Sequential Veto Bargaining with Incomplete

Information®

S. Nageeb Alif Navin Kartik? Andreas Kleiner?

May 14, 2023

Abstract

We study sequential bargaining between a proposer and a veto player. Both
have single-peaked preferences, but the proposer is uncertain about the veto
player’s ideal point. The proposer cannot commit to future proposals. When
players are patient, there can be equilibria with Coasian dynamics: the veto
player’s private information can largely nullify proposer’s bargaining power.
Our main result, however, is that under some conditions there also are equilibria
in which the proposer obtains the high payoff that he would with commitment
power. The driving force is that the veto player’s single-peaked preferences
give the proposer an option to “leapfrog”, i.e., to secure agreement from only
low-surplus types early on to credibly extract surplus from high types later.
Methodologically, we exploit the connection between sequential bargaining and

static mechanism design.
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1. Introduction
“If the Congress returns the bill having appropriately addressed these con-

cerns, 1 will sign it. For now, I must veto the bill.”!
— President Barack Obama

An important feature of U.S. politics is that legislatures (e.g., the Congress or a
State Assembly) send bills to executives (e.g., the President or a Governor) who can
veto them, and conversely, executives must secure confirmation from legislatures for
certain appointments (e.g., to the Supreme Court and the Federal Reserve Board).
More broadly, there are many contexts in which one party or group makes proposals
and another decides whether to approve them. For instance, search committees put
forward candidates for approval by their organizations, Boards of Directors may re-
quire sign-off from shareholders on certain initiatives, and some public school districts
require citizens to ratify the budget proposed by their school boards.

In an influential paper, Romer and Rosenthal (1978) introduced a framework to
study veto bargaining, i.e., bargaining over a one-dimensional policy between two play-
ers who have single-peaked preferences. Only one player, Proposer, has the power
to make proposals; the other player, Vetoer, decides whether to accept a proposal
or reject it and preserve the status quo. Romer and Rosenthal assumed complete
information—specifically, Proposer knows Vetoer’s preferences—and a single take-it-
or-leave-it proposal. These are important benchmarks, but for many applications
both assumptions ought to be relaxed: Proposer may be uncertain about Vetoer’s
preferences, and, as illustrated in our epigraph, Proposer can make sequential pro-
posals.

Sequential veto bargaining with incomplete information presents rich possibilities
for learning and signaling. When a proposal is rejected, Proposer updates about
Vetoer’s preferences and might modify his proposal in response. Anticipating that,
Vetoer has an incentive to strategically reject proposals that she prefers over the
status quo in order to extract proposals she likes even more. (Consider our epigraph,
again.) But then, to what extent does Proposer actually benefit from making multiple
proposals?

Existing work on these issues primarily undertakes only a two-period analysis (e.g.,

L Closing of Obama’s Veto Message when he vetoed H.R. 1777.
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Cameron, 2000, pp. 110-116; Cameron and McCarty, 2004, Section 4).? But there
are limitations to models with a short bargaining horizon. On the one hand, being
able to make proposals repeatedly may allow Proposer to reap benefits from screening
Vetoer’s type. On the other hand, a short horizon confers significant commitment
power to Proposer.

The implications of a long horizon have been studied in the neighboring arena
of bargaining between a seller and a buyer with privately-known valuation. There,
following the classic Coase Conjecture (Coase, 1972), it has been shown that if offers
can be made indefinitely and players are patient, then lack of commitment wipes
out the seller’s bargaining power. The outcome is (approximately) that the buyer
only pays her lowest possible valuation so long as it is common knowledge that there
are gains from trade.®> Applying Coasian logic to veto bargaining would suggest
that because sequential rationality compels Proposer to repeatedly moderate future
proposals, an inability to commit would significantly hurt Proposer.

Accordingly, the goal of our paper is to study sequential veto bargaining with
incomplete information in an infinite-horizon model with patient players. Our main
result is that, contrary to a Coasian intuition, the lack of commitment need not harm
Proposer. More specifically, we establish that under certain conditions, if players
are patient, Proposer can achieve a payoff that is arbitrarily close to his payoff with
commitment power (Theorem 1).

Central to this result is Proposer’s ability to leapfrog: he may initially propose a
policy that is far from his own interests, targeting acceptance by “low” Vetoer types
whose ideal points are further away from his and closer to the status quo. Upon
rejection, Proposer concludes that Vetoer’s ideal point is closer to his own preferred
policy. He is then able to extract surplus from these “high” types because it is
then credible to only offer policies that are even closer to his own ideal point. Put
differently, by securing initial acceptance from (only) low types, leapfrogging limits
the implications of sequential rationality for subsequent policy moderation, so much

so that Proposer is not harmed by the lack of commitment.

2We discuss two exceptions, Romer and Rosenthal (1979) and Cameron and Elmes (1994), in
Section 6.

3 This point has been established for the “gap case” and, subject to a “stationary equilibirum”
qualification, also for the “no gap case” (Fudenberg, Levine, and Tirole, 1985; Gul, Sonnenschein,
and Wilson, 1986). Ausubel and Deneckere (1989b) provide an important counterpoint in the no
gap case with non-stationary equilibria.



Leapfrogging is viable in our model because Vetoer has single-peaked preferences:
there are policies that low types are willing to accept and high types are not, given
suitable subsequent policy proposals. By contrast, in the canonical model of seller-
buyer bargaining, all buyer types prefer low to high prices. Offering low prices early
on to subsequently charge high-value buyers a higher price would be futile; indeed,
any equilibrium in seller-buyer bargaining features decreasing prices with the so-
called skimming property: the current price is always accepted by an interval of the
highest-value buyer types.

After presenting our model in Section 2, we use a two-type example in Section 3
to develop the logic of leapfrogging. We first show how the option to leapfrog implies
that, if an equilibrium exists, there is one that achieves a high Proposer payoff. Our
option-based argument is succinct, but leaves open whether and how leapfrogging
can be supported in an equilibrium. Accordingly, we also explicitly construct a high
Proposer payoff equilibrium that uses leapfrogging (Proposition 1).

We turn in Section 4 to a setting with a continuum of types and Vetoer preferences
given by a quadratic loss function. As is familiar in sequential bargaining, an upper
bound on Proposer’s payoff when he can commit to a strategy in the dynamic game
is provided by an auxiliary static mechanism design problem (Lemma 1). This static
problem has been studied recently by Kartik, Kleiner, and Van Weelden (2021); we
assume that what they call “interval delegation” is an optimal mechanism. Theo-
rem 1 then establishes our main result: the static mechanism design payoff can be
(approximately) achieved in a sequential veto bargaining equilibrium. Our argument
is non-constructive, but crucially exploits Proposer’s option to leapfrog in the dy-
namic game and certain properties of the optimal mechanism (Lemma 3). Combining
Lemma 1 and Theorem 1, we conclude that Proposer can achieve (approximately)
the same payoff in an equilibrium as he could by committing to a strategy in the
dynamic game.

In Section 5, we show that there can be multiple equilibrium outcomes. Sec-
tion 5.1 constructs, under reasonable conditions, a “skimming equilibrium” that fea-
tures Coasian dynamics: Proposer starts with demanding proposals but compromises
rapidly, so much so that Vetoer (approximately) gets her ideal point unless it is
sufficiently extreme. In some cases this outcome is a lower bound on Proposer’s equi-
librium payoff, and an upper bound on Vetoer’s. In Section 5.2, we build on the

skimming equilibrium to explicitly describe the dynamics of a leapfrogging equilib-



rium that delivers (approximately) Proposer’s commitment payoff. Proposer begins
by leapfrogging with a low offer, and upon rejection skims among the remaining high
types. Although intuitive, this approach bootstraps on the “bad” skimming equi-
librium by using it as a punishment if Proposer deviates, reminiscent of Ausubel
and Deneckere (1989b). By contrast, our non-constructive proof of Theorem 1 does
not presume existence of a low-payoff equilibrium. In Section 5.3, we establish that
leapfrogging is sometimes necessary to achieve Proposer’s commitment payoff.

As there can be a range of equilibrium payoffs, our analysis calls attention to
the role of “norms”—equilibrium selection—in veto bargaining. In particular, if the
norm favors Proposer, then the ability to make multiple proposals is always valuable
to Proposer; however, under an unfavorable norm, in some environments Proposer
could be worse off than if he could only make a single take-it-or-leave-it offer.

Section 6 relates our work to the existing literature on veto and Coasian bargain-

ing. Section 7 concludes.

2. Model

Proposer (he) and Vetoer (she) jointly choose a policy or action a € R. In each
period t = 0,1,2,..., so long as agreement has not already been reached, Proposer
makes a proposal a; € R that Vetoer can accept or reject. The game ends when
Vetoer accepts a proposal. Both players share a common discount factor § € [0, 1). If
agreement is reached in some period T on action ar, then Proposer’s payoff is 67 u(az)
and Vetoer’s is 67 uy (ar, v); both players’ payoffs are 0 if agreement is never reached.
The variable v € R in Vetoer’s payoff is her private information, or type, drawn ex
ante from some cumulative distribution F'. We interpret the players’ payoffs as arising
from flow utilities v and uy when a status-quo policy 0 is implemented in every period
from 0 to T'— 1 and the agreement policy ar is implemented forever starting from
period T', with a normalization that both players’ utilities from the status quo is 0.
That is, a player’s utility from a policy is his/her gain from that policy relative to
the status quo. We assume both players have strictly single-peaked preferences, with
Proposer’s ideal point being 1 and Vetoer’s v. That is, u(a) is strictly increasing on
(=00, 1] and strictly decreasing on [1,00), and analogously for uy(a,v).* Our main

result (Theorem 1 in Section 4) allows Proposer’s utility u to be any concave function

2 [43 » “

4We adopt the convention that “increasing”, “larger than”, “prefers”, etc., should be understood
in the weak sense unless explicitly qualified by “strict”.



but assumes that uy is quadratic loss.

A history in this game is a sequence of proposals. A strategy for Proposer is a
function that assigns to every history a probability distribution over proposals, inter-
preted as the (possibly random) proposal Proposer makes given that all proposals in
the history have been rejected. A strategy for Vetoer is a function that specifies for
each history and each type the probability of accepting the last proposal. Our equi-
librium concept is a standard version of Perfect Bayesian Equilibrium: both players
play sequentially rationally and beliefs are updated by Bayes rule whenever possible—
upon rejection of a proposal at any history, Proposer’s belief about Vetoer’s type is
updated by Bayes rule if rejection has positive probability given Proposer’s belief at
that history. We also require, as usual, that Proposer’s proposals do not (directly)
affect his beliefs about Vetoer’s type.

Although our model formally has a single veto player, it can also be applied to
settings in which Proposer has to secure approval from a committee of voters; so
long as Proposer observes only whether his proposal passes or not, Vetoer can be

interpreted as the median member of the committee. We elaborate in Section 4.4.

3. Two-Type Example

This section presents an example to illustrate the logic of leapfrogging and how it
benefits Proposer. The example has linear loss functions and a binary type distribu-

tion. Accordingly, for this section take
u(a)=1—|1—a| and uy(a,v)=v—|v—al,

where the constants are determined by our normalization that both Proposer’s and
Vetoer’s payoffs from the status quo (action 0) are 0. For simplicity, assume in this
section that Proposer can only propose actions in [0, 1]. Suppose there are two Vetoer
types, | and h, and let py be the prior probability of type h. We focus on the case

where
0<li<l/2<h<2l<1, (1)

as it best illustrates the strategic issues at the core of our analysis. Proposer’s first
best—i.e., his optimum under complete information subject to Vetoer’s approval—

is action 1 from type h and action 2! from type [. The assumption that h < 2/



implies that Vetoer of type h prefers 2/ to 1 and so this first-best allocation cannot

be implemented under incomplete information.

A Static Benchmark: We begin our analysis with a useful benchmark. Consider
a static (one-period) problem in which Proposer selects a menu of actions from which
Vetoer can choose (if she opts to not exercise her veto); equivalently, Proposer of-
fers a deterministic mechanism or delegation set. In this problem, Proposer’s linear
loss utility implies that he either pools both types with the singleton menu {2/} or
separates them using the menu {a*, 1}, where a* := 2h — 1 makes type h indifferent
between action 1 and action a*.° Separation is optimal whenever jg > u*, where u*
is defined by

u(l) = (1 = p*)u(a®) + pru(l), (2)

and pooling is optimal otherwise. We refer to max{u(2(), (1 — po)u(a*) + pou(1)} as
Proposer’s delegation payolff.

It is straightforward that when players are patient, Proposer can achieve approxi-
mately the delegation payoff in our sequential bargaining game if he could commit to
a strategy. But can Proposer achieve (approximately) the delegation payoff without

commitment power?

The Sequential Rationality Problem: The difficulty when separation is opti-
mal is that of Coasian dynamics, which suggest the impossibility of screening Vetoer
types when players are patient (e.g., Fudenberg, Levine, and Tirole, 1985; Gul, Son-
nenschein, and Wilson, 1986), given that type h prefers [’s allocation to her own.
Specifically, if Proposer secures agreement initially (even with only high probability)
from type h on an action close to 1, sequential rationality then impels him to offer
2l to reach an agreement immediately with type [. But anticipating the offer of 2[, a

patient type h would not accept the initial high action. Indeed, it can be shown that

®To see why optimal separation is via {a*,1}, suppose separation is better than pooling and
allocation {a!,a"} with @' < a" is an optimal separating allocation. It must be that a" > 2I;
otherwise, pooling on 2/ would be strictly better for Proposer. Hence, a! < h; otherwise, both types
would strictly prefer a’. Consequently, each type i € {I, h} receives a'. Incentive compatibility (IC)
implies a! < 2h—a"; if this inequality is strict, raising a a little preserves IC and is strictly profitable
for Proposer. So a' = 2h — a”, and it follows that only a” = 1 (which implies a' = a*) maximizes
Proposer’s payoff.

