NeuCEPT: Learn Neural Networks’ Mechanism via
Critical Neurons with Precision Guarantee

Minh N. Vu
University of Florida
Gainesville, Florida, USA
minhvu@ufl.edu

Abstract—Despite recent studies on understanding deep neural
networks (DNNs), there exists numerous questions on how DNNs
generate their predictions. Especially, given similar predictions
on different inputs, are the underlying mechanisms generating
those predictions the same? In this work, we propose NeuCEPT,
a method to identify critical neurons that are important to the
model’s local predictions and learn their underlying mechanisms.
We first formulate a critical neurons identification problem as
maximizing a sequence of mutual-information objectives and
provide a theoretical framework to efficiently solve for critical
neurons while keeping the precision under control. NeuCEPT
next heuristically learns different model’s mechanisms in an
unsupervised manner. Qur experiments and case studies show
that neurons identified by NeuCEPT not only have strong influence
on the model’s predictions but also hold meaningful information
about model’s mechanisms.

Index Terms—Explainable machine learning, Markov chain,
Mutual-information objective.

I. INTRODUCTION

Significant efforts have been dedicated to improve the inter-
pretability of modern neural networks, leading to several ad-
vancements [1], [2]; however, few works have been conducted
to characterize local predictions of the neural networks based on
the internal forwarding computation of the model (see Sect. II).
In this paper, we focus on investigating different mechanisms
learnt by the neural networks to generate predictions (see Fig. 1
as an example). Intuitively, the mechanism of a prediction
is the forwarding process producing the prediction in the
examined model (see definition in Sect. IV). Our hypothesis
is that predictions of the same class label can be generated by
different mechanisms which can be captured and characterized
by activation of some specific neurons, called critical neurons.
Analyzing the activation of those neurons can help identify the
model’s mechanisms and shed light on how the model works.

Following are key reasons motivating our study. First, the
identification of critical neurons can serve as an initial model’s
examination for further study of the model’s dynamics. Second,
critical neurons allow us to characterize model’s predictions
based on how they are generated by the model. Each set of
similar predictions can be studied and analyzed for downstream
tasks such as performance [3] and trust evaluation [4]. Finally,
identifying critical neurons provides a new dimension on
how we explain the predictions compared to local attribution
explanation methods. We will demonstrate the case studies
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of these motivations in Sect. VI. For now, Fig. 2 provides
a concrete example motivating this study. Here, we have 2
LeNet classifying even or odd digit on the MNIST dataset.
While the outputs and local explanations hardly show any
differences between the two models, the evidences based on
some specific neurons suggest otherwise. This example shows
how an explanation at neuron-level can be beneficial.

Inception-v3

Fig. 1: Two images have the same predictions goldfish generated by
Inception-v3. One is a single goldfish while the other is a shoal of
fish. Are the mechanisms behind the two predictions the same?
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Fig. 2: LeNet(A) is initialized by a LeNet pretrained on digit
classification task and LeNet(B) is initialized randomly. While the
even/odd predictions and the explanations provide little information
differentiating the two models, extracting and visualizing the activation
of some neurons at the their last layers reveal that LeNet(A) groups
inputs into more distinctive clusters with the same ground-truth digit-
labels of the dataset. More details of the experiments are in Sect. V-A

We propose NeuCEPT - a method to learn neural network’s
mechanism via critical neurons with precision guarantee
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Fig. 3: Overall architecture of NeuCEPT. Given a prediction of a class of interest, NeuCEPT collects the model’s inputs from that class. Then,
by forwarding them through the DNN, NeuCEPT obtains the activation and solves for the set of critical neurons at some layers. Finally,
mechanisms are learnt via unsupervised learning on those neurons’ activation.

(Fig. 3). The innovation of NeuCEPT lies in its two main com-
ponents: NeuCEPT-discovery and NeuCEPT-learning. Follow-
ings are the contributions and organization of this manuscript:

o Critical Neurons Identification with NeuCEPT-discovery
(Sect. III). We introduce a layer-by-layer mutual information
objective to discover the critical neurons of model’s predic-
tions. Intuitively, the critical neurons of a layer is the set of
neurons determining the activation of the critical neurons
in the sub-sequence layer, which eventually determines
the predictions. To solve for these sets of critical neurons
efficiently, we develop a pairwise-parallel approximation
algorithm with theoretical precision guarantee.

o Interpretation and NeuCEPT-learning (Sect. IV). We
provide information-theoretic interpretation of the critical
neurons and elaborate how learning the mechanism on
top of critical neurons can result in better claims on
DNNs’ mechanisms in term of explainability power and non-
redundancy. We propose an unsupervised learning algorithm,
called NeuCEPT-learning, to carry out that task.

o Prior-knowledge Training and Experimental Results
(Sect. V). We propose a new testing approach, the prior-
knowledge training, to experimentally evaluate the claims
on DNNs’ predicting mechanism. Our rigorous experiments
on MNIST and CIFAR-10 show that NeuCEPT consistently
detects the embedded mechanisms in the models. Ablation
study is also conducted extensively.

o Case studies (Sect. VI). We demonstrate the advantages
of NeuCEPT and the identification of critical neurons in
some practical tasks, including: the study of model’s linear
separability [5], the discovery of some interesting neurons
and behaviors of predictions of Inception-v3 [6] and the
examination of unreliable predictions in CheXNet [7].

