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Abstract

We study sequential bargaining between a proposer and a veto player. Both

have single-peaked preferences, but the proposer is uncertain about the veto

player’s ideal point. The proposer cannot commit to future proposals. When

players are patient, there can be equilibria with Coasian dynamics: the veto

player’s private information can largely nullify proposer’s bargaining power.

Our main result, however, is that under some conditions there also are equilibria

in which the proposer obtains the high payo↵ that he would with commitment

power. The driving force is that the veto player’s single-peaked preferences

give the proposer an option to “leapfrog”, i.e., to secure agreement from only

low-surplus types early on to credibly extract surplus from high types later.

Methodologically, we exploit the connection between sequential bargaining and

static mechanism design.
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1. Introduction

“If the Congress returns the bill having appropriately addressed these con-

cerns, I will sign it. For now, I must veto the bill.”1

— President Barack Obama

An important feature of U.S. politics is that legislatures (e.g., the Congress or a

State Assembly) send bills to executives (e.g., the President or a Governor) who can

veto them, and conversely, executives must secure confirmation from legislatures for

certain appointments (e.g., to the Supreme Court and the Federal Reserve Board).

More broadly, there are many contexts in which one party or group makes proposals

and another decides whether to approve them. For instance, search committees put

forward candidates for approval by their organizations, Boards of Directors may re-

quire sign-o↵ from shareholders on certain initiatives, and some public school districts

require citizens to ratify the budget proposed by their school boards.

In an influential paper, Romer and Rosenthal (1978) introduced a framework to

study veto bargaining, i.e., bargaining over a one-dimensional policy between two play-

ers who have single-peaked preferences. Only one player, Proposer, has the power

to make proposals; the other player, Vetoer, decides whether to accept a proposal

or reject it and preserve the status quo. Romer and Rosenthal assumed complete

information—specifically, Proposer knows Vetoer’s preferences—and a single take-it-

or-leave-it proposal. These are important benchmarks, but for many applications

both assumptions ought to be relaxed: Proposer may be uncertain about Vetoer’s

preferences, and, as illustrated in our epigraph, Proposer can make sequential pro-

posals.

Sequential veto bargaining with incomplete information presents rich possibilities

for learning and signaling. When a proposal is rejected, Proposer updates about

Vetoer’s preferences and might modify his proposal in response. Anticipating that,

Vetoer has an incentive to strategically reject proposals that she prefers over the

status quo in order to extract proposals she likes even more. (Consider our epigraph,

again.) But then, to what extent does Proposer actually benefit from making multiple

proposals?

Existing work on these issues primarily undertakes only a two-period analysis (e.g.,

1Closing of Obama’s Veto Message when he vetoed H.R. 1777.
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Cameron, 2000, pp. 110-116; Cameron and McCarty, 2004, Section 4).2 But there

are limitations to models with a short bargaining horizon. On the one hand, being

able to make proposals repeatedly may allow Proposer to reap benefits from screening

Vetoer’s type. On the other hand, a short horizon confers significant commitment

power to Proposer.

The implications of a long horizon have been studied in the neighboring arena

of bargaining between a seller and a buyer with privately-known valuation. There,

following the classic Coase Conjecture (Coase, 1972), it has been shown that if o↵ers

can be made indefinitely and players are patient, then lack of commitment wipes

out the seller’s bargaining power. The outcome is (approximately) that the buyer

only pays her lowest possible valuation so long as it is common knowledge that there

are gains from trade.3 Applying Coasian logic to veto bargaining would suggest

that because sequential rationality compels Proposer to repeatedly moderate future

proposals, an inability to commit would significantly hurt Proposer.

Accordingly, the goal of our paper is to study sequential veto bargaining with

incomplete information in an infinite-horizon model with patient players. Our main

result is that, contrary to a Coasian intuition, the lack of commitment need not harm

Proposer. More specifically, we establish that under certain conditions, if players

are patient, Proposer can achieve a payo↵ that is arbitrarily close to his payo↵ with

commitment power (Theorem 1).

Central to this result is Proposer’s ability to leapfrog : he may initially propose a

policy that is far from his own interests, targeting acceptance by “low” Vetoer types

whose ideal points are further away from his and closer to the status quo. Upon

rejection, Proposer concludes that Vetoer’s ideal point is closer to his own preferred

policy. He is then able to extract surplus from these “high” types because it is

then credible to only o↵er policies that are even closer to his own ideal point. Put

di↵erently, by securing initial acceptance from (only) low types, leapfrogging limits

the implications of sequential rationality for subsequent policy moderation, so much

so that Proposer is not harmed by the lack of commitment.

2We discuss two exceptions, Romer and Rosenthal (1979) and Cameron and Elmes (1994), in
Section 6.

3This point has been established for the “gap case” and, subject to a “stationary equilibirum”
qualification, also for the “no gap case” (Fudenberg, Levine, and Tirole, 1985; Gul, Sonnenschein,
and Wilson, 1986). Ausubel and Deneckere (1989b) provide an important counterpoint in the no
gap case with non-stationary equilibria.
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Leapfrogging is viable in our model because Vetoer has single-peaked preferences:

there are policies that low types are willing to accept and high types are not, given

suitable subsequent policy proposals. By contrast, in the canonical model of seller-

buyer bargaining, all buyer types prefer low to high prices. O↵ering low prices early

on to subsequently charge high-value buyers a higher price would be futile; indeed,

any equilibrium in seller-buyer bargaining features decreasing prices with the so-

called skimming property: the current price is always accepted by an interval of the

highest-value buyer types.

After presenting our model in Section 2, we use a two-type example in Section 3

to develop the logic of leapfrogging. We first show how the option to leapfrog implies

that, if an equilibrium exists, there is one that achieves a high Proposer payo↵. Our

option-based argument is succinct, but leaves open whether and how leapfrogging

can be supported in an equilibrium. Accordingly, we also explicitly construct a high

Proposer payo↵ equilibrium that uses leapfrogging (Proposition 1).

We turn in Section 4 to a setting with a continuum of types and Vetoer preferences

given by a quadratic loss function. As is familiar in sequential bargaining, an upper

bound on Proposer’s payo↵ when he can commit to a strategy in the dynamic game

is provided by an auxiliary static mechanism design problem (Lemma 1). This static

problem has been studied recently by Kartik, Kleiner, and Van Weelden (2021); we

assume that what they call “interval delegation” is an optimal mechanism. Theo-

rem 1 then establishes our main result: the static mechanism design payo↵ can be

(approximately) achieved in a sequential veto bargaining equilibrium. Our argument

is non-constructive, but crucially exploits Proposer’s option to leapfrog in the dy-

namic game and certain properties of the optimal mechanism (Lemma 3). Combining

Lemma 1 and Theorem 1, we conclude that Proposer can achieve (approximately)

the same payo↵ in an equilibrium as he could by committing to a strategy in the

dynamic game.

In Section 5, we show that there can be multiple equilibrium outcomes. Sec-

tion 5.1 constructs, under reasonable conditions, a “skimming equilibrium” that fea-

tures Coasian dynamics: Proposer starts with demanding proposals but compromises

rapidly, so much so that Vetoer (approximately) gets her ideal point unless it is

su�ciently extreme. In some cases this outcome is a lower bound on Proposer’s equi-

librium payo↵, and an upper bound on Vetoer’s. In Section 5.2, we build on the

skimming equilibrium to explicitly describe the dynamics of a leapfrogging equilib-

3



rium that delivers (approximately) Proposer’s commitment payo↵. Proposer begins

by leapfrogging with a low o↵er, and upon rejection skims among the remaining high

types. Although intuitive, this approach bootstraps on the “bad” skimming equi-

librium by using it as a punishment if Proposer deviates, reminiscent of Ausubel

and Deneckere (1989b). By contrast, our non-constructive proof of Theorem 1 does

not presume existence of a low-payo↵ equilibrium. In Section 5.3, we establish that

leapfrogging is sometimes necessary to achieve Proposer’s commitment payo↵.

As there can be a range of equilibrium payo↵s, our analysis calls attention to

the role of “norms”—equilibrium selection—in veto bargaining. In particular, if the

norm favors Proposer, then the ability to make multiple proposals is always valuable

to Proposer; however, under an unfavorable norm, in some environments Proposer

could be worse o↵ than if he could only make a single take-it-or-leave-it o↵er.

Section 6 relates our work to the existing literature on veto and Coasian bargain-

ing. Section 7 concludes.

2. Model

Proposer (he) and Vetoer (she) jointly choose a policy or action a 2 R. In each

period t = 0, 1, 2, . . ., so long as agreement has not already been reached, Proposer

makes a proposal at 2 R that Vetoer can accept or reject. The game ends when

Vetoer accepts a proposal. Both players share a common discount factor � 2 [0, 1). If

agreement is reached in some period T on action aT , then Proposer’s payo↵ is �Tu(aT )

and Vetoer’s is �TuV (aT , v); both players’ payo↵s are 0 if agreement is never reached.

The variable v 2 R in Vetoer’s payo↵ is her private information, or type, drawn ex

ante from some cumulative distribution F . We interpret the players’ payo↵s as arising

from flow utilities u and uV when a status-quo policy 0 is implemented in every period

from 0 to T � 1 and the agreement policy aT is implemented forever starting from

period T , with a normalization that both players’ utilities from the status quo is 0.

That is, a player’s utility from a policy is his/her gain from that policy relative to

the status quo. We assume both players have strictly single-peaked preferences, with

Proposer’s ideal point being 1 and Vetoer’s v. That is, u(a) is strictly increasing on

(�1, 1] and strictly decreasing on [1,1), and analogously for uV (a, v).4 Our main

result (Theorem 1 in Section 4) allows Proposer’s utility u to be any concave function

4We adopt the convention that “increasing”, “larger than”, “prefers”, etc., should be understood
in the weak sense unless explicitly qualified by “strict”.
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but assumes that uV is quadratic loss.

A history in this game is a sequence of proposals. A strategy for Proposer is a

function that assigns to every history a probability distribution over proposals, inter-

preted as the (possibly random) proposal Proposer makes given that all proposals in

the history have been rejected. A strategy for Vetoer is a function that specifies for

each history and each type the probability of accepting the last proposal. Our equi-

librium concept is a standard version of Perfect Bayesian Equilibrium: both players

play sequentially rationally and beliefs are updated by Bayes rule whenever possible—

upon rejection of a proposal at any history, Proposer’s belief about Vetoer’s type is

updated by Bayes rule if rejection has positive probability given Proposer’s belief at

that history. We also require, as usual, that Proposer’s proposals do not (directly)

a↵ect his beliefs about Vetoer’s type.

Although our model formally has a single veto player, it can also be applied to

settings in which Proposer has to secure approval from a committee of voters; so

long as Proposer observes only whether his proposal passes or not, Vetoer can be

interpreted as the median member of the committee. We elaborate in Section 4.4.

3. Two-Type Example

This section presents an example to illustrate the logic of leapfrogging and how it

benefits Proposer. The example has linear loss functions and a binary type distribu-

tion. Accordingly, for this section take

u(a) = 1� |1� a| and uV (a, v) = v � |v � a|,

where the constants are determined by our normalization that both Proposer’s and

Vetoer’s payo↵s from the status quo (action 0) are 0. For simplicity, assume in this

section that Proposer can only propose actions in [0, 1]. Suppose there are two Vetoer

types, l and h, and let µ0 be the prior probability of type h. We focus on the case

where

0 < l < 1/2 < h < 2l < 1, (1)

as it best illustrates the strategic issues at the core of our analysis. Proposer’s first

best—i.e., his optimum under complete information subject to Vetoer’s approval—

is action 1 from type h and action 2l from type l. The assumption that h < 2l
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implies that Vetoer of type h prefers 2l to 1 and so this first-best allocation cannot

be implemented under incomplete information.

A Static Benchmark: We begin our analysis with a useful benchmark. Consider

a static (one-period) problem in which Proposer selects a menu of actions from which

Vetoer can choose (if she opts to not exercise her veto); equivalently, Proposer of-

fers a deterministic mechanism or delegation set. In this problem, Proposer’s linear

loss utility implies that he either pools both types with the singleton menu {2l} or

separates them using the menu {a⇤, 1}, where a⇤ := 2h � 1 makes type h indi↵erent

between action 1 and action a⇤.5 Separation is optimal whenever µ0 > µ⇤, where µ⇤

is defined by

u(2l) = (1� µ⇤)u(a⇤) + µ⇤u(1), (2)

and pooling is optimal otherwise. We refer to max{u(2l), (1� µ0)u(a⇤) + µ0u(1)} as

Proposer’s delegation payo↵.

It is straightforward that when players are patient, Proposer can achieve approxi-

mately the delegation payo↵ in our sequential bargaining game if he could commit to

a strategy.6 But can Proposer achieve (approximately) the delegation payo↵ without

commitment power?

The Sequential Rationality Problem: The di�culty when separation is opti-

mal is that of Coasian dynamics, which suggest the impossibility of screening Vetoer

types when players are patient (e.g., Fudenberg, Levine, and Tirole, 1985; Gul, Son-

nenschein, and Wilson, 1986), given that type h prefers l’s allocation to her own.

Specifically, if Proposer secures agreement initially (even with only high probability)

from type h on an action close to 1, sequential rationality then impels him to o↵er

2l to reach an agreement immediately with type l. But anticipating the o↵er of 2l, a

patient type h would not accept the initial high action. Indeed, it can be shown that

5To see why optimal separation is via {a⇤, 1}, suppose separation is better than pooling and
allocation {al, ah} with al < ah is an optimal separating allocation. It must be that ah > 2l;
otherwise, pooling on 2l would be strictly better for Proposer. Hence, al < h; otherwise, both types
would strictly prefer al. Consequently, each type i 2 {l, h} receives ai. Incentive compatibility (IC)
implies al  2h�ah; if this inequality is strict, raising al a little preserves IC and is strictly profitable
for Proposer. So al = 2h � ah, and it follows that only ah = 1 (which implies al = a⇤) maximizes
Proposer’s payo↵.

6Our analysis in Section 4 shows that under certain conditions, the delegation payo↵ is in fact an
upper bound on Proposer’s payo↵ in the dynamic game, even with commitment power. But those
conditions ensure that delegation—a deterministic mechanism—is optimal in the static problem
among stochastic mechanisms, which is not true in this example because of Vetoer’s linear loss
utility and discrete types. See also footnote 10.
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in any equilibrium in which the on-path sequence of o↵ers is decreasing—which guar-

antees that agreement is first secured with type h—Proposer’s payo↵ at the patient

limit is no higher than from pooling both types on action 2l. This payo↵ is strictly

below, and possibly far from, the delegation payo↵ when separation is optimal.

The Leapfrogging Solution: Our key insight is that Coasian dynamics can be

negated by leapfrogging, i.e., making an o↵er that is accepted by the low type and

rejected by the high type. Specifically, Proposer can first propose an action close to a⇤

that is accepted only by type l. Upon rejection, Proposer credibly o↵ers action 1 ever

after. In other words, leapfrogging uses a low action to first target the low type so that

Proposer can subsequently extract a high action from the high type; crucially, at the

latter stage, Proposer is no longer constrained by sequential rationality to moderate

his o↵er if it is rejected. We highlight that it is Vetoer’s single-peaked preferences

that permit o↵ers that type l is willing to accept but type h is not.