6 Qur analysis in Section 4 shows that under certain conditions, the delegation payoff is in fact an
upper bound on Proposer’s payoff in the dynamic game, even with commitment power. But those
conditions ensure that delegation—a deterministic mechanism—is optimal in the static problem
among stochastic mechanisms, which is not true in this example because of Vetoer’s linear loss
utility and discrete types. See also footnote 10.



in any equilibrium in which the on-path sequence of offers is decreasing—which guar-
antees that agreement is first secured with type h—Proposer’s payoff at the patient
limit is no higher than from pooling both types on action 2[. This payoff is strictly

below, and possibly far from, the delegation payoff when separation is optimal.

The Leapfrogging Solution: Our key insight is that Coasian dynamics can be
negated by leapfrogging, i.e., making an offer that is accepted by the low type and
rejected by the high type. Specifically, Proposer can first propose an action close to a*
that is accepted only by type [. Upon rejection, Proposer credibly offers action 1 ever
after. In other words, leapfrogging uses a low action to first target the low type so that
Proposer can subsequently extract a high action from the high type; crucially, at the
latter stage, Proposer is no longer constrained by sequential rationality to moderate
his offer if it is rejected. We highlight that it is Vetoer’s single-peaked preferences
that permit offers that type [ is willing to accept but type h is not.

We now make precise how Proposer can exploit leapfrogging with a succinct ar-
gument that presumes equilibrium existence. We argue that if separation is optimal,
there is an equilibrium in which Proposer achieves approximately the delegation pay-
off, at least. (Here and subsequently, we sometimes leave implicit that statements
should be understood as holding for large 6.) Let a’ := da* = §(2h — 1) be the
action below h that makes type h indifferent between obtaining action 1 in the next
period and obtaining action a’ in the current period. Assume we are given an equi-
librium. Modify that equilibrium to obtain a new equilibrium with strategy profile o
and beliefs 1 as follows:

1. if Proposer offers a® in the first period, type [ accepts and type h rejects. After

a first-period rejection of a’, Proposer’s belief assigns probability 1 to type h,
and so he proposes 1 in all future periods; in these periods, type h accepts any
proposal in [a’, 1] and rejects all others, and type [ accepts any proposal in [0, 2[]
and rejects all others;

2. if Proposer offers a # a’ in the first period, continuation play follows the original

equilibrium;

3. in the first period, Proposer chooses a proposal that maximizes his expected

payoff.”

”We can assume a maximizer exists: if one doesn’t, it must be that in the original equilibrium it is
optimal for Proposer to choose a® in the first period, with a payoff larger than (1—pg)u(a’®)+dueu(1);
so the original equilibrium itself yields at least approximately the delegation payoff.



Point 1 above implies that we have an equilibrium in the continuation game after
a first-period proposal of a’ is rejected. It follows from Points 2 and 3 that (o, i) is an
equilibrium. In this equilibrium, either Proposer leapfrogs by offering a® in the first
period which is accepted by type [, followed by action 1 being accepted by type h in
the second period, or Proposer obtains an even higher payoff by proposing something
different in the first period. When § is close to 1, a’ is close to a* and Proposer’s
equilibrium payoff is close to the delegation payoff or even higher.

When separation is optimal, this argument shows that the option to leapfrog yields
Proposer approximately his delegation payoff or higher. But it does not establish that
leapfrogging actually occurs, and it presumes equilibrium existence. We now turn to
a full-fledged equilibrium construction that features leapfrogging; the construction

also describes an equilibrium when pooling is optimal.

Proposition 1. When § is large, for any pg there is an equilibrium in which Pro-
poser’s payoff is approzimately his delegation payoff.® In particular, there exist u°
and [i°, with 0 < p* < p® < @ < 1, such that at (uo,d) there is an equilibrium with
on-path behavior as follows:

(a) (Skimming.) If po < p’, Proposer offers a finite sequence of actions that de-
creases to 2l. Each offer strictly higher than 2l is accepted with positive proba-
bility by type h and rejected by [.

(b) (Leapfrogging.) If po € (1, %), Proposer offers action a
which 1s accepted by type | and rejected by h; in the second period Proposer

% in the first period,

offers action 1, which is accepted by type h.

(c) (Delayed Leapfrogging.) If o > ji°, Proposer offers action 1 in the first period,
which 1s accepted with positive probability by type h and rejected by [; in the
second period Proposer randomizes between skimming and leapfrogging (parts
(a) and (b), respectively).

(All proofs of formal results are in the Appendices.)

Case (a) of Proposition 1 concerns low priors. Here we construct a skimming equi-
librium in which Proposer begins with an offer exceeding 2/ but compromises to lower
actions following rejections. As § — 1, Proposer’s payoff converges to the pooling

payoff, u(2[), from the static benchmark; moreover, u° also converges to u*, and so

8 More precisely: letting u? denote the delegation payoff, for all € > 0 there is § < 1 such that
for any § > ¢ and for all s, there is an equilibrium in which Proposer’s payoff is at least u? — ¢.



for all priors less than p*, Proposer is obtaining approximately his delegation pay-
off. The skimming equilibrium adapts a construction that is standard in seller-buyer
bargaining (Hart, 1989; Fudenberg and Tirole, 1991, pp. 409-10). However, there
are novel considerations in deterring Proposer from offering actions lower than 2. In
our construction, the most attractive deviation is leapfrogging, wherein Proposer first
offers a’ to secure acceptance from type [ and then extracts action 1 from type h.
Such deviations are profitable when type h is sufficiently likely, which explains why
our construction is an equilibrium only for a low prior (whereas in seller-buyer bar-
gaining, the analogous equilibrium exists for all priors because no buyer type would
wait for a higher price). The threshold p° is the (lowest) belief at which Proposer is
indifferent between skimming and leapfrogging.

Proposition 1(b) and (c) are the main cases of interest, because here the prior
is such that separation is optimal in the static benchmark. In Case (b), Proposer
leapfrogs at the outset, securing action a® from type [ in the first period and then
action 1 from type h in the second period. As § — 1, a® — a* and Proposer obtains
his delegation payoff. The challenge with supporting leapfrogging is ensuring that
Proposer does not deviate to a high offer in the first period. Such a deviation (if
accepted with sufficient probability by type h) would be profitable if the prior is
too large. The precise threshold ji° is determined by Proposer’s indifference between
leapfrogging and the most attractive deviation, which is an offer of 1. In equilibrium
this offer is accepted by type h only with some probability, which brings Proposer’s
belief upon rejection down to the threshold x® described in the previous paragraph,
so that Proposer then randomizes between skimming and leapfrogging in a manner
that justifies h’s randomization. The full construction of the leapfrogging equilibrium
is fairly involved; Figure 1 summarizes, with details provided in the formal proof.

Finally, Proposition 1(c) concerns the case of high priors, where leapfrogging from
the outset cannot be sustained due to Proposer’s strong incentive to secure agree-
ment in the first period with the high type on a high action. Instead we have delayed
and only probabilistic leapfrogging. As foreshadowed in the previous paragraph, now
Proposer actually offers action 1 in the first period, which is accepted by type h with
positive probability; upon rejection, Proposer randomizes in the second period be-
tween skimming and leapfrogging. Since Proposer is indifferent in the second period,
his payoff is as if he always leapfrogs then, and his payoff therefore converges to the

delegation payoff as 6 — 1.



Figure 1: Proposer’s first-period incentives in the equilibrium for Proposition 1(b) and (c).
Offers in Region I (including a5) are accepted only by type l; action 1 is then offered and
accepted by h. Offers in Region 11 are accepted by both types. Offers in Region 111 are
accepted with some probability by h and rejected by [; rejection leads to a belief lower than
10, whereafter there is a (suitably randomized) skimming equilibrium. Action a® makes type
h indifferent between accepting a® now and waiting one period to play Proposition 1(a)’s
skimming equilibrium under belief n®. Offers in Region IV are accepted by h with some
probability and rejected by 1; rejection leads to belief 1, whereafter Proposer mizes between
skimming and leapfrogging. For any prior pg > u®, Proposer’s optimal offer is either a® or 1.
Belief [i° is defined by Proposer’s indifference between these two offers. Hence g € (u?, i%)
leads to leapfrogging (Proposition 1(b)), whereas pgy > [0 leads to a positive probability of
delayed leapfrogging (Proposition 1(c)).

It is worth noting that although Cases (b) and (c) of Proposition 1 yield Proposer
an identical payoff at the patient limit, both cases remain relevant even at that
limit: lims_,q p? < limg_q i° < 1 (see footnote 34 in the appendix). Moreover, since
Proposer’s delegation payoff becomes arbitrarily close to his complete-information
payoff as pg — 1, Proposition 1 implies that there are equilibria in which Proposer’s
payoff at the patient limit is continuous in the prior even when the probability of type
[ vanishes.” By contrast, in seller-buyer bargaining, in any equilibrium (of the “gap
case” ), the uninformed seller’s payoff in the patient limit drops discontinuously when

he ascribes any positive probability to the low-value buyer.

Limitations: Although this example conveys the logic of leapfrogging and how
Proposer can exploit it, there are two interrelated limitations. First, it is difficult to
determine whether there are equilibria that are even better (or worse) for Proposer
than that identified in Proposition 1. Second, while the delegation payoff provides a
high target for Proposer, a more compelling benchmark is Proposer’s payoff if he can
commit to his strategy in the sequential bargaining game. Indeed, in this example

dynamic commitments can achieve more than the delegation payoff.!® The following

9 More precisely: lim,,, 1 lims_y1 U(po,8) = u(1l), where U(uo,d) denotes Proposer’s payoff in
the equilibrium constructed in Proposition 1 for the belief g and discount factor 4.

10 et ¢t be the earliest period such that type h prefers agreement on action 1 in the first period to
agreement on 2/ in period t. If Proposer offers 1 up until period ¢ — 1 and offers 2[ from period ¢ on,
then it is optimal for type h to accept 1 in the first period and for type [ to accept 2[ in period t¢.
For large 4, h is approximately indifferent: 2h — 1 ~ §¢(2h — 21), or equivalently, (2h — 1);-4; ~ §*2L.

10



section addresses these issues by identifying assumptions within our general model
such that Proposer (approximately) achieves his dynamic commitment payoff in an

equilibrium.

4. General Analysis

We hereafter assume Proposer’s utility function u(a) is concave and Vetoer’s is

uy (a,v) = —(v —a)? + v,

which is the standard quadratic loss function with our normalization that Vetoer’s
payoff from the status quo is 0. We also assume Vetoer’s type is distributed according
to a cumulative distribution F' € F, where F is the set of distributions with interval
support that admit a density that is bounded away from both 0 and oo on the
support. We denote the support of F' by [v,7]. For this section alone, we assume
that v < 1, i.e., Vetoer’s ideal point is always lower than Proposer’s. We do not view
this restriction as critical; indeed, our equilibrium constructions in Section 5 dispense
with it. Note that we allow for ¥ < 1/2, which is tantamount to Proposer having
monotonic preferences.

Vetoer’s quadratic loss function assures single-crossing expectational differences
(SCED) as defined by Kartik, Lee, and Rappoport (2019): for any two lotteries over
time-stamped actions—pairs (a, t) representing agreement on action a at time ¢, with
t = oo capturing no agreement—their expected utility difference is single crossing in
Vetoer’s type v.!' This single-crossing property will play an essential role because it
guarantees “interval choice” (Kartik, Lee, and Rappoport, 2019, Theorem 1): given
any Proposer strategy, at every history the set of types that find it optimal to accept

the current offer is an interval.

It follows that Proposer’s payoff from dynamic commitment is at least pou(1) + (1 — po)dtu(2l) ~
pow(1) + (1 — po)u(2h — 1) hl_l. This latter expression is strictly larger than Proposer’s payoff from

the menu {a*,1} because a* = 2h — 1 and 7-; > 1 (as 20 > h by assumption). That dynamic
commitment strictly improves on the delegation payoff implies that the optimal static mechanism
in this example must be stochastic (see Lemma 1 below).

"'This is because the utility from any lottery over time-stamped actions is —E(, 4 [6"a®] +
20E (41 [6%a), which is linear in v. More generally, if uy(a,t) has SCED for non-time-stamped
action lotteries (i.e., lotteries over actions within single period), then SCED over time-stamped ac-
tion lotteries is assured by Kartik, Lee, and Rappoport (2022, Corollary 3). We assume quadratic
loss because of some additional tractability, but believe that our results would extend under SCED
with weaker assumptions such as smoothness and concavity around the ideal point.

11



4.1. A Static Problem

We define an auxiliary static mechanism design problem that will turn out to
provide a tight upper bound on payoffs in the dynamic game. In this auxiliary
problem, a (direct, stochastic) mechanism assigns each type a lottery over actions.
Formally, a mechanism m is a measurable function m : [v, 7] — My(R), where My(R)
is the set of probability distributions on R with finite expectation and finite variance.
For notational convenience we write m(v) = a when m(v) puts probability 1 on action
a and also extend the domain of Proposer’s utility u to include lotteries: u(m(v)) :=
Ep@[u(a)]. A mechanism m is incentive compatible if every Vetoer type v prefers
m(v) to m(v') for all v'. It is individually rational if every type v prefers m(v) to
action 0. Let S denote the set of incentive compatible and individually rational

mechanisms.'? Proposer’s static problem is:

%gg/u(m(v))d]j(v)
We denote Proposer’s maximum value by U(F).