II. RELATED WORK

Although the problem of identifying DNN’s local mechanism
is not well-studied, the related researches of interpretability
and neural debugging received a lot of attention in recent
years. Regarding explanation methods, there are two major
approaches: local and global [1]. On the other hand, our study
also relies on a new statistical tool for variable selection, called
Model-X Knockoffs. We now briefly discuss those researches.

Local explanation methods either search for an interpretable
surrogate model to capture the local behavior of the DNN [8],
[9], [10] or carefully back-propagate to attribute contribution
scores [11], [12], [13]. The focus of these methods is on

identifying features and, technically can be extended to,
neurons; however, it is unclear how they can be leveraged
to identify model’s mechanism. Specifically, highly attributed
neurons do not necessarily imply the capability to identify
mechanisms (see examples in Fig. 13).

Global explanation methods focus on explaining the
model’s behavior globally. Some notable techniques are based
on decision trees [14], decision sets [15] and recursive-
partitioning [16]. Unfortunately, there has been no well-
established connection between the explained global dynamics
and the model’s local predictions; hence, the question regarding
local mechanism is still unanswered. Among global methods,
we find [17] to be the most related research to our work. The
method relies on distillation technique to train another model
with sparser data forwarding paths. Even though the paths can
be used to partially reveal the model’s mechanisms, there is
no guarantee that the extracted mechanisms are faithful to the
original model since they are from the distilled model.

Model-X Knockoffs [18] is a new statistical tool investigat-
ing the relationship between a large set of explanatory variables
and a response 7. It considers a very general conditional model,
where T' can depend in an arbitrary fashion on the variables’
covariates R = (Ri,---,R,). From a set of hundreds or
thousands variables, Model-X Knockoffs can identify a smaller
subset potentially explaining the response while rigorously
controlling the the False-discovery-rate (FDR), which will be
defined in more details (Eq. (4)).

Specifically, for each sample of R, Model-X Knockoffs
generates a knockoff copy R satisfying Y 1l R|R and the
pairwise exchangeable property [18]. Then, the importance
measure U; and U; are computed for each R; and Rj,
respectively. After that, the statistics W; = U; —Uj is evaluated
for each feature. A large positive value of W; implies evidence
against the hypothesis that the j® feature is not in the Markov
blanket of T' (see Sect. III for more details of the Markov
blanket). The work [18] has shown that exactly controlling the
FDR below the nominal level ¢ can be obtained by selecting

R={j: W, >7,}, with
<a}.

In this paper, we use (.,.) to denote the input-response pair
for Model-X Knockoffs as a general solver for the Markov
blanket, e.g. (R, T) for the formulation above.

1+ {j:W; <t}
{i:W; =t}

Tq:min{t>0:



III. CRITICAL NEURONS IDENTIFICATION WITH
NEUCEPT-DISCOVERY

Although modern DNNs contain from thousands to millions
neurons, only a small portion of neurons contributes mostly
to the predictions [19], [20]. We denote such neurons as

critical neurons of the predictions or critical neurons for short.

Identifying critical neurons not only reduces the complexity of
mechanism’s discovery (Sect. [V) but also offers more compact
explanations for the predictions. Unfortunately, due to the
sequential structure of DNNs, identifying critical neurons is a
daunting task, from formulating a suitable objective function to
solving the problem and interpreting those neurons’ activation.

A. Problem Formulation

We consider DNNs in classification problems with the
forwarding function y = f(x), where y € R™ is a logit
and x € R™ is an input. The neural network has a sequential

structure with L layers, each layer has k; neurons (I =1, ..., L).

The activation of neurons at any layers on a given input
can be computed by forwarding the model. We denote this
computation as z; = fi(x) where f; : R® — RK. Then
z = [20,...,21] is the activation of all model’s neurons on
that input. We use capital letters to refer to random variables,
i.e. Z; is the random variable representing the activation of
neurons at layer /. The superscript notation refers to the random
variables associated with a subset of neurons. For instance,
given a subset S of neurons at layer [, le is the random
activation of the neurons in S at layer . Due to the forwarding
structure of the model, the activation of neurons at a given
layer depends only on the activation of neurons at the previous
layer, ie. Z; WL Z;|Z;_1,¥j = 0,...,1 — 2, where Il denotes
the independent relationship. Thus, we have the Markov chain:

X=Zy—>7Z1— - — Zp. (1)

Given a prediction, a layer [ and the corresponding random
activation Z;, we would like to identify a subset of the critical
neurons at that layer, i.e. the subset of neurons containing
the most information on the prediction of interest. From an
information-theoretic approach, we formalize the notion of
criticality using mutual-information (MI) and formulate the
critical neurons identification (CNI) problem as:

S = argmaxgc ;I (Zf; Zﬁgl) st.SecC, (@

where AN is the set of neuron at layer I, I is the joint
mutual-information function [21] and S € C represents some
complexity constraints for compact solutions. Intuitively, at
each layer, we search for the neurons holding the most
information on the neurons solved in the next layer. By
bounding the first optimization at the last layer L to maximize
I (Zf_l; Y), where Y = Zio} and o is the neuron associated
with the prediction’s class, we enforce the sub-sequence
optimizations at the earlier layers to search for the neurons
holding the most information on the examined prediction.

B. Solutions with Precision Guarantee

As CNI is in NP-hard !, we introduce NeuCEPT-discovery to
approximate CNI with precision guarantee. As an abstract level,
NeuCEPT-discovery considers each pair of a layer’s activation-
output of the examined DNN as an input-response pair and
conducts critical neuron selection on them. Different from
the sequential formulation of CNI (2), NeuCEPT-discovery
is executed in a pair-wise manner and, consequently, can be
implemented efficiently. Our theoretical results guarantee that
the modification to pair-wise optimization still achieves the
specified precision level.

