


Fig. 3: Overall architecture of NeuCEPT. Given a prediction of a class of interest, NeuCEPT collects the model’s inputs from that class. Then,
by forwarding them through the DNN, NeuCEPT obtains the activation and solves for the set of critical neurons at some layers. Finally,
mechanisms are learnt via unsupervised learning on those neurons’ activation.

(Fig. 3). The innovation of NeuCEPT lies in its two main com-

ponents: NeuCEPT-discovery and NeuCEPT-learning. Follow-

ings are the contributions and organization of this manuscript:

◦ Critical Neurons Identification with NeuCEPT-discovery

(Sect. III). We introduce a layer-by-layer mutual information

objective to discover the critical neurons of model’s predic-

tions. Intuitively, the critical neurons of a layer is the set of

neurons determining the activation of the critical neurons

in the sub-sequence layer, which eventually determines

the predictions. To solve for these sets of critical neurons

efficiently, we develop a pairwise-parallel approximation

algorithm with theoretical precision guarantee.

◦ Interpretation and NeuCEPT-learning (Sect. IV). We

provide information-theoretic interpretation of the critical

neurons and elaborate how learning the mechanism on

top of critical neurons can result in better claims on

DNNs’ mechanisms in term of explainability power and non-

redundancy. We propose an unsupervised learning algorithm,

called NeuCEPT-learning, to carry out that task.

◦ Prior-knowledge Training and Experimental Results

(Sect. V). We propose a new testing approach, the prior-

knowledge training, to experimentally evaluate the claims

on DNNs’ predicting mechanism. Our rigorous experiments

on MNIST and CIFAR-10 show that NeuCEPT consistently

detects the embedded mechanisms in the models. Ablation

study is also conducted extensively.

◦ Case studies (Sect. VI). We demonstrate the advantages

of NeuCEPT and the identification of critical neurons in

some practical tasks, including: the study of model’s linear

separability [5], the discovery of some interesting neurons

and behaviors of predictions of Inception-v3 [6] and the

examination of unreliable predictions in CheXNet [7].

II. RELATED WORK

Although the problem of identifying DNN’s local mechanism

is not well-studied, the related researches of interpretability

and neural debugging received a lot of attention in recent

years. Regarding explanation methods, there are two major

approaches: local and global [1]. On the other hand, our study

also relies on a new statistical tool for variable selection, called

Model-X Knockoffs. We now briefly discuss those researches.

Local explanation methods either search for an interpretable

surrogate model to capture the local behavior of the DNN [8],

[9], [10] or carefully back-propagate to attribute contribution

scores [11], [12], [13]. The focus of these methods is on

identifying features and, technically can be extended to,

neurons; however, it is unclear how they can be leveraged

to identify model’s mechanism. Specifically, highly attributed

neurons do not necessarily imply the capability to identify

mechanisms (see examples in Fig. 13).

Global explanation methods focus on explaining the

model’s behavior globally. Some notable techniques are based

on decision trees [14], decision sets [15] and recursive-

partitioning [16]. Unfortunately, there has been no well-

established connection between the explained global dynamics

and the model’s local predictions; hence, the question regarding

local mechanism is still unanswered. Among global methods,

we find [17] to be the most related research to our work. The

method relies on distillation technique to train another model

with sparser data forwarding paths. Even though the paths can

be used to partially reveal the model’s mechanisms, there is

no guarantee that the extracted mechanisms are faithful to the

original model since they are from the distilled model.

Model-X Knockoffs [18] is a new statistical tool investigat-

ing the relationship between a large set of explanatory variables

and a response T . It considers a very general conditional model,

where T can depend in an arbitrary fashion on the variables’

covariates R = (R1, · · · , Rp). From a set of hundreds or

thousands variables, Model-X Knockoffs can identify a smaller

subset potentially explaining the response while rigorously

controlling the the False-discovery-rate (FDR), which will be

defined in more details (Eq. (4)).

Specifically, for each sample of R, Model-X Knockoffs

generates a knockoff copy R̃ satisfying Y ⊥⊥ R̃|R and the

pairwise exchangeable property [18]. Then, the importance

measure Uj and Ũj are computed for each Rj and R̃j ,

respectively. After that, the statistics Wj = Uj−Ũj is evaluated

for each feature. A large positive value of Wj implies evidence

against the hypothesis that the jth feature is not in the Markov

blanket of T (see Sect. III for more details of the Markov

blanket). The work [18] has shown that exactly controlling the

FDR below the nominal level q can be obtained by selecting

R̂ = {j : Wj ≥ τq}, with

τq = min

{

t > 0 :
1 + |{j : Wj ≤ t}|

|{j : Wj ≥ t}|
≤ q

}

.