Any incentive compatible and individually rational mechanism that assigns every
type a deterministic action can be implemented as a delegation set: Proposer chooses
a subset A C R and Vetoer is allowed to pick any action in A U {0}. We say that
an interval delegation set is optimal if a solution to the static problem can be im-
plemented by delegating an interval [¢*, 1] for some ¢* € [0,1]. Our analysis below
assumes environments in which such simple mechanisms are optimal. That is, we

maintain hereafter:

Assumption 1. For some ¢* € [0,1], an interval delegation set [c*,1] solves Pro-

poser’s static problem.

The static problem has been studied by Kartik, Kleiner, and Van Weelden (2021).
Among other things, they motivate interval delegation and investigate when it is opti-
mal. Their Corollary 3 establishes that sufficient conditions for Assumption 1 are that
Proposer’s utility w is a linear or quadratic loss function (or a combination thereof)
and Vetoer’s type density f is logconcave.!> Many commonly used distributions have

logconcave densities (Bagnoli and Bergstrom, 2005).

12 More precisely, any m € S must also be such that v — E,,,[u(a)] is integrable.
13 While that paper maintains some assumptions on the type distribution that we don’t assume,
those assumptions are not needed for its sufficient conditions for optimality of interval delegation.
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4.2. An Upper Bound on the Commitment Payoff
In the static problem, Proposer screens different Vetoer types by exploiting their

heterogeneous preferences over (distributions of) actions within a single period. In
our dynamic environment, delay is an additional screening instrument. Nevertheless,

Proposer can do no better in the dynamic game even if he could commit to his strateqy:

Lemma 1. There is no Proposer strategy and Vetoer best response that yield Proposer
a payoff strictly higher than U(F).

The idea behind this result is straightforward, and familiar in the seller-buyer bar-
gaining literature (e.g., Ausubel and Deneckere, 1989a): the outcome of any Proposer
strategy and Vetoer best response can be replicated by a mechanism in the static
problem. To elaborate, any Proposer strategy and Vetoer best response induce, for
each Vetoer type, a probability distribution over agreements on time-stamped actions.
We can transform any such distribution into a static lottery by mapping an agreement
on action a in period ¢ into a static lottery that gives action a with probability ¢ and
action 0 with remaining probability. This transformation is payoff equivalent for Pro-
poser and all Vetoer types. Therefore, the static mechanism induced by transforming
each type’s equilibrium distribution is incentive compatible and individually rational
because Vetoer is playing a best response in the game, and the mechanism delivers
Proposer the same payoff as in the game.

We highlight that while it is crucial that the static problem allow for stochastic
mechanisms, the argument for Lemma 1 does not require any assumption on either
player’s preferences beyond discounted expected utility with a common discount fac-
tor. Furthermore, the argument only uses the distribution of agreement times and
actions for each type and the requirement that Vetoer is best responding to Proposer,
nothing more about the game form. It follows that the static problem provides an
upper bound on Proposer’s commitment payoff in the dynamic game even if Proposer
could, in any period, offer a menu of (possibly stochastic) actions, allow Vetoer to
send cheap-talk messages, or engage in other complex protocols. Indeed, any incen-
tive compatible and individually rational mechanism that assigns each type a lottery

over time-stamped actions yields Proposer a payoff at most U(F).

We also note that the logic of Corollary 1 in that paper implies that the interval delegation set
[max{0,2v}, 1] is an optimal mechanism if f is decreasing on [max{0,v},7], given only that u is
concave.
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4.3. Obtaining the Commitment Payoff without Commitment

In light of Lemma 1, we say that Proposer can achieve approximately his commit-
ment payoff for a belief F' if given the belief F’ (at some history), for every ¢ > 0
there is § < 1 such that for all § > 4, there is a (continuation) equilibrium in which
Proposer’s payoff is at least U(F") —e. For brevity, we say that Proposer can achieve
approximately his commitment payoff if he can approximately achieve his commit-

ment payoff for the prior F.* Our main result, Theorem 1 below, presumes:
An equilibrium exists for all § and all beliefs in F. (EqmExists)

We view this presumption as benign, and we provide reasonable sufficient conditions
for equilibrium existence in Section 5. In particular, it is sufficient that v < 0, i.e.,

some Vetoer types prefer the status quo to any action Proposer prefers.

Theorem 1. Suppose EgmFExists. Proposer can achieve approximately his commit-

ment payoff.

Together, Lemma 1 and Theorem 1 imply that, when players are patient, there
are equilibria in which Proposer suffers (almost) no loss from the inability to commit
in the dynamic game. In particular, Proposer is not harmed by the ability to make
sequential proposals; in fact, whenever the optimal delegation set has ¢* < 1, Proposer
strictly benefits from that ability, as the outcome from that delegation set cannot be
replicated with a single proposal. Moreover, Proposer’s gain from the ability to offer
a menu of actions, rather than a single action, in each period vanishes as 6 — 1.

Theorem 1’s conclusion may be best appreciated when ¢* > max{0,2v}, say 0 <
2v < c¢*. In that case the result contrasts with the negative conclusion from Coasian
dynamics: intuitively, if Proposer were to continually compromise starting from a
high offer, sequential rationality would drive offers all the way down to 2v; it would
not be credible for Proposer to stop at c*.

An intuition one might proffer for Theorem 1 is that, when ¢ ~ 1, Proposer can
begin with an offer of action 0—leapfrog—and then offer a decreasing sequence of

actions along a fine grid of [¢*, 1]. Vetoer’s best response would be to accept the offer

4 To be clear: conceptually, by “commitment payoff” we have in mind Proposer’s payoff if he
could commit to a strategy in the dynamic game. But operationally, we refer to the static problem’s
payoff U(F) as the commitment payoff because of Lemma 1, our focus on large §, and Theorem 1
below.
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of 0 if her type is in [0, ¢*/2|, and otherwise accept an offer in [¢*, 1], resulting in ap-
proximately the same outcome as the optimal delegation set [¢*,1]. This intuition is
incomplete because Proposer must be incentivized to offer 0 initially, and even there-
after, it is not clear that he would be willing to follow the decreasing sequence of offers.
We are able to substantiate this intuition in Section 5.2 under some conditions, by
exploiting equilibrium payoff multiplicity to deter any Proposer deviations. Instead,
we pursue a different approach to prove Theorem 1 that does not rely on equilibrium
payoff multiplicity and highlights the power of Proposer’s option to leapfrog. It is
this argument that we sketch in the remainder of this subsection.

Our first step is to derive a “conditional optimality” property of interval delega-
tion: given the assumption that delegation set [¢*, 1] is an optimal static mechanism
for the prior type distribution F, it is also optimal for certain conditional distribu-
tions. To state the result, let Fj,, ., denote the conditional distribution of F' given

v € vy, 1), for any vy, vy € [v, 7] with vy < vs.

Lemma 2. The delegation set [c¢*, 1] solves Proposer’s static problem for any belief
Fieep withc < c* /2 <c* < (.

The lemma owes to SCED of Vetoer’s utility and the optimal static mechanism
being interval delegation, rather than just an arbitrary delegation set. The proof uses
these properties to establish that if some mechanism outperforms delegation set [¢*, 1]
for any of the relevant truncated beliefs, then augmenting that mechanism by adding
an interval of high actions yields a mechanism that also outperforms [¢*, 1] for the
original belief.

Lemma 2 says, in particular, that delegation set [c¢*, 1] is an optimal mechanism
for the belief Fj, .-} and that it remains optimal for the belief Fj -/ .+ that is induced
if Proposer leapfrogs and obtains agreement from all types below ¢*/2. We use these
properties to next establish Theorem 1 for the special case in which Proposer’s belief

iS F[Q,C*] .

Lemma 3. Suppose EqmFExists. Proposer can achieve approximately his commitment
payoff for belief Fly o).

The proof deduces an equilibrium in which Proposer has an option to leapfrog that
guarantees him approximately the commitment payoff, analogous in spirit to the logic

given before Proposition 1. In the equilibrium, Proposer has the option to follow a
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path in which he first proposes action 0, which will be accepted by all types below ¢* /2,
and then proposes action ¢*, which will be accepted by all types above ¢*/2. When
players are patient this path yields Proposer approximately the same payoff as in the
static problem because the delegation set [c*, 1] is outcome-equivalent to {¢*} under
the belief F}, .«j. On this path, Proposer’s sequential rationality in the second period
with belief Fle /9 0+ is assured by Lemma 1 and Lemma 2. Sequential rationality for
Vetoer after both the initial proposal of 0 and the subsequent proposal ¢* is because
a rejection of ¢* in the second period would lead Proposer to put probability 1 on
type ¢* and make subsequent proposals that are larger than ¢*, and hence worse for
Vetoer regardless of her type in [v, ¢*].!?

Lemma 3 serves as the base step for an inductive proof of Theorem 1. Specifically,
we show that if Proposer can achieve approximately his commitment payoft for belief
Fjy o1 for some ¢’ > c*, then there is a neighborhood of ¢’ such that for any ¢” in this
neighborhood, the commitment payoff can also be achieved approximately for belief
4 [M”]‘lﬁ

Here is the idea for the inductive step. Consider the action ¢’ > ¢ that makes
type ¢ indifferent between accepting o’ in the current period and playing a puta-
tive continuation equilibrium with belief Fj, - that gives Proposer approximately his
commitment payoff under that belief. Presuming this continuation if a’ is rejected,
it is optimal for types below ¢’ to reject a’ because SCED implies that they obtain a
higher payoff from using the strategy of type ¢’ in the continuation equilibrium. On
the other hand, there is a neighborhood of types above ¢ within which it is optimal
to accept o’ because (i) discounting implies that types in a neighborhood of a’ prefer
accepting @’ to receiving even their ideal action in the next period, and (ii) SCED
implies that the set of types willing to accept any proposal is an interval. Now sup-
pose Proposer’s belief is Fj, . for ¢” strictly larger than but sufficiently close to ¢'.
It follows that the belief F}, » and the continuation equilibrium we hypothesized is
self-fulfilling: anticipating this continuation leads to a’ being rejected by precisely the
set of types [v,¢/]. Moreover, action a’ is an option that assures Proposer approx-

imately his commitment payoff: conditional on rejection by types less than ¢, the

15 While it is weakly dominated for Vetoer to accept a proposal of 0, we use action 0 because
of the continuum action space. There are discretizations of the action space in which Proposer’s
leapfrogging option can be constructed using a strictly positive action instead of 0.

16 This explanation is heuristic; the formal proof ensures that for any ¢ > 0, for all large enough
d < 1, the induction can traverse the set of types with Proposer obtaining a payoff at least U(F') —e.
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continuation results in approximately the commitment payoff given the conditional
distribution, whereas every type v € (¢, ¢”) accepts proposal a’ > ¢’ which is larger
than the action v that Proposer gets from type v in the static problem for belief FJ, .
(by Lemma 2, given that ¢’ > ¢ > ¢*).

We highlight that our proof of Theorem 1 uses a leapfrogging option to deduce
a high-payoff equilibrium for Proposer without actually identifying his equilibrium
strategy or the equilibrium outcome (i.e., the mapping from Vetoer types to time-
stamped action distributions).!” As explained above, the proof uses induction on
beliefs of the form Fj, ), exploiting the “conditional optimality” of the ex-ante opti-
mal mechanism for such beliefs (Lemma 2). However, in a leapfrogging equilibrium,
Proposer’s beliefs need not take only that form. But that is compatible with condi-
tionally optimality of the ex-ante optimal mechanism—indeed, Lemma 2 assures that
the interval [¢*, 1] remains an optimal mechanism so long as Proposer’s belief is of
the form Fj. . with ¢ < /2 < c¢* <. We will see in Section 5.2 that, under some
conditions, there are leapfrogging equilibria in which Proposer’s beliefs always have
this form on the equilibrium path.

Moving beyond interval delegation, we do not know in general whether our proof
strategy for Theorem 1 can be used when the optimal mechanism is an arbitrary
delegation set; what would be important for our approach is that the delegation set

be a conditionally optimal mechanism for a suitable range of beliefs.

4.4. Committee of Voters

Our analysis with a single Vetoer can be extended to situations in which a com-
mittee votes on Proposer’s offer. For some odd number N, consider a committee of NV
voters that aggregates votes via simple majority rule. Each voter n € {1,..., N} has
the utility function w(a, v, ), where v, is her ideal point. Ideal points are drawn from
some prior joint distribution, which need not be independent across voters. Each
voter observes the realized vector (vy, ..., v,), but Proposer does not. Crucially, Pro-
poser also does not observe the vote profile in any period, only whether his offer
passes. It does not matter whether the voters observe each others’ votes.

