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Abstract 
Noisy training labels can hurt model perfor-
mance. Most approaches that aim to address la-
bel noise assume label noise is independent from 
the input features. In practice, however, label 
noise is often feature or instance-dependent, and 
therefore biased (i.e., some instances are more 
likely to be mislabeled than others). E.g., in 
clinical care, female patients are more likely 
to be under-diagnosed for cardiovascular dis-
ease compared to male patients. Approaches 
that ignore this dependence can produce mod-
els with poor discriminative performance, and 
in many healthcare settings, can exacerbate is-
sues around health disparities. In light of these 
limitations, we propose a two-stage approach to 
learn in the presence instance-dependent label 
noise. Our approach utilizes alignment points, 
a small subset of data for which we know the 
observed and ground truth labels. On several 
tasks, our approach leads to consistent improve-
ments over the state-of-the-art in discriminative 
performance (AUROC) while mitigating bias 
(area under the equalized odds curve, AUEOC). 
For example, when predicting acute respiratory 
failure onset on the MIMIC-III dataset, our ap-
proach achieves a harmonic mean (AUROC and 
AUEOC) of 0.84 (SD [standard deviation] 0.01) 
while that of the next best baseline is 0.81 (SD 
0.01). Overall, our approach improves accuracy 
while mitigating potential bias compared to ex-
isting approaches in the presence of instance-
dependent label noise. 

Data and Code Availability This paper uses the 
MIMIC-III dataset (Johnson et al., 2016b), which is 
available on the PhysioNet repository (Johnson et al., 
2016a). We also use two public datasets outside of 
the healthcare domain: 1) the Adult dataset1 , and 2) 

the COMPAS dataset2 . A link to the source code is 
provided in the footnote3 . 

Institutional Review Board (IRB) This work is 
not regulated as human subjects research since data 
are de-identifed. 

1. Introduction 

Motivation and Problem Setting Datasets used 
to train machine learning models can contain incor-
rect labels (i.e., label noise), which can lead to overft-
ting. While label noise is widely studied, the major-
ity of past work focuses on instance-independent la-
bel noise (i.e., when the noise is independent from an 
instance’s features) (Song et al., 2022). However, la-
bel noise can depend on instance features (Wei et al., 
2022b; Chang et al., 2022), leading to diferent noise 
rates within subsets of the data. Furthermore, in set-
tings where the noise rates difer with respect to a 
sensitive attribute, this can lead to harmful dispari-
ties in model performance (Liu, 2021). For example, 
consider the task of predicting cardiovascular disease 
among patients admitted to a hospital. Compared to 
male patients, female patients may be more likely to 
be under-diagnosed (Maserejian et al., 2009) and thus 
mislabeled, potentially leading to worse predictions 
for female patients. Although instance-dependent la-
bel noise has recently received more attention (Cheng 
et al., 2020b; Xia et al., 2020; Wang et al., 2021a), 
the efect of these approaches on model bias has been 
relatively understudied (Liu, 2021). Here, we ad-
dress current limitations and propose a novel method 
for learning with instance-dependent label noise in 
a setting inspired by healthcare, specifcally examin-
ing how modeling assumptions afect existing issues 
around potential model bias. 

1. https://github.com/AissatouPaye/Fairness-in- 2. https://www.kaggle.com/danofer/compass 
Classifcation-and-Representation-Learning 3. https://github.com/MLD3/Instance Dependent Label Noise 
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Gaps in Existing Work Broadly, current work 
addressing instance-dependent label noise takes one 
of two approaches: 1) learn to identify mislabeled in-
stances (Cheng et al., 2020a; Xia et al., 2022; Zhu 
et al., 2022a), or 2) learn to optimize a noise-robust 
objective function (Feng et al., 2020; Wei et al., 
2022a). In the frst category, instances identifed as 
mislabeled are either fltered out (Kim et al., 2021) 
or relabeled (Berthon et al., 2021). In some settings, 
this approach can have a negative efect on model 
bias. Revisiting our example on cardiovascular dis-
ease, approaches that flter out mislabeled individ-
uals could ignore more female patients, since they 
have a potentially higher noise rate. While relabel-
ing approaches use all available data, they can be 
sensitive to assumptions around the noise distribu-
tion (Ladouceur et al., 2007). In the second category, 
current approaches rely on objective functions that 
are less prone to overftting to the noise and use all 
of the data and observed labels (Chen et al., 2021). 
However, past work has empirically shown that these 
improve discriminative performance the most when 
used to augment fltering approaches, and thus, the 
limitations and scenarios described above still poten-
tially hold. 

Our Idea In light of these limitations, we propose 
an approach that addresses instance-dependent label 
noise, makes no assumptions about the noise distribu-
tion, and uses all data during training. We focus on 
a setting that frequently arises in healthcare, where 
we are given observed labels for a condition of inter-
est (e.g., cardiovascular disease) and have a clinical 
expert who can evaluate whether the observed labels 
are correct for a small subset of the data (e.g., by 
manual chart review). Using this subset, which we 
refer to as the ‘alignment’ set, we learn the underly-
ing pattern of label noise in a pre-training step. We 
then minimize a weighted cross-entropy over all the 
data. Note that our alignment set is a special case 
of anchor points (Liu and Tao, 2015), with the added 
requirement that the set contains instances for which 
the ground truth and observed labels do and do not 
match. 

On synthetic and real data, we demonstrate that 
our approach improves on state-of-the-art baselines 
from the noisy labels and fairness literature, such as 
stochastic label noise (Chen et al., 2021) and group-
based peer loss (Wang et al., 2021b). Overall, our 
contributions include: 

• A novel approach to learn from datasets with 
instance-dependent noise that highlights a set-
ting frequently found in healthcare 

• A systematic examination of diferent settings 
of label noise, evaluating discriminative perfor-
mance and bias mitigation 

• Empirical results showing that the proposed ap-
proach is robust to both to the noise rate and 
amount of noise disparity between subgroups, re-
porting the model’s ability to maintain discrim-
inative performance and mitigate potential bias 

• A demonstration of how performance of the 
proposed approach changes when assumptions 
about the alignment set are violated 

2. Methods 
We introduce a two-stage approach for learning with 
instance-dependent label noise that leverages a small 
set of alignment points for which we have both ob-
served and ground truth labels. 

Table 1: Notation. A summary of notation used 
throughout. Superscripts in parentheses 
specify instances (e.g., x(i)). Subscripts 
specify indexes into a vector (e.g., xi) 

Notation Description 
d number of features 
g number of groups 

x ∈ Rd feature vector 
ŷ ∈ [0, 1] predicted class probabilities 

ỹ ∈ {−1, 1} observed label 
y ∈ {−1, 1} ground truth label 

β̂ = P (y == ỹ|ỹ, x; ϕ) prediction of label correctness 
A alignment set, has a instances 
A non-alignment set, a instances 
θ main model parameters 
ϕ auxiliary model parameters 

Notation and Setting Our notation is summa-
rized in Table 1, with additional notation defned 
throughout as needed. Our dataset, D = A ∪ A 
consists of instances in A = {x(j), ỹ(j), y(j)}a andj=1 
A = {x(i), ỹ(i)}a A is the set of alignment points i=1. 