In this paper, we use (., .) to denote the input-response pair

for Model-X Knockoffs as a general solver for the Markov

blanket, e.g. (R, T ) for the formulation above.



III. CRITICAL NEURONS IDENTIFICATION WITH

NEUCEPT-DISCOVERY

Although modern DNNs contain from thousands to millions

neurons, only a small portion of neurons contributes mostly

to the predictions [19], [20]. We denote such neurons as

critical neurons of the predictions or critical neurons for short.

Identifying critical neurons not only reduces the complexity of

mechanism’s discovery (Sect. IV) but also offers more compact

explanations for the predictions. Unfortunately, due to the

sequential structure of DNNs, identifying critical neurons is a

daunting task, from formulating a suitable objective function to

solving the problem and interpreting those neurons’ activation.

A. Problem Formulation

We consider DNNs in classification problems with the

forwarding function y = f(x), where y ∈ R
m is a logit

and x ∈ R
n is an input. The neural network has a sequential

structure with L layers, each layer has kl neurons (l = 1, ..., L).
The activation of neurons at any layers on a given input

can be computed by forwarding the model. We denote this

computation as zl = fl(x) where fl : R
n → R

kl . Then

z = [z0, ..., zL] is the activation of all model’s neurons on

that input. We use capital letters to refer to random variables,

i.e. Zl is the random variable representing the activation of

neurons at layer l. The superscript notation refers to the random

variables associated with a subset of neurons. For instance,

given a subset S of neurons at layer l, ZS
l is the random

activation of the neurons in S at layer l. Due to the forwarding

structure of the model, the activation of neurons at a given

layer depends only on the activation of neurons at the previous

layer, i.e. Zl⊥⊥ Zj |Zl−1, ∀j = 0, ..., l − 2, where⊥⊥ denotes

the independent relationship. Thus, we have the Markov chain:

X = Z0 → Z1 → · · · → ZL. (1)

Given a prediction, a layer l and the corresponding random

activation Zl, we would like to identify a subset of the critical

neurons at that layer, i.e. the subset of neurons containing

the most information on the prediction of interest. From an

information-theoretic approach, we formalize the notion of

criticality using mutual-information (MI) and formulate the

critical neurons identification (CNI) problem as:

Sl = argmaxS⊆Nl
I
(

ZS
l ;Z

Sl+1

l+1

)

, s.t. S ∈ C, (2)

where Nl is the set of neuron at layer l, I is the joint

mutual-information function [21] and S ∈ C represents some

complexity constraints for compact solutions. Intuitively, at

each layer, we search for the neurons holding the most

information on the neurons solved in the next layer. By

bounding the first optimization at the last layer L to maximize

I
(

ZS
L−1;Y

)

, where Y = Z
{o}
L and o is the neuron associated

with the prediction’s class, we enforce the sub-sequence

optimizations at the earlier layers to search for the neurons

holding the most information on the examined prediction.

B. Solutions with Precision Guarantee

As CNI is in NP-hard 1, we introduce NeuCEPT-discovery to

approximate CNI with precision guarantee. As an abstract level,

NeuCEPT-discovery considers each pair of a layer’s activation-

output of the examined DNN as an input-response pair and

conducts critical neuron selection on them. Different from

the sequential formulation of CNI (2), NeuCEPT-discovery

is executed in a pair-wise manner and, consequently, can be

implemented efficiently. Our theoretical results guarantee that

the modification to pair-wise optimization still achieves the

specified precision level.

Using the Markov blanket. Given a random vari-

able/response T , we denote Ml(T ) ⊆ Nl as the smallest set

of neurons at layer l such that, conditionally on the variables

in that set - Z
Ml(T )
l , T is independent of all other variables

at layer l. In the studies of graphical models, the set Ml(T )
is commonly addressed as the Markov blanket (MB)2 of T .

We just make a slight modification by restricting the set of

variables to a certain layer of the model. Under very mild

conditions about the joint distribution of T and Zl, the MB

is well defined and unique [24]. We follow researchers in the

field, assume these conditions [25] and proceed from there.