We now make precise how Proposer can exploit leapfrogging with a succinct ar-

gument that presumes equilibrium existence. We argue that if separation is optimal,

there is an equilibrium in which Proposer achieves approximately the delegation pay-

o↵, at least. (Here and subsequently, we sometimes leave implicit that statements

should be understood as holding for large �.) Let a� := �a⇤ = �(2h � 1) be the

action below h that makes type h indi↵erent between obtaining action 1 in the next

period and obtaining action a� in the current period. Assume we are given an equi-

librium. Modify that equilibrium to obtain a new equilibrium with strategy profile �

and beliefs µ as follows:

1. if Proposer o↵ers a� in the first period, type l accepts and type h rejects. After

a first-period rejection of a�, Proposer’s belief assigns probability 1 to type h,

and so he proposes 1 in all future periods; in these periods, type h accepts any

proposal in [a�, 1] and rejects all others, and type l accepts any proposal in [0, 2l]

and rejects all others;

2. if Proposer o↵ers a 6= a� in the first period, continuation play follows the original

equilibrium;

3. in the first period, Proposer chooses a proposal that maximizes his expected

payo↵.7

7We can assume a maximizer exists: if one doesn’t, it must be that in the original equilibrium it is
optimal for Proposer to choose a� in the first period, with a payo↵ larger than (1�µ0)u(a�)+�µ0u(1);
so the original equilibrium itself yields at least approximately the delegation payo↵.
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Point 1 above implies that we have an equilibrium in the continuation game after

a first-period proposal of a� is rejected. It follows from Points 2 and 3 that (�, µ) is an

equilibrium. In this equilibrium, either Proposer leapfrogs by o↵ering a� in the first

period which is accepted by type l, followed by action 1 being accepted by type h in

the second period, or Proposer obtains an even higher payo↵ by proposing something

di↵erent in the first period. When � is close to 1, a� is close to a⇤ and Proposer’s

equilibrium payo↵ is close to the delegation payo↵ or even higher.

When separation is optimal, this argument shows that the option to leapfrog yields

Proposer approximately his delegation payo↵ or higher. But it does not establish that

leapfrogging actually occurs, and it presumes equilibrium existence. We now turn to

a full-fledged equilibrium construction that features leapfrogging; the construction

also describes an equilibrium when pooling is optimal.

Proposition 1. When � is large, for any µ0 there is an equilibrium in which Pro-

poser’s payo↵ is approximately his delegation payo↵.8 In particular, there exist µ�

and µ̄�, with 0 < µ⇤ < µ� < µ̄� < 1, such that at (µ0, �) there is an equilibrium with

on-path behavior as follows:

(a) (Skimming.) If µ0 < µ�, Proposer o↵ers a finite sequence of actions that de-

creases to 2l. Each o↵er strictly higher than 2l is accepted with positive proba-

bility by type h and rejected by l.

(b) (Leapfrogging.) If µ0 2
�
µ�, µ̄�

�
, Proposer o↵ers action a� in the first period,

which is accepted by type l and rejected by h; in the second period Proposer

o↵ers action 1, which is accepted by type h.

(c) (Delayed Leapfrogging.) If µ0 > µ̄�, Proposer o↵ers action 1 in the first period,

which is accepted with positive probability by type h and rejected by l; in the

second period Proposer randomizes between skimming and leapfrogging (parts

(a) and (b), respectively).

(All proofs of formal results are in the Appendices.)

Case (a) of Proposition 1 concerns low priors. Here we construct a skimming equi-

librium in which Proposer begins with an o↵er exceeding 2l but compromises to lower

actions following rejections. As � ! 1, Proposer’s payo↵ converges to the pooling

payo↵, u(2l), from the static benchmark; moreover, µ� also converges to µ⇤, and so

8More precisely: letting ud denote the delegation payo↵, for all " > 0 there is � < 1 such that
for any � > � and for all µ0, there is an equilibrium in which Proposer’s payo↵ is at least ud � ".
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for all priors less than µ⇤, Proposer is obtaining approximately his delegation pay-

o↵. The skimming equilibrium adapts a construction that is standard in seller-buyer

bargaining (Hart, 1989; Fudenberg and Tirole, 1991, pp. 409–10). However, there

are novel considerations in deterring Proposer from o↵ering actions lower than 2l. In

our construction, the most attractive deviation is leapfrogging, wherein Proposer first

o↵ers a� to secure acceptance from type l and then extracts action 1 from type h.

Such deviations are profitable when type h is su�ciently likely, which explains why

our construction is an equilibrium only for a low prior (whereas in seller-buyer bar-

gaining, the analogous equilibrium exists for all priors because no buyer type would

wait for a higher price). The threshold µ� is the (lowest) belief at which Proposer is

indi↵erent between skimming and leapfrogging.

Proposition 1(b) and (c) are the main cases of interest, because here the prior

is such that separation is optimal in the static benchmark. In Case (b), Proposer

leapfrogs at the outset, securing action a� from type l in the first period and then

action 1 from type h in the second period. As � ! 1, a� ! a⇤ and Proposer obtains

his delegation payo↵. The challenge with supporting leapfrogging is ensuring that

Proposer does not deviate to a high o↵er in the first period. Such a deviation (if

accepted with su�cient probability by type h) would be profitable if the prior is

too large. The precise threshold µ̄� is determined by Proposer’s indi↵erence between

leapfrogging and the most attractive deviation, which is an o↵er of 1. In equilibrium

this o↵er is accepted by type h only with some probability, which brings Proposer’s

belief upon rejection down to the threshold µ� described in the previous paragraph,

so that Proposer then randomizes between skimming and leapfrogging in a manner

that justifies h’s randomization. The full construction of the leapfrogging equilibrium

is fairly involved; Figure 1 summarizes, with details provided in the formal proof.

Finally, Proposition 1(c) concerns the case of high priors, where leapfrogging from

the outset cannot be sustained due to Proposer’s strong incentive to secure agree-

ment in the first period with the high type on a high action. Instead we have delayed

and only probabilistic leapfrogging. As foreshadowed in the previous paragraph, now

Proposer actually o↵ers action 1 in the first period, which is accepted by type h with

positive probability; upon rejection, Proposer randomizes in the second period be-

tween skimming and leapfrogging. Since Proposer is indi↵erent in the second period,

his payo↵ is as if he always leapfrogs then, and his payo↵ therefore converges to the

delegation payo↵ as � ! 1.
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a� h 2l ā�0 1

I II III IV

Figure 1: Proposer’s first-period incentives in the equilibrium for Proposition 1(b) and (c).
O↵ers in Region I (including a�) are accepted only by type l; action 1 is then o↵ered and
accepted by h. O↵ers in Region II are accepted by both types. O↵ers in Region III are
accepted with some probability by h and rejected by l; rejection leads to a belief lower than
µ�, whereafter there is a (suitably randomized) skimming equilibrium. Action ā� makes type
h indi↵erent between accepting ā� now and waiting one period to play Proposition 1(a)’s
skimming equilibrium under belief µ�. O↵ers in Region IV are accepted by h with some
probability and rejected by l; rejection leads to belief µ�, whereafter Proposer mixes between
skimming and leapfrogging. For any prior µ0 > µ�, Proposer’s optimal o↵er is either a� or 1.
Belief µ̄� is defined by Proposer’s indi↵erence between these two o↵ers. Hence µ0 2 (µ�, µ̄�)
leads to leapfrogging (Proposition 1(b)), whereas µ0 > µ̄� leads to a positive probability of
delayed leapfrogging (Proposition 1(c)).

It is worth noting that although Cases (b) and (c) of Proposition 1 yield Proposer

an identical payo↵ at the patient limit, both cases remain relevant even at that

limit: lim�!1 µ� < lim�!1 µ̄� < 1 (see footnote 34 in the appendix). Moreover, since

Proposer’s delegation payo↵ becomes arbitrarily close to his complete-information

payo↵ as µ0 ! 1, Proposition 1 implies that there are equilibria in which Proposer’s

payo↵ at the patient limit is continuous in the prior even when the probability of type

l vanishes.9 By contrast, in seller-buyer bargaining, in any equilibrium (of the “gap

case”), the uninformed seller’s payo↵ in the patient limit drops discontinuously when

he ascribes any positive probability to the low-value buyer.

Limitations: Although this example conveys the logic of leapfrogging and how

Proposer can exploit it, there are two interrelated limitations. First, it is di�cult to

determine whether there are equilibria that are even better (or worse) for Proposer

than that identified in Proposition 1. Second, while the delegation payo↵ provides a

high target for Proposer, a more compelling benchmark is Proposer’s payo↵ if he can

commit to his strategy in the sequential bargaining game. Indeed, in this example

dynamic commitments can achieve more than the delegation payo↵.10 The following

9More precisely: limµ0!1 lim�!1 U(µ0, �) = u(1), where U(µ0, �) denotes Proposer’s payo↵ in
the equilibrium constructed in Proposition 1 for the belief µ0 and discount factor �.

10 Let t be the earliest period such that type h prefers agreement on action 1 in the first period to
agreement on 2l in period t. If Proposer o↵ers 1 up until period t� 1 and o↵ers 2l from period t on,
then it is optimal for type h to accept 1 in the first period and for type l to accept 2l in period t.
For large �, h is approximately indi↵erent: 2h� 1 ⇡ �t(2h� 2l), or equivalently, (2h� 1) l

h�l ⇡ �t2l.
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section addresses these issues by identifying assumptions within our general model

such that Proposer (approximately) achieves his dynamic commitment payo↵ in an

equilibrium.

4. General Analysis

We hereafter assume Proposer’s utility function u(a) is concave and Vetoer’s is

uV (a, v) = �(v � a)2 + v2,

which is the standard quadratic loss function with our normalization that Vetoer’s

payo↵ from the status quo is 0. We also assume Vetoer’s type is distributed according

to a cumulative distribution F 2 F , where F is the set of distributions with interval

support that admit a density that is bounded away from both 0 and 1 on the

support. We denote the support of F by [v, v]. For this section alone, we assume

that v  1, i.e., Vetoer’s ideal point is always lower than Proposer’s. We do not view

this restriction as critical; indeed, our equilibrium constructions in Section 5 dispense

with it. Note that we allow for v  1/2, which is tantamount to Proposer having

monotonic preferences.

Vetoer’s quadratic loss function assures single-crossing expectational di↵erences

(SCED) as defined by Kartik, Lee, and Rappoport (2019): for any two lotteries over

time-stamped actions—pairs (a, t) representing agreement on action a at time t, with

t = 1 capturing no agreement—their expected utility di↵erence is single crossing in

Vetoer’s type v.11 This single-crossing property will play an essential role because it

guarantees “interval choice” (Kartik, Lee, and Rappoport, 2019, Theorem 1): given

any Proposer strategy, at every history the set of types that find it optimal to accept

the current o↵er is an interval.

It follows that Proposer’s payo↵ from dynamic commitment is at least µ0u(1) + (1 � µ0)�tu(2l) ⇡
µ0u(1) + (1� µ0)u(2h� 1) l

h�l . This latter expression is strictly larger than Proposer’s payo↵ from

the menu {a⇤, 1} because a⇤ ⌘ 2h � 1 and l
h�l > 1 (as 2l > h by assumption). That dynamic

commitment strictly improves on the delegation payo↵ implies that the optimal static mechanism
in this example must be stochastic (see Lemma 1 below).

11This is because the utility from any lottery over time-stamped actions is �E(a,t)[�
ta2] +

2vE(a,t)[�
ta], which is linear in v. More generally, if uV (a, t) has SCED for non-time-stamped

action lotteries (i.e., lotteries over actions within single period), then SCED over time-stamped ac-
tion lotteries is assured by Kartik, Lee, and Rappoport (2022, Corollary 3). We assume quadratic
loss because of some additional tractability, but believe that our results would extend under SCED
with weaker assumptions such as smoothness and concavity around the ideal point.
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4.1. A Static Problem

We define an auxiliary static mechanism design problem that will turn out to

provide a tight upper bound on payo↵s in the dynamic game. In this auxiliary

problem, a (direct, stochastic) mechanism assigns each type a lottery over actions.

Formally, a mechanism m is a measurable function m : [v, v] ! M0(R), where M0(R)
is the set of probability distributions on R with finite expectation and finite variance.

For notational convenience we write m(v) = a when m(v) puts probability 1 on action

a and also extend the domain of Proposer’s utility u to include lotteries: u(m(v)) :=

Em(v)[u(a)]. A mechanism m is incentive compatible if every Vetoer type v prefers

m(v) to m(v0) for all v0. It is individually rational if every type v prefers m(v) to

action 0. Let S denote the set of incentive compatible and individually rational

mechanisms.12 Proposer’s static problem is:

max
m2S

Z
u(m(v))dF (v).

We denote Proposer’s maximum value by U(F ).

Any incentive compatible and individually rational mechanism that assigns every

type a deterministic action can be implemented as a delegation set : Proposer chooses

a subset A ✓ R and Vetoer is allowed to pick any action in A [ {0}. We say that

an interval delegation set is optimal if a solution to the static problem can be im-

plemented by delegating an interval [c⇤, 1] for some c⇤ 2 [0, 1]. Our analysis below

assumes environments in which such simple mechanisms are optimal. That is, we

maintain hereafter:

Assumption 1. For some c⇤ 2 [0, 1], an interval delegation set [c⇤, 1] solves Pro-

poser’s static problem.

The static problem has been studied by Kartik, Kleiner, and Van Weelden (2021).

Among other things, they motivate interval delegation and investigate when it is opti-

mal. Their Corollary 3 establishes that su�cient conditions for Assumption 1 are that

Proposer’s utility u is a linear or quadratic loss function (or a combination thereof)

and Vetoer’s type density f is logconcave.13 Many commonly used distributions have

logconcave densities (Bagnoli and Bergstrom, 2005).

12More precisely, any m 2 S must also be such that v 7! Em(v)[u(a)] is integrable.
13While that paper maintains some assumptions on the type distribution that we don’t assume,

those assumptions are not needed for its su�cient conditions for optimality of interval delegation.
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4.2. An Upper Bound on the Commitment Payo↵

In the static problem, Proposer screens di↵erent Vetoer types by exploiting their

heterogeneous preferences over (distributions of) actions within a single period. In

our dynamic environment, delay is an additional screening instrument. Nevertheless,

Proposer can do no better in the dynamic game even if he could commit to his strategy :

Lemma 1. There is no Proposer strategy and Vetoer best response that yield Proposer

a payo↵ strictly higher than U(F ).

The idea behind this result is straightforward, and familiar in the seller-buyer bar-

gaining literature (e.g., Ausubel and Deneckere, 1989a): the outcome of any Proposer

strategy and Vetoer best response can be replicated by a mechanism in the static

problem. To elaborate, any Proposer strategy and Vetoer best response induce, for

each Vetoer type, a probability distribution over agreements on time-stamped actions.

We can transform any such distribution into a static lottery by mapping an agreement

on action a in period t into a static lottery that gives action a with probability �t and

action 0 with remaining probability. This transformation is payo↵ equivalent for Pro-

poser and all Vetoer types. Therefore, the static mechanism induced by transforming

each type’s equilibrium distribution is incentive compatible and individually rational

because Vetoer is playing a best response in the game, and the mechanism delivers

Proposer the same payo↵ as in the game.

We highlight that while it is crucial that the static problem allow for stochastic

mechanisms, the argument for Lemma 1 does not require any assumption on either

player’s preferences beyond discounted expected utility with a common discount fac-

tor. Furthermore, the argument only uses the distribution of agreement times and

actions for each type and the requirement that Vetoer is best responding to Proposer,

nothing more about the game form. It follows that the static problem provides an

upper bound on Proposer’s commitment payo↵ in the dynamic game even if Proposer

could, in any period, o↵er a menu of (possibly stochastic) actions, allow Vetoer to

send cheap-talk messages, or engage in other complex protocols. Indeed, any incen-

tive compatible and individually rational mechanism that assigns each type a lottery

over time-stamped actions yields Proposer a payo↵ at most U(F ).

We also note that the logic of Corollary 1 in that paper implies that the interval delegation set
[max{0, 2v}, 1] is an optimal mechanism if f is decreasing on [max{0, v}, v], given only that u is
concave.
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4.3. Obtaining the Commitment Payo↵ without Commitment

In light of Lemma 1, we say that Proposer can achieve approximately his commit-

ment payo↵ for a belief F 0 if given the belief F 0 (at some history), for every " > 0

there is � < 1 such that for all � > �, there is a (continuation) equilibrium in which

Proposer’s payo↵ is at least U(F 0)� ". For brevity, we say that Proposer can achieve

approximately his commitment payo↵ if he can approximately achieve his commit-

ment payo↵ for the prior F .14 Our main result, Theorem 1 below, presumes:

An equilibrium exists for all � and all beliefs in F . (EqmExists)

We view this presumption as benign, and we provide reasonable su�cient conditions

for equilibrium existence in Section 5. In particular, it is su�cient that v  0, i.e.,

some Vetoer types prefer the status quo to any action Proposer prefers.

