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Abstract
We study stable trace ideals in one dimensional local Cohen–Macaulay rings and give numer-
ous applications.

1 Introduction

Let R be a one dimensional Cohen–Macaulay local ring. Let I be an ideal of height one in R.
Recall that I is called stable if I ∼= EndR(I ) as R-modules. Recall that the trace of a module
M is tr M = ∑

f ∈HomR(M,R) Im( f ). I is called a trace ideal if it is tr M for some module M ,
equivalently, if I = tr I . Stable ideals can be thought of as ideals with simplest blow-ups, and
Lipman exploited their nice properties in his seminal work on Arf rings, see [15, Sections 1
and 2] for details. Trace ideals have long been useful technical tools in commutative algebra,
but recently they have attracted new attention as interesting objects in their own right, see
[6–8, 14].

In this paper, we study stable trace ideals in detail. Our motivation comes from many
sources. First, via endomorphism rings, they are in a one-to-one correspondence with the set
of finite birational extensions of R that are self-dual as R-modules. Throughout the paper,
a self-dual module M means HomR(M, R) ∼= M . These birational extensions play a key
role in studying reflexive modules over R, see [3]. If the integral closure of R is finite, then
its conductor is always a stable trace ideal. Second, a key result in [14] on modules whose
endomorphism ring has Gorenstein center can be viewed as a statement about modules whose
trace ideal is stable, and our collaboration started from this insight.

We soon realize that stable trace ideals satisfy even more delightful properties in general,
and they seem to hold the key to understand reflexive modules, trace ideals and integrally
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closed ideals in general. We hope that our work will serve as a starting point for more studies
in these directions.

We now describe the key results and organization of our paper. After a preliminary section,
we focus on basic properties of stable and stable trace ideals in Sect. 3. We shall focus on
regular ideals, those that contain a regular element. We prove that if either I or the trace of
I , tr I is stable, then tr I is isomorphic to I ∗ = HomR(I , R), the R-dual of I .

In Sect. 4, we point out the connections between stable ideals and reflexive ideals. For
instance, if tr I is stable, then I is reflexive if and only I ∼= I ∗ if and only if I ∼= tr I . We
also give a characterization for when tr I ∼= I ∗ using the conductor of the birational blow-up
ring of I .

Next we establish two key theorems in Sect. 5. The first one says that if M is a module
whose trace I = tr M is stable and regular, then I is a direct summand of a direct sum of the
dual M∗. Thus, if Krull-Schmidt holds, then I is a direct summand of M∗. If furthermore
M is reflexive, then I must be a summand of M . The second theorem says that if I , J and
I ∩ J are stable trace ideals, then HomR(I , J ) ∼= HomR(J , I ) ∼= I ∩ J ∼= tr (I J ). This
result generalizes the well-known fact that if I is a stable trace ideal, then HomR(I , I ) ∼=
I ∼= I 2 ∼= I ∗.

In Sect. 6 we study the connections between stable trace ideals and integrally closed ideals.
Fix a regular integrally closed ideal J and consider the set T (J ) of ideals I whose integral
closure is J . The key result here states that among T (J ), the stable ones must be minimal
with respect to inclusion. The concept of T (J ) seems to be interesting in its own right, and it
clearly plays in important role in understand the abundance (or lack thereof) of trace ideals.
We are able to compute it in several examples.

The last two sections give some brief applications of the theory in some currently active
topics. For instance, in Sect. 7 we give a new characterization of Arf rings: they are the ones
where any regular trace ideal is stable. Furthermore, over a complete reduced Arf ring, any
reflexivemodules with a rank decompose into direct sum of stable trace ideals. Finally, Sect. 8
focuses on classes rings defined by the trace of canonical ideals. For instance, we give an
alternative proof of a result in [8] that when R has minimal multiplicity, the properties of
being almost Gorenstein and nearly Gorenstein are equivalent. We also recover a result in [9]
that characterizes canonical ideals whose trace equals the conductor.

2 Preliminaries

In this section we recall some basic notions and results needed for subsequent sections.
Throughout R is a commutative Noetherian ring. We write Q(R) for the total quotient

ring of R. Given an R-module M and an ideal I we write M∗ for HomR(M, R), I−1 for the
set {x ∈ Q(R) | x I ⊆ R} and Ī for the integral closure of I .