We have Sl =Ml

(

Z
Sl+1

l+1

)

, the MB at layer l of Z
Sl+1

l+1 ,

achieves the maximum of the objective (2) since the MB

contains all information about Z
Sl+1

l+1 . Using the MB, we have

a straight approach to solve (2): Given the activation of interest

at the last layer Y = Z
{o}
L , we solve for ML−1 (Y ) - the MB

at layer L− 1. Then, at layer L− 2, we find the MB of the

variables in ML−1 (Y ). The process continues until the first

layer is reached. The computation can be described as:

SL−1 ←ML−1 (Y ) , Sl−1 ←Ml−1

(

ZSl

l

)

. (3)

Algorithm 1: NeuCEPT-discovery.

Input : Samples of model’s activation

Z = (Z1, ..., ZM ) at M given layers.

Precision thresholds p = (p1, ..., pM ).
Output : Estimation of critical neurons at all examined

layers M̂1, · · · ,M̂M .

1 Y ← Z
{o}
M+1.

2 For l = 1 to M do:

3 M̂l ← estimation of the Markov blanket of Y at

layer l with precision control pl.

4 Return M̂1, · · · ,M̂M .

Controlling the precision. Directly solving (3) is impractical

as the problem is in NP-hard [26]. Additionally, estimating

the distribution of ZSl

l via sampling is also impractical due to

1The CNI can be considered as a general version of the feature-selection
problem with mutual-information objective, which is known to be NP-hard [22].

2There is an ambiguity between the notions of Markov-blanket and Markov-

boundary. We follow the notion of the Markov-blanket defined in [23], which
is consistent with [18]. In fact, the Markov-blanket of a random variable T ,
i.e. M(T ), is the minimum set of variables such that, given realizations of all
variables in M(T ), T is conditionally independent from all other variables.



the curse-of-dimensionality. Our key observation to overcome

those challenges is that the MB of the model’s output variable

Y at each layer l is a subset of Sl (Eq. (3)). As a result, given

a solver solving for Ml (Y ) with a precision at least p, the

output of that solver is also an approximation of Sl with the

precision at least p. This allows us to solve forMl (Y ) instead

of Sl and overcome the high-dimensionality of ZSl

l . We exploit

this observation and implement it in the NeuCEPT-discovery

step of our algorithm, which is described in Algorithm 1. The

proof that NeuCEPT-discovery achieves precision guarantee is

based on the following Theorem 1.

Theorem 1. Suppose we have a solver solving for the MB of

a set of random variables and apply that solver to each layer

of a neural network as described in equation (3), then the

solution returned by the solver at each layer must contain the

MB of the neural network’s output at that layer, i.e. Ml(Y ) ⊆
Sl, ∀l = 0, ..., L− 1.

Proof. For simplicity, we consider the following Markov chain

Z0 → Z1 → Y . We now show thatM0(Y ) ⊆M0

(

Z
M1(Y )
1

)

.

We have:

• Z1 determines Y and Y ⊥⊥
{

Z1 \ Z
M1(Y )
1

}

|Z
M1(Y )
1

so that Z
M1(Y )
1 determines Y . We can also write this

statement as ZS1
1 determines Y .

• Z0 determines Z
M1(Y )
1 and

Z
M1(Y )
1 ⊥⊥

{

Z0 \ Z
M0

(

Z
M1(Y )
1

)

0

}

|Z
M0

(

Z
M1(Y )
1

)

0 .

so that Z
M0

(

Z
M1(Y )
1

)

0 determines Z
M1(Y )
1 . We can write

this statement as ZS0
0 determines ZS1

1 .

• Combine the two above statements, we have

Z
M0

(

Z
M1(Y )
1

)

0 determines Y .

On the other hand, we have M1(Y ) is the smallest subset

of neurons at the Z0 layer that determines Y . Due to the

uniqueness of the minimal set that separates Y from the rest of

the variables (which is the MB of Y ) [24], we haveM1(Y ) ⊆

M1

(

Z
M2(Y )
2

)

.

The proof generalizes for the case of L layers Markov chain

Z0 → Z1 → · · · → ZL as the same arguments can be applied

to conclude that ZSl

l determines Z
Sl+1

l+1 . This would lead to the

fact that all ZSl

l can determine Y ; hence, Sl contains Ml(Y )
due to the uniqueness of the MB [24].