Theorem 1. Suppose EqmExists. Proposer can achieve approximately his commit-

ment payo↵.

Together, Lemma 1 and Theorem 1 imply that, when players are patient, there

are equilibria in which Proposer su↵ers (almost) no loss from the inability to commit

in the dynamic game. In particular, Proposer is not harmed by the ability to make

sequential proposals; in fact, whenever the optimal delegation set has c⇤ < 1, Proposer

strictly benefits from that ability, as the outcome from that delegation set cannot be

replicated with a single proposal. Moreover, Proposer’s gain from the ability to o↵er

a menu of actions, rather than a single action, in each period vanishes as � ! 1.

Theorem 1’s conclusion may be best appreciated when c⇤ > max{0, 2v}, say 0 <

2v < c⇤. In that case the result contrasts with the negative conclusion from Coasian

dynamics: intuitively, if Proposer were to continually compromise starting from a

high o↵er, sequential rationality would drive o↵ers all the way down to 2v; it would

not be credible for Proposer to stop at c⇤.

An intuition one might pro↵er for Theorem 1 is that, when � ⇡ 1, Proposer can

begin with an o↵er of action 0—leapfrog—and then o↵er a decreasing sequence of

actions along a fine grid of [c⇤, 1]. Vetoer’s best response would be to accept the o↵er

14To be clear: conceptually, by “commitment payo↵” we have in mind Proposer’s payo↵ if he
could commit to a strategy in the dynamic game. But operationally, we refer to the static problem’s
payo↵ U(F ) as the commitment payo↵ because of Lemma 1, our focus on large �, and Theorem 1
below.
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of 0 if her type is in [0, c⇤/2], and otherwise accept an o↵er in [c⇤, 1], resulting in ap-

proximately the same outcome as the optimal delegation set [c⇤, 1]. This intuition is

incomplete because Proposer must be incentivized to o↵er 0 initially, and even there-

after, it is not clear that he would be willing to follow the decreasing sequence of o↵ers.

We are able to substantiate this intuition in Section 5.2 under some conditions, by

exploiting equilibrium payo↵ multiplicity to deter any Proposer deviations. Instead,

we pursue a di↵erent approach to prove Theorem 1 that does not rely on equilibrium

payo↵ multiplicity and highlights the power of Proposer’s option to leapfrog. It is

this argument that we sketch in the remainder of this subsection.

Our first step is to derive a “conditional optimality” property of interval delega-

tion: given the assumption that delegation set [c⇤, 1] is an optimal static mechanism

for the prior type distribution F , it is also optimal for certain conditional distribu-

tions. To state the result, let F[v1,v2] denote the conditional distribution of F given

v 2 [v1, v2], for any v1, v2 2 [v, v] with v1  v2.

Lemma 2. The delegation set [c⇤, 1] solves Proposer’s static problem for any belief

F[c,c0] with c  c⇤/2  c⇤  c0.

The lemma owes to SCED of Vetoer’s utility and the optimal static mechanism

being interval delegation, rather than just an arbitrary delegation set. The proof uses

these properties to establish that if some mechanism outperforms delegation set [c⇤, 1]

for any of the relevant truncated beliefs, then augmenting that mechanism by adding

an interval of high actions yields a mechanism that also outperforms [c⇤, 1] for the

original belief.

Lemma 2 says, in particular, that delegation set [c⇤, 1] is an optimal mechanism

for the belief F[v,c⇤] and that it remains optimal for the belief F[c⇤/2,c⇤] that is induced

if Proposer leapfrogs and obtains agreement from all types below c⇤/2. We use these

properties to next establish Theorem 1 for the special case in which Proposer’s belief

is F[v,c⇤].

Lemma 3. Suppose EqmExists. Proposer can achieve approximately his commitment

payo↵ for belief F[v,c⇤].

The proof deduces an equilibrium in which Proposer has an option to leapfrog that

guarantees him approximately the commitment payo↵, analogous in spirit to the logic

given before Proposition 1. In the equilibrium, Proposer has the option to follow a
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path in which he first proposes action 0, which will be accepted by all types below c⇤/2,

and then proposes action c⇤, which will be accepted by all types above c⇤/2. When

players are patient this path yields Proposer approximately the same payo↵ as in the

static problem because the delegation set [c⇤, 1] is outcome-equivalent to {c⇤} under

the belief F[v,c⇤]. On this path, Proposer’s sequential rationality in the second period

with belief F[c⇤/2,c⇤] is assured by Lemma 1 and Lemma 2. Sequential rationality for

Vetoer after both the initial proposal of 0 and the subsequent proposal c⇤ is because

a rejection of c⇤ in the second period would lead Proposer to put probability 1 on

type c⇤ and make subsequent proposals that are larger than c⇤, and hence worse for

Vetoer regardless of her type in [v, c⇤].15

Lemma 3 serves as the base step for an inductive proof of Theorem 1. Specifically,

we show that if Proposer can achieve approximately his commitment payo↵ for belief

F[v,c0] for some c0 � c⇤, then there is a neighborhood of c0 such that for any c00 in this

neighborhood, the commitment payo↵ can also be achieved approximately for belief

F[v,c00].16

Here is the idea for the inductive step. Consider the action a0 > c0 that makes

type c0 indi↵erent between accepting a0 in the current period and playing a puta-

tive continuation equilibrium with belief F[v,c0] that gives Proposer approximately his

commitment payo↵ under that belief. Presuming this continuation if a0 is rejected,

it is optimal for types below c0 to reject a0 because SCED implies that they obtain a

higher payo↵ from using the strategy of type c0 in the continuation equilibrium. On

the other hand, there is a neighborhood of types above c0 within which it is optimal

to accept a0 because (i) discounting implies that types in a neighborhood of a0 prefer

accepting a0 to receiving even their ideal action in the next period, and (ii) SCED

implies that the set of types willing to accept any proposal is an interval. Now sup-

pose Proposer’s belief is F[v,c00] for c00 strictly larger than but su�ciently close to c0.

It follows that the belief F[v,c0] and the continuation equilibrium we hypothesized is

self-fulfilling: anticipating this continuation leads to a0 being rejected by precisely the

set of types [v, c0]. Moreover, action a0 is an option that assures Proposer approx-

imately his commitment payo↵: conditional on rejection by types less than c0, the

15While it is weakly dominated for Vetoer to accept a proposal of 0, we use action 0 because
of the continuum action space. There are discretizations of the action space in which Proposer’s
leapfrogging option can be constructed using a strictly positive action instead of 0.

16This explanation is heuristic; the formal proof ensures that for any " > 0, for all large enough
� < 1, the induction can traverse the set of types with Proposer obtaining a payo↵ at least U(F )�".
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continuation results in approximately the commitment payo↵ given the conditional

distribution, whereas every type v 2 (c0, c00) accepts proposal a0 > c00 which is larger

than the action v that Proposer gets from type v in the static problem for belief F[v,c00]

(by Lemma 2, given that c00 > c0 � c⇤).

We highlight that our proof of Theorem 1 uses a leapfrogging option to deduce

a high-payo↵ equilibrium for Proposer without actually identifying his equilibrium

strategy or the equilibrium outcome (i.e., the mapping from Vetoer types to time-

stamped action distributions).17 As explained above, the proof uses induction on

beliefs of the form F[v,c], exploiting the “conditional optimality” of the ex-ante opti-

mal mechanism for such beliefs (Lemma 2). However, in a leapfrogging equilibrium,

Proposer’s beliefs need not take only that form. But that is compatible with condi-

tionally optimality of the ex-ante optimal mechanism—indeed, Lemma 2 assures that

the interval [c⇤, 1] remains an optimal mechanism so long as Proposer’s belief is of

the form F[c,c0] with c  c⇤/2  c⇤  c0. We will see in Section 5.2 that, under some

conditions, there are leapfrogging equilibria in which Proposer’s beliefs always have

this form on the equilibrium path.

Moving beyond interval delegation, we do not know in general whether our proof

strategy for Theorem 1 can be used when the optimal mechanism is an arbitrary

delegation set; what would be important for our approach is that the delegation set

be a conditionally optimal mechanism for a suitable range of beliefs.

4.4. Committee of Voters

Our analysis with a single Vetoer can be extended to situations in which a com-

mittee votes on Proposer’s o↵er. For some odd number N , consider a committee of N

voters that aggregates votes via simple majority rule. Each voter n 2 {1, . . . , N} has

the utility function u(a, vn), where vn is her ideal point. Ideal points are drawn from

some prior joint distribution, which need not be independent across voters. Each

voter observes the realized vector (v1, . . . , vn), but Proposer does not. Crucially, Pro-

poser also does not observe the vote profile in any period, only whether his o↵er

passes. It does not matter whether the voters observe each others’ votes.

Let m := (N + 1)/2 and let F denote the distribution of the median (i.e., m-th

17This is reminiscent of the approach used in the reputation literature (e.g., Fudenberg and Levine,
1989, 1992), among other places, although the logic here is distinct. Unlike in those classic papers,
we have two long-lived players, and there can also be equilibria in which Proposer obtains a low
payo↵ (Proposition 2 below).
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highest) ideal point. We claim that so long as u has SCED, every equilibrium of our

Proposer-Vetoer two-player game with type distribution F has an outcome-equivalent

equilibrium of the committee game. Specifically, the committee game’s equilibrium

can be described as follows: (i) Proposer behaves just like in the two-player game; (ii)

the realized median voter (i.e., the voter who realizes the m-th highest ideal point),

say voter m, behaves just like Vetoer with type vm; and (iii) at every history, every

non-median voter votes for the current proposal if and only if she prefers it to the

distribution of future agreements (time-stamped actions) induced in the two-player

game if Vetoer has type vm and rejects at that history. Note that all voters behave

“sincerely” or “as if pivotal” in the sense of voting at every history based on their

comparison of the current o↵er with what will happen, in equilibrium, if the o↵er

does not pass.

Here is why the above strategies form an equilibrium of the committee game.

Without loss, assume the realized vector of ideal points has v1  · · ·  vn. The key

observation is that all voters share a common belief about the distribution of future

agreements (since vm is known to all voters), and so SCED assures that the set of

voters who have the same preference as the median voter m to accept (or reject) the

current o↵er includes either {1, . . . ,m} or {m, . . . , N}. Hence, the median voter is

always decisive, and all voters are playing sequentially rationally if the median voter

is. Since Proposer only observes whether his o↵er was accepted or rejected, and the

median voter behaves just like in the two-player game, it follows that Proposer is

behaving sequentially rationally. Finally, being decisive, the median voter is clearly

also playing sequentially rationally.

5. Equilibrium Constructions and Multiplicity

This section constructs two equilibria: a leapfrogging equilibrium that yields Pro-

poser approximately his commitment payo↵, and a skimming equilibrium that can

yield him a significantly lower payo↵. Both constructions require some (plausible)

assumptions on the support of the type distribution. Under those assumptions, they

settle the equilibrium existence presumed by Theorem 1. Moreover, we also establish

a sense in which leapfrogging is necessary to achieve the commitment payo↵. Unlike

in Section 4, we now permit the upper bound of the type distribution, v, to be larger

than 1.
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5.1. A Skimming Equilibrium

We first construct a skimming equilibrium, which we define, following standard

practice (e.g., Fudenberg and Tirole, 1991, p. 407), as an equilibrium in which any on-

path non-negative o↵er is accepted by an upper set of Vetoer types.18 This skimming

equilibrium shows that a Coasian intuition does have some merit in our setting, which

makes it more striking that the commitment payo↵ can also be achieved. Furthermore,

we establish that Proposer’s payo↵ in our skimming equilibrium converges in the

patient limit to that of full delegation, i.e., of simply allowing Vetoer to choose her

preferred action in [2v+, 1], where v+ := max{0, v}.19 It follows that there can be a

substantial multiplicity in bargaining outcomes.

To state the result, define

U(F ) :=

Z 2v+

v

u(2v+)dF (v) +

Z 1

2v+
u(v)dF (v) +

Z max{v,1}

1

u(1)dF (v)

as the static payo↵ from delegation set [2v+, 1]. In this mechanism all Vetoer types

below 2v+ are pooled at action 2v+, all types in [2v+, 1] obtain their ideal points, and

all higher types are pooled at 1.

Proposition 2. If either v  0 or v  1/2, then there is a skimming equilibrium. As

� ! 1, Proposer’s payo↵ in this equilibrium sequence converges to U(F ).

For any �, we construct a skimming equilibrium by adapting the approach used

in seller-buyer bargaining (e.g., Gul, Sonnenschein, and Wilson, 1986; Ausubel and

Deneckere, 1989b). Suppose that Proposer’s belief at any history is a right-truncation

of his prior, i.e., the set of remaining Vetoer types is [v, v] for some v. The highest

remaining type can be used as a state variable for dynamic programming to find Pro-

poser’s optimal sequence of decreasing o↵ers, with a constraint that each subsequent

18We qualify the upper-set acceptance to hold only for (i) non-negative o↵ers and (ii) on-path
o↵ers. Point (i) is needed because of Vetoer’s single-peaked preferences: if a strictly negative o↵er
is accepted by any remaining types, the acceptance set cannot be an upper set since high types
prefer the status quo. Regarding (ii), we could use the stronger definition that includes o↵-path
o↵ers—and our construction in Proposition 2 satisfies that requirement—but restricting to on-path
o↵ers strengthens Proposition 4 in Section 5.3 and its implication that leapfrogging is necessary for
the commitment payo↵.

19 In other words, full delegation is delegation of the interval [c, 1] where c = 0 if v  0 and c = 2v
if v 2 (0, 1/2). Note that we ignore here, and in the rest of Section 5, the case of v > 1/2; it is
uninteresting because there is trivially a skimming equilibrium in which Proposer obtains his ideal
point by o↵ering 1 at every history. Nonetheless, all our statements hold even if v > 1/2 so long as
in that case one interprets the notation 2v+ to mean 1.
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state must be induced by Vetoer’s best response of accepting an o↵er if and only if she

prefers it to the discounted payo↵ from accepting the subsequent o↵er. Definition 1 in

Appendix B.2 makes this program precise. As we discuss there, single-peaked Vetoer

preferences introduce some di↵erences in how we formulate and tackle the program

relative to seller-buyer bargaining.

A novel issue arises in verifying that there is an equilibrium corresponding to a

solution to the aforementioned program: what happens if v > 0 and Proposer deviates

at some history to an o↵er in [0, 2v)? The issue is salient because, unlike in seller-buyer

bargaining, leapfrogging could be attractive to Proposer. We use Proposition 2’s

hypothesis that v  1/2 (given v > 0) to deter such deviations by stipulating that

any such o↵er is accepted by all Vetoer types, which makes it unattractive to Proposer.

It is optimal for Vetoer to accept these low o↵ers because we specify Proposer’s belief

after rejection to be degenerate on v, and accordingly Proposer’s future o↵ers to

perpetually be 2v, which yields no surplus to any Vetoer type.20 Both v  0 and

v  1/2 are reasonable hypotheses: the former says that the status quo may be

Pareto e�cient; the latter is tantamount to Proposer having monotonic preferences

over the set of actions that any Vetoer type would find acceptable.

Another distinction with seller-buyer bargaining is that, as � ! 1, Proposer’s pay-

o↵ in the skimming equilibrium converges to the full-delegation payo↵ U(F ), rather

than the payo↵ from all types accepting 2v+. On the one hand, our argument for

why Proposer’s payo↵ in the limit cannot be larger than U(F ) builds on ideas in that

literature; roughly, a type v > 2v+ would accept an o↵er strictly higher than v only if

there is a significant delay cost to waiting for a more attractive o↵er, but such a delay

cost would make it attractive for Proposer to deviate and hasten agreement. On the

other hand, a new observation owing to our setting is that Proposer’s payo↵ cannot

be lower than U(F ) either: intuitively, because of her single-peaked utility, for any

� < 1 Vetoer will accept any proposal close enough to her ideal point; hence, as � ! 1,

Proposer must do no worse in the skimming equilibrium than by compromising with

an arbitrarily fine sequence of o↵ers that traverses [2v+, 1].