Definition 2.1 The trace map on M is the homomorphism τM : M ⊗ M∗ −→ R given by
m ⊗ α 	→ α(m). The trace ideal of M , denoted tr(M), is the image of τM in R. We say
an ideal I of R is trace (or is a trace ideal) provided there exists an R-module M such that
I = tr(M).

Remark 2.2 Note that if M ∼= N as R-modules then tr M = tr N .

Lemma 2.3 If I is a trace ideal then the following hold true

(1) tr(I ) = I
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(2) The inclusion I ⊆ R induces the identification I ∗ = EndR(I ).

Proof c.f. [14, Proposition 2.8]. 
�
The following lemma is well-known; see, for example, [13, Proposition 4.14] for a sim-

ilar result to Lemma 2.4 in slightly different language. We provide proofs for the sake of
completion.

Lemma 2.4 Let S be a ring such that R ⊆ S ⊂ Q(R). Suppose M and N are S-modules. If
N is torsionfree S-module, then

HomR(M, N ) = HomS(M, N ).

Proof Since R ⊆ S all S-linear homomorphisms are R-linear and HomS(M, N ) ⊆
HomR(M, N ). Given any α ∈ HomR(M, N ), m ∈M, and

a

b
∈ S note that

b
[a

b
α(m) − α

(a

b
m

)]
= 0.

Since b is a nonzerdivisor and N is torsionfree we conclude that
a

b
α(m) − α

(a

b
m

)
= 0

and therefore α is S-linear. 
�

3 Stable trace ideals in dimension one

Throughout this section we assume (R,m) is a local Cohen–Macaulay ring of dimension
one. Recall that an ideal I is regular if it contains a nonzerodivisor. The blow-up ring of
I in R is defined as BR(I ) := ∪n>0 I n :Q(R) I n . Such a regular ideal I is called stable if
BR(I ) = I :Q(R) I ([15, Definition 1.3]). Let b(I ) denote the trace of BR(I ).

In what follows we write Z(EndR(I )) for the center of the endomorphism ring of an ideal
I . For a regular ideal I , we identify the modules I ∗ := HomR(I , R) and I−1 := {x ∈
Q(R) | x I ⊆ R} as subsets of Q(R).

Lemma 3.1 Let I and J be regular ideals in R. If J ∼= I then EndR(I ) = EndR(J ) in Q(R).

Proof Because these ideals are regular, J ∼= I implies J = x I for some x ∈ Q(R). For any
y ∈ EndR(I ),

y J = yx I = xy I ⊆ x I = J .

We have shown that EndR(I ) ⊆ EndR(J ). A symmetric argument proves the other contain-
ment. 
�

The following is largely known, but for lack of convenient references we provide proofs.

Proposition 3.2 Let I be a regular ideal. The following are equivalent:

(1) I is stable.
(2) I ∼= EndR(I ).
(3) I 2 = x I for some regular x ∈ I .
(4) I ∼= I 2.

123



H. Dao, H. Lindo

Proof Let S = I :Q(R) I . Clearly S ∼= EndR(I ). Since I is an ideal of S and S-isomorphisms
are R-isomorphisms between the two (Lemma2.4), (2) is equivalent to I = xS for some
x ∈ S. Note that such x must be in I and regular. If I = xS, then I 2 = x2S2 = x2S = x I , so

(2) implies (3). Assume (3), then I 2
x = I , thus I

x ⊂ S. But clearly S ⊂ I
x , hence S = I

x
∼= I ,

and we established the equivalence of (2) and (3). Finally (3) implies (4), and if (4) holds
then I n ∼= I for any n, thus BR(I ) = S by Lemma3.1. The equivalence of (1) and (3) is [15,
Lemma 1.11]. 
�

The next result collects the main characterizations of stable trace ideals.

Proposition 3.3 Let I be a regular trace ideal. The following are equivalent:

(1) I 2 = x I for some regular element x ∈ I .
(2) I 2 ⊂ (x) for some regular element x ∈ I .
(3) I = (x) : I for some regular element x ∈ I .
(4) I ∼= I ∗.
(5) I ∼= EndR(I ).
(6) I ∼= I 2.
(7) I is stable.