Using the Markov blanket. Given a random vari-
able/response T, we denote M,;(T') C N, as the smallest set
of neurons at layer [ such that, conditionally on the variables
in that set - ZlMl(T), T is independent of all other variables
at layer [. In the studies of graphical models, the set M;(T")
is commonly addressed as the Markov blanket (MB)? of T.
We just make a slight modification by restricting the set of
variables to a certain layer of the model. Under very mild
conditions about the joint distribution of 7" and Z;, the MB
is well defined and unique [24]. We follow researchers in the
field, assume these conditions [25] and proceed from there.

We have S; = M; (Zl‘if{l , the MB at layer [ of Zﬁﬁl,

achieves the maximum of the objective (2) since the MB
contains all information about leﬁl. Using the MB, we have
a straight approach to solve (2): Given the activation of interest
at the last layer Y = Zio}, we solve for My_; (V) - the MB
at layer L — 1. Then, at layer L — 2, we find the MB of the
variables in Mp,_; (Y'). The process continues until the first

layer is reached. The computation can be described as:

Spie Mia(Y), SaeMia(Z0). G

Algorithm 1: NeuCEPT-discovery.
Input

: Samples of model’s activation
Z =(Zy,...,Z) at M given layers.
Precision thresholds p = (p1, ..., par)-

Output: Estimation of critical neurons at all examined
layers My, -+, Myy.

1Y 230

2 Forl =1 to M do:

3 /\;ll < estimation of the Markov blanket of Y at

layer [ with precision control p;.
4 Return Ml, s ,MM.

Controlling the precision. Directly solving (3) is impractical
as the problem is in NP-hard [26]. Additionally, estimating
the distribution of lel via sampling is also impractical due to

IThe CNI can be considered as a general version of the feature-selection
problem with mutual-information objective, which is known to be NP-hard [22].

2There is an ambiguity between the notions of Markov-blanket and Markov-
boundary. We follow the notion of the Markov-blanket defined in [23], which
is consistent with [18]. In fact, the Markov-blanket of a random variable T,
i.e. M(T), is the minimum set of variables such that, given realizations of all
variables in M(T'), T is conditionally independent from all other variables.



the curse-of-dimensionality. Our key observation to overcome
those challenges is that the MB of the model’s output variable
Y at each layer [ is a subset of S; (Eq. (3)). As a result, given
a solver solving for M; (Y') with a precision at least p, the
output of that solver is also an approximation of S; with the
precision at least p. This allows us to solve for M; (V') instead
of §; and overcome the high-dimensionality of Z; ls . We exploit
this observation and implement it in the NeuCEPT-discovery
step of our algorithm, which is described in Algorithm 1. The
proof that NeuCEPT-discovery achieves precision guarantee is
based on the following Theorem 1.

Theorem 1. Suppose we have a solver solving for the MB of
a set of random variables and apply that solver to each layer
of a neural network as described in equation (3), then the
solution returned by the solver at each layer must contain the
MB of the neural network’s output at that layer, i.e. M(Y) C
S, Vi=0,...,.L -1

Proof. For simplicity, we consider the following Markov chain
Zoy — Zy — Y. We now show that My (Y) C M, (Z{Ml(y)).
We have:

« Z; determines ¥ and Y 1L {Z1 \ZlMlm} |ZzM )

so that Z{Vl ') determines Y. We can also write this

statement as Zf ! determines Y.

o Zy determines Z{Vll(y) and

Zl-/\/ll(Y)J_L {ZO\Z(?AU(ZFI(Y))} |Zé\40(Z1Ml(Y)).

Mo (2P _ .
so that Z, ( ' ) determines Z.""""). We can write
this statement as Z(‘)90 determines Z7*.

o Combine (t?e two above statements,
MO ZM1 Y
ZO ( 1 )

we have

determines Y.

On the other hand, we have M;(Y") is the smallest subset
of neurons at the Z, layer that determines Y. Due to the
uniqueness of the minimal set that separates Y from the rest of
the variables (which is the MB of Y') [24], we have M;(Y") C
M (270,

The proof generalizes for the case of L layers Markov chain
Zy — Zy — --- — Z, as the same arguments can be applied
to conclude that Z°' determines Zfﬂl. This would lead to the
fact that all lel can determine Y'; hence, S; contains M;(Y")
due to the uniqueness of the MB [24]. O

We now can formalize and prove the statement that any MB
solvers with a precision guarantee p on the input-response pair
(Z1,Y') can be used to solve for the MB of the pair (Z, Z,}7")
with a precision at least p in the following Corollary 1:

Corollary 1. Suppose we have a solver solving for the MB
of a random response T' with the precision at least p for a
given 0 <p < 1. Let M, be the output of that solver on the
input-response pair (Z;,Y) defined in procedure (3). Then,
M, also satisfies the precision guarantee p as if we solve for

the input-response pair (7, Zfﬁl).

Proof. Denote ¢ = 1 — p. Since the precision is one minus the
FDR, we can instead prove:

#{j:je M\ S}
#{j:j e M}
From Theorem 1, we have M;(Y) C §; for all | =

0,---,L — 1. This implies:

M\ S C M\ M(Y)
—=#{j e MI\NST<#{jj e M\ M(Y)}

FDR :=E

<gq. 4

&)

On the other hand, as Ml is the solution of the solver on the
input-response pair (Z;,Y) with FDR less than or equal to ¢:

g | € Mz \ Mi(Y)} < ©)
#{j:j€ M}
Combining (5) and (6), we have the Corollary. O

Corollary 1 enables us to exploit any solver with precision
control to efficiently solve for procedure (3) with precision
guarantee. In our implementation of NeuCEPT-discovery, we
use Model-X Knockoffs [18] (discussed in Sect. II).