20Our solution concept of Perfect Bayesian equilibrium allows for arbitrary beliefs after a rejection
that has zero probability at that history. As such, even if v > 1/2 (and v > 0), strictly speaking
one could assign the degenerate belief on 0 after an unexpected rejection and have Proposer o↵er
action 0 ever after, which would also yield no surplus to all Vetoer types. We do not allow for
such beliefs, instead requiring—as is conventional, and in the spirit of Kreps and Wilson’s (1982)
sequential equilibrium—that beliefs must always be supported in the support of the prior, [v, v].
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In general, Proposer’s payo↵ from the skimming equilibrium when players are

patient, U(F ), will be strictly less than his commitment payo↵, U(F ); these payo↵s

coincide only when full delegation is an optimal mechanism, i.e., the c⇤ threshold in

Assumption 1 is precisely 2v+. Kartik, Kleiner, and Van Weelden (2021, Corollary

1) identify that full delegation is in fact optimal if the type density is decreasing

on [2v+, 1]. Observe that when v  0, the skimming equilibrium’s payo↵ is a lower

bound on Proposer’s payo↵ from any equilibrium when players are patient; for, no

equilibrium can yield Proposer a payo↵ strictly lower than from delegating the [0, 1]

interval. It follows that if full delegation is optimal and v  0, then when players are

patient all equilibria must yield Proposer the commitment payo↵.

Notwithstanding such cases, the general contrast in Proposer’s payo↵ between

Theorem 1 and Proposition 2 indicates the importance of equilibrium selection, which

we interpret as norms, in veto bargaining. Which norm prevails in a given context may

hold significant implications for whether Proposer su↵ers from an inability to commit

to future o↵ers. Moreover, in some environments—e.g., when Proposer prefers a single

take-it-or-leave-it o↵er to full delegation—the norm can determine whether Proposer

benefits from or is harmed by the ability to make multiple proposals. But in other

environments—e.g., when v  0 and Proposer prefers full delegation to a single o↵er—

the ability to make multiple proposals benefits Proposer regardless of the norm. We

highlight that both the sequential structure of bargaining and incomplete information

are necessary for norms to matter in veto bargaining; in particular, Primo (2002)

shows that there is a unique equilibrium outcome absent incomplete information.21

5.2. A Commitment-Payo↵ Equilibrium

We now build on the previous subsection’s skimming equilibrium to construct

a leapfrogging equilibrium—one with leapfrogging on path—that delivers (approxi-

mately) Proposer’s commitment payo↵. The construction reveals how the dynamics

of leapfrogging may play out, subject to a reasonable assumption that either v  0

(i.e., the status quo may be Pareto e�cient) or v  1/2 (i.e., Proposer e↵ectively

has monotonic preferences), and that full delegation is not optimal. Note that if full

21 In fact, under complete information, Primo (2002) shows that with a one-dimensional policy
space and a single veto player, Proposer’s payo↵ with sequential proposals is the same as with a
single proposal. Duggan and Ma (2023, Theorem 2) extend this to a committee of voters. As they
and Ali, Bernheim, Bloedel, and Console Battilana (2023, Theorem 7) show, the equivalence does
not generally hold with multiple voters and multiple dimensions, even when Proposer’s payo↵ in the
dynamic game is unique.
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delegation is optimal, then skimming achieves the commitment payo↵ (Proposition 2).

Proposition 3. Suppose that either v  0 or v  1/2, and that full delegation is not

optimal. There is a leapfrogging equilibrium in which Proposer achieves approximately

his commitment payo↵. In this equilibrium, Proposer first o↵ers 0, which is accepted if

and only if v 2 (0, c⇤/2); subsequently, Proposer o↵ers a decreasing sequence of o↵ers

that culminates in c⇤, with each o↵er accepted by an upper interval of remaining types.

In the equilibrium identified by Proposition 3, Proposer begins by leapfrogging

with an o↵er of 0; if that o↵er is rejected, he knows that Vetoer’s type is either below

0 or above c⇤/2. Naturally, he is only concerned with the latter possibility. So, upon

the rejection of o↵er 0, we are able to use essentially the same skimming construction

as in Proposition 2, but with the conditional distribution F[c⇤/2,v]. For large �, this

implements a fine-grid sequence of decreasing o↵ers down to c⇤. As � ! 1, the overall

outcome thus converges to that of Vetoer simply choosing (with no delay cost) her

preferred action from the optimal delegation set [c⇤, 1], or exercising her veto.

Let us highlight a few points about the construction. First, for the reasons dis-

cussed after Proposition 2, we use the hypothesis that either v  0 or v  1/2 to

ensure validity of the skimming construction after o↵er 0 has been rejected. Notably,

then, Proposition 3 is valid even when v > 1, so long as v  0. Second, the equi-

librium must incentivize Proposer in the first period to o↵er action 0 rather than

some higher action. This is ensured by stipulating that if Proposer deviates to action

a > 0 in the first period, continuation play follows that of the skimming equilibrium

constructed in Proposition 2. Such a deviation yields Proposer a payo↵ no more

than (approximately) the payo↵ from full delegation, which is strictly less than the

commitment payo↵ that is approximately achieved on path.

Third, although we view the leapfrogging-followed-by-skimming dynamics in Propo-

sition 3 to be intuitive, we do not rule out other dynamics that also deliver approx-

imately Proposer’s commitment payo↵. In particular, it is plausible that one may

use the same approach to construct equilibria in which Proposer begins with some

skimming, then leapfrogs with o↵er 0, and then continues skimming again. There

may also be other dynamics. Fourth, Proposition 3 crucially exploits equilibrium

payo↵ multiplicity: we use a low-payo↵ skimming equilibrium to construct a high-

payo↵ equilibrium. This approach is reminiscent of the “reputational equilibria” in

Ausubel and Deneckere (1989b). By contrast, the logic we use to prove our main
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result, Theorem 1, does not leverage equilibrium payo↵ multiplicity; it would apply

even if there is no skimming equilibrium and even if all equilibria yield Proposer a

high payo↵.22

5.3. Is Leapfrogging Necessary?

We have highlighted leapfrogging as the driving force to achieve Proposer’s com-

mitment payo↵, so long as full delegation is not optimal (in which case, by Section

5.1, skimming su�ces). In fact, leapfrogging is then more or less necessary:

Proposition 4. Suppose that the essentially unique solution to the static problem

is an interval delegation set that is not full delegation. Proposer’s payo↵ in any

skimming equilibrium is bounded away (across �) from the commitment payo↵.

We view the assumption that the static problem has a unique solution (essentially—

i.e., up to a set of types of measure 0) as mild. That it is not full delegation is equiva-

lent to c⇤ > 2v+. For instance, this inequality holds when v  0, u(·) is a�ne on [0, 1],

and Vetoer’s type density f is logconcave and attains a unique peak at some v > 0.23

Note that v  0 assures existence of both a skimming equilibrium (Proposition 2)

and a commitment-payo↵ equilibrium (Proposition 3).

The intuition for Proposition 4 is that for any large � < 1, to achieve close to the

commitment payo↵, the outcome must be approximately that (i) Proposer reaches

agreement with all types above c⇤/2 on their preferred actions in [c⇤, 1] without exces-

sive delay, and (ii) all types below c⇤/2 obtain the status quo (or some other actions

only after significant delay). But if (i) happens in a skimming equilibrium, then even-

tually Proposer will be faced with, approximately, the type distribution F[v,c⇤/2], in

which event he will not find it optimal to induce (ii); he could profitably deviate to a

fine-grid sequence of o↵ers in [0, c⇤/2] that are accepted by most remaining positive

types with virtually no delay cost. Note that this logic applies even if we are in the

no-gap case (v  0).

Subject to its conditions, Proposition 4 implies that any equilibrium that achieves

approximately the commitment payo↵must, with positive probability, have a leapfrog-

22On the other hand, we noted at the end of Section 4.3 that it is not straightforward to extend the
approach used in proving Theorem 1 absent optimality of interval delegation (Assumption 1). But
given a low-payo↵ equilibrium, the logic underlying Proposition 3’s construction ought to support a
high-payo↵ equilibrium so long as some deterministic mechanism—even if not interval delegation—
solves the static problem.

23An a�ne u and logconcave f ensure that interval delegation is optimal; f having a unique peak
at v > 0 implies the interval’s threshold is c⇤ > 0. See Kartik, Kleiner, and Van Weelden (2021).
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ging o↵er a � 0 that is accepted by some low type and yet rejected by some higher

type. In such an equilibrium, with positive probability, the sequence of on-path o↵ers

will not be decreasing: for, an upper set of types would accept the current o↵er if

future o↵ers are certain to be lower. Therefore, leapfrogging plays an indispensable

role in yielding the commitment payo↵.

6. Related Literature

We now relate our work to some prior literature.

Veto Bargaining with Incomplete Information: Existing work on sequential

veto bargaining with incomplete information focuses on short horizons, typically two

periods, and/or myopic Vetoer behavior (e.g., Romer and Rosenthal 1979, Dewa-

tripont and Roland 1992, Chapter 4 of Cameron 2000, Rosenthal and Zame 2022,

Chen 2022).24 These analyses elucidate nicely some of the strategic forces, but either

a short horizon or myopic Vetoer behavior precludes the potency of Coasian dynam-

ics. The only exception to these approaches that we are aware of is the unpublished

work of Cameron and Elmes (1994), who study a long finite horizon with sophis-

ticated players. All these authors, including Cameron and Elmes, are interested in

skimming equilibria. Our analysis shows that—unlike in seller-buyer bargaining—it

is important to account for the possibility of leapfrogging because that can both inval-

idate a putative skimming equilibrium (recall the discussions of both Proposition 1(a)

and Proposition 2) and lead to qualitatively di↵erent equilibria with higher Proposer

payo↵.

Recently, in a two-period model, Evdokimov (2022) has emphasized what he views

to be “non-Coasian” equilibria in veto bargaining. He studies committees in which

voter preferences are determined by a binary state, analogous to our two-type ex-

ample. Single-peaked voter preferences are important to his analysis, as they are to

ours; however, our papers focus on distinct implications of single-peakedness, and

the nature and import of our results are markedly di↵erent. To see that, consider

24We highlight work that is most closely related to ours. But there have, of course, been studies
on other aspects of veto bargaining with incomplete information. For example, Matthews (1989)
models veto threats, whereby Vetoer sends a cheap-talk message prior to Proposer making a take-
it-or-leave-it o↵er. McCarty (1997) considers two-issue bargaining, wherein Vetoer may reject a
proposal on one issue to influence proposals on the second issue. Groseclose and McCarty’s (2001)
model of blame-game politics shows that in a three-player game, Proposer may make an o↵er that
he knows Vetoer will reject in order to convince a third party (e.g., voters) that Vetoer has extreme
preferences.
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his setting when a single vote is enough to overturn the status quo; it is e↵ectively

then as if Proposer faces a single vetoer. Here Evdokimov finds a unique equilib-

rium, which has skimming. Leapfrogging does not arise because of the combination

of only two periods and his assumption that Proposer’s utility is globally increasing

in the action.25 Instead, what Evdokimov deems non-Coasian are equilibrium out-

comes in which, using our two-type notation from Section 3, Proposer obtains utility

that exceeds u(2l) as � ! 1. He notes that such outcomes arise if h > 2l. The

reason is simply that type h prefers some actions strictly above 2l to 2l, and hence

Proposer can guarantee a utility exceeding u(2l) by first o↵ering h and then 2l. By

contrast, we focused on arguably the more interesting case of h < 2l, because that

means separation cannot be achieved (when players are patient) with both types get-

ting actions above 2l. More generally, we do not take a stance on what the Coase

Conjecture ought to mean in veto bargaining. Instead, our key contribution for two

types and beyond is to unsheathe the leapfrogging implications of single-peaked pref-

erences, which yield equilibria that have non-skimming dynamics and high Proposer

payo↵s. Furthermore, our main result (Theorem 1) is substantially stronger than

just comparing with a single take-it-or leave it o↵er, which is Evdokimov’s (2022)

benchmark.

Seller-Buyer Bargaining: In canonical models of seller-buyer bargaining in which

the buyer is privately informed of his value, all equilibria feature skimming. Fuden-

berg, Levine, and Tirole (1985) and Gul, Sonnenschein, and Wilson (1986) establish

the Coase Conjecture: at the patient limit, the seller’s payo↵ is that of pricing at the

lowest buyer valuation. More precisely, this holds in any equilibrium of the “gap”

case (the gains from trade are bounded away from 0) or in any “stationary/weak

Markov” equilibrium of the “no gap” case. Indeed, there is a unique equilibrium pay-

o↵ for the seller in the gap case. By contrast, even in the gap case of our model (i.e.,

v > 0), Proposer can obtain his commitment payo↵ and there can be genuine payo↵

multiplicity. Ausubel and Deneckere (1989b) show that in the seller-buyer no gap

case, there also exists a non-stationary “reputational equilibrium” in which the seller

25An analog would be a two-period version of our Section 3 with the assumption that h < 1/2.
In that case, if type l agrees first, then agreement in the second period with type h has to be on
action 2h, which provides h no surplus; so the only first-period action that can support leapfrogging
is 0, which turns out to be unsupportable for any prior. On the other hand, when either h > 1/2
or there are more than two periods with � < 1, arguments related to those for Proposition 1 can be
used to conclude that leapfrogging is supportable for suitable priors.
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obtains his commitment payo↵. This equilibrium preserves high prices by punishing

the seller with Coasian low-payo↵ continuation play if he deviates. Our argument for

Proposer’s commitment payo↵ is distinct; it owes to leapfrogging, which is ruled out

by the skimming property of seller-buyer bargaining.26

Board and Pycia (2014) show that when buyers have outside options, there is

a unique equilibrium outcome and it yields a high seller payo↵. The seller charges

the static monopoly price—defined for the distribution of values net of the outside

option—and all buyer types with lower net values immediately take their outside

option. Since low types exit immediately, the seller can credibly stick to the monopoly

price even upon rejection. In our analysis, leapfrogging also clears low types to

subsequently credibly target high types. But our model has no outside options and it

is Vetoer’s single-peaked preferences that makes leapfrogging viable. Moreover, unlike

in Board and Pycia (2014), low-payo↵ equilibria can coexist with the commitment-

payo↵ equilibrium.27 The idea that low agent types’ incentives to exit can allow a

principal to obtain her commitment payo↵ also features in Tirole (2016). But there,

unlike in our model, a reverse-skimming property holds, i.e., any equilibrium has

“positive selection” at every history.

Also related to our work are models in which the seller sells multiple varieties.

Wang (1998), Hahn (2006), and Mensch (2017) study bargaining when there is a

choice of both quality and price (or e↵ort and wage in a labor context). In these

models, the seller or principal o↵ers a menu in each period but cannot commit to

future menus. The key finding is that the principal obtains his commitment payo↵

in the unique equilibrium. More recent developments include Nava and Schiraldi

(2019), who propose a multidimensional extension of the Coase Conjecture, and Peski

(2022), who establishes payo↵ uniqueness in a broad class of bargaining protocols and

mechanisms.28 In our model, not only are transfers infeasible, but moreover Proposer

can o↵er only a single action, rather than a menu, in each period. This hews to the

26For a gap-case specification, Doval and Skreta (2021) show that the Coasian outcome cannot
be escaped even using arbitrary within-period mechanisms. In our setting, even if we allow for such
mechanisms, it follows from the discussion in Section 4.1 that our commitment payo↵ is still an upper
bound; consequently, the equivalence between commitment and Proposer’s best no-commitment
equilibrium would prevail.

27Hwang and Li (2017) and Fanning (2023) highlight equilibrium multiplicity in seller-buyer mod-
els related to Board and Pycia (2014).

