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Abstract—Workflows applications are becoming in-
creasingly important to support scientific discovery.
That is leading to a proliferation of workflow man-
agement systems and, thus, to a fragmented software
ecosystem. Integration among existing workflow tools
can improve development efficiency and, ultimately,
increase the sustainability of scientific workflow soft-
ware. We describe our experience with integrating
RADICAL-Pilot (RP) and Parsl as a way to enable
users to develop and execute workflow applications
with heterogeneous tasks on heterogeneous high perfor-
mance computing resources. We describe our approach
to the integration of the two systems and detail the de-
velopment of RPEX, a Parsl executor which uses RP
as its workload manager. We develop a RP executor
that executes heterogeneous MPI Python functions on
CPU cores and GPUs. We measure the weak and strong
scaling of RPEX, RP and Parsl when providing new ca-
pabilities to two paradigmatic use cases: Colmena and
Ice Wedge Polygons.

Index Terms—Workflows, HPC, MPI executor, mid-
dleware integration.

I. INTRODUCTION

Workflow systems are becoming ubiquitous as they ef-
fectively abstract the complexity of orchestrating the ex-
ecution of heterogeneous tasks across diverse computing
resources. This has led to the development of hundreds of
workflow systems [1] with significant overlap between their
goals and capabilities. The development of these systems
is inefficient: there is significant duplication of functional-
ity and a lack of robustness as it is infeasible for a single
workflow system to meet all application requirements on
all potential resources. Recent summits organized by the
workflows community [2] highlighted the need for work-
flow system interoperability as a way of reducing develop-
ment inefficiency; improving robustness, performance, and
portability; and ultimately enhancing the sustainability of
the workflows community.

Task heterogeneity is fundamental to high performance
computing (HPC) scientific workflows. Tasks may be stan-
dalone executables or functions implemented in diverse
programming languages. Both executable and function
tasks have diverse requirements: from single-core utility
functions to multi-node MPI simulation executables. Sup-

porting such task heterogeneity requires: (1) a workflow
system for users to express and execute applications with
diverse types of tasks; and (2) a workload manager capa-
ble of interpreting and managing the execution of those
tasks at scale and on diverse HPC platforms.

Here, we present the integration of the Parsl [3] work-
flow system and the RADICAL-Pilot (RP) [4] workload
manager, independently developed by different research
groups. We adopt a loosely-coupled integration approach,
developing a RP Executor (RPEX) for Parsl and a new
RP executor to add the capability to distribute and exe-
cute MPI Python functions concurrently to (non)MPI ex-
ecutable tasks. Our integration brings new capabilities to
both systems: Parsl users can benefit from the scalable and
performant RP runtime capabilities with minimal or no
changes to their code, while RP users gain a larger choice
when deciding what workflow system to use for their ap-
plications, e.g., Parsl, EnTK, Swift.

We describe how our integration brings new capabilities
to two use cases. Colmena [5], a Python package that uses
Parsl to execute ensemble applications, gains new MPI ca-
pabilities via RPEX, RP and its new executor. Ice Wedge
Polygons (IWP) benefits from Parsl’s dataflow capabili-
ties and Python API to implement a workflow application
that uses RPEX and RP to concurrently execute multi-
node MPI Python functions on CPUs and GPUs.

We measure strong and weak scaling of the new RP ex-
ecutor, and of RPEX for both Colmena and IWP, showing
that overheads are small or invariant of scale. We compare
the resource utilization of Colmena with RPEX, showing
that is analogous to that obtained in Ref. [5] with Parsl’s
HTEX executor. The insight gained by our analysis shows
the viability of the proposed integrative approach and of-
fers useful information about how to improve the execution
of heterogeneous tasks on HPC resources at scale.

II. RELATED WORK

The integration of workflow and runtime systems, and
the building blocks approach to workflow middleware [6]
extend functionalities and interfaces, enabling different
programming paradigms and the execution of different ap-
plications on different platforms at a variety of scales.
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There have been multiple approaches to integrating the
traditional big-data middleware stack with HPC workflow
and resource management tools [7], [8]. Here the primary
focus is on integration of traditional HPC software sys-
tems, for example, the integration of PyCOMPS [9] with
other frameworks, or Swift [10] with RP. In the later, the
integration was based on their application programming
interfaces (API) and special-purpose connectors [11]. This
reduced the engineering effort spent on each system, cen-
tering the development on a small and independent com-
ponent that translates computational requirements be-
tween the workflow application layer, and the resource
management and task execution layers.