Let m := (N + 1)/2 and let F' denote the distribution of the median (i.e., m-th

17 This is reminiscent of the approach used in the reputation literature (e.g., Fudenberg and Levine,
1989, 1992), among other places, although the logic here is distinct. Unlike in those classic papers,
we have two long-lived players, and there can also be equilibria in which Proposer obtains a low
payoff (Proposition 2 below).
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highest) ideal point. We claim that so long as u has SCED, every equilibrium of our
Proposer-Vetoer two-player game with type distribution F' has an outcome-equivalent
equilibrium of the committee game. Specifically, the committee game’s equilibrium
can be described as follows: (i) Proposer behaves just like in the two-player game; (ii)
the realized median voter (i.e., the voter who realizes the m-th highest ideal point),
say voter m, behaves just like Vetoer with type v,,; and (iii) at every history, every
non-median voter votes for the current proposal if and only if she prefers it to the
distribution of future agreements (time-stamped actions) induced in the two-player
game if Vetoer has type v,, and rejects at that history. Note that all voters behave
“sincerely” or “as if pivotal” in the sense of voting at every history based on their
comparison of the current offer with what will happen, in equilibrium, if the offer
does not pass.

Here is why the above strategies form an equilibrium of the committee game.
Without loss, assume the realized vector of ideal points has v; < --- < v,,. The key
observation is that all voters share a common belief about the distribution of future
agreements (since v,, is known to all voters), and so SCED assures that the set of
voters who have the same preference as the median voter m to accept (or reject) the
current offer includes either {1,...,m} or {m,..., N}. Hence, the median voter is
always decisive, and all voters are playing sequentially rationally if the median voter
is. Since Proposer only observes whether his offer was accepted or rejected, and the
median voter behaves just like in the two-player game, it follows that Proposer is
behaving sequentially rationally. Finally, being decisive, the median voter is clearly

also playing sequentially rationally.

5. Equilibrium Constructions and Multiplicity

This section constructs two equilibria: a leapfrogging equilibrium that yields Pro-
poser approximately his commitment payoff, and a skimming equilibrium that can
yield him a significantly lower payoff. Both constructions require some (plausible)
assumptions on the support of the type distribution. Under those assumptions, they
settle the equilibrium existence presumed by Theorem 1. Moreover, we also establish
a sense in which leapfrogging is necessary to achieve the commitment payoff. Unlike
in Section 4, we now permit the upper bound of the type distribution, v, to be larger
than 1.
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5.1. A Skimming Equilibrium

We first construct a skimming equilibrium, which we define, following standard
practice (e.g., Fudenberg and Tirole, 1991, p. 407), as an equilibrium in which any on-
path non-negative offer is accepted by an upper set of Vetoer types.!® This skimming
equilibrium shows that a Coasian intuition does have some merit in our setting, which
makes it more striking that the commitment payoff can also be achieved. Furthermore,
we establish that Proposer’s payoff in our skimming equilibrium converges in the
patient limit to that of full delegation, i.e., of simply allowing Vetoer to choose her
preferred action in [2v", 1], where v := max{0,v}.!? Tt follows that there can be a
substantial multiplicity in bargaining outcomes.

To state the result, define

20t 1 max{7,1}

U(F) = / w(20H)dF (v) + / () dF () + / W(1)dF ()
v 2vt 1

as the static payoff from delegation set [2v",1]. In this mechanism all Vetoer types

below 2v™ are pooled at action 2v™, all types in [2v™, 1] obtain their ideal points, and

all higher types are pooled at 1.

Proposition 2. If either v < 0 orv < 1/2, then there is a skimming equilibrium. As

d — 1, Proposer’s payoff in this equilibrium sequence converges to U(F).

For any 9, we construct a skimming equilibrium by adapting the approach used
in seller-buyer bargaining (e.g., Gul, Sonnenschein, and Wilson, 1986; Ausubel and
Deneckere, 1989b). Suppose that Proposer’s belief at any history is a right-truncation
of his prior, i.e., the set of remaining Vetoer types is [v,v] for some v. The highest
remaining type can be used as a state variable for dynamic programming to find Pro-

poser’s optimal sequence of decreasing offers, with a constraint that each subsequent

18We qualify the upper-set acceptance to hold only for (i) non-negative offers and (ii) on-path
offers. Point (i) is needed because of Vetoer’s single-peaked preferences: if a strictly negative offer
is accepted by any remaining types, the acceptance set cannot be an upper set since high types
prefer the status quo. Regarding (ii), we could use the stronger definition that includes off-path
offers—and our construction in Proposition 2 satisfies that requirement—but restricting to on-path
offers strengthens Proposition 4 in Section 5.3 and its implication that leapfrogging is necessary for
the commitment payoff.

19Tn other words, full delegation is delegation of the interval [c, 1] where ¢ = 0 if v < 0 and ¢ = 2v
if v € (0,1/2). Note that we ignore here, and in the rest of Section 5, the case of v > 1/2; it is
uninteresting because there is trivially a skimming equilibrium in which Proposer obtains his ideal
point by offering 1 at every history. Nonetheless, all our statements hold even if v > 1/2 so long as
in that case one interprets the notation 2v™ to mean 1.
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state must be induced by Vetoer’s best response of accepting an offer if and only if she
prefers it to the discounted payoff from accepting the subsequent offer. Definition 1 in
Appendix B.2 makes this program precise. As we discuss there, single-peaked Vetoer
preferences introduce some differences in how we formulate and tackle the program
relative to seller-buyer bargaining.

A novel issue arises in verifying that there is an equilibrium corresponding to a
solution to the aforementioned program: what happens if v > 0 and Proposer deviates
at some history to an offer in [0, 2v)? The issue is salient because, unlike in seller-buyer
bargaining, leapfrogging could be attractive to Proposer. We use Proposition 2’s
hypothesis that 7 < 1/2 (given v > 0) to deter such deviations by stipulating that
any such offer is accepted by all Vetoer types, which makes it unattractive to Proposer.
It is optimal for Vetoer to accept these low offers because we specify Proposer’s belief
after rejection to be degenerate on v, and accordingly Proposer’s future offers to
perpetually be 20, which yields no surplus to any Vetoer type.? Both v < 0 and
U < 1/2 are reasonable hypotheses: the former says that the status quo may be
Pareto efficient; the latter is tantamount to Proposer having monotonic preferences
over the set of actions that any Vetoer type would find acceptable.

Another distinction with seller-buyer bargaining is that, as 6 — 1, Proposer’s pay-
off in the skimming equilibrium converges to the full-delegation payoff U(F), rather
than the payoff from all types accepting 2v". On the one hand, our argument for
why Proposer’s payoff in the limit cannot be larger than U(F’) builds on ideas in that
literature; roughly, a type v > 2v" would accept an offer strictly higher than v only if
there is a significant delay cost to waiting for a more attractive offer, but such a delay
cost would make it attractive for Proposer to deviate and hasten agreement. On the
other hand, a new observation owing to our setting is that Proposer’s payoff cannot
be lower than U(F) either: intuitively, because of her single-peaked utility, for any
0 < 1 Vetoer will accept any proposal close enough to her ideal point; hence, as § — 1,
Proposer must do no worse in the skimming equilibrium than by compromising with

an arbitrarily fine sequence of offers that traverses [2v7, 1].

20 Our solution concept of Perfect Bayesian equilibrium allows for arbitrary beliefs after a rejection
that has zero probability at that history. As such, even if 7 > 1/2 (and v > 0), strictly speaking
one could assign the degenerate belief on 0 after an unexpected rejection and have Proposer offer
action 0 ever after, which would also yield no surplus to all Vetoer types. We do not allow for
such beliefs, instead requiring—as is conventional, and in the spirit of Kreps and Wilson’s (1982)
sequential equilibrium—that beliefs must always be supported in the support of the prior, [v,7].
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In general, Proposer’s payoff from the skimming equilibrium when players are
patient, U(F"), will be strictly less than his commitment payoff, U(F'); these payoffs
coincide only when full delegation is an optimal mechanism, i.e., the ¢* threshold in
Assumption 1 is precisely 2v". Kartik, Kleiner, and Van Weelden (2021, Corollary
1) identify that full delegation is in fact optimal if the type density is decreasing
on [2v™,1]. Observe that when v < 0, the skimming equilibrium’s payoff is a lower
bound on Proposer’s payoff from any equilibrium when players are patient; for, no
equilibrium can yield Proposer a payoff strictly lower than from delegating the [0, 1]
interval. It follows that if full delegation is optimal and v < 0, then when players are
patient all equilibria must yield Proposer the commitment payoff.

Notwithstanding such cases, the general contrast in Proposer’s payoff between
Theorem 1 and Proposition 2 indicates the importance of equilibrium selection, which
we interpret as norms, in veto bargaining. Which norm prevails in a given context may
hold significant implications for whether Proposer suffers from an inability to commit
to future offers. Moreover, in some environments—e.g., when Proposer prefers a single
take-it-or-leave-it offer to full delegation—the norm can determine whether Proposer
benefits from or is harmed by the ability to make multiple proposals. But in other
environments—e.g., when v < 0 and Proposer prefers full delegation to a single offer—
the ability to make multiple proposals benefits Proposer regardless of the norm. We
highlight that both the sequential structure of bargaining and incomplete information
are necessary for norms to matter in veto bargaining; in particular, Primo (2002)

shows that there is a unique equilibrium outcome absent incomplete information.?!

5.2. A Commitment-Payoff Equilibrium

We now build on the previous subsection’s skimming equilibrium to construct
a leapfrogging equilibrium—one with leapfrogging on path—that delivers (approxi-
mately) Proposer’s commitment payoff. The construction reveals how the dynamics
of leapfrogging may play out, subject to a reasonable assumption that either v < 0
(i.e., the status quo may be Pareto efficient) or v < 1/2 (i.e., Proposer effectively

has monotonic preferences), and that full delegation is not optimal. Note that if full

21In fact, under complete information, Primo (2002) shows that with a one-dimensional policy
space and a single veto player, Proposer’s payoff with sequential proposals is the same as with a
single proposal. Duggan and Ma (2023, Theorem 2) extend this to a committee of voters. As they
and Ali, Bernheim, Bloedel, and Console Battilana (2023, Theorem 7) show, the equivalence does
not generally hold with multiple voters and multiple dimensions, even when Proposer’s payoff in the
dynamic game is unique.
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delegation is optimal, then skimming achieves the commitment payoff (Proposition 2).

Proposition 3. Suppose that either v < 0 or v < 1/2, and that full delegation is not
optimal. There is a leapfrogging equilibrium in which Proposer achieves approximately
his commitment payoff. In this equilibrium, Proposer first offers 0, which is accepted if
and only if v € (0,c*/2); subsequently, Proposer offers a decreasing sequence of offers

that culminates in c*, with each offer accepted by an upper interval of remaining types.

In the equilibrium identified by Proposition 3, Proposer begins by leapfrogging
with an offer of 0; if that offer is rejected, he knows that Vetoer’s type is either below
0 or above ¢*/2. Naturally, he is only concerned with the latter possibility. So, upon
the rejection of offer 0, we are able to use essentially the same skimming construction
as in Proposition 2, but with the conditional distribution Fjc 5. For large ¢, this
implements a fine-grid sequence of decreasing offers down to ¢*. As § — 1, the overall
outcome thus converges to that of Vetoer simply choosing (with no delay cost) her
preferred action from the optimal delegation set [c*, 1], or exercising her veto.

Let us highlight a few points about the construction. First, for the reasons dis-
cussed after Proposition 2, we use the hypothesis that either v < 0 or v < 1/2 to
ensure validity of the skimming construction after offer 0 has been rejected. Notably,
then, Proposition 3 is valid even when v > 1, so long as v < 0. Second, the equi-
librium must incentivize Proposer in the first period to offer action 0 rather than
some higher action. This is ensured by stipulating that if Proposer deviates to action
a > 0 in the first period, continuation play follows that of the skimming equilibrium
constructed in Proposition 2. Such a deviation yields Proposer a payoff no more
than (approximately) the payoff from full delegation, which is strictly less than the
commitment payoff that is approximately achieved on path.

Third, although we view the leapfrogging-followed-by-skimming dynamics in Propo-
sition 3 to be intuitive, we do not rule out other dynamics that also deliver approx-
imately Proposer’s commitment payoff. In particular, it is plausible that one may
use the same approach to construct equilibria in which Proposer begins with some
skimming, then leapfrogs with offer 0, and then continues skimming again. There
may also be other dynamics. Fourth, Proposition 3 crucially exploits equilibrium
payoff multiplicity: we use a low-payoff skimming equilibrium to construct a high-
payoft equilibrium. This approach is reminiscent of the “reputational equilibria” in

Ausubel and Deneckere (1989b). By contrast, the logic we use to prove our main
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result, Theorem 1, does not leverage equilibrium payoff multiplicity; it would apply
even if there is no skimming equilibrium and even if all equilibria yield Proposer a

high payoff.??

5.3. Is Leapfrogging Necessary?
We have highlighted leapfrogging as the driving force to achieve Proposer’s com-
mitment payoff, so long as full delegation is not optimal (in which case, by Section

5.1, skimming suffices). In fact, leapfrogging is then more or less necessary:

Proposition 4. Suppose that the essentially unique solution to the static problem
is an interval delegation set that is not full delegation. Proposer’s payoff in any

skimming equilibrium is bounded away (across 0) from the commitment payoff.

We view the assumption that the static problem has a unique solution (essentially—
i.e., up to a set of types of measure 0) as mild. That it is not full delegation is equiva-
lent to ¢* > 2v™". For instance, this inequality holds when v < 0, u(-) is affine on [0, 1],
and Vetoer’s type density f is logconcave and attains a unique peak at some v > 0.23
Note that v < 0 assures existence of both a skimming equilibrium (Proposition 2)
and a commitment-payoff equilibrium (Proposition 3).