(j) (j)(i.e., the alignment set), where both ỹ  and y 
are known, and we assume that it includes instances 
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(i) (i)where ỹ  ̸= y . Alignment points are a special 
case of anchor points (Liu and Tao, 2015), where 
points that do and do not have matching observed 
and ground truth labels are both required. A is the 
non-alignment set and contains instances for which 
we do not know the ground truth labels. In the pres-
ence of noisy labels, we assume that whether ỹ = y 
is dependent on x (i.e., P (ỹ == y) ≠ P (ỹ == y|x)). 
Given this dataset, we aim to train a model to learn 
f : Rd → [0, 1] (i.e. the function used to predict 
the ground truth labels), so that we can map un-
seen instances into one of two classes based on their 
feature vectors. Our learned model parameters, θ, 
are such that the output of the corresponding model 
represents the predicted class probabilities, (i.e., ŷ). 
Although we focus on binary classifcation, our setup 
can be applied to multiclass classifcation. 

Justifcation and Desired Properties Our set-
ting is inspired by the use of pragmatic labeling tools 
in healthcare. Such tools are often based on various 
components of the electronic health record (EHR), 
and they are applied to identify cohorts or outcomes 
of interest (Upadhyaya et al., 2017; Norton et al., 
2019; Tjandra et al., 2020; Yoo et al., 2020; Jain et al., 
2021). However, while practical, such defnitions are 
not always refective of the ground truth, and thus, 
require validation through manual chart review. This 
is often done on a randomly chosen subset of individ-
uals, which can be constructed to represent the target 
population and account for known heterogeneity. As 
a result, f is the function that predicts whether the 
condition is actually present, and the alignment set 
is the chart reviewed subset used to help learn f . 
Through our approach, we aim to achieve: 1) ro-

bustness to the overall noise rate and 2) robustness 
to diferences in noise rates between groups (i.e., the 
noise disparity). Revisiting our motivating example 
with EHR-based labeling tools, previous work has 
shown that labeling tools for rarer conditions such 
as drug-induced liver injury and dementia are more 
likely to be less reliable than those for common con-
ditions (Kirby et al., 2016). Similar to how difer-
ent noise rates can arise in practice, diferences in 
noise rates between subgroups can also vary in prac-
tice (Kostopoulou et al., 2008). As a result, achieving 
these properties can potentially make our approach 
generalize to a wide variety of settings. 

Proposed Approach Here, we describe the pro-
posed network and training procedure. 

Proposed Network. Our proposed network 
(Figure 1(a)) consists of two components. The 
frst, parameterized by θ, is a feed-forward network 
that uses feature vector x to predict the class proba-
bility, ŷ = P (y == 1|x; θ). The second component, 
paramaterized by ϕ, is an auxiliary feed-forward 
network that uses observed label ỹ  and features x 

ˆto compute β = P (y == ỹ|y,̃ x; ϕ), an instance-
dependent prediction for whether the observed label 

ˆis correct based on x and ỹ. β can be considered as 
a confdence score for the observed label, with higher 

ˆvalues indicating higher confdence. Learning β 
models the underlying pattern of label noise by forc-
ing the model to learn which instances are correctly 

ˆlabeled. We use β to reweight the objective function 
during the second step of training, as described 
below. By including the observed label as input to 
ϕ, our approach also applies to instance-independent 
label noise because it accounts for the case when the 
underlying pattern of label noise does not depend 
on the features. In order to learn β̂, we assume that 
the label noise pattern can be represented as some 
function, though the specifc form of this function 
(e.g., linear) does not need to be known. During 
training, we compute the loss using the outputs from 
both networks. At inference time (i.e., in practical 
use after training), we compute the class predictions 
from the network parameterized by θ only since ỹ  is 
unavailable. 

Training Procedure. Our training procedure is 
summarized in Figure 1(b) and Appendix A. In 
Step 1, we pre-train both networks using the align-
ment points, A, minimizing an objective function 
based on cross entropy: θ ′ , ϕ ′ = argminθ,ϕLθ +α1Lϕ. 
α1 ∈ R+ is a scalar hyperparameter; θ ′ and ϕ ′ are pa-
rameters that represent the initial values of θ and ϕ. 
Lθ is the cross-entropy loss between the class predic-
tions and ground truth labels. It aids in learning the 
parameter values for θ, and thus, the model’s decision 
boundary. I is an indicator function. 

−1 X � � � � 
(j) (j)Lθ = I y == 1 log ŷ  

|A| 
j∈A� � � � 

(j) (j)+ I y == −1 log 1 − ŷ  

Lϕ is the cross-entropy loss between the predicted 
β̂(j)confdence score and the actual agreement be-

tween ỹ(j) and y(j). It aids in learning the weights 
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(a) Network. (b) Training pipeline. 

Figure 1: Our Approach. a) The model predicts, ŷ, at training and inference time using θ. At training time, 
it also predicts whether the observed label is correct using ϕ. θ and ϕ are pre-trained using A and 
then fne tuned with the complete dataset. b) We pretrain the model using the alignment points, 
then train on the noisy data. Lθ, Lϕ, and L ′ are the objectives for the alignment points, label θ 
confdence score (β̂  

ϕ), and noisy data, respectively. α1, α2, γ are scalar hyperparameters. 

for ϕ, and thus, the underlying label noise pattern. 

−1 X � � � � 
(j) (j) β̂(j)Lϕ = I ỹ  == y log 

|A| 
j∈A� � � � 
(j) (j) β(j)+ I ỹ ≠ y log 1 − ˆ 

In Step 2, we initialize θ and ϕ as θ ′ and ϕ ′ and fne 
tune using the complete dataset. Step 2 consists of 
two parts, Step 2a and Step 2b. Each part aims to 
improve a specifc component of the network (e.g., 
θ) using another component of the network (e.g., ϕ). 
We begin with Step 2a, move to Step 2b, and con-
tinue to alternate between Step 2a and Step 2b in a 
manner similar to expectation maximization so that 
we continually improve both θ and ϕ. In Step 2a, 
we freeze ϕ and fnd θ that minimizes the objective 
L ′ θ + γLθ. γ ∈ R+ is a scalar hyperparameter. In 
Step 2b, we freeze θ and fnd ϕ that minimizes the 
objective L ′ ∈ R+ is a scalar hyper-θ + α2Lϕ. α2 
parameter. L ′ computes the cross-entropy loss over θ 
the potentially noisy, non-alignment points. Each 
instance is weighted by the model’s confdence in 

β̂(i)whether the observed label is correct via , tak-
ing advantage of the model’s learned noise pattern. 
Our approach aims to mitigate bias by up-weighting 
groups, k = 1, 2, ..., g with a higher estimated noise 
rate, r̂k, so that they are not dominated by/ignored 

compared to groups with a lower estimated noise rate. 
gX X−1 1 L ′ = θ |A| 1 − r̂k

k=1 i∈A∩Gk 

c � � � �X 
ˆ(i) (i) (i)
βϕ I ỹ  == j log ŷj 

j=1 

We calculate 1 − r̂k is as follows. We introduce sets 
Gk for k = 1, 2, ..., g to represent disjoint subgroups of 
interest in the data, which are assumed to be known 
in advance. Ga ∩ Gb = ∅ for all a = 1, 2, ..., g, 
b = 1, 2, ..., g with a ≠ b and ∪g = D. Each k=1Gk 
group Gk is then associated with estimated noise rate 