Shaffer et al. [12] use the Parsl API in their integration
of Parsl with the WorkQueue framework [13]. They achieve
lightweight function monitoring across HPC resources by
forking a new process for every executing function. How-
ever, this approach introduces: (i) additional resource re-
quirements due to the creation of a monitoring process for
each Python function executed, and (ii) additional over-
head associated with launching that extra process.

Merlin [14] is designed to enable the execution of large
ensembles simulations and machine learning analyses on
HPC platforms. Merlin uses the Maestro [15] interface to
define workflows of millions of tasks, and deploys Flux [16]
to scale such workflows on HPC systems. However, its
use of Maestro’s YAML-based interface to define tasks re-
stricts it to a shell syntax, making it challenging for the
end-user to take advantage of clearer and more powerful
programming languages, such as Python.

III. Use CASES

We present two exemplar use cases that require the ca-
pabilities of both RP and Parsl to execute (non)MPT ex-
ecutables and Python function tasks on HPC platforms.

A. Colmena: Intelligent Steering of Ensemble Simulations

Colmena [5] is a Python package for machine learning-
based steering of ensemble computations on HPC plat-
forms, for such purposes as fitting interatomic poten-
tials [17]. A Colmena application is organized as a Thinker
process that implements a strategy for selecting computa-
tions that are then submitted to a Task Server process for
execution. Currently, Colmena Task Server uses the Parsl
workflow engine to dispatch tasks to multiple processors.

The computations managed by Colmena applications
are frequently MPI programs of modest scale. Thus, in
order to make efficient use of large parallel computers,
Colmena needs to run efficiently many MPI applications
at once—something that existing Parsl executors are not
able to do. Parsl deploys MPI tasks using a single worker
on an HPC launch node that is responsible for pre- and
post-processing tasks and invoking the MPI launcher us-
ing subprocesses. Large ensemble can lead to overheads of
minutes, as processing tasks compete for resources and re-
quests overwhelm the MPI launcher. Colmena is thus an
excellent use case for the new RPEX executor.
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B. Ice Wedge Polygons

Ice wedges are common permafrost subsurface at-
tributes that evolved by accumulated frost cracking
and ice-vein growth over long periods of time. These
wedge-shaped ice masses create polygonized land sur-
face patterns called Ice Wedge Polygons (IWP) across
large Arctic areas. Observing IWP requires processing
very high spatial resolution (VHSR) satellite imagery at
multiple spatial scales [18].

IWP is implemented via MPI Python functions that re-
quire the concurrent use of both GPUs and CPUs. Each
image is processed by performing two operations—tiling
and inference. Tiling uses CPUs to divide each image into
360x 360 pixels tiles; inference uses a GPU to extract the
surface patterns from each tile.

The RPEX executor offers the required workload run-
time capabilities via RADICAL-Pilot and a flexible pro-
gramming model via Parsl to execute IWP multi-node
MPI Python functions concurrently on CPUs and GPUs.

IV. RADICAL-PI1LOT AND PARSL INTEGRATION

We integrate RP and Parsl into a system that we name,
for simplicity, RPEX. Importantly, we implement and ex-
tend an existing interface between the two systems ‘as they
are,” providing users with the sum of the two systems’ ca-
pabilities, without engineering a whole new system. This
integration allows RP to benefit from Parsl flexible pro-
gramming model and its workflow management capabili-
ties to build dynamic workflows. Additionally, RPEX will
benefit Parsl by offering the heterogeneous runtime capa-
bilities of RP to support many MPI computations more
efficiently than with other Parsl executors.

A. RADICAL-Pilot (RP)

RP is a scalable, modular, and interoperable pilot sys-
tem, coded in Python, that enables the execution of het-
erogeneous workloads on heterogeneous HPC resources.
RP has four main components [4]: The Pilot Manager and
Task Manager, which are executed on a user resource or on
the login node of an HPC platform; the Agent, which is ex-
ecuted on the compute nodes of the target HPC platform;
and a MongoDB database, which is hosted on resources
accessible via network by the other components.