Proof The equivalence of (1), (5), (6), (7) is Proposition3.2. (1) �⇒ (2) is clear.
(2) �⇒ (3): if I 2 ⊆ (x), note that

I ⊂ (x) : I = x I−1 ⊆ I I−1 = tr(I ) = I .

The claim follows.
(3) �⇒ (4): Note I = (x) : I = x I−1 = x I ∗ ∼= I ∗.
(4) �⇒ (5): This follows from the assumption that I is regular and trace which implies

an equality in Q(R) between I ∗ and EndR(I ). 
�
Remark 3.4 If I in Proposition 3.3 has a principal reduction, by [5, Proposition 4.5] we may
take (x) in the proposition to be that reduction. The assumption that an ideal has a principal
reduction is a mild one. For example, it is true for all ideals whenever R has an infinite residue
field; see [10, 8.3.7, 5.1.6].

Lemma 3.5 If A ⊆ J is a reduction of a regular ideal J then AJ ∗ is a reduction of tr(J ) and
there exists an n such that A tr(J )n = J tr(J )n.

Proof Note, AJ ∗ ⊆ J J ∗ = tr(J ).As a reduction, there exists some n such that AJn = Jn+1.
Then in Q(R)

AJ ∗ tr(J )n = AJ ∗ Jn(J ∗)n = Jn+1(J ∗)n+1 = tr(J )n+1.

Also,

A tr(J )n = AJn(J ∗)n = Jn+1(J ∗)n = J tr(J )n .


�
Remark 3.6 By this lemma, when J has a principal reduction, we have J ∗ tr(J )n ∼= tr(J )n+1

for some n. Proposition 3.8 below is concerned with the case n = 0. It considers results of
the kind obtained in Proposition 3.3 in the case where an ideal I is stable but not necessarily
a trace ideal.
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Lemma 3.7 ([5, Lemma 3.6]) Suppose that I is a regular ideal and x ∈ I be a non zero
divisor. Then tr(I ) = I ((x) :R I ) :R x. 
�
Proposition 3.8 Let J be an regular ideal with a principal reduction (x) and let I = tr(J ).
Consider the following:

(1) I ∼= I 2.
(2) I = (x) : J .
(3) I ∼= (x) : J .
(4) I ∼= J ∗.

Then (1) �⇒ (2) ⇐⇒ (3) ⇐⇒ (4).

Proof Clearly (3) and (4) are equivalent and (2) implies both. Assume (4). Let J ′ = (x) :
J ∼= J ∗. Then by Lemma 3.7 J J ′ = x I ∼= I ∼= J ′. Since J has a principal reduction and
J ′ is MCM (since it is a dual over a one-dimensional ring), by [5, Prop 4.5] and Lemma3.7,
x I = J J ′ = x J ′, thus I = J ′. Thus (4) implies (2).

(1) �⇒ (2): by Lemma3.5 there is n such that x I n = J I n . Since I is stable, it follows
that J

x ⊂ I n :Q(R) I n = I :Q(R) I . Thus J I = x I , hence I ⊂ x : J . But I ⊃ x : J by
Lemma3.7, so (2) holds. 
�
Example 3.9 The implication (4) �⇒ (1) does not hold even if R is a hypersurface. Let
R = k[[x, y]]/(x5 − y3) and J = (y, x4). Then (y) : J = m = tr(J ) but m � m2.

Proposition 3.10 Suppose I is a stable ideal. Then tr I ∼= I ∗ and tr I = x : I for any
principal reduction x of I .

Proof Let S = I :Q(R) I . Then I ∼= S, so tr I = tr S ∼= S∗ ∼= I ∗. The last assertion follows
from Proposition3.8. 
�

4 Stable trace ideals and reflexive ideals

In this section we investigate the relationship between stable trace and reflexive ideals. Con-
tinue to assume (R,m) is a local Cohen–Macaulay ring of dimension one. An R-module M
is called self-dual if M ∼= M∗. Evidently a self-dual module is reflexive.We start by recalling
a couple of results and definitions from [5].