28Although Peski (2022) studies a single indivisible good, he allows for commitments to proba-
bilistic trade, which is e↵ectively the same as varieties.
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standard approach in studying sequential veto bargaining, and seems appropriate for

some non-market applications in politics and organizations. Nevertheless, we deduce

equilibria that deliver Proposer’s commitment payo↵. It would be interesting to study

whether allowing for menus eliminates the payo↵ multiplicity we find. Conversely,

our results raise the possibility that if a seller could o↵er only a single variety in each

period in the aforementioned papers’ settings, then there may be payo↵ multiplicity

but the commitment payo↵ may remain achievable.29

Renegotiation and Endogenous Status Quo: Our model assumes that there

is commitment to not renegotiate an accepted o↵er. A useful extension, which we

do not pursue here, would be to model any agreement as the status quo for future

negotiations; this would, of course, influence Vetoer’s incentives to accept an o↵er

insofar as it reveals information about her preferences that will a↵ect future o↵ers.

Although renegotiation has been studied in seller-buyer settings since Hart and Tirole

(1988) (see Strulovici 2017, Maestri 2017, and Gerardi and Maestri 2020 for recent

contributions), the existing literature on political bargaining with an endogenous

status quo, surveyed by Eraslan, Evdokimov, and Zapal (2020), has generally not

incorporated private information.

7. Conclusion

Our paper has studied a canonical infinite-horizon model of sequential veto bar-

gaining. We have shown how leapfrogging—making an o↵er that is accepted by some

low types and rejected by some higher types—allows Proposer to alleviate his sequen-

tial rationality constraint and credibly extract surplus from high types; so much so

that under some conditions, Proposer can (approximately) obtain his commitment

payo↵ in an equilibrium when players are patient.

There are various directions that may be fruitful for future research. On the

theoretical side, it would be of interest to incorporate “pork” or other forms of trans-

fers in addition to the policy that our players have single-peaked preferences over.

Studying a multidimensional policy is also important for political applications. On

the empirical side, our work cautions against a presumption that Proposer’s o↵ers

29Kumar (2006) studies such a setting and finds a unique equilibrium that does not yield the
principal a high payo↵. We attribute this to his model/analysis excluding the quality-price pair that
would be used for leapfrogging. A similar point applies to Inderst (2008), who studies a model with
menus but finds that in some cases the principal’s commitment payo↵ does not obtain.
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are successive concessions,30 and calls for attention to whether and when we observe

leapfrogging. Given that we have identified the coexistence of skimming and leapfrog-

ging equilibria, norms in sequential veto bargaining with incomplete information are

especially important; our results show how significantly Proposer could benefit from

a favorable equilibrium. Laboratory experiments may be a fertile ground to deepen

our understanding of equilibrium selection.
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A. Proofs for Two-Type Example

Recall that for the two-type example, we restrict attention to actions in [0, 1]. The

following proofs can be extended straightforwardly to handle actions outside [0, 1],

but we omit that discussion for brevity.

Lemma 4. Fix any large � < 1. Inductively define an increasing sequence a0 :=

2l < a1 < . . . < aN := 1, where for each i � 1, ai is defined by either uV (ai, h) =

�uV (ai�1, h) if there is a solution with ai 2 (ai�1, 1], and otherwise ai := 1.31

(a) If o↵ers are restricted to lie in [2l, 1] then for any prior µ0 there is a skimming

equilibrium in which, on path, Proposer first o↵ers some an with probability one

and then works his way down the (ai)0i=n sequence to 2l. Any o↵er ai > 2l is

rejected by type l and accepted by type h with positive probability. Both types

accept the final o↵er of 2l.

31We suppress the dependence of N and each ai (for 0 < i < N) on �.
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(b) Define µ� 2 (µ⇤, 1) as the smallest belief that makes Proposer indi↵erent between

the payo↵ from this (restricted) equilibrium and the payo↵ from leapfrogging,

i.e., obtaining a� from type l in the first period and action 1 from type h in the

second period.32 If µ0  µ�, then the above skimming equilibrium exists without

restriction on the space of o↵ers: any o↵er in (a�, 2l) is accepted by both types,

while any o↵er in [0, a�] is accepted by l and rejected by h. As � ! 1, µ� ! µ⇤.

(c) As � ! 1, Proposer’s payo↵ in the above skimming equilibrium converges to

u(2l) regardless of his prior in the relevant range: for any " > 0, there exists

� < 1 such that if � 2 (�, 1) and µ0  µ�, then Proposer’s payo↵ in the skimming

equilibrium is in [u(2l), u(2l) + ").

Proof. Part (a): Owing to the restriction to o↵ers in [2l, 1], this part follows from

arguments analogous to those in the two-type seller-buyer bargaining problem (Hart,

1986; Fudenberg and Tirole, 1991, pp. 409–10). So we omit a proof, instead only

noting two points. First, if Proposer is indi↵erent between two first o↵ers (as can

also arise in the seller-buyer construction), we specify for concreteness that Proposer

chooses the lower of the two. Second, there is one di↵erence with the usual seller-buyer

construction: if Proposer’s first o↵er is aN = 1, and aN was defined by the action

cap of 1 rather than type h’s indi↵erence, then Proposer will need to randomize on

path between proposing aN�1 and aN�2 in the second round. Proposer’s second-round

randomization is chosen to make type h indi↵erent between accepting and rejecting

aN = 1; a suitable randomization exists because h would strictly prefer accepting

aN = 1 if Proposer were to o↵er aN�1 next, while h would strictly prefer rejecting

aN = 1 if Proposer were to o↵er aN�2 next. Such on-path Proposer randomization is

not necessary in the seller-buyer problem because there is no price cap—or, in e↵ect

equivalently, Proposer ideal point—there.

Part (b): We stipulate that after a deviation in any period t to at < 2l, type l

accepts, whereas h accepts if and only if uV (at, h) > �uV (1, h), which is equivalent

to at > a�. After a rejection of the deviation, Proposer puts probability 1 on type h

and proposes action 1 ever after. Clearly we have an equilibrium in any continuation

32The belief µ� is well defined for large enough �. To confirm that, note first that for any µ0  µ⇤,
Proposer’s payo↵ from leapfrogging, µ0�u(1) + (1� µ0)u(a�) is strictly less than u(2l) by definition
of µ⇤ and that a� < 2l; whereas his payo↵ from the (restricted) skimming equilibrium is at least
u(2l). Second, following the established seller-buyer analysis, for any interior belief µ0 Proposer’s
payo↵ in the (restricted) skimming equilibrium converges to u(2l) as � ! 1, whereas leapfrogging’s
payo↵ converges to the strictly larger µ0u(1) + (1� µ0)u(2l). The result follows from continuity of
both skimming and leapfrogging’s payo↵s in µ0.
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game after the initial deviation. So we need only verify that no deviation to at < 2l

is profitable. Plainly, among at  a�, the most profitable deviation is to a�; but

by definition of µ�, that deviation is not profitable when µt  µ�. (A higher µt

makes leapfrogging more attractive than the (putative) skimming equilibrium because

Proposer prefers the skimming equilibrium when Vetoer is of type l and leapfrogging

when Vetoer is of type h.) Any deviation to at 2 (a�, 2l) yields a lower Proposer

payo↵ than the (putative) skimming equilibrium because the skimming equilibrium’s

payo↵ is at least u(2l). Therefore, no deviation to at < 2l is profitable when µt  µ�,

and the skimming equilibrium exists without any restriction on o↵ers.

To see that µ� ! µ⇤ as � ! 1, observe that for any µ0, as � ! 1 Proposer’s payo↵

from leapfrogging goes to µ0u(1)+(1�µ0)u(a⇤) whereas, as discussed in footnote 32,

his payo↵ from skimming goes to u(2l). Hence, by definition of µ⇤, for any µ0 > µ⇤,

skimming is strictly worse than leapfrogging when � is large enough. The result now

follows from µ� being the smallest belief at which the payo↵s from skimming and

leapfrogging are equal, noting that for any � skimming yields a strictly higher payo↵

than leapfrogging at belief µ⇤ (see footnote 32).

Part (c): Given the previous two parts, this result follows from the same ar-

guments as in the standard seller-buyer model (e.g., Fudenberg and Tirole, 1991,

pp. 409–10). Q.E.D.

Proof of Proposition 1. Part (a) follows from Lemma 4.

To prove parts (b) and (c), we first define two critical values: r�(µ) and the µ̄�

referred to in the statement of the result. Recall µ� 2 (0, 1) from Lemma 4(b). (In

what follows, we sometimes suppress the caveat of “for large �”.) For any belief

µ 2 (µ�, 1), let

r�(µ) :=
µ�(1� µ)

(1� µ�)µ
(3)

be type h’s rejection probability that would lead to posterior µ� after rejection, given

that type l rejects with probability 1. Now let µ̄� < 1 be the value of µ that solves33

(1� µ)u(a�) + µ�u(1) = (1� µ)�u(a�) + µ
⇥
1� r�(µ) + r�(µ)�2

⇤
u(1). (4)

Given belief µ, the LHS of Equation 4 is Proposer’s utility from leapfrogging, whereas

33One can check that the di↵erence between the LHS and the RHS of Equation 4 is continuous
and strictly decreasing in µ, strictly positive for small µ, and strictly negative for large µ; hence
there is a unique solution, which is interior.

33



the RHS corresponds to getting a� in the next period from l and a lottery from h of

either action 1 in the current period with probability 1� r� or the same action in two

periods with probability r�. It can be verified that µ̄� > µ� and lim�!1 µ̄� < 1.34

Part (b): The equilibrium strategies, beliefs, and incentives are as follows.

1. Proposer proposes a� in the first period and 1 in the second period (and ever after),

with belief µt = 1 after any rejection. Vetoer type l accepts in the first period while

type h rejects in the first period but accepts any proposal of at least a� starting in the

second period. Clearly Proposer has no incentive to deviate starting in the second

period, and Vetoer is playing optimally in all periods, so what we must show below

is that Proposer has no incentive to deviate in the first period.

2. (Region I in Figure 1.) If Proposer deviates and o↵ers any action a0 2 [0, a�) in the

first period, type l accepts and h rejects. After a rejection, Proposer’s belief is µt = 1

ever after and so he proposes 1 ever after, which is accepted in the second period by

type h. It is clear that Vetoer is playing optimally and that any such deviation is not

profitable for Proposer.

3. (Region II in Figure 1.) If Proposer deviates and o↵ers any a0 2 (a�, 2l] in the first

period, both types accept that; for large �, this outcome is worse for Proposer than

the on-path outcome, since the latter’s payo↵ is larger than u(2l). Both types accept

any a0 2 (a�, 2l] because we stipulate if any such o↵er is rejected (a zero probability

event), Proposer holds belief µt = 1 ever after and o↵ers action 1 ever after.

4. (Region III in Figure 1.) Let u⇤
h denote type h’s payo↵ in the skimming equilibrium

discussed in Lemma 4 when Proposer has belief µ� defined there. Since µ� ! µ⇤, it

follows from the established seller-buyer analysis that for � large enough, Proposer’s

first o↵er in our skimming equilibrium is arbitrarily close to 2l and hence u⇤
h is arbi-

trarily close to but strictly less than uV (2l, h). Let ā� > 2l be such that h is indi↵erent

between accepting ā� in the current period and receiving payo↵ u⇤
h in the next period.

Note that ā� ⇡ 2l for large �.

Consider the interval (2l, ā�]. As described in Lemma 4, the skimming equilibrium

(defined assuming actions constrained in [2l, 1]) is constructed using a sequence of

actions a0 ⌘ 2l < a1 < . . . < aN ⌘ 1 that is defined by h’s indi↵erence. (We suppress

the dependence of the sequence on � to reduce notation.) Let M  N � 1 be such

34As µ ! µ� from above, r�(µ) ! 1, and so the RHS of Equation 4 goes to � times the LHS,
which is strictly smaller than the LHS. The properties noted in footnote 33 then imply µ̄� > µ�.
From Lemma 4(b), lim�!1 µ� = µ⇤ 2 (0, 1). Algebraic manipulations of Equations (3) and (4) yield
lim�!1 µ̄� 2 (µ⇤, 1).
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that aM < ā�  aM+1.

For any deviation a0 2 (2l, a1], l rejects and h accepts; Proposer holds belief µt = 0

and o↵ers at = 2l ever after (accepted by type l in the second period).

Suppose ā� > a1. For any deviation a0 2 (a1, ā�], let n 2 {1, . . . ,M} be such

that a0 2 (an, an+1]. Type l rejects, while type h rejects with the probability that

makes the posterior µ1 = µn, where µn is the unique belief that makes Proposer

indi↵erent between starting the decreasing o↵er sequence with an and an�1. (Type

h’s rejection probability is well-defined and unique so long as µn  µ0, which will be

verified below by showing that µn  µ�.) Proposer will then randomize in the second

period between the starting o↵ers of an and an�1. If Proposer were to start with an,

h would prefer to accept a0; if Proposer were to start with an�1, h would prefer to

reject a0; so there is a unique randomization that makes h indi↵erent. We are left

to check that µn  µ�: if so, then Proposer prefers the decreasing o↵er sequence to

leapfrogging, and we can support the skimming equilibrium by specifying behavior

for o↵ers in [0, 2l] as in the proof of Lemma 4(b). Indeed µn  µ�, since n  M and

under belief µ� Proposer starts the decreasing o↵er sequence with aM while under

belief µn it is optimal to start with an (and a higher belief corresponds to a higher

starting o↵er in the skimming equilibrium).35

So a deviation to any a0 2 (2l, ā�] yields Proposer a payo↵ that is no higher

than from a skimming equilibrium with restricted action space [2l, 1] and belief µ0

(see Lemma 4(a)). As � ! 1, the payo↵ from a (restricted) skimming equilibrium

converges uniformly to u(2l) on any interval of priors bounded away from 1, whereas

the payo↵ from leapfrogging converges uniformly to µ0u(1) + (1 � µ0)u(a⇤). The

latter limit is strictly larger than the former limit when µ0 > µ⇤, by definition of µ⇤.

Since µ� > µ⇤ and lim�!1 µ̄� < 1, it follows that for all � large enough, the payo↵

from leapfrogging is strictly larger than from the (restricted) skimming equilibrium

for all µ0 2 (µ�, µ̄�). Hence, for � large enough, a deviation to any a0 2 (2l, ā�) is not

profitable.

5. (Region IV in Figure 1.) It remains to consider any first-period deviation a0 2
(ā�, 1].

35That Proposer starts the decreasing o↵er sequence with aM under belief µ� follows from type
h’s indi↵erence in the definition of ā� and ā� 2 (aM , aM+1]. For, if Proposer started with an o↵er
aM�1 or lower, then h would strictly prefer to wait for that o↵er in the next period rather than
accept ā� in the current period; if Proposer started with an o↵er aM+1 or higher, then h would
strictly prefer to accept ā�.
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• Type l rejects since a0 > 2l. Type h rejects with probability r�(µ0), independent

of a0, which leads to second-period belief µ1 = µ�.

• In the second period: Proposer randomizes between starting the play of a skim-

ming equilibrium (see Lemma 4) with some probability �(a0) and starting the

leapfrogging path with remaining probability. By definition of µ�, Proposer is

indi↵erent between starting either of these two paths. The randomization prob-

ability �(a0) is set to make type h indi↵erent between accepting a0 in the first

period and getting a lottery over payo↵ u⇤
h in the second period with probability

�(a0) and getting action 1 in the third period with complementary probability.36

For any second-period o↵er a1 besides the two that Proposer randomizes over,

we stipulate that continuation play would follow that in a skimming equilibrium

with initial o↵er a1. Plainly, no such o↵er a1 is a profitable deviation.

• Finally, we argue that among deviations to a0 2 (ā�, 1], the most profitable

deviation is to action 1, and that is not profitable because µ0  µ̄�. Note that

after a rejection of any a0 > ā�, leapfrogging is optimal for Proposer in the

second period. So Proposer’s expected payo↵ from any a0 > ā� is

(1� µ0)�u(a
�) + µ0

⇥�
1� r�(µ0)

�
u(a0) + r�(µ0)�

2u(1)
⇤
.

This payo↵ is maximized when a0 = 1, in which case it becomes the RHS of

Equation 4 (with µ = µ0). Since µ0  µ̄�, the definition of µ̄� implies that

leapfrogging starting in the first period is at least as good for Proposer (see

footnote 33).