RP provides methods for efficiently and effectively
scheduling, placing, and launching independent tasks
across multiple nodes. RP uses the pilot abstraction [19]
to support the concurrent execution of up to 10% tasks on
103 compute nodes with low overheads [4].

Different from other pilot systems, RP supports tasks
that may vary simultaneously along four dimensions; (1)
programming model, including single/multi cores/GPUs
with MPI, OpenMP, and single/multi-[threaded|process]
tasks; (2) scale, from 1 to 27,000 GPUs and/or 1 to 467,000
CPU cores; (3) task duration, from >1 second to 24 hours
or more; and (4) task packaging method: both standalone
executables and Python functions.
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B. The Parsl parallel Python programming library

Parsl [3] is a Python module that enables parallel exe-
cution of Python functions and orchestration of functions
into dataflow workflows. Parsl users decorate Python func-
tions to indicate opportunities for concurrent execution.
Parsl relies on futures to abstract asynchronous execu-
tion: invocation of a Parsl app returns a future to the
calling program. The future’s state is set only when the
app completes execution; an attempt to read the future
before that time causes the application to block. Parsl en-
ables dataflow semantics by allowing developers to pass
futures between apps.

Fig. 1 shows the three main components of the Parsl
implementation: the Data Flow Kernel (DFK), Execu-
tor, and Provider. Parsl applications start when a Python
program calls a Parsl app and passes either input argu-
ments or a future from another app. The DFK wraps each
task with a Python future object [20]. Throughout execu-
tion, the DFK maintains a directed acyclic graph (DAG)
with nodes representing each invocation of an app (called
a ‘task’) and edges representing futures passed between
apps. Once a task’s dependencies are resolved, the DFK
submits it to one or more user-specified executors. The
DFK tracks every task’s state, updating the task graph.

DataFlow Kernel (DFK)

Task |—». @ O[DataManager | §—| Highthrougput Executor |

Executors Providers
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Fig. 1. Parsl architecture and execution model.
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Parsl relies on Python’s standard concurrent.futures
executor interface to dispatch tasks for execution. Parsl
includes two in-built executors and an external executor
that implement this interface, each designed for a specific
type of workload. The high-throughput executor (HTEX)
is a pilot-based executor for rapid execution of many tasks.
The Extreme-Scale Executor (EXEX) executes tasks on
a pool of multi-node processes, using the Python pack-
age mpidpy [21] to build and manage communications be-
tween managers and workers. The WorkQueue Executor
(WQEX) uses WorkQueue to provide managed task exe-
cution with dynamic resource sizing.

C. Design

RP’s architecture [4] and Parsl’s architecture (Fig. 1)
suggest two integration points: using RP to submit tasks
to an existing Parsl executor or using the RP Agent as
a new Parsl executor. While the former integration point
would extend Parsl’s HPC resource acquisition capabili-
ties, it would not allow users to benefit from most of RP’s
Agent capabilities. The latter integration point allows us
to maintain Parsl API and workflow-related capabilities
while benefiting also of RP runtime capabilities.
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RP can provide MPI support across multiple HPC plat-
forms, supporting multiple dimensions of task and resource
heterogeneity. Further, RP supports Single Program Mul-
tiple Data (SPMD) and its performance is tailored to
extreme-scale on HPC resources [4]. It also supports the
concurrent execution of multiple pilots on multiple HPC
platforms [22] and the scheduling of a single workload
across those pilots [11].

Integrating RP as a Parsl executor requires aligning
the two systems’ task execution models. RP’s tasks are
fully-decoupled, i.e., they have no data dependencies or
those dependencies have been already satisfied out-of-
band. Each task is assumed to be self-contained, executed
by RP as a black-box that either returns or fails. RP has no
knowledge of the code each task executes, enabling a sepa-
ration of concern between resource and execution manage-
ment, and task executables. Consistently, at application
level, RP implements a ‘batch-like’ programming model
in which groups of tasks (i.e., workloads) are described
and submitted for execution. Concurrency is implicit: once
submitted, RP executes tasks with the maximum concur-
rency allowed by the available resources.

Unlike RP tasks, Parsl tasks have dynamic data depen-
dencies that must be respected before execution. At the
application level, Parsl allows for the expression of nested
parallelism within a single task or across a batch of tasks.
Parsl programming model enables various parallel comput-
ing paradigms such as procedural and dynamic workflow
execution and interactive parallel programming.