IV. INFORMATION-THEORETIC INTERPRETATION AND
NEUCEPT-LEARNING OF CRITICAL NEURONS

The goal of finding critical neurons is to correctly identify the
model’s mechanisms. Sect. IV-A discusses in more detail about
mechanisms and how the MI objective in Eq. (2) is apt for the
task. Sect. IV-B describes how NeuCEPT extracts information
from critical neurons to identify the model’s mechanism.

A. Information-theoretic Interpretation

Mechanism. Previous analysis of DNNs [20] and our
examples, e.g. case studies later shown in Figs. 13 and 14,
reveal distinctive patterns of neurons’ activation shared among
some input samples. This similarity suggests they might
be processed in the same manner by the model, which is
what we call mechanism. Similar to how unlabeled data is
handled in unsupervised learning, mechanism in this work is
modeled as a discrete latent random variable whose realization
determines how the predictions are generated. Fig. 4 provides
an intuition on the relationship between the neurons’ activation
and mechanisms under this assumption. Suppose the latent
mechanism variable C' determines the generation of predictions
of the class goldfish in the Inception-v3. Different realizations
of C, i.e. 0 or 1, result in different patterns in the activation Z.
On one hand, these patterns specify how the model predicts,
which is the intuitive meaning of mechanism. On the other
hand, observing the activation on some neurons, i.e. critical
neurons, can be sufficient to determine the realization of C,
i.e. the model’s underlying mechanism.

Explainability power. An intuitive necessary condition
on the selection of critical neurons is that their activation
should determine (or significantly reduce the uncertainty of)
the mechanism C. We call this condition explainability power.
To see how the objective (2) fits into this condition, let’s
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Fig. 4: The probabilistic intuition of the neurons’ activation and
mechanism: the mechanism determines the activation, and, conversely,
observing the activation can reveal the mechanism.

consider its MB solution {Sl}lL:_Ol. From the definition of the
MB, for any set of neurons R; at a layer [ that is disjoint with

Si, we have ZZRL is independent with Zﬁﬂl given le t. Since
Zﬁﬁl determines Zfﬁzk for all k£ > 1, variables in R; must

also independent with Zl‘ifzk given le t. Thus, knowing ZlRl
does not provide any additional information on how the model
generates the prediction of interest, i.e. {Sl}{gol is sufficient.

Non-redundancy. Neurons’ activation not only determine
the mechanisms and the predictions but also contain other
information on the data. However, not all information stored in
the activation is necessarily used by the model in generating
the examined predictions. Thus, another desirable property of
the identified neurons is that they must be used by the model
in generating the predictions of interest. We call this condition
non-redundancy. Intuitively, selecting more neurons gives us
more explainability power and less non-redundancy.

To demonstrate how our proposed objective (2) meets the
notion of non-redundancy, we compare it with another objective
aiming to identify the set of globally important neurons derived
from the Markov chain (1):

(7

This objective tells us how much we know about the model’s
later layers given the activation of the neurons in S C N.
From the lens of information theory, information encoded in
{S;}{5' can fully determine all information of the models
and satisfies the notion of explainability power. However, for a
specific prediction, those information is too excessive since the
objective consider all classes equally. Mechanisms discovered
on top of them is prone to redundancy. This reason motivates us
to use the objective (2). This also demonstrates the importance
of the critical neuron discovery step in NeuCEPT.

S/ = argmax g, [ (27 Zis1, - Z1) , st. S €C.

B. NeuCEPT-learning on Critical Neurons

Given the critical neurons identified by NeuCEPT-discovery,
NeuCEPT-learning extracts their activation to identify the
model’s mechanisms. Since the ground-truth mechanisms are
not given, it is natural to consider the mechanism identifica-
tion/discovery problem as an unsupervised learning task, which
has been extensively studied [27].

Algorithm 2 describes how NeuCEPT extracting information
from critical neurons. Besides their activation, the algorithm’s
inputs include a set of compactness parameters limiting the
number of representative neurons and an integer K guessing
the number of mechanisms. The usage of the compactness
parameters is common in many existing explanation methods

Algorithm 2: NeuCEPT-learning.
: Critical neurons’ activation at M examined
layers, denoted as ZS.
The number representative neurons {v; },.
Number of clusters/mechanisms K.
Output : The explained-representations of all inputs and
their corresponding mechanisms/clusters.
1 # Constraints enforcement
2 For I =1 to M do:
3 V, + Feature Agglomeration (lel) with constraint
[Vi] < v; or selecting top v; neurons.
4 # Unsupervised learning
5 g < Initialize an unsupervised clustering model with K
components.
6 Fitgon V= Vo, -, Vp_1).
7 Mechanism C' < g(V).
8 Return C.

Input

for the sake of visualization. The first step of NeuCEPT-learning
is to enforce this compactness requirement, i.e. either by
selecting the top neurons identified in NeuCEPT-discovery
or by feature-agglomerating those neurons into a smaller
set of representative neurons. Similar techniques have been
used to apply Model-X Knockoffs on real-data with very
high-correlated features [18]. Then, an unsupervised learning
method is chosen among K-means, Gaussian Mixture, and
Agglomerative Clustering to map each input sample to one of
the K clusters representing K mechanisms.