1 P 
r̂k = 1 − β̂(i). Although weighting each |Gk | i∈Gk 

instance by β̂  is a form of soft fltering, weighting each 
group by the inverse of its overall ‘clean’ rate avoids 
the efect of de-emphasizing groups with higher pre-
dicted noise rates. As a result, the expected value of 
L ′ with respect to β̂  is equal to the cross-entropy loss θ 
between the model’s predictions and ground truth la-
bels (see Appendix A for proof). However, this 

ˆassumes accurate estimates of β. Thus, we expect 
that the proposed approach will perform best when 
the alignment set is representative of the target pop-
ulation. In scenarios where the alignment set is bi-
ased (e.g., some groups are underrepresented), if the 
learned noise function does not transfer to the under-
represented group, then the proposed approach may 
not be benefcial. In Section 4, we test this. 
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During Step 2a, L ′ is used to train θ by learning θ 
to predict ŷ  such that it matches observed label ỹ  on 
instances that are predicted to be correctly labeled. 
During Step 2b, Lθ 

′ is used to train ϕ. Here, since θ 
is frozen and ϕ is not, the network learns to predict 

ˆ L ′ the optimal β. Based on alone, there are two θ 
ˆ ˆpossible options to learn β: 1) consistently make β 
ˆclose to 0, and 2) predict β such that it is close to 

1 when ŷ  matches ỹ  and close to 0 when ŷ  does not 
match ỹ. Since ỹ  is used as a proxy for y in this 
step, the second option aligns with what we want β̂  to 
represent. To encourage this over the frst option (i.e., 
consistently predicting 0 for β̂), we include Lϕ in Step 
2b, which is not minimized by consistently predicting 
0 for β̂. Note that, in Step 2b, we rely on the cluster 
assumption (Singh et al., 2008) from semi-supervised 
learning, which broadly states that labeled data fall 
into clusters and that unlabeled data aid in defning 
these clusters. In the context of Step 2b, ‘labeled’ 
and ‘unlabeled’ are analogous to whether we know 
if the ground truth and observed labels match (i.e., 
alignment point versus non-alignment point), rather 
than the actual class labels themselves. As a result, 
we also rely on the alignment set being representative 
of the target population here to avoid dataset shift. 
In contrast to previous fltering approaches, our ap-

proach utilizes all data during training. Moreover, it 
does not require a specialized architecture beyond the 
auxiliary network to compute β̂. Thus, it can be used 
to augment existing architectures. 

3. Experimental Setup 

We empirically explore the performance of our pro-
posed approach relative to state-of-the-art baselines 
on fve benchmark prediction tasks with two difer-
ent label noise settings. For reproducibility, full im-
plementation details are provided in Appendices B 
and C. We aim to test 1) the extent to which our 
desired properties hold, 2) the extent to which the 
proposed approach is robust to changes in the compo-
sition of the alignment set, and 3) which components 
of the proposed approach contribute the most. 

Datasets We consider fve diferent binary predic-
tion tasks on four datasets from several domains 
with synthetic and real datasets. Though inspired 
by healthcare, we also consider domains outside of 
healthcare to show the broader applicability of our 
approach in areas where harmful biases can arise 
(e.g., predicting recidivism and income). Through-

out our experiments, we start by assuming the labels 
in the dataset are noise free, and we inject varying 
amounts of synthetic label noise. In this subsection, 
we describe the tasks, features, and ‘ground truth’ 
labels we use. The next subsection will describe how 
we introduce synthetic label noise. 
Synthetic: We generate a dataset containing 5,000 

instances according to the generative process in Ap-
pendix B. The positive rates for the majority and 
minority groups are 37.5% and 32.3%, respectively. 
MIMIC-III: Within the healthcare domain, we 

leverage a publicly available dataset of electronic 
health record data (Johnson et al., 2016b). We con-
sider two separate prediction tasks: onset of 1) acute 
respiratory failure (ARF) and 2) shock in the ICU 
(intensive care unit) (Oh et al., 2019). MIMIC-
III includes data pertaining to vital signs, medica-
tions, diagnostic and procedure codes, and labora-
tory measurements. We consider the four hour pre-
diction setup for both tasks as described by Tang 
et al. (2020), resulting in 15,873 and 19,342 ICU en-
counters, respectively. After preprocessing (see Ap-
pendix B), each encounter had 16,278 and 18,186 
features for each task respectively. We use race as 
a sensitive attribute, with about 70% of patients be-
ing white (positive rate 4.5% [ARF], 4.1% [shock]) 
and 30% being non-white (positive rate 4.4% [ARF], 
3.7% [shock]). 

Beyond healthcare, we use two benchmark datasets 
frequently considered in the fairness domain. 
Adult: a publicly available dataset of census data 

(Dua and Graf, 2017). We consider the task of 
predicting whether an individual’s income is over 
$50,000. This dataset includes data pertaining to age, 
education, work type, work sector, race, sex, marital 
status, and country. Its training and test sets contain 
32,561 and 16,281 individuals, respectively. We use 
a pre-processed version of this dataset and randomly 
select 1,000 individuals out of 32,561 for training. We 
also only include features pertaining to age, educa-
tion, work type, marital status, work sector, and sex 
to make the task more difcult (see Appendix B). 
After preprocessing, each individual was associated 
with 56 features, and all features had a range of 0-1. 
We use sex as a sensitive attribute, with 67.5% of in-
dividuals being male (positive rate 30.9%) and 32.5% 
being female (positive rate 11.3%). 
COMPAS: a publicly available dataset collected 

by ProPublica from Broward County, Florida, USA 
(Angwin et al., 2016). We consider the task of pre-

481 



Leveraging an Alignment Set in Tackling Instance-Dependent Label Noise 

dicting recidivism within two years, i.e., whether a 
criminal defendant is likely to re-ofend. COMPAS 
includes data pertaining to age, race, sex, and crim-
inal history. We use a pre-processed version of this 
dataset and also normalize each feature to have a 
range of 0-1 (see Appendix B). After preprocess-
ing, the dataset included 6,172 individuals with 11 
features per individual. We use race as a sensitive 
attribute, with 65.8% of individuals being white (pos-
itive rate 39.1%) and 34.2% being non-white (positive 
rate 44.5%). 

Label Noise To test the robustness of our ap-
proach in diferent settings of label noise, we intro-
duce synthetic instance-dependent label noise to our 
datasets. Like past work (Song et al., 2022), our setup 
is limited for the real datasets because our added 
noise is synthetic and we use the labels provided in 
the dataset as ground truth, since we do not have 
access to actual ground truth labels on these public 
datasets. 
To introduce instance-dependent noise, mislabeling 

was a function of the features. Let wm ∼ N(0, 0.33)D 

and zm = σ(x · wm), where σ is the sigmoid func-
tion, denote the coefcients describing the contribu-
tion of each feature to mislabeling and the risk of 
mislabeling, respectively. Whether an instance was 
mislabeled was based on zm and the desired noise 
rate. For example, for a noise rate of 30%, instances 
whose value for zm was above the 70th percentile had 
their labels fipped. This allowed us to vary the noise 
rate within subgroups in a straightforward manner. 
Across datasets, we focused on cases where the noise 
rate in the ‘minority’ population was always greater 
than or equal to that of the ‘majority’ group since 
this is more likely to occur (Suite et al., 2007). 