Parsl’s tasks are Python functions while RP tasks are
Python dictionaries that are dynamically updated to re-
flect the state of the tasks. The difference in the task ob-
ject’s type is a communication barrier that we overcame by
implementing a mid-point component called “Task Trans-
lator”, with the following capabilities: (i) detect whether
Parsl task is a pure Python function or a Python call to
a Bash command; (ii) translate Parsl tasks into RP tasks;
and (iii) update the status of Parsl tasks, according to
callbacks from RP tasks.

Fig. 2 illustrates the translation of Parsl tasks into RP
tasks. Each Parsl task is translated via a direct (1:1)
mapping in accordance to the task submission criteria of
Parsl’s DFK. Thus, tasks are created at application level
and submitted to the executor one by one, iteratively.

D. Implementation

We implement a new Parsl executor for RP shown in
Fig. 2 and we call it RADICAL-Pilot Executor (RPEX).
RPEX is a Python class that bootstraps RP when initial-
ized by Parsl. To make RPEX consistent with other Parsl
executors, we based RPEX’s implementation on the Parsl
HTEX executor class.

Note that Parsl does not require resource specification at
task level, while RP requires specification of the number
of cores and threads for both CPU cores and GPUs for
every task. To enable the use of RP’s resource management
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capabilities in RPEX, we extended Parsl’s API to allow
users to define those parameters.
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Fig. 2. RPEX integration architecture.

Once Parsl starts, it initializes DFK and RPEX simul-
taneously. Upon initialization, the DFK: (i) obtains the
tasks from Parsl APT; (ii) builds the tasks table; (iii) solves
each task dependencies; and (iv) passes each task object
to RPEX for execution (Fig. 2). Once initialized, RPEX:
(i) obtains via its interface the HPC platform on which to
execute the tasks and the amount of walltime for which to
hold the resources; (ii) starts a new RP session and cre-
ates the Pilot Manager and the Task Manager; and (iii)
obtains the number of CPU cores and GPUs required by
each task submitted by the DFK.

Submitting and executing Parsl tasks via RP require
translating those tasks into task objects that can be in-
terpreted by RP. Each task object has a set of proper-
ties, e.g., the executable’s name, its type, its arguments
(if any), the number and type of resources, the number of
processes, etc. Once the DFK submits the Parsl task to
RPEX, the Task translator unpacks, translates and maps
that task to the corresponding RP task object.

Parsl’s DFK monitors the status of RPEX and, once
ready, it starts submitting Parsl tasks one by one to RP
(Fig.2, RP-Client). Eventually, RP submits the task to its
Task Manager to be scheduled and executed on the pilot
resource (Fig.2, Compute Nodes).

E. RP MPI Function Executor

To support launching and executing of MPI Python
functions, we implemented a RP single/multi-node MPI
function executor shown in Fig. 3. Not to be confused
with RPEX, that is a Parsl executor, the RP executor
uses mpidpy to implement a task-based SPMD master-
worker paradigm to concurrently execute heterogeneous
MPI Python functions.

The MPI executor communicates with other RP’s com-
ponent via ZeroMQ, sending and receiving MPI Python
functions, until terminated by RP’s Agent. Once sched-
uled by RP, the MPI function executor: launches itself
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Fig. 3. RADICAL-Pilot multi-node MPI function executor.

via a user-specified MPI launch method; loads the mpidpy
environment once for all incoming tasks; and spawn the
MPI-Master and MPI-Workers.

The MPI-Master decomposes the main MPI-
Communicator several Intra-Communicators to
serve as a private communicator for every Python func-
tion. Once the MPI-Master receives the functions via a
ZMQ channel, it sends them to the designated workers
for execution. Workers can concurrently run on single or
multiple nodes. Every MPI-Master is responsible for co-
ordinating the execution of a set of Python functions and
performing MPI collective communications among the
workers (see Fig. 3).

into

V. EXPERIMENTS AND EVALUATION

Table I shows the setup of our experiments. We use
both SDSC Expanse and TACC Frontera for Experiment
1, and Frontera only for Experiment 2. Expanse compute
nodes have 128 CPU cores, while Frontera has two types
of nodes: “normal” with 56 CPU cores and no GPUs, and
“rtx” with 16 CPU cores and 4 GPUs.