We end this section with a demonstration of some Neu-
CEPT’s outputs in analyzing predictions of Inception-v3. The
examined layers are the last layers of the Mixed-5d and the
Mixed-6e blocks (Fig. 5). The number of representative neurons
are restricted to 5 and 3. Next to each input, we show a
graph representing the activation’s level (red for high, blue for
low) of those representative neurons from the Mixed-5d (left)
to the Mixed-6e (middle). The last dot represents the output
neuron (right). NeuCEPT-learning helps us visualize similar
activation’s patterns among samples of the same mechanism,
and differentiate them from another mechanism.

V. EXPERIMENTS: SETTING AND RESULTS

Our experiments focus on evaluating the explainability power
and the non-redundancy properties, mentioned in Sect. IV-A
(source code [28]). While evaluating the explainability power
can be conducted via ablation study, evaluating the non-
redundancy is more challenging as we normally do not know
the underlying mechanism. To tackle this, we propose a training
setup, called prior-knowledge training, so that both the non-
redundancy and the explainability power can be evaluated.

A. Prior-knowledge training (PKT).

We introduce the PKT so that models with partially known
mechanisms can be obtained. Specifically, during the PKT,
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Fig. 7: CE (bits) resulted from K-mean (KM) and Agglomerative clustering (AC) clustering on activation of neurons selected by different
methods. The x-axis and y-axis are the number of clusters and the CE, respectively. The first 2 plots are the analysis at layer conv3 of the
LeNet on the class even using top-10 neurons. The last 4 plots are of VGG on class object with top 30/100 neurons at layer conv8 and conv9.

certain prior-knowledge is injected into a model, called PKT
model, before the training of its main task, called posterior-
task. Due to the injection, those mechanisms are expected
to be embedded and used by the PKT model to conduct its
posterior-task. With that knowledge on the PKT model, we
then can evaluate explaining methods accordingly.

Fig. 6 describes this process in more details. First, a model,
called prior-model, is trained on a more specific task, called
prior-task. The prior-task’s training data is chosen such that
there exists information that is only available to the prior-model
(therefore the term more informative dataset). To ensure that
information is embedded in the prior-model, the prior-task is
the task of predicting that information. The weights of the
prior-model is then transferred, completely or partially, to the
PKT model before its training on the posterior-task. As such,
given a PKT model and a conventionally trained model, a
good mechanism discovery algorithm should claim that the
PKT model relies on some specific information, i.e. the prior-
knowledge, to generate its prediction (explainability power)
while the conventionally trained one does not (non-redundancy).
In fact, given a cluster label c returned by the algorithm and
the label y,,-;o- of the informative dataset, the algorithm can
be evaluated by the clusters’ entropy (CE) metric:

2.2

where p(.) is the empirical probability. The lower the CE, the
more the clusters/mechanisms identified by the algorithm align
with the prior-knowledge. Thus, the CE of PKT model resulted
from a good mechanism discovery algorithm should be lower
than that of a conventionally trained model.

Readers can refer to Fig. 2 for a better understanding of PKT.
In that experiment, the prior-task and the posterior-task are the
digit classification and the even/odd classification, respectively.

p(yprior, C) log (l/p(yprior|c)) )

Yprior

The models, from left-to-right, are the prior-model, the PKT
model and the conventionally trained model.

B. Experimental setting

Hardware. Our experiments are implemented in Python 3.8
and conducted on a single GPU-assisted compute node with a
Linux 64-bit operating system. The allocated resources include
32 CPU cores (AMD EPYC 7742 model) with 2 threads per
core, 8 GPUs (NVIDIA DGX A100 SuperPod model) with
80GB of memory per GPU and 100GB of RAM.

Dataset and Model. We experiment with LeNet [29] and
VGG [30] trained on MNIST [31] and CIFAR10 [32] dataset,
respectively. We use the default Pytorch models [33] with slight
modification at the last layer to fit for the tasks. Specifically,
the output layers of the normal and the PKT model are changed
to 2 neurons so that they predict the even/odd in MNIST and
animal/object in CIFARI10. Note that, in training the PKT
model on CIFAR10, we freeze the parameters of the first 6"
convolutional layers (there are 9 layers) to better maintain the
prior-knowledge/mechanisms transferred from the prior model.

Baseline. To our knowledge, there exists no work directly
addressing the proposed problem. As such, we adopt state-
of-the-art local explanation methods, including Saliency [12],
Integrated-Gradients (IG) [13], Deeplift [11] and Gradient-
SHAP (G-SHAP) [8], implemented by Captum [34], to identify
critical neurons. Specifically, the neurons are selected by their
total attribution scores given by the explanation methods on
all images of the examined class.

The choice of precision values. There are 3 factors deciding
the choices of precision threshold in our experiments: the
layer’s location, the number of neurons in that layer and the
model’s complexity. The general intuition is, the deeper the
layer, the smaller of number of neurons in that layer and the
less complexity the model, the easier the critical neurons can
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Fig. 10: Ablation results at input layer of LeNet. The two plots on the left show the ablation results with continuous noise, i.e. the noise are
added based on the score given by the associated methods. The three figures on the right shows results when top 100 features are selected. ~y
is an exponential decay parameter determining how noise is distributed among neurons.

be identified. Thus, in such case, we can set a high value of
precision and expect good solutions. In experiments for LeNet,
the precisions are between 0.9 and 0.98. For CIFAR10, the
values are between 0.4 and 0.8 based on the layer and the
number of neurons. In Inception-v3 and CheXNet, the values
are 0.6 for all layers.