Evaluation Metrics We evaluate our proposed 
approach in terms of discriminative performance and 
model bias. For discriminative performance, we eval-
uate using the area under the receiver operating char-
acteristic curve (AUROC) (higher is better). 
With respect to model bias, while there exist many 

diferent measures, we focus on equalized odds (Hardt 
et al., 2016), since it is commonly used in the context 
of healthcare (Pfohl et al., 2019; Xu et al., 2022; Yog-
arajan et al., 2023), when similar performance across 
groups is desired (Rajkomar et al., 2018; Pfohl et al., 
2021). Because equalized odds focuses on the difer-
ence between the true and false positive rates among 
groups, it is applicable to many settings in healthcare 
since the consequences of failing to treat a patient in 

need (Pingleton, 1988; Bone, 1994), or giving an in-
appropriate treatment (Bogun et al., 2004; Nasrallah, 
2015) can be serious. More specifcally, we measure 
the area under the equalized odds curve (AUEOC) 
(de Freitas Pereira and Marcel, 2020) (higher is bet-
ter). For classifcation threshold τ , we calculate the 
equalized odds (EO(τ )) between two groups, called 1 
and 2, as shown below. TPa(τ) and FPa(τ ) denote 
true and false positive rates for group a at threshold 
τ , respectively. The AUEOC is obtained by plotting 
the EO against all possible values of τ and calculating 
the area under the curve. 
We compute the harmonic mean (HM) between 

the AUROC and AUEOC to highlight how the dif-
ferent approaches simultaneously maintain discrimi-
native performance and mitigate bias. In the har-
monic mean the worse performing metric dominates. 
For example, if a classifer has AUROC=0.5 and 
AUEOC=1.0, the harmonic mean will emphasize the 
poor discriminative performance. 

2 − |TP1(τ ) − TP2(τ)| − |FP1(τ) − FP2(τ )|
EO(τ) = 

2 

Baselines We evaluate our proposed approach 
with several baselines to test diferent hypotheses. 
Standard does not account for label noise and as-

sumes that ỹ = y is always true. 
SLN + Filter (Chen et al., 2021) combines fltering 

(Arpit et al., 2017) and SLN (Chen et al., 2021) and 
was shown to outperform state-of-the-art approaches 
like Co-Teaching (Han et al., 2018) and DivideMix (Li 
et al., 2020). It relies on fltering heuristics, which in-
directly rely on uniform random label noise to main-
tain discriminative performance and mitigate bias. 
JS (Jensen-Shannon) Loss (Englesson and Az-

izpour, 2021) builds on semi-supervised learning and 
encourages model consistency when predicting on 
perturbations of the input features. It was shown 
to be competitive with other state-of-the-art noise-
robust loss functions (Ma et al., 2020). It was pro-
posed for instance-independent label noise. 
Transition (Xia et al., 2020) learns to correct for 

noisy labels by learning a transition function and 
was shown to outperform state-of-the-art approaches 
such as MentorNet (Jiang et al., 2018). It applies to 
instance-dependent label noise, but it assumes that 
the contributions of each feature to mislabeling and 
input reconstruction are identical. 

CSIDN (confdence-scored instance-dependent 
noise) (Berthon et al., 2021) also learns a transition 
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function and was shown to outperform state-of-the-
art approaches such as forward correction (Patrini 
et al., 2017). Like our approach, CSIDN uses the 
concept of ‘confdence’ in the observed label to help 
with training. Unlike our approach, CSIDN uses the 
model’s class predictions directly as confdence scores 
(instead predicting them via an auxiliary network) 
and uses them to learn the transition function (as 
opposed to re-weighting the loss). 
Fair GPL (Wang et al., 2021b) builds on work 

addressing uniform random label noise (Jiang and 
Nachum, 2020) and uses peer loss (i.e., data aug-
mentation that reduces the correlation between the 
observed label and model’s predictions) within sub-
groups (Wang et al., 2021b). It assumes that label 
noise only depends on group membership. 
We also train a model using the ground truth labels 

(called Clean Labels) as an empirical upper bound for 
discriminative performance. 

Implementation Details For each dataset, we 
randomly split the data into 80/20% training/test, 
ensuring that data from the same individual did not 
appear across splits. For the Adult dataset, we used 
the test set provided and randomly selected 1,000 in-
dividuals from the training set. We then randomly 
selected 10% of the training data for all datasets 
except MIMIC-III from each subgroup to be align-
ment points, thereby ensuring that they were repre-
sentative of the overall population. For the MIMIC-
III dataset, 2% from each subgroup were selected as 
alignment points due to the larger size of the dataset. 
Alignment points were selected randomly to simulate 
our setting of focus, where we have a proxy label-
ing function and then randomly select a subset of the 
data to chart review in order to validate the proxy 
function. Then, for all datasets, half of the align-
ment points were then set aside as a validation set 
to use during training for early stopping and hyper-
parameter selection, while the other half remained in 
the training set. Later, in our experiments, we eval-
uated when the alignment set size varied and when 
the alignment set was biased. All approaches (i.e., 
baselines and proposed) were given the ground truth 
labels for data in the alignment set (i.e., no noise 
added to alignment points) during training so that 
some approaches did not have an unfair advantage. 
All models were trained in Python3.7 and Py-

torch1.7.1 (Paszke et al., 2017), using Adam (Kingma 
and Ba, 2014). Hyperparameters, including the 
learning rate, L2 regularization constant, and objec-

tive function scalars (e.g., α), were tuned using ran-
dom search, with a budget of 20. We used early stop-
ping (patience=10) based on validation set perfor-
mance, which we measured with the HM. We report 
results on the held-out test set, showing the mean 
and standard deviation over 10 replications. 

4. Results and Discussion 

We describe the results from experiments with 
instance-dependent noise. For each plot, we com-
bined discriminative performance and bias mitigation 
and plotted the HM of the AUROC and AUEOC to 
assess general performance with respect to both met-
rics. We show the AUROC and AUEOC separately in 
Appendix D. Additional experiments are provided 
in Appendix D. Their results are summarized here. 

Robustness to Noise Rate Here, we investigated 
how robust the proposed approach and baselines were 
to varying amounts of instance-dependent label noise 
(Figure 2). Since noise was synthetically introduced 
and not dataset specifc, we conducted two experi-
ments on the synthetic dataset. In the frst, we var-
ied the overall noise rate from 10-60% in the majority 
group. For the minority group, we considered noise 
rates that were consistently 20% higher than that of 
the majority group, to keep the noise disparity level 
(i.e., the diference in noise rates between subgroups) 
constant. In the second, we varied the minority noise 
rate from 20-90% with a majority noise rate fxed at 
20% throughout (i.e., from 0-70% disparity) on the 
synthetic dataset. 
Part 1: Overall Noise Rate. Overall, our proposed 

approach demonstrated robustness to a variety of 
noise rates within a realistic range (Figure 2(a)). 
At low minority noise rates (i.e., below 40%), the 
proposed approach and baselines, with the exception 
of JS Loss, were competitive. As the noise rate in-
creased, many of the baselines experienced noticeable 
degradation in performance. The proposed approach 
and Transition showed more robustness, with the pro-
posed approach being the most robust until a minor-
ity noise rate of 80%, which represents an extreme 
case of label noise. 
Part 2: Noise Disparity. Like the previous experi-

ment, the proposed approach was robust over a va-
riety of noise disparities (Figure 2(b)). This is 
likely because the objective function L ′ from Stepθ 
2 of training accounts for disparities by scaling each 
instance-specifc loss term with the reciprocal of its 
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(a) Noise rate. (b) Noise disparity. 