We use three metrics: Total Processing Time (TPT);
Throughput (TS); and Total Time to Execution (TTX).
TPT is the time spent by our executor to finish executing
all the tasks of a workload. TS is the number of tasks exe-
cuted per second, calculated by dividing the total number
of tasks by TPT. TTX is the total amount of time taken
by all tasks to finish executing. Note that TPT measures
the time in which the executor kept the resources busy, ex-
cluding any idle or wait time. In contrast, TTX measures
the time the workload spent to finish the execution of all
tasks on those resources, including idle and wait time.

Experiment 1 measures the TPT and TS of the MPI-
function executor presented in §IV, as a function of the
number of tasks. Experiment 2 measures TTX and RPEX
integration overheads with the two use cases described
in §III. Together, these experiments enable us to charac-
terize the performance of the integrated RPEX and of the
Python MPI function executor with different resources,
task heterogeneity, and scale on HPC resources.
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TABLE 1
SETUP FOR EXPERIMENTS 1 AND 2. WS/SS = WEAK/STRONG SCALING; COL = COLMENA; IWP = ICE WEDGE POLYGONS.

ID  Experiment Type Platform Nodes Task Type CPUs(cores) GPUs
Expanse 2—-32 #nodes x 128

1 MPI executor WS/SS Frontera 8 — 512  MPI-Homogeneous #nodes x 56 N/A

2 COL/IWP WS/SS Frontera 32 —256 MPI-Heterogeneous  #nodes x 56 8 — 32

TABLE 11
EXPERIMENT 1 STRONG AND WEAK SCALING RESULTS ON EXPANSE
AND FRONTERA. N = NUMBER OF COMPUTE NODES.

Total processing Throughput
System Scaling N time (seconds) (tasks/second)
2 6752.4 +153.9 4.7 £0.1
Strong 4 3494.4 +199.0 9.2 0.4
8 1758.4 +88.5 18.3 £0.8
16 911.3 £43.0 35.3 £1.6
Expanse
2 409.5 +4.9 4.8 £0.05
Weak 4 423.1 £9.4 9.4 £0.2
8 412.1 £2.5 19.4 £0.1
16 430.5 +4.1 37.1 £0.3
32 423.5 £4.8 75.5 0.8
8 14173.1 £375.2 36.1 £0.9
16 7458.4 +341.9 69.0 £2.8
Strong 32 3546.8 +105.6 144.7 +4.0
64 2035.3 £97.8 235.2 £11.5
128 1236.8 £150.6 431.6 +51.4
Fr 256 509.1 +8.6 1005.8 £17.1
ontera
8 231.3 +6.1 34.6 £0.8
16 228.8 +5.2 70.0 +1.6
32 2219 +4.4 144.2 +2.8
Weak 64 238.5 £14.0 270.0 £15.6
128 258.3 +14.5 498.3 +26.7
256 309.4 £50.3 868.9 +129.3
512 303.7 £17.5 1696.7 +£94.2

A. Ezperiment 1: MPI-Function Executor Scalability

We characterize the performance of the MPI-function
executor on Expanse and Frontera, measuring its strong
and weak scaling in terms of TPT and TS. We summarize
the results in Table II. Note that the processing time of
the MPI function executor measured by TPT includes the
aggregated overheads of launching the MPI infrastructure
and of the MPI communications.

We use a homogeneous workload of Python no-op func-
tions. We launch the executor with mpirun and configure
it to execute each MPI function across two compute nodes,
using mpidpy for each function. Every function is config-
ured to run on 256 ranks on Expanse (128 cores per node)
and 112 ranks on Frontera (56 cores per node). In this
way, each task tests our executor’s multi-node capability,
scaling to sizable portions of the HPC platforms.

1) SDSC Expanse: Fig. 4 shows the strong (a) and the
weak (b) scaling of our MPI executor in terms of TPT
(blue) and TS (orange). For strong scaling, TPT decreases
linearly while TS increases linearly as a function of the
number of nodes across all runs (see Table IT). Both TPT
and TS show a consistent behavior across the experiment’s
scale while maintaining small error bars, indicating an ef-
ficient scaling behavior.
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In the weak scaling case, the TPT shows consistent scal-
ing with small error bars across all runs. Further, the TS
increases linearly with the number of nodes, reaching a
maximum of 75.5 task/s on 32 nodes. The linear increase
of TS in Fig. 4 (a,b) show a positive correlation between
the number of nodes and tasks, indicating that the execu-
tor can achieve higher TS at larger scales.