Proposition 4.1 Any regular stable trace ideal is reflexive. There is a one-to-one correspon-
dence between the set of regular stable trace ideals of R and the set of birational extensions
S of R that are self-dual.

Proof A regular stable trace ideal is self-dual by Proposition3.3. The second statement is a
combination of [5, Lemma 2.8] and Proposition3.3. 
�
Definition 4.2 Assume I is a regular (fractional) ideal of R. Let b(I ) denote the conductor
of BR(I ).

Definition 4.3 LetM and N be R-modules.We sayM generates N is there exists a surjection

M (�) � N

for some index set �.
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Lemma 4.4 Let I and J be ideals. Then I generates I J .

Proof For each element j ∈ J wemay construct a family of homomorphisms α j : I −→ I J
given by i 	→ i j . The product of these homomorphisms is a surjective map

∏

j∈J

α j :
∏

j∈J

I −→ I J .


�
Remark 4.5 It follows from Lemma 4.4 that I generates I n for all n > 0. Note, when J is
finitely generated by elements ji , . . . , jn then

∏
j∈J α j may be replaced by

∏n
k=1 α jk in the

proof of Lemma 4.4.

Proposition 4.6 Let I , J be regular ideals. We have:

(1) It always holds that b(I ) ⊆ tr I .
(2) If J ∼= I J then tr J ⊆ b(I ). The converse holds if J is reflexive.

Proof We have b(I ) = tr BR(I ) = tr I n for some large enough n (as I n is eventually stable
and so BR(I ) ∼= I n). But as I generates I n by Proposition4.5, tr I ⊇ tr I n . For (2), I J ∼= J
means J is I -Ulrich in the sense of [5], and the assertions follows from [5, Corollary 4.11].
�
Proposition 4.7 Let I be a regular ideal. The following are equivalent:

(1) b(I ) = tr I .
(2) tr I ∼= I ∗.
Proof Assume (1), to prove (2) we can make a faithfully flat extension of R to assume that
I has a principal reduction x . Then as we always have b(I ) ⊂ x : I ⊂ tr I , see [5, 4.20],
(1) forces tr I = x : I ∼= I ∗. Assume (2). Then as tr I ∼= I I ∗ we have tr I ∼= I tr I , so
tr I ⊂ b(I ), and thus equality holds by Proposition4.6. 
�
Proposition 4.8 Assume that I is a regular reflexive ideal. The following are equivalent:

(1) I is stable.
(2) b(I ) = tr I .
(3) tr I ∼= I ∗.
Proof I is stable is the same as I ∼= I 2, which since I is reflexive, is equivalent to tr I = b(I )
by Proposition4.6. 
�

The next results identify reflexive ideals whose trace ideals are stable.

Proposition 4.9 Assume that tr I is stable. The following are equivalent:

(1) I is reflexive.
(2) I ∼= tr I .
(3) I ∼= I ∗.
In particular, if I is reflexive and tr I is stable than so is I .

Proof Since tr I is stable we have tr I ∼= I ∗ by Proposition3.8, so (2) �⇒ (3) immediately.
If I is reflexive, then as tr I = b(tr I ), by Proposition4.6 we get that I ∼= I tr I ∼= I I ∗ ∼= tr I .
Thus (1) �⇒ (2). Finally, (3) �⇒ (1) is clear. 
�
Corollary 4.10 Let I a regular reflexive ideal. The following are equivalent:

(1) tr I is stable.
(2) I is stable and self-dual.

Proof If tr I is stable, then I is stable and self-dual by Proposition4.9. If I is stable, then
tr I ∼= I ∗ ∼= I by Proposition3.10, thus tr I is stable. 
�
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5 Two theorems on stable trace ideals

The following extends our findings for stable trace ideals. It plays a crucial role for classifying
reflexive modules over Arf rings later.

Theorem 5.1 Let M be an R-module and suppose tr(M) = I is regular and stable. Then
I = tr Z(End(M∗)), I = tr(M∗) and I ∈ add(M∗), that is, I is a summand of a direct sum
of copies of M∗.

Proof Let S = Z(End(M∗)). Then S = End(I ) = I ∗ as a subset of Q(R); see [14, Propo-
sition 2.8, Corollary 3.24].