Part (c): The construction for this part is the same as that for part (b), except that

Proposer now proposes action 1 in the first period, rather than a�. By the logic used

in the last bullet of point 5 above, proposing a0 = 1 is better for Proposer than

proposing any a0 2 (ā�, 1), and also now better than proposing a0 = a� because

µ0 > µ̄�. By points 2–4 above, a0 = a� is in turn better than any other first-period

o↵er less than ā�. Q.E.D.

B. Proofs for General Analysis

36 I.e., uV (a0, h) = �(a0)�u⇤
h + (1 � �(a0))�2uV (1, h). There is a unique �(a0) that solves this

equation because �u⇤
h > uV (a0, h) > �2uV (1, h), where the first inequality is because a0 > ā� > h

and �u⇤
h = uV (ā�, h).
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B.1. Obtaining the Commitment Payo↵ without Commitment

Proof of Lemma 1. Fix any strategy for Proposer and any best response for Ve-

toer, and denote this strategy profile by �. For any type v, the profile � induces

a probability distribution �v over R ⇥ N [ {1}, where (a, t) 2 R ⇥ N denotes the

outcome that proposal a is accepted in period t, and 1 denotes no agreement. We

construct an incentive compatible and individually rational mechanism for the static

problem that achieves the same expected payo↵ for Proposer as under �.

For any t 2 N, let �v(t) be the measure on R defined by �v(t)(A) := �v(A⇥ {t})
for every (Borel) set A ✓ R. Define a mechanism for the static problem as follows:

m(v) :=
1X

t=0

�t�v(t) +
⇣
1�

1X

t=0

�t�v(t)(R)
⌘
10,

where 10 denotes the Dirac measure on 0. Intuitively, for every agreement (a, t) that

has positive probability under �v, m(v) gives probability �t to action a and probability

1� �t to action 0. It can be verified that m(v) is a probability measure over R.
Since Z

a

uV (a, v)dm(v)(a) =
1X

t=0

�t
Z

a

uV (a, v)d�v0(t)(a),

the expected utility for type v reporting v0 in the static mechanism is the same as in

the dynamic game were type v to play as v0 does. Hence, as Vetoer is playing a best

response in �, mechanism m is incentive compatible and individually rational.

Analogous arguments show that Proposer’s expected utility in the static mecha-

nism is the same as his expected utility in the dynamic game under strategy profile

�. Therefore, Proposer can replicate his payo↵ from the dynamic game using a static

mechanism, and hence can do no worse in the static problem. Q.E.D.

Proof of Lemma 2. To obtain a contradiction, suppose there is a (potentially stochas-

tic) mechanism m that yields a strictly higher payo↵ than the delegation set [c⇤, 1]

under prior F[c,c0] for some c  c⇤/2  c⇤  c0. Let M := m([c, c0]) denote the image

of [c, c0] under m. We can assume without loss of generality that u(m(c0)) � u(m(v))
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for all v 2 [c, c0] and that u(m(c)) � u(0).37 Define a menu of stochastic actions by

M̃ := M [ {v 2 [c⇤, 1] : u(v) � u(m(c0))} [ {0}.

Let m̃ be the induced mechanism where each type v chooses its favorite action in M̃

and indi↵erence is broken in Proposer’s favor. Plainly, m̃ is incentive compatible and

individually rational. We will show that given prior F , Proposer’s payo↵ from m̃ is

strictly higher than from delegation set [c⇤, 1].

Conditional on the event {v : v 2 [c, c0]}, Proposer’s payo↵ from menuM is strictly

higher than from menu [c⇤, 1] by assumption. Compared to menu M , the additional

actions in M̃ chosen by types v 2 [c, c0] are ones that Proposer prefers to m(c0), which

he prefers to m(v) for any v 2 [c, c0]. Hence, conditional on {v : v 2 [c, c0]}, Proposer’s
payo↵ from menu M̃ is strictly higher than from menu [c⇤, 1].

We next show that for every v > c0, u(m̃(v)) � u(v). Since Vetoer’s utility

satisfies SCED and she breaks indi↵erence in favor of Proposer, either m̃(v) = m(c0)

or m̃(v) 2 M̃ \ (M [ {0}). In either case, u(m̃(v)) � u(m(c0)). If u(m(c0)) > u(v)

then it follows that u(m̃(v)) � u(v). If, instead, u(v) � u(m(c0)) then m̃(v) = v and

we conclude u(m̃(v)) = u(v).

Moreover, SCED implies that for all v < c, either m̃(v) = m̃(c) or m̃(v) = 0. Since

u(m̃(c)) � u(0) and u(0) is Proposer’s payo↵ under delegation set [c⇤, 1] whenever

v < c, it follows that Proposer’s payo↵ from mechanism m̃ is higher than his payo↵

from delegation set [c⇤, 1] under belief F , a contradiction. Q.E.D.

Proof of Lemma 3. Fix any " > 0. Let � < 1 be such that �U(F[v,c⇤]) � U(F[v,c⇤])�
", and fix any � � �. Let (�̃, µ̃) be an equilibrium when Proposer’s prior belief is

37 If u(m(c0)) < u(m(v)) for some v 2 [c, c0], add the action min{1,Em(c0)[a]} to M and consider
the corresponding mechanism m̂ in which each type chooses its favorite lottery, breaking indi↵erence
in Proposer’s favor. Since Em(v)[a] is increasing in v because mechanism m is IC, the new mechanism
m̂ yields Proposer a higher payo↵ than m and satisfies u(m̂(c0)) � u(m̂(v)) for all v  c0.
Now suppose u(m(c)) < u(0). If c  0, consider an alternative mechanism m̂ that is identical to m

except for assigning action 0 with probability one to all types below 0. This mechanism is individually
rational (IR) and IC and yields Proposer a higher payo↵ than m and satisfies u(m̂(c)) = u(0).
If c > 0, consider an alternative mechanism m̂ that is identical to m except for m̂(c) assigning
probability one to an action in [0,E[m(c)] that makes type c indi↵erent with m(c). Such an action
exists because uV (m(c), c) � uV (0, c), as m is IR, and uV (·, c) is continuous. Since m is IC and
IR, and any type v > c prefers m(v) to m̂(c) (by SCED, type c’s indi↵erence between m(c) and
m̂(c), and that type m̂(c) strictly prefers m̂(c) to m(c)), it follows that m̂ is incentive compatible
and individually rational. Moreover, u(m̂(c)) � u(0) and the mechanism m̂ yields Proposer a higher
payo↵ than m.
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F[v,c⇤], where �̃ denotes the strategy profile and µ̃ the system of beliefs. If Proposer’s

payo↵ in equilibrium (�̃, µ̃) is higher than �U(F[v,c⇤]) then the claim holds; so suppose

his payo↵ is strictly lower. Define a candidate equilibrium profile (�, µ) as follows:

• On path, Proposer o↵ers 0 in the first period, c⇤ in the second period, followed

by min{2c⇤, 1} ever after. Vetoer of type v accepts the first proposal 0 if and

only if she strictly prefers it to c⇤ in the next period; in the second period she

accepts c⇤ if and only if she (weakly) prefers it to both min{2c⇤, 1} and 0 in the

third period; and for any subsequent history starting with proposal sequence

(0, c⇤), she accepts the current proposal if and only if she (weakly) prefers it to

both min{2c⇤, 1} and 0 in the next period. For any on-path history h, let µ(h)

be derived from Bayes’ rule whenever possible, and for any history h starting

with (0, c⇤), let µ(h) put probability 1 on type c⇤.

• For any o↵-path history h that starts with (0, a) for a 6= c⇤, let (�, µ) specify

some continuation equilibrium with the starting belief F[c⇤/2,c⇤]; a continuation

equilibrium exists by hypothesis (EqmExists). For any o↵-path history h in

which the first proposal is di↵erent from 0, let (�, µ)(h) = (�̃, µ̃)(h).

Proposer’s payo↵ from the strategy profile � is �U(F[v,c⇤]) because on path types

below c⇤/2 accept proposal 0 and types in [c⇤/2, c⇤] accept proposal c⇤ in period 1;

while in the static problem, Lemma 2 implies that for belief F[v,c⇤] the delegation set

[c⇤, 1] is optimal, which results in all types in [v, c⇤/2) obtaining action 0 and all types

in (c⇤/2, c⇤] obtaining action c⇤. We will argue that the profile (�, µ) is an equilibrium,

which proves the claim.

First, Proposer is playing a best response in the profile (�, µ) at the start of the

game since any deviation induces the same payo↵ as in equilibrium (�̃, µ̃), which is

strictly lower than �U(F[v,c⇤]) by hypothesis. Moreover, by construction, Vetoer is

playing a best response at the history h = (0), i.e., after the initial proposal of 0.

Second, we claim that Proposer is playing a best response at history h = (0).

Note that the second-period belief after this history is µ(0) = F[c⇤/2,c⇤] and that in the

continuation game starting at h = (0) the strategy profile � yields payo↵ U(F[c⇤/2,c⇤]):

all types in [c⇤/2, c⇤] accept proposal c⇤ immediately and the delegation set [c⇤, 1]

solves the static problem by Lemma 2. Any deviation by Proposer to an o↵er a 6= c⇤

gives Proposer a payo↵ of at most U(F[c⇤/2,c⇤]) by Lemma 1. Therefore, Proposer is

playing a best response at history h = (0).

Finally, we claim that both players are playing best responses at any other history.
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Indeed, for any history starting with proposals (0, c⇤), best responses are assured by

construction. For any history starting with (0, a) with a 6= c⇤, our construction

specifies some continuation equilibrium. For any history starting with a proposal

di↵erent from 0 players are playing an equilibrium because (�̃, µ̃) is an equilibrium

for prior belief F[v,c⇤].

As it is straightforward that the system of beliefs µ satisfies Bayes Rule whenever

possible, we conclude that (�, µ) is an equilibrium. Q.E.D.

Proof of Theorem 1. Without loss of generality, we assume U(F )  1, as Pro-

poser’s utility can be rescaled accordingly. Furthermore, we prove the result only for

c⇤ > 0; the c⇤ = 0 case is implied by Proposition 2.

As a roadmap: Steps 1–4 below use induction to show that there are equilibria in

which Proposer can obtain arbitrarily close to his commitment payo↵ on some interval

of types below a threshold. Step 5 establishes this threshold can be made arbitrarily

close to v. Step 6 then argues that there is an equilibrium in which Proposer obtains

arbitrarily close to his commitment payo↵ from the full interval of types [v, v].

We begin with some preliminaries for the inductive argument. Let c0(", �) := c⇤ >

0 and define for all integers n > 0,

cn(", �) := min

⇢
cn�1(", �) +

"

4u0(0)
, cn�1(", �)

q
1 +

p
1� �

�
.38

It follows that there is some n 2 N such that cn(", �) � v. Let f > 0 denote a lower

bound for f on [v, v]. For " > 0, define

�⇤(", �) := 1� "

2
f min

⇢
"

4u0(0)
, c⇤

✓q
1 +

p
1� � � 1

◆�
,

and let �(") 2 (
p
1� ", 1) be such that for all � 2 (�("), 1), � � �⇤(", �). Such a �(")

exists because �⇤(", 1) = 1, �⇤(", ·) is continuous, and lim�"1
@�⇤(",�)

@� = +1.

The induction hypothesis for n � 0 is:

For all " > 0, � > �("), and c satisfying c⇤  c  cn(", �), if Proposer’s belief is

F[v,c] then there is an equilibrium in which Proposer’s payo↵ is at least U(F[v,c])� ".

The induction hypothesis holds for n = 0 by Lemma 3.

38 If u is not di↵erentiable at 0, let u0(0) denote the right-derivative at 0, which exists because u
is concave.
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Let (�̂, µ̂) be an equilibrium for the game with belief F[v,cn�1(",�)] that yields Pro-

poser payo↵ at least U(F[v,cn�1(",�)])�" (such an equilibrium exists under the induction

hypothesis) and let an�1(", �) be the largest action that makes type cn�1(", �) indif-

ferent between accepting an�1(", �) and playing (�̂, µ̂) from the next period on. Steps

1–4 below establish that if the induction hypothesis holds for n and an�1(", �)  1

then it holds for n+ 1, given (EqmExists).

Step 1: Fix arbitrary " > 0, � � �("), and c satisfying cn(", �) < c  cn+1(", �),

and an equilibrium (�̃, µ̃) for the game with belief F[v,c]. If Proposer’s payo↵ is at

least U(F[v,c]) � " we are done; so suppose Proposer’s payo↵ is strictly less. Below,

we suppress the dependence of cn and an�1 on " and �, and we set c�1(", �) := c⇤.

We construct a new equilibrium (�, µ) for the game with belief F[v,c] as follows:

Proposer’s first o↵er is an�1. On path, types above cn�1 accept an�1 and types

below cn�1 reject an�1. After a rejection of an�1, Proposer updates to F[v,cn�1] and

continuation play proceeds as specified by (�̂, µ̂). Moreover, if Proposer deviates in

the first period, continuation play is as specified by (�̃, µ̃).

Step 2: We show that Vetoer is playing a best response when an�1 is proposed in

the first period.

It is optimal for types below cn�1 to reject an�1 since type cn�1’s equilibrium

strategy in the continuation game yields a higher payo↵ (using that an�1 > cn�1 and

Vetoer’s preferences satisfy SCED).39 We now explain why it is optimal for types in

[cn�1, c] to accept an�1; there is no need to consider types above c because Proposer’s

belief is supported on [v, c]. Accepting an�1 is a best response for types cn�1 and an�1,

and SCED implies that the set of types for which it is a best response to accept is an

interval. Therefore, if an�1 � c, then accepting an�1 is a best response for all types in

[cn�1, c]. So suppose an�1 2 [cn�1, c). It would be a best response for type c to accept

cn�1 since that is even better than obtaining c next period (as 2ccn�1 � c2n�1 � �c2

because of our assumption that c  cn�1 + cn�1

p
1� �). Therefore, since type c

prefers an�1 2 [cn�1, c) to cn�1, accepting an�1 is a best response for type c and hence

for all types in [cn�1, c].

Step 3: We show that Proposer’s payo↵ from profile � is at least U(F[v,c])� ".

Proposer’s payo↵ if the first proposal an�1 is accepted times the probability of

39To elaborate, note that when comparing action an�1 and the lottery induced by type cn�1’s
equilibrium strategy, cn�1 is indi↵erent whereas (a possibly hypothetical) type an�1 strictly prefers
action an�1. SCED implies that given any two lotteries and any three types v1 < v2 < v3, if v2 is
indi↵erent and v3 strictly prefers one lottery, then v1 (weakly) prefers the other lottery.
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acceptance is at least

[F[v,c](c)� F[v,c](cn�1)]u(cn�1) �
Z c

cn�1

[u(v)� u0(0)(v � cn�1)]dF[v,c]

�
Z c

cn�1

[u(v)� "/2]dF[v,c],

where the first expression is because an�1 2 [cn�1, 1], the first inequality is because

u(v)�u(cn�1)  u0(0)(v�cn�1), and the second inequality is because c�cn�1  "
2u0(0) .

For the case n = 0, Proposer’s payo↵ conditional on proposal a0 being rejected

times the probability of rejection is at least �2U(F[v,cn�1])F[v,c](cn�1) by Lemma 3.

Since � �
p
1� " and U(F[v,cn�1])  1, these two bounds imply that Proposer’s

payo↵ is at least

[U(F[v,cn�1])� "]F[v,c](cn�1) +

Z c

cn�1

[u(v)� "/2]dF[v,c].

Since the delegation set [c⇤, 1] is optimal for belief F[v,c] by Lemma 2, this implies that

Proposer’s payo↵ is at least U(F[v,c])� ".

Consider now the case n � 1. Proposer’s payo↵ conditional on proposal an�1 being

rejected times the probability of rejection is at least �
⇥
U(F[v,cn�1])� "

⇤
F[v,c](cn�1).