Fig. 4 (a,b) show that our executor scales efficiently on
the assigned resource, using a homogeneous workload in
which each function requires the same number of ranks.
We use a homogeneous workload as it allows us to study
the baseline performance of the executor since this type
of workload is more generalizable and easier to measure
across scales.

2) TACC Frontera: We used the same experiment set-
ting of Expanse to characterize strong and weak scaling of
the MPI function executor on Frontera at larger scale (see
Table II). Fig. 4 (c,d) show the strong and the weak scaling
of the MPI executor’s TPT (blue) and TS (orange).

In the strong scaling case, TPT decreases linearly and
TS increases exponentially with the number of nodes, with
small error bars across all runs. In the weak scaling case,
TPT remains stable from 8 to 64 nodes and then increases
sub-linearly from 128 to 512 nodes. Note that the error
bars of 8-64 nodes overlap with the ones of 128-512 nodes,
making the difference between TPTs statistically less sig-
nificant. The sub-linear increase in TPT between 128 and
512 nodes is due to the MPI collective communication
overheads, leading to TPT deterioration with increasing
numbers of resources [23]. TS shows an exponential in-
crease between 8 and 512 nodes while maintaining rela-
tivity small error bars across all runs. This confirms our
analysis in §V-A1l which shows that our executor reaches
higher TS on larger scales consistently.

Comparing results between Expanse and Frontera we
see that (i) as expected, the cost of constructing and
launching an MPI task grows with the number of ranks
(256 ranks vs. 112 ranks), since MPI takes more time
to group and construct a larger MPI-communicator [24];
(ii) TPT increases proportionally with the number of re-
sources due to the increased number of MPI communica-
tion overheads, and the number of ranks per task.

The MPI executor scales efficiently between 8 and 64
nodes on Frontera and 2 and 32 nodes on Expanse, but
given the proportional increase of the overheads between
128 and 512 nodes, performance starts to deteriorate at
a larger scale on Frontera (see Table II). Constructing an
MPI Intra-communicator for every function is expensive
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Fig. 4. Experiment 1: Scaling properties of MPI Function executor. (a) and (b) characterize strong and weak scaling on Expanse, respectively;
(c) and (d) characterize strong and weak scaling on Frontera, respectively.

but necessary in presence of heterogeneous functions. The
impact of that overhead on the overall workload execution
depends on the duration of the functions execution. For
short-running homogeneous functions, a more performant
design would: (i) set up the Intra-communicator only once
to be reused by every task; (ii) take advantage of caching
capabilities for MPI Intra- and Inter-communicator.

B. Experiment 2: Use Case Scalability

Next we study RPEX strong and weak scaling by run-
ning the Colmena and IWP use cases (§III) on Frontera
while varying both problem size and number of nodes.

Both use cases require capabilities that can be provided
only by RPEX and not by either RP or Parsl alone. Col-
mena requires execution of a workflow of concurrent het-
erogeneous single-node MPI executables and single core
non-MPI Python functions. IWP requires instead a work-
flow of heterogeneous MPI Python functions that run con-
currently on multiple nodes.

We summarize our experiment results in Table III, us-
ing three metrics: RP overheads, RPEX integration over-
heads, and total time to completion (TTX). Note that we
measure RPEX overhead as the sum of Parsl and RP over-
heads. Parsl’s overhead includes the amount of time taken
to: (1) start the executor; (2) build the DAG of tasks; (3)
solve the data dependencies among all tasks; (4) submit
the tasks to the executor; and (5) shutdown and cleanup
both the executor and the integration components. RP’s
overhead consists of the amount of time taken to: (1) start
the runtime system; and (2) manage the tasks’ execution.

1) Colmena: We created a heterogeneous synthetic
workflow based on a real-world Colmena application [5]
to evaluate the new capabilities provided by RPEX. The
workflow consists of three tasks: Python “pre-process” and
“post-process” functions, and a C MPI “simulation” ex-
ecutable that runs for ~100s. The pre-process function
prepares the execution environment for the simulation
MPI task, while the post-processing function collects re-
sults from the simulation tasks, storing them in a Python
class object. Each pre-process and post-process function
requires one CPU core, while each simulation task requires
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TABLE III
EXPERIMENT 2 STRONG AND WEAK SCALING RESULTS ON FRONTERA.
N = NUMBER OF COMPUTE NODES. TIMES ARE IN SECONDS.

