneous computing architecture.
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