Model-X Knockoffs implementations. One major concern
on the usage of Model-X Knockoffs on high-dimensional real-
data and, specifically, on neurons’ activations. The challenge
arises when we need to chose between two or more very
highly-correlated features. Note that this is purely a problem
of power and would not affect the Type I error control of
knockoffs” [18]. To overcome this, the method clustered
features using estimated correlations as a similarity measure.
After that, one representative feature is chosen from each cluster.
The representatives are then used in the feature-discovery task
instead of the original features. Our feature agglomeration step
(described in Sect. IV and Algo. 2) is based on this alleviation.

C. Explainability power.

CE metric. High explainability power implies the selected
neurons hold more information determining the mechanism.
Thus, the CE should be small if the guessing number of clusters
K (specified in Sect. IV-B) aligns with the actual number of the

mechanisms. In the posterior-tasks of MNIST and CIFAR10, we
train LeNet and VGG to classify even/odd and animal/object,
respectively. The actual numbers of the mechanisms in the PKT
models are expected to be at least (5,5) and (4, 6) for each
pair of labels in the task. The reason is they are the number of
original labels belonging to those categories, i.e. 5 odd digits,
5 even digits, 4 animals and 6 objects.

Fig. 7 shows the CE of the clusters learnt on neurons
identified by different explanation methods versus the number
of clusters K. MNIST’s results clearly show neurons identified
by NeuCEPT can differentiate the inputs based on their original
labels embedded by prior-knowledge training. Notably, when
K =5, NeuCEPT achieves its lowest, which aligns with our
expectation on the number of actual mechanisms that the PKT
model uses. VGG’s experiments show similar result with less
distinction in the number of clusters.

Ablation test. Since the mechanism specifies the prediction,
critical neurons should have high impact on model’s predictions.
This impact can be evaluated via ablation test [35], in which
noise of different levels and configurations are added to those
neurons and the model’s accuracy is recorded accordingly. If
the neurons have explainability power, protecting them from
the noise should maintain the model’s accuracy [35], [36].
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Fig. 11: The CE differences (bits) between the conventionally trained model and the PKT model. Clusters are learnt using k-mean (KM),
Gaussian Mixture (GM), and Agglomerative clustering (AC) on activation of neurons chosen by different methods. The x-axis and y-axis are
the number of clusters and the CE differences. Top figures show the results of the LeNet at different layers with top 10 important neurons.
Bottom are the results of VGG with top 30/100 neurons at convolutional layer 8 and 9.

Fig. 8 and 9 show our ablation tests of neurons identified
by different methods. In the figures, Top is the number of
neurons protected from the noise, determined by the score of
the explanation methods. v is an exponential decay parameter
determining how noise is distributed among neurons: the larger
the ~, the lesser the noise added to the protected neurons. The
tests are conducted at different layers of LeNet and VGG. The
results show that neurons identified by NeuCEPT hold higher
predictive power among most of the experiments

Fig. 10 shows our adaptation of NeuCEPT to LeNet to select
important input features for each class. The purpose of this
experiment is to demonstrate that NeuCEPT can adapt to the
concerns regarding Model-X Knockoffs on high-dimensional
highly-correlated data and unknown covariance [18]. The plots
show that the explainability power of features selected by
NeuCEPT is comparable with other methods.

D. Non-redundancy.

The following experiments show that NeuCEPT meets the
non-redundancy requirement, i.e. it should return a significantly
higher CE when examining conventionally trained models,
which has no knowledge on the original labels. Fig. 11 plots
the differences in the CE between the conventionally trained
models and the PKT models on MNIST and CIFAR10. While
the differences in CE at certain layers of some other methods
fluctuate around 0, indicating there is no difference between the
two models, NeuCEPT consistently supports the expectation
that only the PKT models recognize the prior-knowledge and
the conventionally trained models do not. Note that NeuCEPT
differentiates the models simply by observing their activation
on critical neurons. This means those critical neurons are indeed
used by the model in generating the examined predictions.

E. Running-Time.

Table I shows the average running-time of all methods in
searching for the important neurons for a single class. All
experiments are on 10000 test samples. A straight comparison

among methods is not trivial due to the difference in resource
utilization and hyper-parameters selections. Technically, Neu-
CEPT only needs to run Model-X Knockoffs once; however,
we run it 50 times for more stable results. The main takeaway
is that NeuCEPT can be run in a reasonable amount of time
on moderate-size models such as VGG.

TABLE I: The running-time in seconds of tested methods. For the
4 other explanation methods, we use the Captum library which
runs on GPUs. Our NeuCEPT runs entirely on CPU cores and the
reported running-time is for one iteration. For more stable results, the
experimental results of NeuCEPT are obtained after 50 iterations.

Model Layer NeuCEPT  Saliency 1G DeepLift G-SHAP
L eNet orior conv3 3.18 1735 7959 5132 3142
p linear0 1.93 1625 7920  20.12 31.13
LeNet normal  €0M3 2.86 1652 7995 5122 31.03
linear0 2.00 1547 7157 19.93 31.08

conv3 276 1600 8046 5049 31.93

LeNet PKT linear0 1.94 1553 77.13 20.05 30.77
VGGI1 orior | €OMY8 20.86 16782  379.16  195.01 355.65
p conv9 2236 180.6 36228 18397  305.65
VGG11 normal €OM8 26.12 307.74 70938 33529  708.50
conv9 2322 307.87 70871 30938  707.38

conv8 17.26 22324 45778 263.63  457.09

VGGIIPKT — vo 18.80 22250  457.81 22053 457.32

VI. CASE STUDIES

This section provides some usages of NeuCEPT in analyzing
different interesting aspects of DNNs: the linear separability
(studied along with the Linear Probe), the explainability
(studying on Inception-v3 model) and the predictions’ reliability
(studying on CheXNet model).