Total time RP RPEX
App Scaling N to execution overhead overhead
32 8725.6 £7.0 104.4 £4.5 724 £7.5
Strong 64  3961.9 £2.0 1164 +11.8 744.6 +13.5
g 128 1929.2 +£19.0 99.7 +£5.0 769.1 £10.5
g 256  3263.9 +£94.7 176.2 £56.4 855.2 £56.2
g 32 620.9 +1.3 173.1 £0.2  217.5 £2.1
Weak 64 629.1 +£0.9 118.8 £1.4 207.8 £1.7
128 636.5 +0.6  233.7 +£34.7 253.0 £37.1
256  1891.8 +61.6 134.8 £2.0 388.2 £74.3
& 2 10620.3 +34.0 6.3 £2.1 7.1 £2.1
S Strong 4 48959 £14 55 430 6.4 £2.1
>
3 8 2460.9 +4.9 4.6 £2.3 54 +24
[ 16 1344.6 +51 5.5 +2.3 6.4 +0.1
(%)
2 2 211.6 5.6 5.7 £1.5 5.7 £1.6
§ Weak 4 236.1 +0.1 6.0 £1.0 6.0 £1.1
© 8 259.9 +£1.9 7.4 £1.9 7.4 +£1.9
= 16 275.0 £11.8 6.2 £1.4 6.3 +1.4

a full node (56 CPU cores). We used the TACC-specific
MPT launcher Ibrun to launch the MPI executables.

Fig. 5 shows strong (a) and weak (b) scaling with RPEX
executing the Colmena workflow. TTX (red) decreases lin-
early between 32 and 128 nodes in strong scaling and main-
tains a consistent scale in the weak scaling. RP overheads
(purple) are essentially invariant of scale, while RPEX
overheads (blue) increase with scale in the weak scal-
ing and maintains a relativity consistent behavior in the
strong scaling. The scaling behavior changes at 256 nodes
for both strong and weak scaling, showing a linear in-
crease of TTX compared to the 32-128 nodes run. We
investigated the TTX increase by measuring the resource
utilization of Colmena workflows while executing 450/32,
900/64, 1800/128 and, 3600/256 tasks/nodes.

In Fig. 6, we measure and break down the resource
utilization of Colmena’s TTX based on four task-related
events: “Scheduled” indicates resources being assigned to
tasks and ready for execution; “Launching” indicates the
resources occupied while waiting for Ibrun to launch the
scheduled tasks by RP and also represents Ibrun over-
heads; “Running”, which shows the resources occupied by
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Fig. 5. Experiment 2: Scaling properties of Colmena and Ice Wedge Polygons (IWP). (a) and (b) characterize strong and weak scaling
of Colmena; (c) and (d) characterize the strong and weak scaling in §III. RPEX overheads include RP overheads and represent the total
overhead of the execution. RP overheads represent the time spent by RP and its executor to manage the execution of the workload /workflow.

RP while executing the launched tasks; and “Idle” the time
in which the available resources are occupied but not busy.

Fig. 6 (a,b,c) show that Running (dark green) occupies
~98% of the available resources with average Launching
time of 30s, 65s and 215.3s. Fig. 6 (d) shows instead that
Launching (light green) becomes the dominant activity,
occupying most of the resources for ~1791.2s. Launching
creates a ‘busy wait’ condition that prevents tasks from
executing. This explains the increase in Colmena’s TTX
shown in Fig. 5 (a,b): RP takes longer to execute on 256
nodes compared to 32-128 nodes because it has to wait
longer for Ibrun to launch the tasks.

Comparing Colmena’s resource utilization from prior
work [5]—while executing only Python functions with-
out RP—to Fig. 6 shows comparable resource utilization.
RPEX reaches a resource utilization of ~ 99% while exe-
cuting both MPI-executables and Python functions, main-
taining the performance measured when Colmena exe-
cuted only non-MPI functions via Parsl. RPEX results in
Fig. 5 also show that RPEX has the potential to reach
large scales with low and constant overheads (RP over-
head). Substituting Ibrun with more performant MPT li-
braries has the potential to lower the task launching over-
heads at scale [4], [25].