The intuition for Proposition 4 is that for any large § < 1, to achieve close to the
commitment payoff, the outcome must be approximately that (i) Proposer reaches
agreement with all types above ¢*/2 on their preferred actions in [¢*, 1] without exces-
sive delay, and (ii) all types below ¢*/2 obtain the status quo (or some other actions
only after significant delay). But if (i) happens in a skimming equilibrium, then even-
tually Proposer will be faced with, approximately, the type distribution Fj, /9, in
which event he will not find it optimal to induce (ii); he could profitably deviate to a
fine-grid sequence of offers in [0, ¢*/2] that are accepted by most remaining positive
types with virtually no delay cost. Note that this logic applies even if we are in the
no-gap case (v < 0).

Subject to its conditions, Proposition 4 implies that any equilibrium that achieves

approximately the commitment payoff must, with positive probability, have a leapfrog-

22 On the other hand, we noted at the end of Section 4.3 that it is not straightforward to extend the
approach used in proving Theorem 1 absent optimality of interval delegation (Assumption 1). But
given a low-payoff equilibrium, the logic underlying Proposition 3’s construction ought to support a
high-payoff equilibrium so long as some deterministic mechanism—even if not interval delegation—
solves the static problem.

23 An affine v and logconcave f ensure that interval delegation is optimal; f having a unique peak
at v > 0 implies the interval’s threshold is ¢* > 0. See Kartik, Kleiner, and Van Weelden (2021).
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ging offer a > 0 that is accepted by some low type and yet rejected by some higher
type. In such an equilibrium, with positive probability, the sequence of on-path offers
will not be decreasing: for, an upper set of types would accept the current offer if
future offers are certain to be lower. Therefore, leapfrogging plays an indispensable

role in yielding the commitment payoff.

6. Related Literature

We now relate our work to some prior literature.

Veto Bargaining with Incomplete Information: Existing work on sequential
veto bargaining with incomplete information focuses on short horizons, typically two
periods, and/or myopic Vetoer behavior (e.g., Romer and Rosenthal 1979, Dewa-
tripont and Roland 1992, Chapter 4 of Cameron 2000, Rosenthal and Zame 2022,
Chen 2022).?* These analyses elucidate nicely some of the strategic forces, but either
a short horizon or myopic Vetoer behavior precludes the potency of Coasian dynam-
ics. The only exception to these approaches that we are aware of is the unpublished
work of Cameron and Elmes (1994), who study a long finite horizon with sophis-
ticated players. All these authors, including Cameron and Elmes, are interested in
skimming equilibria. Our analysis shows that—unlike in seller-buyer bargaining—it
is important to account for the possibility of leapfrogging because that can both inval-
idate a putative skimming equilibrium (recall the discussions of both Proposition 1(a)
and Proposition 2) and lead to qualitatively different equilibria with higher Proposer
payoft.

Recently, in a two-period model, Evdokimov (2022) has emphasized what he views
to be “non-Coasian” equilibria in veto bargaining. He studies committees in which
voter preferences are determined by a binary state, analogous to our two-type ex-
ample. Single-peaked voter preferences are important to his analysis, as they are to
ours; however, our papers focus on distinct implications of single-peakedness, and

the nature and import of our results are markedly different. To see that, consider

24 We highlight work that is most closely related to ours. But there have, of course, been studies
on other aspects of veto bargaining with incomplete information. For example, Matthews (1989)
models veto threats, whereby Vetoer sends a cheap-talk message prior to Proposer making a take-
it-or-leave-it offer. McCarty (1997) considers two-issue bargaining, wherein Vetoer may reject a
proposal on one issue to influence proposals on the second issue. Groseclose and McCarty’s (2001)
model of blame-game politics shows that in a three-player game, Proposer may make an offer that
he knows Vetoer will reject in order to convince a third party (e.g., voters) that Vetoer has extreme
preferences.
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his setting when a single vote is enough to overturn the status quo; it is effectively
then as if Proposer faces a single vetoer. Here Evdokimov finds a unique equilib-
rium, which has skimming. Leapfrogging does not arise because of the combination
of only two periods and his assumption that Proposer’s utility is globally increasing
in the action.?” Instead, what Evdokimov deems non-Coasian are equilibrium out-
comes in which, using our two-type notation from Section 3, Proposer obtains utility
that exceeds u(2l) as 6 — 1. He notes that such outcomes arise if h > 2[. The
reason is simply that type h prefers some actions strictly above 2 to 2/, and hence
Proposer can guarantee a utility exceeding u(2[) by first offering h and then 2[. By
contrast, we focused on arguably the more interesting case of h < 2[, because that
means separation cannot be achieved (when players are patient) with both types get-
ting actions above 2[. More generally, we do not take a stance on what the Coase
Conjecture ought to mean in veto bargaining. Instead, our key contribution for two
types and beyond is to unsheathe the leapfrogging implications of single-peaked pref-
erences, which yield equilibria that have non-skimming dynamics and high Proposer
payoffs. Furthermore, our main result (Theorem 1) is substantially stronger than
just comparing with a single take-it-or leave it offer, which is Evdokimov’s (2022)

benchmark.

Seller-Buyer Bargaining: In canonical models of seller-buyer bargaining in which
the buyer is privately informed of his value, all equilibria feature skimming. Fuden-
berg, Levine, and Tirole (1985) and Gul, Sonnenschein, and Wilson (1986) establish
the Coase Conjecture: at the patient limit, the seller’s payoff is that of pricing at the
lowest buyer valuation. More precisely, this holds in any equilibrium of the “gap”
case (the gains from trade are bounded away from 0) or in any “stationary/weak
Markov” equilibrium of the “no gap” case. Indeed, there is a unique equilibrium pay-
off for the seller in the gap case. By contrast, even in the gap case of our model (i.e.,
v > 0), Proposer can obtain his commitment payoff and there can be genuine payoff
multiplicity. Ausubel and Deneckere (1989b) show that in the seller-buyer no gap

case, there also exists a non-stationary “reputational equilibrium” in which the seller

25 An analog would be a two-period version of our Section 3 with the assumption that h < 1/2.
In that case, if type [ agrees first, then agreement in the second period with type h has to be on
action 2h, which provides h no surplus; so the only first-period action that can support leapfrogging
is 0, which turns out to be unsupportable for any prior. On the other hand, when either h > 1/2
or there are more than two periods with § < 1, arguments related to those for Proposition 1 can be
used to conclude that leapfrogging is supportable for suitable priors.
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obtains his commitment payoff. This equilibrium preserves high prices by punishing
the seller with Coasian low-payoff continuation play if he deviates. Our argument for
Proposer’s commitment payoff is distinct; it owes to leapfrogging, which is ruled out
by the skimming property of seller-buyer bargaining.?¢

Board and Pycia (2014) show that when buyers have outside options, there is
a unique equilibrium outcome and it yields a high seller payoff. The seller charges
the static monopoly price—defined for the distribution of values net of the outside
option—and all buyer types with lower net values immediately take their outside
option. Since low types exit immediately, the seller can credibly stick to the monopoly
price even upon rejection. In our analysis, leapfrogging also clears low types to
subsequently credibly target high types. But our model has no outside options and it
is Vetoer’s single-peaked preferences that makes leapfrogging viable. Moreover, unlike
in Board and Pycia (2014), low-payoff equilibria can coexist with the commitment-
payoff equilibrium.?” The idea that low agent types’ incentives to exit can allow a
principal to obtain her commitment payoff also features in Tirole (2016). But there,
unlike in our model, a reverse-skimming property holds, i.e., any equilibrium has
“positive selection” at every history.

Also related to our work are models in which the seller sells multiple varieties.
Wang (1998), Hahn (2006), and Mensch (2017) study bargaining when there is a
choice of both quality and price (or effort and wage in a labor context). In these
models, the seller or principal offers a menu in each period but cannot commit to
future menus. The key finding is that the principal obtains his commitment payoff
in the unique equilibrium. More recent developments include Nava and Schiraldi
(2019), who propose a multidimensional extension of the Coase Conjecture, and Peski
(2022), who establishes payoff uniqueness in a broad class of bargaining protocols and
mechanisms.?® In our model, not only are transfers infeasible, but moreover Proposer

can offer only a single action, rather than a menu, in each period. This hews to the

26 For a gap-case specification, Doval and Skreta (2021) show that the Coasian outcome cannot
be escaped even using arbitrary within-period mechanisms. In our setting, even if we allow for such
mechanisms, it follows from the discussion in Section 4.1 that our commitment payoff is still an upper
bound; consequently, the equivalence between commitment and Proposer’s best no-commitment
equilibrium would prevail.

2T Hwang and Li (2017) and Fanning (2023) highlight equilibrium multiplicity in seller-buyer mod-
els related to Board and Pycia (2014).

28 Although Peski (2022) studies a single indivisible good, he allows for commitments to proba-
bilistic trade, which is effectively the same as varieties.
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standard approach in studying sequential veto bargaining, and seems appropriate for
some non-market applications in politics and organizations. Nevertheless, we deduce
equilibria that deliver Proposer’s commitment payoff. It would be interesting to study
whether allowing for menus eliminates the payoff multiplicity we find. Conversely,
our results raise the possibility that if a seller could offer only a single variety in each
period in the aforementioned papers’ settings, then there may be payoff multiplicity

but the commitment payoff may remain achievable.?”

Renegotiation and Endogenous Status Quo: Our model assumes that there
is commitment to not renegotiate an accepted offer. A useful extension, which we
do not pursue here, would be to model any agreement as the status quo for future
negotiations; this would, of course, influence Vetoer’s incentives to accept an offer
insofar as it reveals information about her preferences that will affect future offers.
Although renegotiation has been studied in seller-buyer settings since Hart and Tirole
(1988) (see Strulovici 2017, Maestri 2017, and Gerardi and Maestri 2020 for recent
contributions), the existing literature on political bargaining with an endogenous
status quo, surveyed by Eraslan, Evdokimov, and Zapal (2020), has generally not

incorporated private information.

7. Conclusion

Our paper has studied a canonical infinite-horizon model of sequential veto bar-
gaining. We have shown how leapfrogging—making an offer that is accepted by some
low types and rejected by some higher types—allows Proposer to alleviate his sequen-
tial rationality constraint and credibly extract surplus from high types; so much so
that under some conditions, Proposer can (approximately) obtain his commitment
payoff in an equilibrium when players are patient.

There are various directions that may be fruitful for future research. On the
theoretical side, it would be of interest to incorporate “pork” or other forms of trans-
fers in addition to the policy that our players have single-peaked preferences over.
Studying a multidimensional policy is also important for political applications. On

the empirical side, our work cautions against a presumption that Proposer’s offers

29 Kumar (2006) studies such a setting and finds a unique equilibrium that does not yield the
principal a high payoff. We attribute this to his model/analysis excluding the quality-price pair that
would be used for leapfrogging. A similar point applies to Inderst (2008), who studies a model with
menus but finds that in some cases the principal’s commitment payoff does not obtain.
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are successive concessions,>® and calls for attention to whether and when we observe
leapfrogging. Given that we have identified the coexistence of skimming and leapfrog-
ging equilibria, norms in sequential veto bargaining with incomplete information are
especially important; our results show how significantly Proposer could benefit from
a favorable equilibrium. Laboratory experiments may be a fertile ground to deepen

our understanding of equilibrium selection.
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A. Proofs for Two-Type Example

Recall that for the two-type example, we restrict attention to actions in [0, 1]. The
following proofs can be extended straightforwardly to handle actions outside [0, 1],

but we omit that discussion for brevity.

Lemma 4. Fiz any large & < 1. Inductively define an increasing sequence a® :=

20 < al < ... < dV =1, where for each i > 1, a' is defined by either uy(a*, h) =
duy (a1, h) if there is a solution with o' € (', 1], and otherwise a' := 1.3
(a) If offers are restricted to lie in [21, 1] then for any prior pgy there is a skimming

equilibrium in which, on path, Proposer first offers some a™ with probability one
0

and then works his way down the (a*)\_, sequence to 2l. Any offer a® > 21 is
rejected by type | and accepted by type h with positive probability. Both types

accept the final offer of 2.

31 We suppress the dependence of N and each a’ (for 0 < i < N) on 4.
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(b) Define u® € (u*,1) as the smallest belief that makes Proposer indifferent between
the payoff from this (restricted) equilibrium and the payoff from leapfrogging,
i.e., obtaining a® from type l in the first period and action 1 from type h in the
second period.*? If g < p?, then the above skimming equilibrium exists without
restriction on the space of offers: any offer in (a°,2l) is accepted by both types,
while any offer in [0, a’] is accepted by | and rejected by h. As § — 1, u® — p*.

(¢c) As & — 1, Proposer’s payoff in the above skimming equilibrium converges to
u(2l) regardless of his prior in the relevant range: for any e > 0, there exists
0 < 1 such that if § € (8,1) and po < p°, then Proposer’s payoff in the skimming
equilibrium is in [u(2l), u(2l) + €).

Proof. Part (a): Owing to the restriction to offers in [2[, 1], this part follows from
arguments analogous to those in the two-type seller-buyer bargaining problem (Hart,
1986; Fudenberg and Tirole, 1991, pp. 409-10). So we omit a proof, instead only
noting two points. First, if Proposer is indifferent between two first offers (as can
also arise in the seller-buyer construction), we specify for concreteness that Proposer
chooses the lower of the two. Second, there is one difference with the usual seller-buyer
construction: if Proposer’s first offer is ¥ = 1, and a” was defined by the action
cap of 1 rather than type h’s indifference, then Proposer will need to randomize on
path between proposing ™ ~! and a”~? in the second round. Proposer’s second-round
randomization is chosen to make type h indifferent between accepting and rejecting

a" = 1; a suitable randomization exists because h would strictly prefer accepting

a” = 1 if Proposer were to offer a™¥=!

next, while A would strictly prefer rejecting
a” =1 if Proposer were to offer a”¥~2 next. Such on-path Proposer randomization is
not necessary in the seller-buyer problem because there is no price cap—or, in effect
equivalently, Proposer ideal point—there.