Figure 2: Robustness to noise rate and noise disparity in an instance dependent setting. We plot the mean 
and standard deviation for 10 random seeds. As the noise rate (a) and disparity (b) increase, the 
proposed approach generally shows the least degradation up to a minority noise rate of 80%. 

estimated group clean rate (i.e., 1 - the estimated 
group noise rate). Similar to the previous experi-
ment, at a minority noise rate of 80% and above, the 
proposed approach was no longer the most robust, 
though this setting is unlikely to occur in practice. 

Sensitivity to Alignment Set Composition 
Our next set of experiments tested the proposed ap-
proach in settings where we relax key settings about 
the alignment set. We considered all datasets with 
instance-dependent noise. The majority/minority 
noise rates were 20%/40%, respectively. Here we 
show performance with respect to the proposed ap-
proach, Standard, and Clean Labels. Results for the 
other baselines are included in Appendix D. 
Part 1: Alignment set size. We varied the size of 

the alignment set, from 1% and 15% of the training 
set, with the alignment set being representative of 
the test set (Figure 3(a)). The proposed approach 
was robust to a wide range of alignment set sizes, 
only showing noticeable degradation at alignment set 
sizes of 3% or lower. As the size of the alignment 
set grew, performance improved, likely since having 
a larger alignment set provided access to a larger set 
of ground truth labels at training time. Although the 
minimum number of points required in the alignment 
set is likely to vary depending on the task, our results 
are promising in that they show that our approach is 
efective on a variety of real life tasks, even when the 
alignment set is small (i.e., as little as 3% of the data). 

Part 2: Biased alignment set. Here, we test how 
the proposed approach performs when the alignment 
set is not representative of the population. We varied 
the amount of bias in the alignment set by changing 
the proportion at which the subgroups were present. 
We kept the size of the alignment set constant at 
10% of the training data (2% for MIMIC-III on both 
tasks). We observed that the proposed approach was 
robust over a wide range of conditions, i.e., when the 
minority proportion is 20%-80% (Figure 3(b)). We 
hypothesize that this is because the learned relation-
ship between the features and noise can generalize 
across groups to an extent. In scenarios where perfor-
mance of the proposed approach degraded, one sub-
group heavily dominated the alignment set. This is 
shown in Figure 3(b) on the extremes of the x-axis 
of some datasets, which correspond to an alignment 
set that is heavily over-represented for one subgroup 
and heavily under-represented for the other. Our ap-
proach relies, in part, on having a relatively unbiased 
alignment set for estimating β̂  in order to avoid in-
troducing dataset shift between the two steps of our 
training pipeline. Thus, these results are in line with 
our expectations and highlight a limitation of our ap-
proach. However, despite this reliance, we observe 
that our approach is still robust in some scenarios 
where the alignment set is biased. 

Which Parts of Our Approach Matter? Our 
last set of results examines the individual components 
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(a) As we decrease the alignment set size (proportion of training data) performance decreases. Still, at an 
alignment set size of 3%, the proposed approach is robust. 

(b) We varied the alignment set bias (proportion of minority instances). The proposed approach is generally 
robust to variations in bias. The dashed vertical black line shows an unbiased alignment set. 

Figure 3: Robustness to varying alignment sets. Mean and standard deviation for 10 random seeds. 

of the approach itself on the synthetic dataset. Here, 
we performed an ablation study where we began with 
training on only the alignment points (i.e., Step 1 of 
our approach), and then gradually added the other 
components of our approach (e.g., add Step 2a). In 
summary, while each component improved perfor-
mance, we fnd that the most improvement came 
from adding Lθ and Lϕ during Steps 2a and 2b, re-
spectively, as opposed to using only L ′ during thoseθ 
steps. We also performed a hyperparameter sensitiv-
ity analysis on the three hyperparameters, α1, γ, and 
α2, that our approach introduced. The approach was 
most sensitive to the α2 hyperparameter and more 
robust to α1 and γ. We include results for the ab-
lation study and hyperparameter sensitivity analysis 
in Appendix D. 

Which Parts of Our Approach Matter? Our 
last set of results aims to more closely examine the 
individual components of the approach itself. We in-
clude results for an ablation study and a hyperpa-
rameter sensitivity analysis in Appendix D. In sum-
mary, while each component improved performance, 
we fnd that the most improvement came from adding 

Lθ and Lϕ during Steps 2a and 2b, respectively, as 
opposed to using only L ′ during those steps. The ap-θ 
proach was most sensitive to the α2 hyperparameter 
and more robust to α1 and γ. 

5. Related Work 
We build from previous work in label noise and ad-
dress key limitations. Generally, many state-of-the-
art approaches (Song et al., 2022) are limited in that 
they do not consider instance-dependent noise, do not 
consider the potential consequences of bias in label 
noise, or do not leverage the information our setting 
provides. We tackle these limitations by accounting 
for diferences in noise rates among subsets of the 
data and taking advantage of additional information 
that can be found in our setting. In this section, we 
summarize past work and highlight our contributions. 

Identifying Mislabeled Data Approaches that 
learn to identify mislabeled instances fall into two 
sub-categories: 1) fltering approaches and 2) rela-
beling approaches. Filtering approaches use heuris-
tics to identify mislabeled instances (e.g., Mentor-
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Net (Jiang et al., 2018), Co-teaching (Han et al., 
2018), FINE (Kim et al., 2021)). Many are based 
on the idea that correctly labeled instances are eas-
ier to classify than mislabeled instances (i.e., the 
memorization efect) (Arpit et al., 2017). For ex-
ample, mislabeled instances could be those that the 
model incorrectly classifes (Verbaeten, 2002; Khosh-
goftaar and Rebours, 2004; Thongkam et al., 2008; 
Chen et al., 2019), have a high loss value (Yao et al., 
2020a), or signifcantly increase the complexity of the 
model (Gamberger et al., 1996). Given the identifed 
mislabeled instances, these approaches either ignore 
them during training (Zhang et al., 2020) or treat 
them as ‘unlabeled’ and apply techniques from semi-
supervised learning (e.g., DivideMix (Li et al., 2020), 
SELF (Nguyen et al., 2020)). Overall, these heuris-
tics have been shown to improve discriminative per-
formance. However, depending on the setting, they 
can disproportionately discard subsets of data, which 
could exacerbate biases in model performance. 
For binary classifcation, some approaches ‘correct’ 

(i.e., switch) the observed label for instances that are 
predicted to be incorrect (Han et al., 2020; Zheng 
et al., 2020). Building on this idea, others make use 
of a transition function that estimates the probabil-
ity of the observed label being correct. Model pre-
dictions can then be adjusted by applying the tran-
sition function to the classifer’s predictions for each 
class. Some works manually construct the transition 
function from expert knowledge (Patrini et al., 2017), 
while others learn it (Xiao et al., 2015; Xu et al., 2019; 
Yao et al., 2020b; Zheng et al., 2021; Jiang et al., 
2022; Bae et al., 2022; Cheng et al., 2022; Li et al., 
2022). However, such approaches often make assump-
tions on the form of the noise distribution, and past 
work has shown that results are sensitive to the choice 
of distribution (Ladouceur et al., 2007). 
To date, much of the work described above assumes 

instance-independent label noise (i.e., mislabeling is 
independent of the features). However, when this as-
sumption is violated, the model may overft to label 
noise (Lukasik et al., 2020). From an emerging body 
of work in instance-dependent label noise (Cheng 
et al., 2020b; Xia et al., 2020; Wang et al., 2021c; Zhu 
et al., 2022b), current approaches remain limited in 
that they still rely on fltering heuristics. Although 
we use soft fltering, we flter based on the learned re-
lationship between the features and noise rather than 
existing heuristics and upweight groups with a higher 
estimated noise rate. While similar to a transition 
function in some aspects, our approach requires fewer 

probability estimates on label correctness (two esti-
mates compared to the number of classes squared for 
a transition function) while achieving state-of-the-art 
performance. 