Since M∗ generates M ⊗R M∗ which generates tr(M) we have I = tr(M) ⊂ tr(M∗).
Also, since M∗ is an S-module, S generates M∗ and tr(M∗) ⊂ tr(S). By assumption I is
stable and trace, that is I ∼= I ∗ = S, thus tr(S) = tr(I ∗) = tr I = I . Altogether

I ⊆ tr(M∗) ⊆ tr(S) = I .

From this we know M∗ generates I . Because I is stable, I ∼= S, and it follows that a direct
sum of copies of the S-module M∗ surjects onto S. Since S is a torsionfree R-module, this
surjection is also S-linear. It follows that I ∼= S ∈ add(M∗). 
�

Next, we study homomorphismmodules of stable trace ideals.We start with some prepara-
tory results.

Lemma 5.2 Let I , J be ideals. Then HomR(I , J ) = HomR(I , tr(I ) ∩ J ).

Proof Any map from I to R must have its image in tr(I ). If follows that any map from I to
J must land in tr(I ) ∩ J . 
�
Proposition 5.3 Suppose that I , J are stable ideals. Then

tr (I J ) ∼= HomR(I , tr J )

Proof The natural surjection I ⊗ J → I J , given by i ⊗ j 	→ i j , is an isomorphism at
minimal primes and therefore has a kernel of finite length. Applying Hom(−, R) and then
using hom-tensor adjointness and the fact that tr J ∼= J ∗ (see Proposition3.10) we get that

(I J )∗ ∼= HomR(I ⊗ J , R) ∼= HomR(I , J ∗) ∼= HomR(I , tr J ).

Since I and J are stable, their product I J ∼= I 2 J 2 = (I J )2 is also stable, thus we are done.
�
Theorem 5.4 Suppose that I , J , are stable trace ideals. Then

HomR(I , J ) ∼= HomR(J , I ) ∼= tr (I J )

If I ∩ J is also a stable trace ideal then

tr (I J ) ∼= I ∩ J .

Proof The first assertion follows from Proposition5.3. For the second one, let L = I ∩ J ,
then applying Lemma5.2 and Proposition5.3 we get:

tr (I J ) ∼= Hom(I , J ) ∼= Hom(I , L) ∼= Hom(L, I ) ∼= Hom(L, L ∩ I ) = Hom(L, L) ∼= L


�
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6 The set of regular trace ideals with the same integral closure

In this section we explore the interaction between trace ideals and their integral closures.

Lemma 6.1 Let J be an ideal and φ ∈ J ∗. Then φn is defined on Jn. In particular, for x ∈ J

φn(xn) = (φ(x))n .

Proof Let J ⊆ R be any ideal with φ ∈ J ∗. For ai ∈ J by R-linearlity

φ(a1) · φ(a2) = φ(φ(a1) · a2) = φ(φ(a1 · a2)) = φ2(a1a2).

By induction φ(a1) · · · φ(an) = φn(a1 · · · an) for all n ≥ 1. Indeed,

φ(a1) · · · φ(ak) = φk−1(a1 · · · ak−1) · φ(ak)

= φk−1(φ(ak)a1 · · · ak−1)

= φk−1(φ(a1 · · · ak−1ak))

= φk(a1 · · · ak).
It follows that φn(xn) = (φ(x))n for any x ∈ J and n ≥ 1. 
�
Theorem 6.2 If I is a trace ideal then so is Ī .

Proof Suppose I is a trace ideal and x ∈ Ī such that

xn + a1x
n−1 + · · · + an−1x + an = 0

for some n ≥ 0 and ai ∈ I i . Let ψ ∈ ( Ī )∗. Note that since xn− j is in the domain of ψn− j

by Lemma 6.1 and a j is in the domain of ψn ∈ EndR(I ) for all n ≥ 0 because I is trace and
so (ψ |I )n ∈ I ∗ = EndR(I ). For any n ≥ 1 we have

ψn(a j x
n− j ) = ψ j (ψn− j (a j xn− j ))

= ψ j (a j · ψn− j (xn− j ))

= ψ j (a j )ψ
n− j (xn− j )

= ψ j (a j ) · (ψ(x))n− j

where the final equality follows from Lemma 6.1. We may write a j = b1 · · · b j with bi ∈ I
and observe that

ψ j (a j ) = ψ j (b1 · · · b j ) = b1 · · · b j−1ψ
j (b j ) ∈ I j .