Part (b): We stipulate that after a deviation in any period ¢ to a;, < 2I, type [
accepts, whereas h accepts if and only if wy(as, h) > duy(1,h), which is equivalent
to a; > a’. After a rejection of the deviation, Proposer puts probability 1 on type h

and proposes action 1 ever after. Clearly we have an equilibrium in any continuation

32 The belief 9 is well defined for large enough §. To confirm that, note first that for any o < p*,
Proposer’s payoff from leapfrogging, piodu(1) + (1 — po)u(a®) is strictly less than u(2l) by definition
of u* and that a® < 2I; whereas his payoff from the (restricted) skimming equilibrium is at least
u(2l). Second, following the established seller-buyer analysis, for any interior belief o Proposer’s
payoff in the (restricted) skimming equilibrium converges to u(2l) as 6 — 1, whereas leapfrogging’s
payoff converges to the strictly larger pou(1) + (1 — po)u(2l). The result follows from continuity of
both skimming and leapfrogging’s payoffs in py.
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game after the initial deviation. So we need only verify that no deviation to a; < 21
is profitable. Plainly, among a; < a’, the most profitable deviation is to a’; but
by definition of z°, that deviation is not profitable when p; < u’. (A higher g,
makes leapfrogging more attractive than the (putative) skimming equilibrium because
Proposer prefers the skimming equilibrium when Vetoer is of type [ and leapfrogging
when Vetoer is of type h.) Any deviation to a; € (a’,2l) yields a lower Proposer
payoff than the (putative) skimming equilibrium because the skimming equilibrium’s
payoff is at least u(2[). Therefore, no deviation to a; < 2[ is profitable when p; < p°,
and the skimming equilibrium exists without any restriction on offers.

To see that p® — p* as § — 1, observe that for any y, as 6 — 1 Proposer’s payoff
from leapfrogging goes to pou(1) + (1 — po)u(a*) whereas, as discussed in footnote 32,
his payoff from skimming goes to u(2l). Hence, by definition of p*, for any pg > u*,
skimming is strictly worse than leapfrogging when ¢ is large enough. The result now
follows from p’ being the smallest belief at which the payoffs from skimming and
leapfrogging are equal, noting that for any ¢ skimming yields a strictly higher payoff
than leapfrogging at belief p* (see footnote 32).

Part (c¢): Given the previous two parts, this result follows from the same ar-
guments as in the standard seller-buyer model (e.g., Fudenberg and Tirole, 1991,
pp. 409-10). Q.E.D.

Proof of Proposition 1. Part (a) follows from Lemma 4.

To prove parts (b) and (c), we first define two critical values: 7°(u) and the f°
referred to in the statement of the result. Recall p° € (0,1) from Lemma 4(b). (In
what follows, we sometimes suppress the caveat of “for large 6”.) For any belief
pe (p8,1), let

() = po (L — p) )
(L —p)p
be type h’s rejection probability that would lead to posterior ;° after rejection, given

that type [ rejects with probability 1. Now let 1% < 1 be the value of u that solves®?

(1 - wu(a’) + podu(l) = (1 - woula®) + p [L— () + (W] u(l).  (4)

Given belief u, the LHS of Equation 4 is Proposer’s utility from leapfrogging, whereas

33 One can check that the difference between the LHS and the RHS of Equation 4 is continuous
and strictly decreasing in p, strictly positive for small p, and strictly negative for large u; hence
there is a unique solution, which is interior.
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the RHS corresponds to getting a’ in the next period from [ and a lottery from h of
either action 1 in the current period with probability 1 —r° or the same action in two
periods with probability 7°. It can be verified that f® > pf and lims_,; i’ < 1.3
Part (b): The equilibrium strategies, beliefs, and incentives are as follows.

1. Proposer proposes a® in the first period and 1 in the second period (and ever after),
with belief u;, = 1 after any rejection. Vetoer type [ accepts in the first period while
type h rejects in the first period but accepts any proposal of at least a® starting in the
second period. Clearly Proposer has no incentive to deviate starting in the second
period, and Vetoer is playing optimally in all periods, so what we must show below
is that Proposer has no incentive to deviate in the first period.

2. (Region I in Figure 1.) If Proposer deviates and offers any action ag € [0,a’) in the
first period, type [ accepts and h rejects. After a rejection, Proposer’s belief is p; = 1
ever after and so he proposes 1 ever after, which is accepted in the second period by
type h. It is clear that Vetoer is playing optimally and that any such deviation is not
profitable for Proposer.

3. (Region IT in Figure 1.) If Proposer deviates and offers any ao € (a’, 21] in the first
period, both types accept that; for large 9, this outcome is worse for Proposer than
the on-path outcome, since the latter’s payoff is larger than w(2[). Both types accept
any ag € (a°,2l] because we stipulate if any such offer is rejected (a zero probability
event), Proposer holds belief 1, = 1 ever after and offers action 1 ever after.

4. (Region III in Figure 1.) Let u} denote type h’s payoff in the skimming equilibrium
discussed in Lemma 4 when Proposer has belief ;° defined there. Since p® — p*, it
follows from the established seller-buyer analysis that for ¢ large enough, Proposer’s
first offer in our skimming equilibrium is arbitrarily close to 2/ and hence uj, is arbi-
trarily close to but strictly less than uy (21, h). Let a® > 2 be such that h is indifferent
between accepting @’ in the current period and receiving payoff u} in the next period.
Note that a’ ~ 21 for large §.

Consider the interval (21,a°]. As described in Lemma 4, the skimming equilibrium
(defined assuming actions constrained in [2[,1]) is constructed using a sequence of
actions a’ = 2] < a' < ... < a =1 that is defined by h’s indifference. (We suppress
the dependence of the sequence on 0 to reduce notation.) Let M < N — 1 be such

34 As p — p® from above, r?(u) — 1, and so the RHS of Equation 4 goes to § times the LHS,
which is strictly smaller than the LHS. The properties noted in footnote 33 then imply a? > u°.
From Lemma 4(b), lims_,; u® = p* € (0,1). Algebraic manipulations of Equations (3) and (4) yield
limgs_, fi° € (p*, 1).
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that a™ < @® < aM+1,
For any deviation ag € (21, a'], I rejects and h accepts; Proposer holds belief 1, = 0
and offers a; = 2[ ever after (accepted by type [ in the second period).

% > q'. For any deviation ag € (a',a’], let n € {1,..., M} be such

Suppose a
that ag € (a™,a™"']. Type [ rejects, while type h rejects with the probability that
makes the posterior p; = p", where p” is the unique belief that makes Proposer
. (Type
h’s rejection probability is well-defined and unique so long as u"™ < g, which will be

indifferent between starting the decreasing offer sequence with a” and a"~!

verified below by showing that ™ < u’.) Proposer will then randomize in the second
period between the starting offers of a™ and a"~!. If Proposer were to start with a”,
h would prefer to accept ay; if Proposer were to start with a”!, h would prefer to
reject ap; so there is a unique randomization that makes h indifferent. We are left
to check that p” < u’: if so, then Proposer prefers the decreasing offer sequence to
leapfrogging, and we can support the skimming equilibrium by specifying behavior
for offers in [0,2(] as in the proof of Lemma 4(b). Indeed pu™ < u?, since n < M and
under belief ;° Proposer starts the decreasing offer sequence with a™ while under
belief p™ it is optimal to start with a” (and a higher belief corresponds to a higher
starting offer in the skimming equilibrium).3?

So a deviation to any ag € (2l,@°] yields Proposer a payoff that is no higher
than from a skimming equilibrium with restricted action space [2[,1] and belief g
(see Lemma 4(a)). As § — 1, the payoff from a (restricted) skimming equilibrium
converges uniformly to «(2l) on any interval of priors bounded away from 1, whereas
the payoff from leapfrogging converges uniformly to pou(l) + (1 — po)u(a®). The
latter limit is strictly larger than the former limit when gy > p*, by definition of p*.
Since p° > p* and lims_,, i’ < 1, it follows that for all § large enough, the payoff
from leapfrogging is strictly larger than from the (restricted) skimming equilibrium
for all g € (u?, ji°). Hence, for § large enough, a deviation to any ag € (21,a’) is not
profitable.

5. (Region IV in Figure 1.) It remains to consider any first-period deviation ag €
(a%,1].

35 That Proposer starts the decreasing offer sequence with a™ under belief u? follows from type
h’s indifference in the definition of @® and @’ € (a™,a™*1]. For, if Proposer started with an offer
aM~1 or lower, then h would strictly prefer to wait for that offer in the next period rather than
accept @’ in the current period; if Proposer started with an offer a®*' or higher, then h would

strictly prefer to accept a’.
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e Type [ rejects since ag > 2I. Type h rejects with probability 7(u), independent
of ag, which leads to second-period belief ji; = p°.

e In the second period: Proposer randomizes between starting the play of a skim-
ming equilibrium (see Lemma 4) with some probability A(ag) and starting the
leapfrogging path with remaining probability. By definition of u’, Proposer is
indifferent between starting either of these two paths. The randomization prob-
ability A(ag) is set to make type h indifferent between accepting ag in the first
period and getting a lottery over payoft v} in the second period with probability
A(ap) and getting action 1 in the third period with complementary probability.3°
For any second-period offer a; besides the two that Proposer randomizes over,
we stipulate that continuation play would follow that in a skimming equilibrium
with initial offer a;. Plainly, no such offer a; is a profitable deviation.

e Finally, we argue that among deviations to ag € (@°,1], the most profitable
deviation is to action 1, and that is not profitable because o < fi°. Note that
after a rejection of any ay > a’, leapfrogging is optimal for Proposer in the

second period. So Proposer’s expected payoff from any ag > a’ is

(1= po)du(a®) + uo [(1 = (1)) ulag) + 1 (10)5%u(1)]

This payoff is maximized when ay = 1, in which case it becomes the RHS of
Equation 4 (with g = pg). Since puo < f1°, the definition of 2’ implies that
leapfrogging starting in the first period is at least as good for Proposer (see
footnote 33).
Part (c): The construction for this part is the same as that for part (b), except that
Proposer now proposes action 1 in the first period, rather than a’. By the logic used
in the last bullet of point 5 above, proposing ay = 1 is better for Proposer than
proposing any ag € (@°,1), and also now better than proposing ag = a’ because
to > f1°. By points 2-4 above, ay = a’ is in turn better than any other first-period

offer less than a’. Q.E.D.

B. Proofs for General Analysis

36Te., uy(ag,h) = A ag)du} + (1 — A(ag))d?uy (1,h). There is a unique A(ag) that solves this
equation because duj > uy (ag, h) > 6%uy (1, h), where the first inequality is because ag > a’ > h
and du}, = uy (Gs, h).
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B.1. Obtaining the Commitment Payoff without Commitment

Proof of Lemma 1. Fix any strategy for Proposer and any best response for Ve-
toer, and denote this strategy profile by o. For any type v, the profile ¢ induces
a probability distribution A, over R x N U {oo}, where (a,t) € R x N denotes the
outcome that proposal a is accepted in period ¢, and oo denotes no agreement. We
construct an incentive compatible and individually rational mechanism for the static
problem that achieves the same expected payoff for Proposer as under o.

For any t € N, let \,(¢) be the measure on R defined by A, (£)(A) := X\, (A x {t})

for every (Borel) set A C R. Define a mechanism for the static problem as follows:

- i o' n(t) + (1 i S A(t)(R) ) 1o,

where 1y denotes the Dirac measure on 0. Intuitively, for every agreement (a,t) that
has positive probability under \,, m(v) gives probability 4’ to action a and probability

1 — 4" to action 0. It can be verified that m(v) is a probability measure over R.

/Guv(avdm Zé /auvavd)\ (t)(a),

the expected utility for type v reporting v' in the static mechanism is the same as in

Since

the dynamic game were type v to play as v’ does. Hence, as Vetoer is playing a best
response in o, mechanism m is incentive compatible and individually rational.
Analogous arguments show that Proposer’s expected utility in the static mecha-
nism is the same as his expected utility in the dynamic game under strategy profile
0. Therefore, Proposer can replicate his payoff from the dynamic game using a static

mechanism, and hence can do no worse in the static problem. Q.E.D.

Proof of Lemma 2. To obtain a contradiction, suppose there is a (potentially stochas-
tic) mechanism m that yields a strictly higher payoff than the delegation set [c¢*, 1]
under prior Fj. ) for some ¢ < ¢*/2 < ¢* < . Let M := m([c,c]) denote the image

of [, d] under m. We can assume without loss of generality that u(m(c’)) > u(m(v))
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for all v € [c, ] and that u(m(c)) > u(0).>” Define a menu of stochastic actions by
M:=MU{v e 1] u) > um(d))}U{0}.

Let 7 be the induced mechanism where each type v chooses its favorite action in M
and indifference is broken in Proposer’s favor. Plainly, m is incentive compatible and
individually rational. We will show that given prior F', Proposer’s payoff from m is
strictly higher than from delegation set [c¢*, 1].