Noise-Robust Loss Functions Prior work exam-
ines how regularization techniques can be adapted 
to the noisy labels setting, addressing issues related 
to overftting on noisy data (Menon et al., 2019; 
Lukasik et al., 2020; Englesson and Azizpour, 2021). 
Label smoothing, and in some cases negative label 
smoothing, were found to improve the accuracy on 
both correctly labeled and mislabeled data (Lukasik 
et al., 2020; Wei et al., 2022a). With this approach, 
the observed labels are perturbed by a small, pre-
determined value, with all labels receiving the same 
perturbation at every training epoch. Follow-up work 
found that, instead of applying the same perturba-
tion at each epoch, adding a small amount of Gaus-
sian stochastic label noise (SLN) at each epoch re-
sulted in further improvements, as it helped to es-
cape from local optima (Chen et al., 2021). However, 
these approaches were most benefcial in the context 
of augmenting existing methods that identify misla-
beled instances (e.g., stochastic label noise is applied 
to instances that are identifed as correctly labeled 
by fltering approaches), and thus, potentially sufer 
from the same limitations. Alternatively, recent work 
has also proposed perturbing the features to encour-
age consistency in the model’s predictions (Engles-
son and Azizpour, 2021), though mainly in the con-
text of instance-independent label noise. Others have 
proposed noise-robust variations of cross entropy loss 
(Feng et al., 2020; Wang et al., 2021a) but generally 
relied on assumptions like the memorization efect. 

Label Noise in Fairness Label noise has also 
been addressed within the fairness literature re-
cently. When the frequencies at which subgroups 
(defned by a sensitive attribute) appear are dif-
ferent within a dataset, past work has shown that 
common approaches addressing label noise can in-
crease the prediction error for minority groups (i.e., 
rarer subgroups) (Liu, 2021). Past work proposed 
to re-weight instances from subgroups during train-
ing where model performance is poorer (Jiang and 
Nachum, 2020) in the instance-independent noise set-
ting. Others use peer loss (Liu and Guo, 2020) within 
subgroups (Wang et al., 2021b) but assume that noise 
depends only on the sensitive attribute. We also train 
with a weighted loss, but weights are based on pre-
dicted label correctness rather than performance on 
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the observed labels. Recently, Wu et al. (2022) ad-
dressed some of the gaps of past work by examining 
the instance-dependent case. Our proposed approach 
difers from theirs in that we do not require our fea-
tures to be grouped into distinct categories, such as 
root and low level attributes. 

Anchor Points for Addressing Label Noise 
Another related setting in past work uses anchor 
points. Anchor points are subsets of the data where 
the ground truth labels are known (Liu and Tao, 
2015). To date, anchor points are generally used to 
learn a transition function (Xia et al., 2019, 2020; 
Berthon et al., 2021) or for label correction directly 
(Wu et al., 2021). We use a similar concept, align-
ment points, to 1) pre-train the model, and 2) pre-
dict label correctness. The frst part builds from 
work in semi-supervised learning (Cascante-Bonilla 
et al., 2021), which has shown improvements from 
pre-training on labeled data. The second part is sim-
ilar to a transition function, but difers in that we 
use the correctness predictions to re-weight the loss 
rather than adjust the predictions. We also assume 
that, for some alignment points, the ground truth 
and observed labels do not match. Generally, anchor-
based approaches mitigate model bias by implicitly 
assuming that the anchor points are representative of 
the target population. Our approach also uses this as-
sumption, but we empirically explore how model per-
formance changes when the anchor points are biased 
(i.e., not representative), since it may be easier to 
obtain correct labels for specifc subgroups Spector-
Bagdady et al. (2021). 

6. Conclusion 

We introduce a novel approach for learning with 
instance-dependent label noise. Our two-stage ap-
proach uses the complete dataset and learns the rela-
tionship between the features and label noise using a 
small set of alignment points. On several datasets, we 
show that the proposed approach leads to improve-
ments over state-of-the-art baselines in maintaining 
discriminative performance and mitigating bias. Our 
approach is not without limitations. We demon-
strated that the success of the approach depends, in 
part, on the representativeness in the alignment set. 
Our experiments were also on pseudo-synthetic data 
in which we injected noise; this assumes we start from 
a noise free dataset. Finally, we only examined one 
form of bias in a specifc case of instance-dependent 

label noise. Nonetheless, our case frequently arises 
in healthcare, especially when pragmatic (e.g., auto-
mated) labeling tools are used on large datasets, and 
chart review on the entire dataset is infeasible. 
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Appendix A. Proposed Approach: 
Additional Details 

We provide additional details on our approach, in-
cluding a general overview in the form of pseudocode 
as well as a justifcation for the proposed objective 
function and its relation to the clean label loss. 

A.1. General Overview 

We summarize our approach with pseudocode below 
in Algorithm 1. We begin with the dataset and ini-
tial model parameters, and we aim to use the dataset 
to learn the fnal model parameters. A is the set of 
anchor points. θ ′ and ϕ ′ are the initial model pa-
rameters for the θ and ϕ networks. Here, ’stopping 
criteria’ may refer to any stopping criteria, such as 
early stopping. The Freeze() function takes as in-
put model parameters and freezes them, and the Un-
freeze() function takes as input model parameters and 
unfreezes them. 