By the above

(ψ(x))n = ψn(xn)

= ψn(−(a1x
n−1 + · · · + an−1x + an))

= −
n∑

j=1

ψ j (a j ) · (ψ(x))n− j

It follows that ψ(x) ∈ Ī and Ī is a trace ideal. 
�
Lemma 6.3 If I is a regular trace ideal with a principal reduction (x) and J is another trace
ideal with I ⊂ J ⊂ Ī . If J is stable, then I = J .
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Proof Let (x) be a principal reduction of I . Then (x) is also a principal reduction of J which
is stable by assumption and therefore x J = J 2; see [5, Proposition 4.5] .

It follows that I 2 ⊆ J 2 ⊆ (x), so by Proposition Lemma3.3 I 2 = x I . Now again by
Lemma3.3, I = (x) : I ⊃ (x) : J = J , so I = J . 
�
Corollary 6.4 If I is a regular trace ideal with a principal reduction (x) and Ī is stable, then
I = Ī .

Next, we make the key definition of this section.

Definition 6.5 Let J be a regular integrally closed ideal. Let T (J ) denote the set of trace
ideals I such that Ī = J .

To keep things simple we assume:

Setup 6.6 Let R be a Cohen–Macaulay local ring of dimension one with the following prop-
erties: any regular ideal has a principal reduction and the integral closure R̄ of R is a finite
R-module. Let c be the conductor of R̄ in R. For instance, if R is a analytically unramified
ring with inifinite residue field then R satisfies these conditions.

Proposition 6.7 Let R as in Setup6.6. Let J be a regular integrally closed ideal. We have:

(1) T (J ) is non-empty if and only if J contains c.
(2) T (J ) = {J } if J is stable and contains c.
(3) Any stable ideal in T (J ) is minimal with respect to inclusion.
(4) The set of regular trace ideals of R is finite if and only if T (J ) is finite for each regular

integrally closed ideal J .

Proof Any regular trace ideal contains c, and if J ⊃ c, then J is a trace ideal, see [5, 3.5, 3.11].
Thus (1) follows. For (2) if J contains c then J ∈ T (J ) and T (J ) = {J } by Corollary6.4.
(3) is just another way to state Lemma6.3.

Lastly, T (J ) is non-empty only if J contains the conductor, but the set of integrally closed
ideals containing the conductor is finite, [5, 6.4], thus (4) follows. 
�

Proposition6.7 motivates the:

Question 6.8 When is T (J ) finite? When is T (J ) = {J }?
The following examples elucidate the concept of T (J ) and indicate why the answers to

Question6.8 might not be simple.

Example 6.9 Let R = C[[x, y]]/(xy(x − y)) with m = (x, y). The conductor is m2. Then
T (m) = {m}. Indeed any regular trace ideal I must contain the conductorm2, and if it is not
m then I = (m2, l) with some reduction l of m. As m3 ⊂ (l), we have that l : I = m. Thus
the trace of I contains m, see Lemma3.7, so I is not a trace ideal. Note that m is not stable,
hence T (J ) = {J } does not necessarily imply J is stable.

Example 6.10 Let R = C[[x, y]]/(xn − yn). Let l = x − ay, where a ∈ C such that an �= 1.
Then l is a reduction of m = (x, y). Any ideal containing l must be Is = (l, ys) for some
s ≤ n. Clearly l : Is = In−s and Is is a trace ideal if and only if s ≤ n/2. The smallest such
ideal is I�n/2�. It is stable if and only if n is even. Thus the minimal elements in T (J ) can be
infinite, and they might or might not be stable. When n ≥ 4 is even, this example also gives
a ring with infinitely many stable trace ideals.
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Example 6.11 Let R = C[[t4, t5, t6]]with Ia = (t4−at5, t6) for a ∈ C andm = (t4, t5, t6).
Then T (m) = {m} ∪ {Ia}a∈C, see [7, Example 3.4]. The minimal elements are Ia , each of
them is stable. Indeed, x = t4 − at5 is a minimal reduction of Ia . We just need to check

t12 ∈ x I . But t12/x = t8
1−at = t8(1+at+a2t2+...) ∈ I because for any s ≥ 8, t s ∈ m2 ⊂ I ,

as m2 is the conductor.