Conditional on the event {v : v € [¢, |}, Proposer’s payoff from menu M is strictly
higher than from menu [¢*, 1] by assumption. Compared to menu M, the additional
actions in M chosen by types v € [c, ¢] are ones that Proposer prefers to m(c’), which
he prefers to m(v) for any v € [c, ¢]. Hence, conditional on {v : v € [¢, ¢]}, Proposer’s
payoff from menu M is strictly higher than from menu [c*, 1].

We next show that for every v > ¢, u(m(v)) > wu(v). Since Vetoer’s utility
satisfies SCED and she breaks indifference in favor of Proposer, either m(v) = m(¢)
or m(v) € M\ (M U{0}). In either case, u(r(v)) > u(m(c)). If u(m(c)) > u(v)
then it follows that u(m(v)) > u(v). If, instead, u(v) > u(m(c’)) then m(v) = v and
we conclude u(m(v)) = u(v).

Moreover, SCED implies that for all v < ¢, either m(v) = m(c) or m(v) = 0. Since
u(m(c)) > u(0) and u(0) is Proposer’s payoff under delegation set [c¢*, 1] whenever
v < ¢, it follows that Proposer’s payoff from mechanism m is higher than his payoft

from delegation set [¢*, 1] under belief F', a contradiction. Q.E.D.

Proof of Lemma 3. Fixany ¢ > 0. Let § < 1 be such that 6U (Fjyc+) > U(Fjy,e) —

e, and fix any 6 > J. Let (7, /) be an equilibrium when Proposer’s prior belief is

3T1f w(m(c’)) < u(m(v)) for some v € [c, '], add the action min{1, E,,[a]} to M and consider
the corresponding mechanism 7 in which each type chooses its favorite lottery, breaking indifference
in Proposer’s favor. Since E,,(,)[a] is increasing in v because mechanism m is IC, the new mechanism
m yields Proposer a higher payoff than m and satisfies u((c’)) > u(ri(v)) for all v < ¢'.

Now suppose u(m(c)) < u(0). If ¢ < 0, consider an alternative mechanism i that is identical to m
except for assigning action 0 with probability one to all types below 0. This mechanism is individually
rational (IR) and IC and yields Proposer a higher payoff than m and satisfies u(i(c)) = u(0).
If ¢ > 0, consider an alternative mechanism 7 that is identical to m except for /i (c) assigning
probability one to an action in [0, E[m(c)] that makes type ¢ indifferent with m(c). Such an action
exists because uy (m(c),c) > uy(0,¢), as m is IR, and uy (-, ¢) is continuous. Since m is IC and
IR, and any type v > ¢ prefers m(v) to m(c) (by SCED, type ¢’s indifference between m(c) and
m(c), and that type r(c) strictly prefers 7(c) to m(c)), it follows that /m is incentive compatible
and individually rational. Moreover, u(m(c)) > «(0) and the mechanism 7 yields Proposer a higher
payoff than m.
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Fjy c+), where ¢ denotes the strategy profile and fi the system of beliefs. If Proposer’s
payoff in equilibrium (&, /i) is higher than 0U (Fjc+)) then the claim holds; so suppose
his payoff is strictly lower. Define a candidate equilibrium profile (o, ) as follows:

e On path, Proposer offers 0 in the first period, ¢* in the second period, followed
by min{2c¢*, 1} ever after. Vetoer of type v accepts the first proposal 0 if and
only if she strictly prefers it to ¢* in the next period; in the second period she
accepts ¢* if and only if she (weakly) prefers it to both min{2c¢*, 1} and 0 in the
third period; and for any subsequent history starting with proposal sequence
(0, ¢*), she accepts the current proposal if and only if she (weakly) prefers it to
both min{2c¢*, 1} and 0 in the next period. For any on-path history h, let p(h)
be derived from Bayes’ rule whenever possible, and for any history h starting
with (0, ¢*), let pu(h) put probability 1 on type c*.

e For any off-path history h that starts with (0,a) for a # ¢*, let (o, ) specify
some continuation equilibrium with the starting belief Fj.- 5 +; a continuation
equilibrium exists by hypothesis (EqmExists). For any off-path history A in
which the first proposal is different from 0, let (o, p)(h) = (&, 1) (h).

Proposer’s payoff from the strategy profile o is 6U(Fj,+)) because on path types
below ¢*/2 accept proposal 0 and types in [¢*/2, ¢*] accept proposal ¢* in period 1;
while in the static problem, Lemma 2 implies that for belief Fj, .+ the delegation set
[c*, 1] is optimal, which results in all types in [v, ¢*/2) obtaining action 0 and all types
in (¢*/2, ¢*] obtaining action ¢*. We will argue that the profile (o, 11) is an equilibrium,
which proves the claim.

First, Proposer is playing a best response in the profile (o, ) at the start of the
game since any deviation induces the same payoff as in equilibrium (&, i), which is
strictly lower than 6U(Fj, ) by hypothesis. Moreover, by construction, Vetoer is
playing a best response at the history h = (0), i.e., after the initial proposal of 0.

Second, we claim that Proposer is playing a best response at history h = (0).
Note that the second-period belief after this history is 1(0) = Fjesj2,.+] and that in the
continuation game starting at h = (0) the strategy profile o yields payoff U(Fjc- 2.+
all types in [¢*/2, ¢*] accept proposal ¢* immediately and the delegation set [c*,1]
solves the static problem by Lemma 2. Any deviation by Proposer to an offer a # ¢*
gives Proposer a payoff of at most U(Fj./2) by Lemma 1. Therefore, Proposer is
playing a best response at history h = (0).

Finally, we claim that both players are playing best responses at any other history.
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Indeed, for any history starting with proposals (0, ¢*), best responses are assured by
construction. For any history starting with (0,a) with a # ¢*, our construction
specifies some continuation equilibrium. For any history starting with a proposal
different from 0 players are playing an equilibrium because (&, fi) is an equilibrium
for prior belief F, .

As it is straightforward that the system of beliefs u satisfies Bayes Rule whenever
possible, we conclude that (o, ) is an equilibrium. Q.E.D.

Proof of Theorem 1. Without loss of generality, we assume U(F') < 1, as Pro-
poser’s utility can be rescaled accordingly. Furthermore, we prove the result only for
c* > 0; the ¢* = 0 case is implied by Proposition 2.

As a roadmap: Steps 1-4 below use induction to show that there are equilibria in
which Proposer can obtain arbitrarily close to his commitment payoff on some interval
of types below a threshold. Step 5 establishes this threshold can be made arbitrarily
close to v. Step 6 then argues that there is an equilibrium in which Proposer obtains
arbitrarily close to his commitment payoff from the full interval of types [v, 7).

We begin with some preliminaries for the inductive argument. Let cy(e,d) := ¢* >

0 and define for all integers n > 0,

. €
Cn(eE, (S) = min {Cn1(57 (5) -+ m, Cnfl(é", 5) 1+ V 1— (S} _38

It follows that there is some n € N such that c,(g,0) > 0. Let f > 0 denote a lower
bound for f on [v,7]. For € > 0, define

5*(8,5)::1—%imin{ c*< 1+ﬂ—1)},

£
4u/(0)’

and let () € (v/1 —¢,1) be such that for all 6 € (d(¢),1), 6 > 6*(¢,6). Such a J(e)

06*(e,0)
a5 — TOo0

exists because 0*(g,1) = 1, 0*(e, -) is continuous, and limg
The induction hypothesis for n > 0 is:
For all ¢ > 0, § > d(¢), and ¢ satisfying ¢* < ¢ < ¢,(g,9), if Proposer’s belief is
Fpy then there is an equilibrium in which Proposer’s payoff is at least U([Fj,,q) — €.

The induction hypothesis holds for n = 0 by Lemma 3.

381f u is not differentiable at 0, let u/(0) denote the right-derivative at 0, which exists because u
is concave.
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Let (6, /1) be an equilibrium for the game with belief Fj, ., () that yields Pro-
poser payoff at least U(Fjy,c,_,(s,s)) —¢ (such an equilibrium exists under the induction
hypothesis) and let a,_1(g,0) be the largest action that makes type ¢,_1(g,d) indif-
ferent between accepting a,,_1(g,d) and playing (7, 1) from the next period on. Steps
1-4 below establish that if the induction hypothesis holds for n and a,_1(¢,0) < 1
then it holds for n + 1, given (EqmExists).

Step 1: Fix arbitrary € > 0, § > d(¢), and ¢ satisfying c,(¢,0) < ¢ < ¢cuq1(e,0),
and an equilibrium (&, /i) for the game with belief Fj, . If Proposer’s payoff is at
least U(Fjy,q) — ¢ we are done; so suppose Proposer’s payoff is strictly less. Below,
we suppress the dependence of ¢, and a,_; on ¢ and ¢, and we set c_y(g,0) := ¢*.

We construct a new equilibrium (o, i) for the game with belief Fj, 4 as follows:
Proposer’s first offer is a,, ;. On path, types above ¢, ; accept a,_; and types
below c¢,_; reject a,_;. After a rejection of a,_;, Proposer updates to Fj,,_,] and
continuation play proceeds as specified by (7, /1). Moreover, if Proposer deviates in
the first period, continuation play is as specified by (7, fi).

Step 2: We show that Vetoer is playing a best response when a,,; is proposed in
the first period.

It is optimal for types below ¢, ; to reject a,_; since type c,_1’s equilibrium
strategy in the continuation game yields a higher payoff (using that a,,_; > ¢, and
Vetoer’s preferences satisfy SCED).?* We now explain why it is optimal for types in
[¢n_1,c] to accept a,_1; there is no need to consider types above ¢ because Proposer’s
belief is supported on [v, ¢|. Accepting a,,_ is a best response for types ¢, and a,,_1,
and SCED implies that the set of types for which it is a best response to accept is an
interval. Therefore, if a,,_1 > ¢, then accepting a,,_; is a best response for all types in
[¢n_1,¢]. Sosuppose a,_1 € [¢,_1,¢). It would be a best response for type ¢ to accept
Cn—1 since that is even better than obtaining ¢ next period (as 2cc, 1 — 2 | > §c?
because of our assumption that ¢ < ¢,_1 + ¢,_1v/1 —§). Therefore, since type ¢
prefers a,,_1 € [c,_1,¢) to ¢,_1, accepting a,_1 is a best response for type ¢ and hence
for all types in [c,—1, c|.

Step 3: We show that Proposer’s payoff from profile o is at least U(Fj,q) — €.

Proposer’s payoff if the first proposal a,_; is accepted times the probability of

39To elaborate, note that when comparing action a,_; and the lottery induced by type c,_1’s
equilibrium strategy, ¢,—1 is indifferent whereas (a possibly hypothetical) type a,_; strictly prefers
action a,_1. SCED implies that given any two lotteries and any three types v; < vo < wg, if vg is
indifferent and vs strictly prefers one lottery, then v (weakly) prefers the other lottery.
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acceptance is at least
[Flo.q(¢) = Floe (ena)]ulena) 2 / [u(v) = w'(0)(v = cn1)]dFly
> [ (o) - ¢/2dFu,

where the first expression is because a,_1 € [c,_1, 1], the first inequality is because

u(v)—u(cp—1) < u'(0)(v—cp_1), and the second inequality is because c—¢,,—; < TR

For the case n = 0, Proposer’s payoff conditional on proposal ag being rejected
times the probability of rejection is at least 62U (Fly,e, 1])Flue(¢n-1) by Lemma 3.
Since § > /1 —¢ and U(Fjy., ,)) < 1, these two bounds imply that Proposer’s

payoft is at least
[W@wdwwwmmwn+/ [u(v) — /2)d Py
Cn—1

Since the delegation set [c*, 1] is optimal for belief F}, 4 by Lemma 2, this implies that
Proposer’s payoff is at least U(Fj,q) — €.

Consider now the case n > 1. Proposer’s payoff conditional on proposal a,_; being
rejected times the probability of rejection is at least 0 [U(Fjyc, ) — €] Flu.e(Cn-1)-

Therefore, Proposer’s payoff is at least

0 [U(F[y,cn—l]) - 5] F[Q,C}(Cn—1> + / [U(U) - 5/2]dF[Q,C]

€

ZU(F[%C]) — €&+ 5

[Flu,q(c) = Flug(cn-1)] — (1 = 9)

ZU<F[QC]> - &,

where the first inequality is because the delegation set [c*, 1] is optimal for belief Fj, 4

(by Lemma 2) and U(Fly,,_,) < 1, and the second inequality is because

F[%C](C) - F[y,c}(cn—l) > imln {ﬁ,cy‘ ( 1+ m — 1)}

and

52(5*(5,5):1—§zmin{ ,c*< 1—|—\/1—6—1)}.

£
4u'(0)
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This establishes Step 3.

Step 4: To verify that (o, ;1) is an equilibrium, observe that Proposer plays a best
response in the first period since any deviation gives a payoff less than U(Fj, ) —€ by
supposition. Vetoer plays a best response to proposal a,,_; as argued above. Finally,
both players play best responses after any other history because we began in Step 1
with equilibria (&, i) and (&, f1). This establishes the induction step if a,_; < 1.

Step 5: We show that, when ¢ is small and 4 is large, the inductive argument in
Steps 1-4 covers a large fraction of types.

Let ¢(g,0) := c¢n(e,0), where n is the smallest index such that the action ay,(e,d)

defined in our induction argument is strictly above 1. We claim

/v [u(l) —u(v)]dF(v) <1—=35+e¢, (5)
2(e,8)
which implies that ¢(e,d) — T as § — 1 and € — 0.