A.2. Proposed and Clean Label Loss 

We show that minimizing the proposed loss L ′ fromθ 
Step 2 of the proposed method is equal to minimizing 
cross entropy on the clean labels in expectation. 

g cX X X−1 1 L ′ = θ |A| 1 − r̂k
k=1 j=1i∈A∩Gk� � � � 

ˆ(i) (i) (i)
βϕ I ỹ  == j log ŷj 

Therefore,   
g c � � � �X X X1 (i) (i) (i)E  β̂  I ỹ  == j log ŷ   

ϕ j1 − r̂k
k=1 j=1i∈A∩Gk 

g cX X X h � � � �i 
(i) (i)

=
1 

E β̂  I ỹ(i) == j log ŷϕ j1 − r̂k
k=1 j=1i∈A∩Gk 

g cX X 1 X � � � � 
(i) (i)

= (1 − r̂k)I y == j log ŷj1 − r̂k
k=1 j=1i∈A∩Gk 

g c � � � �X X X 
(i) (i)

= I y == j log ŷj 
k=1 j=1i∈A∩Gk 

As a reminder, each group Gk is then associated P
1 (i)

with estimated noise rate r̂k = 1 − β̂  
|gk | i∈Gk ϕ 

and estimated clean (i.e., correct) rate 1 − r̂k = 

Algorithm 1: Proposed approach. 
(i) (i) (i)Input: {x , ỹ  , y(i)}i∈A, {x , ỹ(i)}i/∈A, θ ′ , ϕ ′ 

Output: θ, ϕ (fnal model parameters) 
Hyperparameters: Scalars α1, α2, γ 

(i) (i) (i)Train ({x , ỹ  , y(i)}i∈A, {x , ỹ(i)}i/∈A, θ ′ , ϕ ′ ) 

1. While ¬(stopping criteria) (Step 1) 

(a) ŷ = θ ′ (x) (Predict label) 

(b) β̂  
ϕ = ϕ ′ (x, ỹ) (Predict label confdence)� �P P � � c (i)−1 (i)(c) Lθ = I y == j log ŷ|A| i∈A j=1 j� �P � � −1 (i) (i) (i)

(d) Lϕ = |A| i∈A I ỹ  == y log β̂  
ϕ + � �� � 

(i) (i)I ỹ  ̸= y log 1 − β̂(i) 
ϕ 

(e) Loss = Lθ + α1Lϕ 

(f) Update model parameters 
(g) Compute stopping criteria 

2. θ, ϕ ← θ ′ , ϕ ′ 

3. Freeze(ϕ) 

4. While ¬(stopping criteria) (Step 2) 

(a) ŷ = θ ′ (x) 

(b) β̂ϕ = ϕ ′ (x, ỹ) P−1 Pc � 
(c) Lθ = I y(i) 

|A| i∈A j=1 P �−1 (i)(d) Lϕ = I ỹ  == y|A| i∈A � �� � 
(i) (i)I ỹ  ̸= y log 1 − β̂(i) 

ϕ PG P−1 1(e) L ′ = θ k=1 

� �� (i)
== j log ŷj� �� (i)(i) ˆlog β +ϕ 

Pc 
|A| 1−r̂k � i∈A�∩gk j=1 � �

ˆ(i) (i) (i)
βϕ I ỹ  == j log ŷj (Weighted loss) 

(f) If ϕ is frozen (Step 2a) 
i. Loss = Lθ′ + γLθ 

ii. Unfreeze(ϕ) 
iii. Freeze(θ) 

(g) Else (Step 2b) 
i. Loss = Lθ′ + α2Lϕ 

ii. Unfreeze(θ) 
iii. Freeze(ϕ) 

(h) Update model parameters 
(i) Compute stopping criteria 

5. Return θ, ϕ (Final model parameters) 
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P
1 (i)

β̂ . We can express the noise and clean|Gk | i∈Gk ϕ 
(i)

rates in terms of β̂  sinceϕ 

1 X � � 
(i) (i)1 − rk = I ỹ  == y

|Gk| 
i∈Gk 

= P (y == ỹ|y,̃ x) for a random instance in Gk X1 (i) (i)(i)|˜ (i))= P (y == ỹ  y , x 
|Gk| 

i∈Gk 

where rk and 1 − rk are the actual noise and clean 
rates within group k, respectively. Therefore, since 
β̂ϕ is trained to predict P (y == ỹ|y,̃ x), we estimate 
the noise and clean rates using β̂  

ϕ. 

Appendix B. Preprocessing Details 
Here, we provide more detail on our synthetic data 
generation process and real dataset pre-processing. 

B.1. Synthetic 

Our data generation process is as described below. 
Note that the P ercentile(p, {z}) function outputs the 
thp percentile over all values in {z}. We defned 

the feature at index 0 to be a synthetic sensitive at-
tribute. Instances with values below the 20th per-
centile for this feature were considered as the ‘mi-
nority’, and the rest were considered as the ‘major-
ity’. Features 10-19 for the majority instances and 
features 20-29 for the minority instances were set to 
0 to provide more contrast between the two groups. 
For individual i, 

d = 30, x(i) ∼ N(0, 1)30 

(i) (i)w ∼ N(0, 1)30 , z = x · w 
(i) (j)}5000 y = 1 ifz(i) > P ercentile(50, {z j=1 ) else 0 
(i)

x = 0 forȷ = 10, 11, ..., 19j 
(i) (j)}5000if x0 > P ercentile(20, {x0 j=1 ) 

(i)
x = 0 forȷ = 20, 21, ..., 29j 

(i) (j)}5000if x0 < P ercentile(20, {x0 j=1 ) 

B.2. MIMIC-III 

Data were processed using the FlexIble Data Driven 
pipeLinE (FIDDLE), [(Tang et al., 2020)], a pub-
licly available pre-processing tool for electronic health 
record data. We used the same features as [(Tang 

et al., 2020)] for our tasks. More information can be 
found at https://physionet.org/content/mimic-eicu-
fddle-feature/1.0.0/. 

B.3. Adult 

Although, we used a pre-processed version of this 
dataset, we omitted features pertaining to education, 
work type, and work sector to make the task more dif-
fcult. More specifcally, in the fle ‘headers.txt’ at the 
repository mentioned in Footnote 1, we kept all fea-
tures beginning with ‘age’, ‘workclass’, ‘education’, 
‘marital status’, and ‘occupation’. We also kept the 
‘Sex Female’ feature. The remaining features were 
excluded to make the task more difcult. Values were 
normalized for each feature to have a range of 0-1 by 
subtracting by the minimum value observed among 
all individuals and dividing by the range. During 
training, we only used 1,000 randomly selected indi-
viduals from the provided dataset to make the task 
more difcult, since there would be fewer samples 
from which to learn. We made the task more difcult 
for this dataset to further highlight the diferences in 
performance between the approaches. 

B.4. COMPAS 

Although, we used a pre-processed version of this 
dataset, we omitted the feature ‘score factor’ (i.e., the 
risk score for recidivism from the ProPublica model) 
to make the task more difcult. Values were nor-
malized for each feature to have a range of 0-1 by 
subtracting by the minimum value observed among 
all individuals and dividing by the range. 

Appendix C. Additional Network and 
Training Details 

Here, our ranges of hyperparameters and implemen-
tation choices for the proposed network. All networks 
were trained on Intel(R) Xeon(R) CPUs, E7-4850 v3 
@ 2.20GHz and Nvidia GeForce GTX 1080 GPUs. 
All layers were initialized with He initialization from 
a uniform distribution. We divide our training data 
into fve batches during training. All random seeds 
(for Pytorch, numpy, and Python’s random) were ini-
tialized with 123456789. 

C.1. Hyperparameter Values Considered 

Here, we show the range of values we considered for 
our random search. More details are provided in Ta-
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Table 2: For each dataset, we list the range of hyperparameters considered for each dataset. For each 
hyperparameter, the lower bound is shown in the top row, and the upper bound is shown in the 
bottom row. For hyperparameters we did not tune, only one row is shown. 