2) Ice Wedge Polygons (IWP): We implemented the
IWP use case of §III by using the Single Program Mul-
tiple Data (SPMD) MPI pattern, where tasks are split up
and concurrently executed on multiple cores with differ-
ent inputs [26]. We configured RPEX to use RP’s MPI
function executor, executing the IWP workload with the
SPMD pattern. We used 2 GPUs and 8 CPU cores per
task, with up to 256 concurrent tasks on Frontera.

Fig. 5 shows the strong (c) and weak (d) scaling of
RPEX with the IWP use case workload. In the strong scal-
ing case, TTX (red) decreases exponentially. In the weak
scaling case, TTX shows a sublinear increase across all
runs (see Table III). As with the Colmena use case, RP
overheads shows a consistent behavior across all the runs.
Further, RPEX overheads in the strong and weak scaling
maintains a consistent behavior while executing on < 128
nodes. The scaling of the TTX confirms that Ibrun over-
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heads increases marginally with the number of tasks and
resources when executing on < 128 nodes and becomes in-
tolerable with > 128 node runs. Overall, RP and RPEX
overheads are low compared to the TTX of the use case
and the scale of the experiments.

VI. CONCLUSIONS AND FUTURE WORK

We described an integration of RADICAL-Pilot’s pilot
capabilities with Parsl’s workflow management capabili-
ties to enable the execution of production workflows on
diverse HPC platforms. The four main contributions of
this paper are: (1) a case study of the engineering process
used to integrate two independently developed middleware
systems; (2) an analysis of the design of an executor for
MPI Python functions tailored to HPC resources; (3) a
performance characterization of both the integrated sys-
tem and the proposed executor on two HPC platforms;
and (4) a description of how the integrated system and
executor have been used for two exemplar use cases.

The RPEX integration shows that integrating indepen-
dent middleware systems requires an analysis of their ca-
pabilities, execution and state models, private and pub-
lic APIs, and performance bottlenecks. We showed that,
based on that analysis, the integration’s engineering ef-
fort can be reduced, while avoiding expensive rewriting of
existing code bases. Nonetheless, we also showed that user-
facing APIs might have to be extended to make specific
information available across the integrated systems.

We successfully supported two classes of use case. First,
we used RPEX in Colmena, enabling efficient execution
of both MPI and single node Python functions. Impor-
tantly, no changes were required to Colmena to make use
of RPEX. Second, by supporting IWP, we showed how
RPEX can be used out of the box to code specific work-
flows and run them at scale. Together, these results con-
firm that the integration of independent middleware com-
ponents can be a viable approach to reducing capability
duplication across middleware, especially when consider-
ing the challenges posed by executing workflows in pro-
duction on Exascale HPC platforms.

Our experiments show that RPEX overheads increase
only marginally with the number of tasks and resources.

Authorized licensed use limited to: Rutgers University. Downloaded on August 04,2023 at 14:12:57 UTC from IEEE Xplore. Restrictions apply.



S 100
> 50
5§ o

0 250 500 750

Sch[duled Launching
0 200 400 600

Time (s)

(a) 32 nodes, 450 tasks

(b) 64 nodes, 900 tasks

Y ¥

T
500 1000 1500

[ | Runnini Idle
2

0 00 400 600

]

(c) 128 nodes, 1800 tasks (d) 256 nodes, 3600 tasks

Fig. 6. Experiment 2: Colmena resource utilization with RPEX on 32, 64, 128 and 256 nodes

This result shows that our integration approach, based
on the weak coupling of the two systems via a light-
weight, stand-alone interface, does not introduce major
overheads when executing heterogeneous workflows on
HPC resources. It also highlights highlights the limitations
of the MPI library used to launch tasks at scale and estab-
lishes the need for developing workflow-specific low-level
communication libraries.

The performance of RPEX can be improved by adopting
a different task submission logic. Currently, RPEX sub-
mits a stream of tasks to the runtime engine which in-
creases overhead at scale, especially with short running
tasks. We are developing a bulk submission mode for
RPEX, which can reduce overheads, improving task sub-
mission, scheduling, and execution throughput.

This work was supported by the ECP ExaWorks and ExalLearn
projects, as well as NSF-1931512 (RADICAL-Cybertools). HPC ac-
cess on XSEDE was provided by allocation TG-MCB090174.
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