Therefore, Proposer’s payo↵ is at least

�
⇥
U(F[v,cn�1])� "

⇤
F[v,c](cn�1) +

Z c

cn�1

[u(v)� "/2]dF[v,c]

�U(F[v,c])� "+
"

2
[F[v,c](c)� F[v,c](cn�1)]� (1� �)

�U(F[v,c])� ",

where the first inequality is because the delegation set [c⇤, 1] is optimal for belief F[v,c]

(by Lemma 2) and U(F[v,cn�1])  1, and the second inequality is because

F[v,c](c)� F[v,c](cn�1) � f min

⇢
"

4u0(0)
, c⇤

✓q
1 +

p
1� � � 1

◆�

and

� � �⇤(", �) = 1� "

2
f min

⇢
"

4u0(0)
, c⇤

✓q
1 +

p
1� � � 1

◆�
.
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This establishes Step 3.

Step 4: To verify that (�, µ) is an equilibrium, observe that Proposer plays a best

response in the first period since any deviation gives a payo↵ less than U(F[v,c])�" by

supposition. Vetoer plays a best response to proposal an�1 as argued above. Finally,

both players play best responses after any other history because we began in Step 1

with equilibria (�̃, µ̃) and (�̂, µ̂). This establishes the induction step if an�1  1.

Step 5: We show that, when " is small and � is large, the inductive argument in

Steps 1–4 covers a large fraction of types.

Let c̄(", �) := cn(", �), where n is the smallest index such that the action an(", �)

defined in our induction argument is strictly above 1. We claim

Z v

c̄(",�)

[u(1)� u(v)] dF (v)  1� � + ", (5)

which implies that c̄(", �) ! v as � ! 1 and " ! 0.

To derive inequality (5), note that because an(", �) > 1 there is a static incen-

tive compatible and individually rational mechanism in which all types above c̄(", �)

receive action 1 and Proposer’s payo↵ from types below c̄(", �) is at least as in equi-

librium (�̂, µ̂) discounted by �. This mechanism gives Proposer payo↵ at least

�[U(F[v,c̄(",�)])� "]F (c̄(", �)) +

Z v

c̄(",�)

u(1)dF (v).

By Lemma 2, this is less than the payo↵ from delegation set [c⇤, 1], which can be

written as

U(F[v,c̄(",�)])F (c̄(", �)) +

Z v

c̄(",�)

u(v)dF (v).

Some algebra using U(F[v,c̄(",�)])  1 now yields inequality (5).

Step 6: Given the belief F and an arbitrary " > 0, we show that for all � large

enough there is an equilibrium in which Proposer’s payo↵ is at least U(F )� ", which

completes the proof.

For any "0 > 0 and � > �("0), we have established in Steps 1–5 that for belief

F[v,c̄("0,�)] there is an equilibrium, denoted by (�, µ), in which Proposer’s payo↵ is

at least U(F[v,c̄("0,�)]) � "0. Let a("0, �) be the largest action that makes type c̄("0, �)

indi↵erent between accepting a("0, �) and playing (�, µ) from next period on. Note

that a("0, �) 2 (1, 2] by definition (that it is less than 2 is because actions above 2 are
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worse than the status quo for all types).

Consider a strategy profile in which Proposer initially o↵ers a("0, �), followed by

continuation play as described by (�, µ). It is a best response for all types in [c̄("0, �), v]

to accept a("0, �) because of SCED and that accepting is a best response for type

c̄("0, �) and a (hypothetical) type a("0, �) that is larger than v; it is also a best response

for all types below c̄("0, �) to reject a("0, �). Since a("0, �) 2 (1, 2] and Proposer’s ideal

point is 1, it follows that Proposer’s payo↵ given this strategy profile is at least

�[U(F[v,c̄("0,�)])� "0]F (c̄("0, �)) +

Z v

c̄("0,�)

u(2)dF (v).

For "0 > 0 small enough and � < 1 large enough, this payo↵ is at least U(F ) � ".

Given (EqmExists) it follows that there is an equilibrium in which Proposer’s payo↵

is at least as large: analogous to the logic used in Step 1, if a given equilibrium does

not yield payo↵ at least U(F )� ", we can modify it by having Proposer o↵er a("0, �)

in the first period with continuation play given by (�, µ). Q.E.D.

B.2. A Skimming Equilibrium

We construct a skimming equilibrium building on ideas from the seller-buyer lit-

erature, which are summarized instructively by Ausubel, Cramton, and Deneckere

(2002, pp. 1912–15). Our first step is to define a pair of functional equations whose

joint solution describes a skimming equilibrium.

Definition 1. Let R : [v, v⇤] ! R be continuous and P : [v, v⇤] ! R be right-

continuous, where v⇤ 2 (v, v]. We say that (R,P ) supports a skimming equilibrium

on [v, v⇤] if, for all v 2 [v, v⇤],

R(v) = max
y2[v,v]

�
u(P (y))[F (v)� F (y)] + �R(y)

 
, (6)

uV (P (v), v) = �uV (P (t(v)), v), (7)

where T (v) denotes the argmax correspondence in (6), t(v) := maxT (v), P (v) is

the largest proposal that satisfies (7), and P is the increasing envelope of P , i.e.,

P (v) := supyv P (y).40

40The maximizers in this definition exist because P being right-continuous implies P is right-
continuous, and since it is also increasing, P is upper semicontinuous.
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The idea behind this definition is that R(y) describes Proposer’s value function

and P (v) describes Vetoer’s acceptance behavior. We will construct an equilibrium

in which at any history, type v accepts a positive o↵er if and only if the o↵er is below

P (v). Alternatively, given that P is increasing, any o↵er P (v) is accepted precisely

by all types above v.41 Consequently, at any history, Proposer’s belief is a right-

truncation of the prior to [v, v] for some v. The upper endpoint v thus acts like a

state variable that Proposer optimizes. Equation (6) is the dynamic programming

equation that captures Proposer’s tradeo↵ between extracting surplus via screening

and the cost of delay: given the current state v, if Proposer brings the state down to y

with an o↵er P (y), then with probability F (v)�F (y) (ignoring a normalization factor)

he obtains current payo↵ u(P (y)); in addition, after a one-period delay he obtains

payo↵ R(y). Concomitantly, Equation (7) is the indi↵erence condition for type v

between accepting o↵er P (v) and waiting one period for the next o↵er, which would

be P (t(v)). Note that P (v) = 2v+ because t(v) = v, and hence P (v) � max{v, 2v+}
for all v. Consequently, R(v) > 0 for all v > v+.

The following result establishes that there is in fact an equilibrium corresponding

to the pair of functions (R,P ). If P is continuous, then on the equilibrium path

Proposer first targets the threshold type t(v) with o↵er P (t(v)), and then successively

follows with o↵ers P (t2(v)), P (t3(v)), . . .. This is a decreasing sequence because P and

t are increasing functions; the latter point owes to a monotone comparative statics

argument. Vetoer accepts the initial o↵er if her type is in [t(v), v], the second o↵er if

her type is in [t2(v), t(v)), the third o↵er if her type is in [t3(v), t2(v)), and so on.

Lemma 5. Suppose v  0 or v  1/2. If (R,P ) supports a skimming equilibrium

on [v, v] then there is an equilibrium in which proposals will be decreasing along the

equilibrium path.

The proof of Lemma 5 builds on arguments from the seller-buyer bargaining lit-

erature (e.g., Gul, Sonnenschein, and Wilson, 1986, Theorem 1), and is relegated

to the supplementary appendix. As discussed in the main text after Proposition 2,

novel considerations arise in deterring Proposer from deviating to o↵ers below 2v+;

for that we use Lemma 5’s hypothesis that either v  0 or v  1/2. For readers

familiar with the seller-buyer arguments, we also flag that another notable aspect of

41This statement is imprecise when there are multiple ṽ such that P (ṽ) = P (v); we gloss over this
issue for this heuristic explanation.
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our argument is the use of the increasing envelope P . We use this because, owing

to single-peaked Vetoer preferences, we cannot guarantee that there is a solution to

equations (6) and (7) in which the P function is (even weakly) increasing. The lack of

monotonicity precludes specifying P (y) as type y’s acceptance threshold—we would

not be assured that Proposer’s beliefs are right-truncations. Using the increasing

envelope P to specify strategies allows us to surmount non-monotonicities in P .

For Lemma 5 to be useful, we must assure existence:

Lemma 6. There is (R,P ) that supports a skimming equilibrium on [v, v].

The proof of this result adapts arguments from the seller-buyer literature, and is

relegated to the supplementary appendix. In a nutshell, we first suppose v > 0 and

follow the reasoning of Fudenberg, Levine, and Tirole (1985, pp. 78–79) to show that

there is an (R,P ) that supports a skimming equilibrium on [v, v+ "] if " > 0 is small

enough; the intuition is that when Proposer’s belief is concentrated near v, the cost

of delay outweighs the benefit from screening types and it is optimal to just o↵er

P (t(v)) = 2v for all remaining types. An argument following Ausubel and Deneckere

(1989b, Lemma A.3) allows us to extend (R,P ) to support a skimming equilibrium

on [v, v], proving Lemma 6 so long as v > 0. Lastly, an approximation argument

analogous to that in Ausubel and Deneckere (1989b, Theorem 4.2) allows us to cover

the case of v = 0, which in turn can be straightforwardly extended to v < 0.

Proof of Proposition 2. Together, Lemma 5 and Lemma 6 establish a skimming

equilibrium if either v  0 or v  1/2.

Let us show that Proposer’s payo↵ in this equilibrium converges to U(F ). Since

Proposer never makes a strictly negative o↵er in this equilibrium and no type v < 0

accepts a strictly positive o↵er, we assume without loss of generality that v 2 [0, 1/2).

Let A⇤(v) denote type v’s choice from the menu [2v, 1]. As noted after Definition 1,

it holds that P (v) � max{v, 2v}. Hence, P (v) � A⇤(v).

To show that Proposer’s payo↵ is at least U(F ) in the patient limit, observe that

for any v and any strictly positive integer m there is �(m) such that for all � > �(m),

R(v) � (1� 1/m)

Z v

v

⇥
u(min{P (v0), 1})� 1/m

⇤
dF (v0). (8)

The intuition for this inequality is that if Proposer makes o↵ers with small step size,

he can ensure that each type v accepts a proposal close to min{P (v), 1}, because each

46



type v accepts a proposal if and only if it is less than P (v); moreover, as � ! 1 the cost

of delay vanishes. Together with P (v) � P (v) � A⇤(v), inequality (8) implies that if

(R,P ) supports a skimming equilibrium then Proposer’s payo↵ in this equilibrium is

at least U(F ) in the patient limit.

It remains to show that Proposer’s payo↵ in any such equilibrium is at most U(F )

in the patient limit. Suppose not. Then there is "0 > 0 and a sequence �n ! 1 such

that for each n there is (Rn, Pn) supporting a skimming equilibrium that yields payo↵

at least U(F ) + "0. Let An(v) be the proposal that is accepted in this equilibrium by

type v and let ⌧n(v) be the time at which type v accepts.42 Since An is monotonic

and uniformly bounded (as 0  An(v)  1 for all v and n), Helly’s selection theorem

implies that there is a subsequence, which we also index by n for convenience, along

which An ! A pointwise.

We claim A(v) � v for all v  1. Suppose not. Then there is v  1 and " > 0

such that for all n large enough, An(v)  v� ". Let xn denote the state (in the sense

described after Definition 1) in which Proposer makes o↵er An(v). Since P n(v) � v,

Proposer could o↵er An(v) + "/2 in state xn and get it accepted by all types in

[v� "/2, v], which have probability at least min{"/2, v� v}f . For � high enough such

an o↵er is profitable, contradicting that (Rn, Pn) supports a skimming equilibrium.

Since Proposer’s payo↵ is at least U(F ) + "0, there must exist v 2 [2v,min{v, 1}]
and " > 0 such that A(v) = v+" (by the dominated convergence theorem). Choose v1

such that A(v1) = v+ " and such that there is v2 � v1 � "/5 with A(v2) < A(v1). We

can then choose ! 2 (0, ") such that A(v2)  v1+ "�!. Since v1� "/5  v2  A(v2),

we can find N such that for all n > N , An(v1) > v1 + "� !/2 and

v1 � "/4  An(v2)  v1 + "� 3!/4. (9)

Let sn be the state in which Proposer makes o↵er An(v1) in equilibrium (Rn, Pn).

By definition, type v1 accepts the o↵er An(v1) at time ⌧n(v1) < 1 (since An(v1) > 0)

and therefore prefers An(v1) at time ⌧n(v1) over An(v2) at time ⌧n(v2). Moreover, the

inequalities in (9) imply that type v1 prefers An(v2) over v1 + "� 3!/4. Hence,

uV (v1 + "� !/2, v1) � �⌧n(v2)�⌧n(v1)
n uV (v1 + "� 3!/4, v1),

42 If type v never accepts any proposal, we set An(v) := 0 and ⌧n(v) := 1.
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which rearranges to yield

�⌧n(v2)�⌧n(v1)  uV (v1 + "� !/2, v1)

uV (v1 + "� 3!/4, v1)
< 1.

But this implies the following bound on Rn in state tn(sn) (after proposal An(v1) in

state sn has been rejected; if the state is limd0"sn tn(d
0) the argument is analogous):

Rn(tn(sn)) 
Z tn(sn)

v2

u(min{P n(v), 1})dF (v)

+ �⌧n(v2)�⌧n(v1)
n

Z v2

v

u(min{P n(v), 1})dF (v). (10)

To understand inequality (10), note that for types above v2 an upper bound on

Proposer’s utility is getting min{P n(v), 1} accepted immediately. Since type v2, and

therefore all lower types, cannot accept before waiting ⌧n(v2)�⌧n(v1) periods, an upper

bound on Proposer’s utility is getting min{P n(v), 1} accepted after ⌧n(v2) � ⌧n(v1)

periods.

For any strictly positive integer m, inequality (8) implies that for all integers n

large enough,

Rn(tn(sn)) � (1� 1/m)

Z tn(sn)

v

u(min{P n(v), 1})dF (v)� 1/m.

It follows that there exist m and n such that inequality (10) contradicts (8). Q.E.D.

B.3. A Commitment-Payo↵ Equilibrium

Lemma 7. Suppose c⇤ > 0, and that either (i) v < 0 and suppG = [v, 0] [ [c⇤/2, v]

or (ii) v = 0 and suppG = [c⇤/2, v].43 There is a skimming equilibrium in which,

on the equilibrium path, there is a decreasing sequence of proposals culminating in c⇤,

with Proposer payo↵ approximately
R v

c⇤/2 u(max{v, c⇤})dG(v).

Proof. First, by an argument analogous to Lemma 6, there is (R,P ) that supports

a skimming equilibrium on [c⇤/2, v]. Second, analogous to Lemma 5, we can use that

(R,P ) to construct a skimming equilibrium with the desired properties: just treat

c⇤/2 here like v in Lemma 5; the only point to note is that because in fact v  0, no

43We assume that G has a density bounded away from 0 and 1 on its support.
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matter whether hypothesis (i) or (ii) in the lemma holds, we can deter deviations to

any o↵er in [0, c⇤) by stipulating that any such o↵er is accepted, with the belief upon

rejection supported on non-positive types and all subsequent o↵ers being 0. Q.E.D.

Proof of Proposition 3. We consider two cases, explaining in each case the beliefs

and behavior o↵ path that support the on-path behavior described in the proposition.

First, consider v  0. If the first-period o↵er of 0 is rejected, Bayes rule implies

that Proposer updates to the belief F[v,0][[c⇤/2,v], which is the prior’s conditional distri-

bution when excluding types (0, c⇤/2). Continuation play then follows the skimming

equilibrium of Lemma 7. If Proposer makes a first-period o↵er other than 0, contin-

uation play follows the skimming equilibrium of Lemma 5. It remains only to show

that Proposer has no profitable deviation in the first period. Since Proposer’s belief

when his initial o↵er of 0 is rejected is F[v,0][[c⇤/2,v], it follows from Lemma 7 that

Proposer’s on-path payo↵ is approximately
R 1

c⇤/2 u(max{v, c⇤})dF (v)+
R v

1 u(1)dF (v),

which equals U(F ). On the other hand, Proposition 2 implies that deviating to a

first-period o↵er other than 0 yields a payo↵ no more than approximately U(F ). As

U(F ) < U(F ), no such deviation is profitable.