Hyperparameter Synthetic MIMIC-ARF MIMIC-Shock Adult COMPAS 
Layer Size 10 500 500 100 10 

Learning Rate 0.00001 0.00001 0.000001 0.00001 0.0001 
0.01 0.001 0.001 0.01 0.05 

L2 Constant 0.0001 0.000001 0.0001 0.0001 0.0001 
0.1 0.01 0.1 0.1 0.01 

Filter Threshold 0.40 0.50 0.50 0.50 0.50 
1.00 1.00 1.00 0.90 0.90 

Noise Added 0.00001 0.00001 0.00001 0.0001 0.0001 
0.01 0.001 0.001 0.001 0.01 

Number of Parts 1 1 1 1 1 
10 10 10 10 10 

αGP L 0.01 0.1 0.001 0.01 0.01 
1.0 1.0 1.0 1.0 1.0 

α1P roposed 0.1 0.1 0.01 0.1 0.01 
10.0 10.0 10.0 10.0 10.0 

γP roposed 0.1 0.1 0.01 0.1 0.01 
10.0 10.0 10.0 10.0 10.0 

α2P roposed 0.1 0.1 0.01 0.1 0.01 
10.0 10.0 10.0 10.0 10.0 

ble 2. For any hyperparameters associated with the C.2. Network Details 
Adam optimizer not mentioned above, we used the 
default values. Not all hyperparameters were used 
with each approach. ‘Filter Threshold’ and ‘Noise 
Added’ were only used with the baseline SLN + Fil-
ter. Here, Filter Threshold refers to the minimum 
value of the predicted probability of the observed 
label for an instance to be considered ‘correctly la-
beled’. For example, if Filter Threshold=0.5, then 
all examples whose predicted probability for the ob-
served label is at least 0.5 are considered ‘correct’ 
and used during training. ‘Number of Parts’ was 
only used with the baseline Transition. ‘αGP L ’ was 
only used with the baseline Fair GPL. ‘α1P roposed’, 
‘α2P roposed’, and ‘γP roposed ’ was only used with the 
proposed method. Here, ‘α1P roposed ’ and ‘α2P roposed ’ 
correspond to the terms α1 and α2 that were used in 
the objective functions. We refer to them with the 
added term ‘Proposed’ in the subscript in this sec-
tion to distinguish it from the α value used by the 
baseline Fair GPL. 

For the overall architecture, we used a feed forward 
network with two hidden layers. The auxiliary β pre-
diction component was also implemented with two 
feed forward layers. All layer sizes are as described 
in Table 2. In addition, we used the ReLU activa-
tion function. The complete implementation can be 
found in the attached code. 

Appendix D. Expanded Results 
Here, we describe additional results that were not 
included in the main text. We begin with followup 
experiments on the synthetic data and then describes 
results from the real data. 

D.1. Robustness to Noise Rate Expanded 

Here we include the AUROC and AUEOC plotted 
separately for the experiments where we varied the 
overall noise rate and noise disparity. 
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(a) Discriminative Performance. (a) Discriminative Performance. 

(b) Bias Mitigation 

Figure 4: Robustness to overall noise rate: break-
down of (a) discriminative performance 
and (b) bias mitigation. Mean and stan-
dard deviation for 10 random seeds. 

As we varied the overall noise rate (Figure 4), the 
proposed approach is able to consistently outperform 
the baselines with respect to discriminative perfor-
mance until a minority noise rate of 80%. This ob-
servation is similar to what we observed with the HM. 
With respect to bias mitigation, the proposed ap-
proach is not more benefcial than the baselines up to 
a minority noise rate of 60%. At a minority noise rate 
above 60%, our approach experienced the least degra-
dation compared to the baseline approaches. This is 
in line with our expectations since our approach ex-
plicitly accounts for diferences in noise rates among 
groups during training. 

(b) Bias Mitigation 

Figure 5: Robustness to the noise disparity: break-
down of (a) discriminative performance 
and (b) bias mitigation. Mean and stan-
dard deviation for 10 random seeds. 

As we varied the noise disparity (Figure 5), we 
have similar observations to the previous experiment 
in that the proposed approach is able to consistently 
outperform the baselines with respect to discrimina-
tive performance until a minority noise rate of 80%. 
With respect to bias mitigation, the proposed ap-
proach is not more benefcial than the baselines up to 
a minority noise rate of 40%. At a minority noise rate 
above 40%, our approach experienced the least degra-
dation compared to most of the other baseline ap-
proaches and was comparable to the Transition base-
line. Unlike the previous experiment, the degradation 
in AUEOC among many of the baseline approaches is 
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larger, which is in line with our expectations since we 
were directly changing the diference in noise rates be-
tween the groups while the previous experiment kept 
the diference constant. 

Figure 6: Ablation study of proposed approach. 

D.2. Ablation Study 

We also examined our approach more closely by con-
ducting an ablation study and a hyperparameter sen-
sitivity analysis on the synthetic data. We used the 
synthetic dataset since our noise was synthetically in-
troduced and not dataset specifc. In our ablation 
study (Figure 6), we began with training on only the 
alignment points (i.e., Step 1 only), which achieved 
the worst performance. We then introduced Step 2 
and added the remaining training data (i.e., non-
alignment points) but only trained using Lθ′ . This 
led to an improvement in performance, but not to 
the level of the full approach. The next two ablations 
build on the previous one. In the frst one, we added 
continued supervision on the alignment points with 
Lθ, and observed an improvement in performance, 
likely due to the retention of high quality data in this 
step. In the second one, we added continued supervi-
sion on the alignment points using Lϕ, and observed 
an even larger improvement. This is likely because 
including Lθ prevented the model from learning a so-
lution where β̂  was small for all instances, as previ-
ously discussed. Finally, we end with our full pro-
posed approach, which performed noticeably better 
than each of the ablations, showing the importance 
of each component. 

D.3. Hyperparameter Sensitivity Analysis 

In our sensitivity analysis on the synthetic data 
(Figure 7), we tested how performance of the (full) 
proposed approach varied to changes in the hyper-
parameters α1, α2, and γ. For each of these hy-
perparameters, we measured performance at values 
between 0.01 and 100 on a logarithmic scale while 
keeping the other two values constant at 1. We found 
that α1 and γ were the most robust to changes in the 
value. We found that α2 was more sensitive, with 
values between 0.1 and 10 generally working best. 

D.4. Sensitivity to Alignment Set 
Composition Expanded 

In our analysis on sensitivity to alignment set com-
position, we include results for the other baselines in 
(Figure 8). At alignment set sizes of below 5% on 
the real datasets, the proposed approach was bene-
fcial to the baselines. At larger alignment set sizes, 
the baseline Transition was able to match the pro-
posed method due to the increased amount of clean 
data. When the alignment set was biased, the pro-
posed approach outperformed the baselines in the un-
biased settings and was competitive as bias in the 
alignment set increased. 
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(a) We varied α1. (b) We varied α2. (c) We varied γ. 

Figure 7: Sensitivity analysis of proposed approach on objective function hyperparameters. 

(a) As we decrease the alignment set size (proportion of training data) performance decreases. Still, at an 
alignment set size of 5%, the proposed approach generally outperforms the baselines. 

(b) As we vary the alignment set bias (proportion of minority instances) performance varies. The proposed 
approach is generally robust to changes in the bias of the alignment set. The dashed vertical black line 
shows the proportion at which the minority group occurs in the dataset (i.e., an unbiased alignment set). 

Figure 8: Robustness to varying alignment sets. Mean and standard deviation for 10 random seeds. 
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