We now can formalize and prove the statement that any MB

solvers with a precision guarantee p on the input-response pair

(Zl, Y ) can be used to solve for the MB of the pair (Zl, Z
Sl+1

l+1 )
with a precision at least p in the following Corollary 1:

Corollary 1. Suppose we have a solver solving for the MB

of a random response T with the precision at least p for a

given 0 < p < 1. Let M̂l be the output of that solver on the

input-response pair (Zl, Y ) defined in procedure (3). Then,

M̂l also satisfies the precision guarantee p as if we solve for

the input-response pair (Zl, Z
Sl+1

l+1 ).

Proof. Denote q = 1− p. Since the precision is one minus the

FDR, we can instead prove:

FDR := E

[

#{j : j ∈ M̂l \ Sl}

#{j : j ∈ M̂l}

]

≤ q. (4)

From Theorem 1, we have Ml(Y ) ⊆ Sl for all l =
0, · · · , L− 1. This implies:

M̂l \ Sl ⊆ M̂l \Ml(Y )

=⇒#{j : j ∈ M̂l \ Sl} ≤ #{j : j ∈ M̂l \Ml(Y )} (5)

On the other hand, as M̂l is the solution of the solver on the

input-response pair (Zl, Y ) with FDR less than or equal to q:

E

[

#{j : j ∈ M̂l \Ml(Y )}

#{j : j ∈ M̂l}

]

≤ q. (6)

Combining (5) and (6), we have the Corollary.

Corollary 1 enables us to exploit any solver with precision

control to efficiently solve for procedure (3) with precision

guarantee. In our implementation of NeuCEPT-discovery, we

use Model-X Knockoffs [18] (discussed in Sect. II).

IV. INFORMATION-THEORETIC INTERPRETATION AND

NEUCEPT-LEARNING OF CRITICAL NEURONS

The goal of finding critical neurons is to correctly identify the

model’s mechanisms. Sect. IV-A discusses in more detail about

mechanisms and how the MI objective in Eq. (2) is apt for the

task. Sect. IV-B describes how NeuCEPT extracts information

from critical neurons to identify the model’s mechanism.

A. Information-theoretic Interpretation

Mechanism. Previous analysis of DNNs [20] and our

examples, e.g. case studies later shown in Figs. 13 and 14,

reveal distinctive patterns of neurons’ activation shared among

some input samples. This similarity suggests they might

be processed in the same manner by the model, which is

what we call mechanism. Similar to how unlabeled data is

handled in unsupervised learning, mechanism in this work is

modeled as a discrete latent random variable whose realization

determines how the predictions are generated. Fig. 4 provides

an intuition on the relationship between the neurons’ activation

and mechanisms under this assumption. Suppose the latent

mechanism variable C determines the generation of predictions

of the class goldfish in the Inception-v3. Different realizations

of C, i.e. 0 or 1, result in different patterns in the activation Z.

On one hand, these patterns specify how the model predicts,

which is the intuitive meaning of mechanism. On the other

hand, observing the activation on some neurons, i.e. critical

neurons, can be sufficient to determine the realization of C,

i.e. the model’s underlying mechanism.

Explainability power. An intuitive necessary condition

on the selection of critical neurons is that their activation

should determine (or significantly reduce the uncertainty of)

the mechanism C. We call this condition explainability power.

To see how the objective (2) fits into this condition, let’s













We partially address that question using NeuCEPT (Fig. 14):

we discover a subclass of 150 unreliable ’pneumonia’ pre-

dictions with a much lower precision than that on the whole

class (2978 samples), i.e. 36.7% compared to 60.6%. We then

use the local explanations provided by the model itself to

further verify our finding. We observer that the false-positive

predictions generally are made using features outside of the

lung’s area. We provide this example to demonstrate that

identifying mechanisms underlying the model’s predictions

can help evaluate the reliability of individual prediction.

VII. CONCLUSION

This work aims to learn mechanisms underlying DNNs’

predictions to provide a deeper explanation on how the models

work. From an information-theoretic viewpoint, the problem

is formulated as a sequence of MI maximization, whose

solution, called critical neurons, can be solved by our NeuCEPT-

discovery with guarantee. We develop NeuCEPT-learning, an

algorithm clustering inputs based on their activation on critical

neurons, to reveal the model’s mechanisms. We further designed

a training procedure so that the mechanism discovery task can

be evaluated. Our experiments and case studies show that

NeuCEPT consistently identifies the underlying mechanisms

and reveals interesting behaviors of the DNNs.
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