Linear Probe (LP) [5] are linear classifiers hooking on
intermediate layers of DNNs to measure their linear separability.
Intuitively, a low loss of the probe in predicting some labels at
a layer implies that the activation of that layer is more linearly
separable. This metric is important in the analysis of DNNs
since it can be used to characterize layers, to debug models,
or to monitor training’s progress.
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We applied LP to LeNet on MNIST dataset (Fig. 2) and
plotted the results in Fig. 12. The notations (2), (10) and
NeuCEPT refer to the labels that the LPs predict: (2) is the
model’s labels even/odd, (10) is the original digit labels and
NeuCEPT is the mechanisms identified by NeuCEPT. From
the bottom visualization of Fig. 2, LeNet(A) is expected to
be more linearly separable as its point-cloud is divided into
more distinctive clusters. However, simply applying LP on the
model’s labels (notation (2)) shows little difference between
the two models. On the other hand, both results of the LPs
with the digit labels (notation (10)) and with the unsupervised
clusters/mechanisms learnt by NeuCEPT state that LeNet(A) is
more linearly separable. Note that the gap between LeNetA(10)
and LeNetB(10) cannot be obtained by LP in practice due to
the lack of the ground-truth knowledge. This example shows
how NeuCEPT can be used to strengthen the results obtained
by LP and further the study of linear separability.

Inception-v3. As attribution methods mainly attribute scores
to neurons with the most contribution to the prediction,
aggregating the resulted scores among inputs of a class naturally
gives highly attributing neurons of the class. However, as
the activation of those neurons can be highly similar among
samples of the class (a trivial example is the output’s neuron
associated with the class), they hold limited information on
how the model processes its inputs differently, hence, do not

fit for the task of identifying mechanisms.

Our analysis on the class goldfish and bee of Inception-v3 [6]
(Fig. 13) demonstrates the above claim. Specifically, at the
Mixed6e block of the model, NeuCEPT identifies a neuron
that is not among the top-highly activated of the examined
class, but hold valuable information about how the model
processes inputs of that class. In fact, for each class, there
are two subsets of inputs such that members of one subset
activate the neuron while those of the other do not. Simply using
activation’s level, which can be considered as the simplest form
of attribution method, would miss this neuron. Interestingly,
there are distinctive visual concepts associated with images
belonging to clusters identified by NeuCEPT. In the class
goldfish, one subset is about a single fish while the other is
about a shoal of fishes. For the class bee, it is a single bee
versus a single flower or a bunch of flowers. This observation
supports the hypothesis that the two subsets of images are
indeed processed differently by the model.

CheXNet is a modern DNN which can detect pneumonia
from chest X-rays at a level exceeding practicing radiolo-
gists [7]. However, the work [37] found out that the model has
learned to detect a hospital-specific metal token on the scan to
generate some classifications. This finding raises an important
question: are there systematical methods to differentiate reliable
predictions from unreliable ones.



We partially address that question using NeuCEPT (Fig. 14):
we discover a subclass of 150 unreliable 'pneumonia’ pre-
dictions with a much lower precision than that on the whole
class (2978 samples), i.e. 36.7% compared to 60.6%. We then
use the local explanations provided by the model itself to
further verify our finding. We observer that the false-positive
predictions generally are made using features outside of the
lung’s area. We provide this example to demonstrate that
identifying mechanisms underlying the model’s predictions
can help evaluate the reliability of individual prediction.

VII. CONCLUSION

This work aims to learn mechanisms underlying DNNs’
predictions to provide a deeper explanation on how the models
work. From an information-theoretic viewpoint, the problem
is formulated as a sequence of MI maximization, whose
solution, called critical neurons, can be solved by our NeuCEPT-
discovery with guarantee. We develop NeuCEPT-learning, an
algorithm clustering inputs based on their activation on critical
neurons, to reveal the model’s mechanisms. We further designed
a training procedure so that the mechanism discovery task can
be evaluated. Our experiments and case studies show that
NeuCEPT consistently identifies the underlying mechanisms
and reveals interesting behaviors of the DNNs.

ACKNOWLEDGEMENT

This work is partially supported by the National Science
Foundation under Grant No. FAI-1939725 and SCH-2123809.

REFERENCES

[11 Z. C. Lipton, “The mythos of model interpretability,” Queue,
vol. 16, no. 3, p. 31-57, Jun. 2018. [Online]. Available: https:
//doi.org/10.1145/3236386.3241340

[2] W. J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, and B. Yu,
“Definitions, methods, and applications in interpretable machine learning,”
Proceedings of the National Academy of Sciences, vol. 116, no. 44, pp.
22071-22080, 2019.

[3] M. Everingham, L. V. Gool, C. K. I. Williams, J. M. Winn, and
A. Zisserman, “The pascal visual object classes (voc) challenge,”
International Journal of Computer Vision, vol. 88, pp. 303-338, 2009.

[4] J. Wang, X. Jing, Z. Yan, Y. Fu, W. Pedrycz, and L. T. Yang, “A survey
on trust evaluation based on machine learning,” ACM Computing Surveys
(CSUR), vol. 53, 2020.

[5] G. Alain and Y. Bengio, “Understanding intermediate layers using linear
classifier probes,” ICLR, 2017.