7 Applications to Arf rings

In [12], Kobayashi and Takahashi describe the rings for which every ideal is isomorphic to
a trace ideal. If R is a commutative Noetherian ring of depth one, for example, every ideal
is isomorphic to a trace ideal if and only if R is a hypersurface of Krull dimension one and
multiplicity at most two; see [12, Theorem 1.2]. Such a ring is an Arf ring; see definition
below. In this sectionwe study regular trace ideals overArf rings in generalwith repercussions
for candidates for test ideals for projective dimension and the structure of reflexive modules
over these rings. For instance, over Arf rings with infinite residue field any reflexive ideal
is isomorphic to it’s own trace, and this can be viewed an extension of the aforementioned
result of Kobayashi and Takahashi. We also point out several applications to rigidity of Tor
and structure of reflexive modules over Arf rings.

Definition 7.1 Let R be a 1-dimensional Cohen–Macaulay ring. R is called an Arf ring
provided every integrally closed regular ideal is stable.

Example 7.2 Indeed, any hypersurface ring ofmultiplicity less than or equal to 2 is an example
of an Arf ring. Such rings are two-generated rings, over which all ideals are stable; see [16,
Theorem 3.4]. For example, k[[x, y]]/(y2 − x3) is an Arf Ring.

Example 7.3 Let k be a field. Fix integers e ≥ 2, n ≥ 1. Let H be the numerical semigroup
generated by {e, ne+ 1, ne+ 2, ..., ne+ e − 1}. Then Re,n = k[[ta, a ∈ H ]] is an Arf local
domain with multiplicity e and embedding dimension n (see [3, Example 4.2]).

Theorem 7.4 Let R be a Cohen–Macaulay local ring of dimension one such that any regular
ideal has a principal reduction. The following are equivalent:

(1) R is Arf.
(2) Any regular trace ideal is stable.

Proof Assume R is Arf, and let I be a regular trace ideal. Then Ī is stable, which forces
I = Ī by Corollary6.4. Thus I is stable.

Assume (2). Let J be a regular integrally closed ideal and let I = tr(J ). Then I is stable, so
I ∼= J ∗ by Proposition3.8. Then as J is reflexive ([5, 3.11]), J ∼= I ∗ ∼= I by Proposition3.3.
As I is stable, so is J . Thus R is Arf by definition. 
�
Corollary 7.5 Let R be an Arf ring such that any regular ideal has a principal reduction.
Then any regular reflexive ideal is isomorphic to a trace ideal (necessarily it’s own trace).

Proof The result follows from Proposition4.9 and Theorem7.4. 
�
Proposition 7.6 Let R be an Arf ring such that any regular ideal has a principal reduction.
Then the set of regular trace ideals and integrally closed ideals containing the conductor
coincide. If R is finite then the set of regular trace ideals is finite.
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Proof If an ideal is integrally closed and contains the conductor it is a regular trace ideal;
see [5, 3.11]. By assumption, each regular trace ideal I has a principal reduction and since
R is an Arf ring, Ī is stable. By Lemma 6.3, I = Ī . 
�
Remark 7.7 The following gives an alternative proof to the key results in [3, 11].

Proposition 7.8 Let R be a complete Arf ring such that any regular ideal has a principal
reduction. Then any reflexive module is isomorphic to a direct sum of integrally closed ideals.

Proof Any reflexive module M is the direct sum of indecomposable reflexive summands,
each of which is the R-dual of some other module. By Proposition 3.5 and Krull–Remak–
Schmidt, M is therefore a direct sum of trace ideals. Because R is an Arf ring, Proposition7.6
implies these trace ideal summands are also stable and integrally closed. 
�
Corollary 7.9 Let R be an Arf ring such that any regular ideal has a principal reduction.
Then if M is reflexive and TorRt (M, N ) = 0 then pdR(N ) ≤ t .