Second, consider v > 0 (and correspondingly v  1/2). If the first-period o↵er of

0 is rejected, Bayes rule implies that Proposer updates to the belief F[c⇤/2,v]. Contin-

uation play then follows the skimming equilibrium of Lemma 5 applied to this belief,

i.e., replacing F in that lemma with F[c⇤/2,v]. If Proposer makes a first-period o↵er

other than 0, continuation play follows the skimming equilibrium of Lemma 5 with

the original belief F . It follows from an essentially identical argument to that in the

previous paragraph that no first-period deviation is profitable for Proposer. Q.E.D.

B.4. Is Leapfrogging Necessary?

Proof of Proposition 4. Towards contradiction, suppose there is a sequence of

�n ! 1 and corresponding skimming equilibria such that Proposer’s payo↵ converges

to U(F ). For each n and v, let Bn(v) denote the expected discounted proposal that

type v accepts: Bn(v) := E[�tat], where the expectation is taken over the accepted

proposals and agreement times for type v given the equilibrium strategies. Since Bn

is monotonic (because the corresponding mechanism is IC) and uniformly bounded,

Helly’s selection theorem implies that there is some B and a subsequence of Bn, which

we also index by n for convenience, along which Bn ! B pointwise and in L1-norm.
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Since interval delegation is (essentially) uniquely optimal, it must hold that (up

to measure zero sets) B(v) = 0 for v 2 [v, c⇤/2), B(v) = c⇤ for v 2 (c⇤/2, c⇤),

B(v) = v for v 2 (c⇤,min{v, 1}), and B(v) = 1 for v 2 [1, v]. (Suppose not. B

corresponds to some feasible mechanism in the static problem and therefore, by the

essential uniqueness assumption, yields payo↵ at most U(F )�" for some " > 0. Since

Bn ! B in the L1-norm, for all n large enough Proposer’s payo↵ in the equilibrium

corresponding Bn is at most U(F )� "/2, a contradiction.)

For any " > 0, there is N such that for all n > N , Bn(v)  " for all v 2
[v, c⇤/2� "]. Then for all n large enough, there is a history at which Proposer’s belief

is F[v,c] for some cuto↵ c � c⇤/2� " (since on-path o↵ers are accepted by upper sets)

and Proposer’s payo↵ in the continuation equilibrium is at most u("). But, for any

"0 2 (0, c), Proposer can deviate to make decreasing o↵ers on a fine grid between

"0 and c such that all types in ["0, c] accept one of the o↵ers close to their type or

higher, and there is approximately no cost of delay as � ! 1.44 Proposer’s payo↵

from this deviation is strictly greater than u(") for " and "0 small enough and � large

enough, contradicting Proposer’s payo↵ in the continuation equilibrium being at most

u("). Q.E.D.

44One can verify that type v � 0 strictly prefers any action in
�
v � v

p
1� �, v + v

p
1� �

�
to

action v next period. Therefore, if Proposer makes decreasing o↵ers between "0 and c on a fine grid
with diameter "0

p
1� �, every type in ["0, c] will accept one of the o↵ers close to its type or higher

in any best response. Moreover, agreement with those types is reached within at most c�"0

"0
p
1��

+ 1

rounds. Since �

⇣
c�"0

"0
p

1��
+1

⌘

! 1 as � ! 1, Proposer incurs essentially no cost of delay for types in
["0, c] as � ! 1.
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C. Supplementary Appendix (For Online Publica-

tion)

This supplementary appendix provides proofs for the lemmas stated in Appendix

B.2. To reduce notation, we denote S(v) := P (t(v)).

Lemma 8. For any v and z < y 2 T (v), we have P (z) < P (y).

Proof. Suppose that there are v and z < y such that P (z) � P (y). We prove that

y /2 T (v). Since P is increasing, it is constant on [z, y]; call that value p̄. It follows

that

u(p̄)[F (v)� F (y)] + �R(y)

u(p̄)[F (v)� F (y)] + � {u(p̄)[F (y)� F (z)] +R(z)}

<u(p̄)[F (v)� F (z)] + �R(z),

where the first inequality is because the payo↵ from any type in [z, y] is at most u(p̄)

(and hence R(y)�R(z)  u(p̄)[F (y)� F (z)]). Thus, y /2 T (v). Q.E.D.

Below, we will use the fact that T is upper hemicontinuous. This follows from the

generalized theorem of the maximum in Ausubel and Deneckere (1989b, p. 527). The

theorem is applicable because: (i) the maximand function u(P (y))[F (v) � F (y)] +

�R(y) is upper semicontinuous as a function of y for every v, which in turn is because

P is upper semicontinuous, and u and F are continuous and increasing on the relevant

range {y : y  v and P (y)  1};45 and (ii) for any sequence vn ! v, the maximand

function converges uniformly.

Proof of Lemma 5. Step 1: We begin by specifying beliefs and strategies:

• µ is derived from Bayes’ rule whenever possible; if at history h = (h0, a) a

probability 0 rejection occurs, µ(h) puts probability 1 on v if v  1/2 and

probability 1 on 0 if v > 1/2 (in the latter case, v  0 by assumption);

• At any history h = (h0, a), any Vetoer type not in the support of Proposer’s

current belief plays an arbitrary best response; type v � 0 in the support accepts

45There is no loss in restricting attention to this range by a similar argument to that in the proof
of Lemma 8.
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a if and only if a 2 [0, P (v)]; type v < 0 in the support accepts if and only if

uV (a, v) � uV (0, v);

• Proposer’s first o↵er is S(v). To describe the rest of Proposer’s strategy, consider

any history h = (h0, a). Given Vetoer’s strategy and the belief updating specified

above, if Proposer holds a non-degenerate belief upon rejection of a then this

belief equals F[v,d] for some d. We stipulate that if a = P (d) = P (d), then

Proposer o↵ers S(d); if a = P (d) > P (d), then Proposer o↵ers limd0"d S(d0);

if a 2 [limd0"d P (d0), P (d)), then Proposer randomizes between limd0"d S(d0) and

S(d) so that type d is indi↵erent between a in the current period and the lottery

in the next period; and for any a 62 [P (v), P (v)], Proposer o↵ers S(d). Finally,

whenever Proposer’s belief is degenerate on x � 0 (x 2 {0, v}), Proposer o↵ers
min{2x, 1} in all future periods.

Observe that at any history, Proposer’s subsequent on path o↵ers are decreasing,

either trivially if the current belief is degenerate, or for any non-degenerate belief

because the belief cuto↵s are decreasing by definition and P and t are increasing.

Step 2: We verify that Proposer is playing a best response to Vetoer’s strategy

given beliefs µ. As this is obvious whenever he has a degenerate belief, assume he has

a non-degenerate belief. As noted above, any such belief is of the form F[v,d] for some

d. Proposer’s strategy prescribes some randomization (possibly degenerate) between

S(d) and limd0"d S(d0).

We first claim that S(d) is an optimal proposal. Given Vetoer’s strategy, R(d) is

an upper bound on Proposer’s payo↵. Furthermore, it follows from Lemma 8 that

Vetoer’s strategy has all types above t(d) accepting S(d) and all types strictly below

rejecting. The claim follows.

We next claim that limd0"d S(d0) is also an optimal proposal. Since T is upper hemi-

continuous, limd0"d t(d0) 2 T (d). Hence, given Vetoer’s strategy, P (limd0"d t(d0)) is an

optimal proposal. It therefore su�ces to show that limd0"d S(d0) = P (limd0"d t(d0)), or

equivalently, limd0"d P (t(d0)) = P (limd0"d t(d0)). Note that limd0"d P (t(d0))  P (limd0"d t(d0))

because t and P are increasing. But if limd0"d P (t(d0)) < P (limd0"d t(d0)) then con-

tinuity of R and u and strict monotonicity of u in the relevant range imply the
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contradiction

R(d) = u(lim
d0"d

P (t(d0)))[F (d)� F (lim
d0"d

t(d0))] + �R(lim
d0"d

t(d0))

< u(P (lim
d0"d

t(d0)))[F (d)� F (lim
d0"d

t(d0))] + �R(lim
d0"d

t(d0)) = R(d).

All that remains is to verify that at a history h = (h0, a) with a 2 [limd0"d P (d0), P (d)),

there is a randomization between S(d) and limd0"d S(d0) that makes type d indi↵erent

between a in the current period and the lottery in the next period. To confirm this,

note that since P is right-continuous and P (v) � v for any v, we have

uV (lim
d0"d

P (d0), d) � uV (a, d) � uV (P (d), d).

The existence of a suitable randomization now follows from continuity of uV (·, d) and
Equation (7).

Step 3: We verify that Vetoer is playing a best response at each history. Consider

any history (h, a) with µ(h) = F[v,q]. Since types outside of the support of Proposer’s

belief play a best response by assumption, we only consider types in [v, q].

• If a > P (q), Vetoer’s strategy prescribes that no type below q accepts, and

Proposer will propose S(q) next period. Since type q is indi↵erent between

P (q) in the current period and S(q) next period, and S(q)  P (q)  P (q) < a,

type q prefers S(q) next period to a in the current period. The same holds for

all lower types, and hence Vetoer is playing a best response.

• If a < 0, then: (i) it is clearly a best response for all types v � 0 to reject; and

(ii) types v < 0 accept if and only if they prefer a to 0, which is a best response

because Proposer will never make a strictly negative o↵er in the continuation

equilibrium.

• If a is positive but below the range of P , all types v � 0 accept. After a

rejection, Proposer will either perpetually o↵er 0 or 2v, yielding a continuation

payo↵ of 0 to all types, and so it is a best response for any type v � 0 to accept

a.

• Otherwise, a is between P (v) and P (q).

If a = P (d) = P (d) for some d  q, Vetoer’s strategy prescribes that all and
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only those types above d accept.46 On path, Proposer will propose S(d) next

period followed by lower o↵ers; since type d is indi↵erent between a in the

current period and S(d) next period, and all future o↵ers are below a, SCED

implies that it is a best response for all higher types to accept and for all lower

types to reject. Hence, Vetoer is playing a best response.

If there is d  q such that a = P (d) > P (d), Vetoer’s strategy prescribes that

all and only those types above d accept. Proposer will propose limd0"d S(d0)

next period, followed by lower o↵ers. Since type d0 is indi↵erent between P (d0)

in the current period and S(d0) next period, continuity of u implies that type

d is indi↵erent between limd0"d P (d0) = P (d) = a in the current period and

limd0"d S(d0) next period. Hence, Vetoer is playing a best response.

If there is d  q such that a 2 [limd0"d P (d0), P (d)), Vetoer’s strategy again

prescribes that all and only those types above d accept. Proposer will randomize

next period between limd0"d S(d0) and S(d) to make type d indi↵erent between

accepting a or getting the lottery next period. Therefore, Vetoer is playing a

best response. Q.E.D.

Proof of Lemma 6. Step 1: Suppose v > 0. We claim that there is " > 0 such that

(R,P ) given by

R(v) := u(2v)F (v)

P (v) := v +
p

v2 � 4�v(v � v)

supports a skimming equilibrium on [v, v+"]. Plainly, R and P are continuous, given

that F is continuous. Also, P is increasing and hence P = P . Some algebra confirms

that R(v) is the value from securing acceptance from all types below v on action 2v,

while P (v) is the action that makes type v indi↵erent between accepting that action

now and getting action 2v in the next period. Therefore, it is su�cient for us to show

that there is " > 0 such that for all v 2 [v, v + "] the unique maximizer of the RHS

of Equation (6) is v, which implies t(v) = v.

To that end, observe that the derivative of the objective function in Equation (6)

46 If there are multiple values of d satisfying a = P (d), all types above the lowest one accept.
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with respect to y is

u0(P (y))P
0
(y)[F (v)� F (y)]� u(P (y))f(y) + �u(2v)f(y). (11)

Since 0 < u(2v)  u(P (y)) and f is bounded away from 0, the sum of the last two

terms in expression (11) is strictly negative and bounded away from 0. Since u0(P (y))

is bounded (by concavity), P
0
(y) is bounded (as v2 � 4�v(v � v) > 0 for all v), F

is continuous, and v, y 2 [v, v + "], the first term in expression (11) goes to 0 as

" ! 0. It follows that there is " > 0 such that expression (11) is strictly negative

for all y 2 [v, v + "], and hence the maximum of the RHS of Equation (6) is attained

uniquely at t(v) = v whenever v  v + ".

Step 2: Suppose (Rv⇤ , Pv⇤) supports a skimming equilibrium on [v, v⇤], where

0 < v < v⇤ < v. We will show that there is (R,P ) that supports a skimming

equilibrium on [v, v] with the property that P (v) = Pv⇤(v) and R(v) = Rv⇤(v) for all

v 2 [v, v⇤].

Pick v0 2 (v⇤, v] as large as possible such that

u(1)[F (v0)� F (v⇤)]  (1/2)(1� �)Rv⇤(v
⇤). (12)

Note that v0 is well-defined because F is continuous and Rv⇤(v⇤) > 0 (this inequality

holds because of v⇤ > v and the property noted at the end of the paragraph following

Definition 1). Moreover, letting f denote an upper bound for f , it holds that

v0 � v⇤ � (1/2)(1� �)Rv⇤(v⇤)

u(1)f
> 0. (13)

We extend Rv⇤ to Rv0 defined on [v, v0] by setting Rv0(v) := Rv⇤(v) for v 2 [v, v⇤],

and for v 2 (v⇤, v0],

Rv0(v) := max
y2[v,v⇤]

�
u(P v⇤(y))[F (v)� F (y)] + �Rv⇤(y)

 

and define tv0(v) to be the largest value in the argmax correspondence. Observe

that P v⇤ is upper semicontinuous (since Pv⇤ is right-continuous by assumption, and

hence P v⇤ is right-continuous) and Rv⇤ is continuous; hence, Rv0(v) and tv0(v) are

well-defined. We extend Pv⇤ to Pv0 defined on [v, v0] by setting Pv0(v) := Pv⇤(v) for
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v 2 [v, v⇤], and for v 2 (v⇤, v0] by letting Pv0(v) be the largest value satisfying

uV (Pv0(v), v) = �uV (P v⇤(tv0(v)), v).

So (Rv0 , Pv0) satisfies Equation (7). We can apply the generalized theorem of the max-

imum in Ausubel and Deneckere (1989b, p. 527) analogously to the discussion after

Lemma 8 and conclude that Rv0 is continuous and Tv0 is non-empty and upper hemi-

continuous. Therefore, tv0 is upper semicontinuous and, since it is increasing, right-

continuous. These properties of tv0 and the hypothesis that Pv⇤ is right-continuous

imply that Pv0 is right-continuous. (Rv0 , Pv0) also satisfies Equation (6), i.e.,

Rv0(v) = max
y2[v,v]

�
u(P v0(y))[F (v)� F (y)] + �Rv0(y)

 

for all v 2 [v, v0], because for all y 2 [v⇤, v],

u(P v0(y))[F (v)� F (y)] + �Rv0(y)

u(1)[F (v)� F (y)] + �Rv0(y)

(1/2)(1� �)Rv⇤(v
⇤) + �Rv0(y)

(1/2)(1� �)Rv0(y) + �Rv0(y)

<Rv0(v).

Here the second inequality is because the choice of v0 satisfies inequality (12) and the

second inequality is because Rv⇤(v⇤) = Rv0(v⇤) and Rv0 is increasing. Therefore, the

maximum is attained for y 2 [v, v⇤) and the claim follows since Rv0(y) = Rv⇤(y) for

any such y.

We have established that (Rv0 , Pv0) supports a skimming equilibrium on [v, v0].

Since Rv0 is increasing, it follows from inequality (13) that a finite number of repeti-

tions of this argument extends (Rv⇤ , Pv⇤) to the entire [v, v] interval.

Step 3: By an approximation argument analogous to that in Ausubel and De-

neckere (1989b, Theorem 4.2), there exists (R,P ) that supports a skimming equi-

librium on [v, v] if v = 0; we omit details. The case of v < 0 is handled by setting

R(v) = 0 and P (v) = 0 for all v < 0, and pasting that to a solution when we take v = 0

and set the distribution on [0, v] to be the conditional distribution F[0,v]. Q.E.D.
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