[6] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in 2016 IEEE Conference
on Computer Vision and Pattern Recognition, June 2016, pp. 2818-2826.

[7]1 P. Rajpurkar, J. A. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Y.
Ding, A. Bagul, C. Langlotz, K. S. Shpanskaya, M. P. Lungren, and
A. Ng, “Chexnet: Radiologist-level pneumonia detection on chest x-rays
with deep learning,” ArXiv, vol. abs/1711.05225, 2017.

[8] S. M. Lundberg and S.-1. Lee, “A unified approach to interpreting model
predictions,” in Advances in Neural Information Processing Systems 30,
2017.

[91 M. T. Ribeiro, S. Singh, and C. Guestrin, ““Why should i trust you?":

Explaining the predictions of any classifier,” in Proceedings of the 22nd

ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, 2016.

M. Vu and M. T. Thai, “PGM-Explainer: Probabilistic graphical

model explanations for graph neural networks,” in Advances in Neural

Information Processing Systems, 2020.

A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important features

through propagating activation differences,” in Proceedings of the 34th

International Conference on Machine Learning, 2017.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

(22]

(23]

[24]
[25]

[26]

[27]
[28]

[29]

(30]

(31]
[32]

[33]

[34]

[35]

[36]

[37]

K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional
networks: Visualising image classification models and saliency maps,”
in workshop at International Conference on Learning Representations,
2014.

M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep
networks,” in Proceedings of the 34th International Conference on
Machine Learning, ICML 2017, 2017.

G. Hinton and N. Frosst, “Distilling a neural network into a soft decision
tree,” 2017. [Online]. Available: https://arxiv.org/pdf/1711.09784.pdf
H. Lakkaraju, S. H. Bach, and J. Leskovec, “Interpretable decision sets:
A joint framework for description and prediction,” in Proceedings of the
22nd ACM SIGKDD international conference on knowledge discovery
and data mining, 2016, pp. 1675-1684.

C. Yang, A. Rangarajan, and S. Ranka, “Global model interpretation via
recursive partitioning,” in /EEE 20th International Conference on High
Performance Computing and Communications, 2018, pp. 1563-1570.
Y. Wang, H. Su, B. Zhang, and X. Hu, “Interpret neural networks by
identifying critical data routing paths,” in 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2018, pp. 8906-8914.

E. Candes, Y. Fan, L. Janson, and J. Lv, “Panning for gold: Model-x
knockoffs for high-dimensional controlled variable selection,” Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 2016.
J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse,
trainable neural networks,” in 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, 2019.

D. Bau, J. Y. Zhu, H. Strobelt, A. Lapedriza, B. Zhou, and A. Torralba,
“Understanding the role of individual units in a deep neural network,”
Proceedings of the National Academy of Sciences, 2020.

T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley
Series in Telecommunications and Signal Processing), USA, 2006.

U. M. Khaire and R. Dhanalakshmi, “Stability of feature selection
algorithm: A review,” Journal of King Saud University - Computer
and Information Sciences, 2019.

D. Koller and N. Friedman, Probabilistic Graphical Models: Principles
and Techniques - Adaptive Computation and Machine Learning. The
MIT Press, 2009.

J. Pearl and A. Paz, “Confounding equivalence in causal inference,”
Journal of Causal Inference, vol. 2, no. 1, pp. 75-93, 2014.

D. Edwards, Introduction to Graphical Modelling. New York, USA:
Springer, 2000.

D. Margaritis and S. Thrun, “Bayesian network induction via local
neighborhoods,” in Advances in Neural Information Processing Systems
12, 2000, pp. 505-511.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016.

M. N. Vu, Source Code for NeuCEPT, https://github.com/vunhatminh/
NeuCEPT.git.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278-2324, 1998.

S. Liu and W. Deng, “Very deep convolutional neural network based
image classification using small training sample size,” 2015 3rd IAPR
Asian Conference on Pattern Recognition (ACPR), pp. 730-734, 2015.
Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[Online]. Available: http://yann.lecun.com/exdb/mnist/

A. Krizhevsky, “Learning multiple layers of features from tiny images,”
University of Toronto, 05 2012.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” in NIPS-W, 2017.

“Captum: A unified and generic model interpretability library for pytorch,”
ArXiv, vol. abs/2009.07896, 2020.

A. M. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are
easily fooled: High confidence predictions for unrecognizable images,”
IEEE Conference on Computer Vision and Pattern Recognition, 2015.
M. N. Vu, T. D. Nguyen, N. Phan, R. Gera, and M. T. Thai, “c-eval: A
unified metric to evaluate feature-based explanations via perturbation,”
in 2021 IEEE International Conference on Big Data, 2021.

J. R. Zech, M. A. Badgeley, M. Liu, A. B. Costa, J. J. Titano, and
E. K. Oermann, “Variable generalization performance of a deep learning
model to detect pneumonia in chest radiographs: A cross-sectional study,”
PLOS Medicine, vol. 15, no. 11, pp. 1-17, 11 2018.



	Introduction
	Related Work
	Critical Neurons Identification with NeuCEPT-discovery
	Problem Formulation
	Solutions with Precision Guarantee

	Information-theoretic Interpretation and NeuCEPT-learning of Critical Neurons
	Information-theoretic Interpretation
	NeuCEPT-learning on Critical Neurons

	Experiments: Setting and Results
	Prior-knowledge training (PKT).
	Experimental setting
	Explainability power.
	Non-redundancy.
	Running-Time.

	Case studies
	Conclusion
	References