Proof The result follows directly from Corollary 7.8 and [1, Theorem 2.10]; see also [2,
Corollary 3.3]. 
�
Corollary 7.10 For complete Arf domains there are only finitely many classes of indecom-
posable reflexive modules.

Proof The result follows from Proposition 7.8 and [5, 6.4]. 
�
Corollary 7.11 Let R be an Arf ring and I , J are integrally closed ideals containing the
conductor. Then

HomR(I , J ) ∼= HomR(J , I ) ∼= (I J )∗ ∼= tr (I J ) ∼= I ∩ J .

Proof By Proposition 7.6, the integrally closed ideals containing the conductors are precisely
the regular trace ideals of R. Since the intersection of integrally closed ideals is also integrally
closed, the ideals I , J and I ∩ J are all stable trace ideals. Thus we are done by Theorem5.4.
�

8 Applications to rings defined by trace of the canonical module

Recently, there have been a lot of activities around classes of rings defined by trace of the
canonical module, see [4, 8, 9]. We point out that many of the properties of such rings can be
recovered by our results. For instance, we recover a result in [8] showing when the classes of
almost Gorenstein rings and nearly Gorenstein rings coincide.We also prove a generalization
of the fact in [9] that the trace of a canonical ideal ω is equal to the conductor if and only if
ω2 is isomorphic to the conductor.

Corollary 8.1 (R,m) be a Cohen–Macaulay local ring of minimal multiplicity with dim R =
1. Let J is a regular ideal with principal reduction x. Then (x) : J ⊃ m if and only if
tr(J ) ⊃ m.

Proof Assume (x) : J ⊇ m. Since x ∈ J , note that

m ⊆ (x) : J = (x)J ∗ ⊆ J J ∗ = tr J .

On the other hand, if tr(J ) ⊇ m then tr(J ) ∈ {m, R}. In either case tr(J ) ∼= tr(J )2 because
either R = R2 or, since R hasminimalmultiplicity and dimension 1,m ∼= m2. By Proposition
3.8 it follows that (x) : J = tr(J ) ⊇ m. 
�
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Definition 8.2 Let R be a local Cohen–Macaulay rings with maximal ideal m and canonical
module ωR . We say R is almost Gorenstein if

(x) : ωR ⊇ m,

for some principal reduction (x) of ωR . We say R is nearly Gorenstein provided tr ωR ⊃ m.

Remark 8.3 If J is a canonical ideal, Corollary 8.1 says that being almost Gorenstein and
nearly Gorenstein are equivalent. Thus we recover [8, Theorem 6.6]:

Corollary 8.4 Let (R,m) be a Cohen–Macaulay local ring of minimal multiplicity with
dim R = 1 and infinite residue field. Assume that R possesses the canonical module ωR.
If R is nearly Gorenstein, then it is almost Gorenstein.

Proof Since R has an infinite residue field, each ideal has a principal reduction; see [10,
8.3.7, 5.1.6]. The result follows by applying Corollary 8.1 in the case J = ωR . 
�

Finally, we study ideals whose trace is the conductor.

Lemma 8.5 Assume Setup6.6. Let ω be a canonical ideal of R and I a regular ideal. The
following are equivalent:

(1) tr I = c.
(2) I ∗ ∼= c.
(3) Iω ∼= c.

Proof Note that c is a stable trace ideal, so (1) �⇒ (2) by Proposition3.8. Assume (2),
then tr(I ) ∼= I I ∗ ∼= I c ∼= c (see Proposition4.6), so tr(I ) = c as they are both trace ideals.

The map I ⊗ ω → Iω is surjective with finite length kernel (as I is regular and hence
locally free on the minimal primes). Take HomR(−, ω) and use Hom-tensor adjointness we
get that

HomR(Iω,ω) ∼= I ∗.

So (2) is equivalent to HomR(Iω,ω) ∼= c, which is equivalent to Iω ∼= HomR(c, ω). But
as:

HomR(c, ω) ∼= HomR(R̄, ω) ∼= R̄ ∼= c

we are done. 
�
The following is immediate from Lemma8.5, and recover part of [9, Theorem 2.5].

Corollary 8.6 Assume Setup6.6. Let ω be a canonical ideal of R. Then tr(ω) = c if and only
if ω2 ∼= c.
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