To derive inequality (5), note that because a,(e,d) > 1 there is a static incen-
tive compatible and individually rational mechanism in which all types above é(¢, §)
receive action 1 and Proposer’s payoff from types below ¢(g,d) is at least as in equi-
librium (&, /1) discounted by ¢. This mechanism gives Proposer payoff at least

O[U(Fluee0y) — €lF (e(e,9)) + /( § w(1)dF(v).
By Lemma 2, this is less than the payoff from delegation set [¢*, 1], which can be

written as

v

UFuea) Fee0) + [ utr)aro).

Some algebra using U (Fly,z(c5)) < 1 now yields inequality (5).

Step 6: Given the belief /' and an arbitrary € > 0, we show that for all 0 large
enough there is an equilibrium in which Proposer’s payoff is at least U(F') — ¢, which
completes the proof.

For any ¢ > 0 and § > §(¢’), we have established in Steps 1-5 that for belief
Fly(er,6) there is an equilibrium, denoted by (o, ), in which Proposer’s payoff is
at least U(Flyaer0)) — €. Let a(e’,0) be the largest action that makes type ¢(¢’, )
indifferent between accepting a(¢’,d) and playing (o, 1) from next period on. Note
that a(¢’,d) € (1,2] by definition (that it is less than 2 is because actions above 2 are
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worse than the status quo for all types).

Consider a strategy profile in which Proposer initially offers a(¢’, ), followed by
continuation play as described by (o, ). It is a best response for all types in [¢(¢, §), ]
to accept a(e’,9) because of SCED and that accepting is a best response for type
¢(¢',6) and a (hypothetical) type a(e’, §) that is larger than T; it is also a best response
for all types below ¢(¢’,0) to reject a(e’,0). Since a(e’,d) € (1,2] and Proposer’s ideal
point is 1, it follows that Proposer’s payoff given this strategy profile is at least

A Frccen) =P, ) + [ u@)aF)
c(e’,
For ¢/ > 0 small enough and § < 1 large enough, this payoff is at least U(F') — e.
Given (EqmExists) it follows that there is an equilibrium in which Proposer’s payoff
is at least as large: analogous to the logic used in Step 1, if a given equilibrium does
not yield payoff at least U(F') — ¢, we can modify it by having Proposer offer a(¢’, §)
in the first period with continuation play given by (o, ). Q.E.D.

B.2. A Skimming Equilibrium

We construct a skimming equilibrium building on ideas from the seller-buyer lit-
erature, which are summarized instructively by Ausubel, Cramton, and Deneckere
(2002, pp. 1912-15). Our first step is to define a pair of functional equations whose

joint solution describes a skimming equilibrium.

Definition 1. Let R : [v,v*] — R be continuous and P : [v,v*] — R be right-
continuous, where v* € (v,v|. We say that (R, P) supports a skimming equilibrium

on [v,v*] if, for all v € [v,v*],

R(o) = max {u(P)IF() - Fy)] +0R()} ©)
uy (P(v),v) = duy (P(t(v)),v), (7)
where T(v) denotes the argmaz correspondence in (6), t(v) = maxT(v), P(v) is

the largest proposal that satisfies (7), and P is the increasing envelope of P, i.e.,
P(v) :=sup,, P(y).*

40 The maximizers in this definition exist because P being right-continuous implies P is right-
continuous, and since it is also increasing, P is upper semicontinuous.

44



The idea behind this definition is that R(y) describes Proposer’s value function
and P(v) describes Vetoer’s acceptance behavior. We will construct an equilibrium
in which at any history, type v accepts a positive offer if and only if the offer is below
P(v). Alternatively, given that P is increasing, any offer P(v) is accepted precisely

41 Consequently, at any history, Proposer’s belief is a right-

by all types above v.
truncation of the prior to [v,v] for some v. The upper endpoint v thus acts like a
state variable that Proposer optimizes. Equation (6) is the dynamic programming
equation that captures Proposer’s tradeoff between extracting surplus via screening
and the cost of delay: given the current state v, if Proposer brings the state down to y
with an offer P(y), then with probability F'(v)—F(y) (ignoring a normalization factor)
he obtains current payoff u(P(y)); in addition, after a one-period delay he obtains
payoff R(y). Concomitantly, Equation (7) is the indifference condition for type v
between accepting offer P(v) and waiting one period for the next offer, which would
be P(t(v)). Note that P(v) = 2v* because t(v) = v, and hence P(v) > max{v,2v"}
for all v. Consequently, R(v) > 0 for all v > v™.

The following result establishes that there is in fact an equilibrium corresponding
to the pair of functions (R, P). If P is continuous, then on the equilibrium path
Proposer first targets the threshold type ¢(7) with offer P(¢(v)), and then successively
follows with offers P(t?(v)), P(t3(1)), . ... This is a decreasing sequence because P and
t are increasing functions; the latter point owes to a monotone comparative statics
argument. Vetoer accepts the initial offer if her type is in [¢(7), 7], the second offer if

her type is in [t2(v), t(v)), the third offer if her type is in [t3(v), t*(v)), and so on.

Lemma 5. Suppose v < 0 or v < 1/2. If (R, P) supports a skimming equilibrium
on [v,V] then there is an equilibrium in which proposals will be decreasing along the

equilibrium path.

The proof of Lemma 5 builds on arguments from the seller-buyer bargaining lit-
erature (e.g., Gul, Sonnenschein, and Wilson, 1986, Theorem 1), and is relegated
to the supplementary appendix. As discussed in the main text after Proposition 2,
novel considerations arise in deterring Proposer from deviating to offers below 2vt;
for that we use Lemma 5’s hypothesis that either v < 0 or ¥ < 1/2. For readers

familiar with the seller-buyer arguments, we also flag that another notable aspect of

41 This statement is imprecise when there are multiple @ such that P(9) = P(v); we gloss over this
issue for this heuristic explanation.
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our argument is the use of the increasing envelope P. We use this because, owing
to single-peaked Vetoer preferences, we cannot guarantee that there is a solution to
equations (6) and (7) in which the P function is (even weakly) increasing. The lack of
monotonicity precludes specifying P(y) as type y’s acceptance threshold—we would
not be assured that Proposer’s beliefs are right-truncations. Using the increasing
envelope P to specify strategies allows us to surmount non-monotonicities in P.

For Lemma 5 to be useful, we must assure existence:
Lemma 6. There is (R, P) that supports a skimming equilibrium on [v,].

The proof of this result adapts arguments from the seller-buyer literature, and is
relegated to the supplementary appendix. In a nutshell, we first suppose v > 0 and
follow the reasoning of Fudenberg, Levine, and Tirole (1985, pp. 78-79) to show that
there is an (R, P) that supports a skimming equilibrium on [v,v +¢] if € > 0 is small
enough; the intuition is that when Proposer’s belief is concentrated near v, the cost
of delay outweighs the benefit from screening types and it is optimal to just offer
P(t(v)) = 2v for all remaining types. An argument following Ausubel and Deneckere
(1989b, Lemma A.3) allows us to extend (R, P) to support a skimming equilibrium
on [v,7], proving Lemma 6 so long as v > 0. Lastly, an approximation argument
analogous to that in Ausubel and Deneckere (1989b, Theorem 4.2) allows us to cover

the case of v = 0, which in turn can be straightforwardly extended to v < 0.

Proof of Proposition 2. Together, Lemma 5 and Lemma 6 establish a skimming
equilibrium if either v < 0 or v < 1/2.

Let us show that Proposer’s payoff in this equilibrium converges to U(F'). Since
Proposer never makes a strictly negative offer in this equilibrium and no type v < 0
accepts a strictly positive offer, we assume without loss of generality that v € [0,1/2).
Let A*(v) denote type v’s choice from the menu [2v,1]. As noted after Definition 1,
it holds that P(v) > max{v,2v}. Hence, P(v) > A*(v).

To show that Proposer’s payoff is at least U(F') in the patient limit, observe that
for any v and any strictly positive integer m there is d(m) such that for all 6 > d(m),

R(v) > (1 —1/m) /U [u(min{P(v'),1}) — 1/m] dF (v"). (8)

The intuition for this inequality is that if Proposer makes offers with small step size,

he can ensure that each type v accepts a proposal close to min{P(v), 1}, because each
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type v accepts a proposal if and only if it is less than P(v); moreover, as § — 1 the cost
of delay vanishes. Together with P(v) > P(v) > A*(v), inequality (8) implies that if
(R, P) supports a skimming equilibrium then Proposer’s payoff in this equilibrium is
at least U(F') in the patient limit.

It remains to show that Proposer’s payoff in any such equilibrium is at most U(F)
in the patient limit. Suppose not. Then there is ¢’ > 0 and a sequence §,, — 1 such
that for each n there is (R,,, P,) supporting a skimming equilibrium that yields payoff
at least U(F') 4+ ¢’. Let A, (v) be the proposal that is accepted in this equilibrium by
type v and let 7,,(v) be the time at which type v accepts.*? Since A,, is monotonic
and uniformly bounded (as 0 < A, (v) <1 for all v and n), Helly’s selection theorem
implies that there is a subsequence, which we also index by n for convenience, along
which A,, — A pointwise.

We claim A(v) > v for all v < 1. Suppose not. Then there is v < 1 and € > 0
such that for all n large enough, A,,(v) < v —e. Let z,, denote the state (in the sense
described after Definition 1) in which Proposer makes offer A4,(v). Since P, (v) > v,
Proposer could offer A, (v) + £/2 in state z,, and get it accepted by all types in
[v—€/2,v], which have probability at least min{e/2,v — v} f. For § high enough such
an offer is profitable, contradicting that (R, P,) supports a skimming equilibrium.

Since Proposer’s payoff is at least U(F') + €', there must exist v € [2v, min{v, 1}]
and € > 0 such that A(v) = v+e¢ (by the dominated convergence theorem). Choose v,
such that A(v;) = v+ ¢ and such that there is vy > vy — /5 with A(ve) < A(vy). We
can then choose w € (0, ¢) such that A(ve) < vy +e—w. Since v; —e/5 < vy < A(v2),
we can find N such that for all n > N, A,,(v;) > v; + ¢ —w/2 and

v —e/d < Ap(vg) < v+ e — 3w/4d. (9)

Let s, be the state in which Proposer makes offer A,,(v;) in equilibrium (R, P,).
By definition, type vy accepts the offer A, (v1) at time 7,,(v1) < oo (since A, (v1) > 0)
and therefore prefers A, (v;) at time 7,,(v1) over A,(vy) at time 7,(vy). Moreover, the

inequalities in (9) imply that type vy prefers A,(vy) over vy + & — 3w/4. Hence,

uy (Vg + € — w/2,vy) > 6Dy (y) 46 — 3w /4, vy),

42Tf type v never accepts any proposal, we set A, (v) := 0 and 7, (v) := oo.
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which rearranges to yield

5Tn(v2)*Tn(’U1) < uV<U1 + g — W/Q, 'Ul)

< 1.
~ uy(vy + e —3w/4,v1)

But this implies the following bound on R, in state t,(s,) (after proposal A, (v1) in

state s, has been rejected; if the state is limgs, t,(d’) the argument is analogous):

e -
Rulta(s,)) < / w(min{P, (v), 1})dF (v)

v2

+ g7 (v2) =7 (v1) / N u(min{ P, (v), 1})dF (v). (10)

To understand inequality (10), note that for types above vy, an upper bound on

Proposer’s utility is getting min{P,,(v), 1} accepted immediately. Since type vy, and

therefore all lower types, cannot accept before waiting 7,,(vy)—7,(v1) periods, an upper

bound on Proposer’s utility is getting min{P,(v), 1} accepted after 7,(vy) — 7, (v1)
periods.

For any strictly positive integer m, inequality (8) implies that for all integers n

large enough,

tn(5n) -
Rult(s2)) > (1—1/m) / w(min{P, (v), 11)dF(v) — 1/m.

It follows that there exist m and n such that inequality (10) contradicts (8). Q.E.D.

B.3. A Commitment-Payoff Equilibrium

Lemma 7. Suppose ¢* > 0, and that either (i) v < 0 and supp G = [v,0] U [¢*/2, 7]
or (i) v =0 and supp G = [¢*/2,0].** There is a skimming equilibrium in which,
on the equilibrium path, there is a decreasing sequence of proposals culminating in c*,

with Proposer payoff approzimately fj*/2 u(max{v, ¢*})dG(v).

Proof. First, by an argument analogous to Lemma 6, there is (R, P) that supports
a skimming equilibrium on [¢*/2,7]. Second, analogous to Lemma 5, we can use that
(R, P) to construct a skimming equilibrium with the desired properties: just treat

c* /2 here like v in Lemma 5; the only point to note is that because in fact v < 0, no

43 We assume that G has a density bounded away from 0 and oo on its support.
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matter whether hypothesis (i) or (ii) in the lemma holds, we can deter deviations to
any offer in [0, ¢*) by stipulating that any such offer is accepted, with the belief upon

rejection supported on non-positive types and all subsequent offers being 0. Q.E.D.

Proof of Proposition 3. We consider two cases, explaining in each case the beliefs
and behavior off path that support the on-path behavior described in the proposition.

First, consider v < 0. If the first-period offer of 0 is rejected, Bayes rule implies
that Proposer updates to the belief F{, o[ /2,5), Which is the prior’s conditional distri-
bution when excluding types (0, ¢*/2). Continuation play then follows the skimming
equilibrium of Lemma 7. If Proposer makes a first-period offer other than 0, contin-
uation play follows the skimming equilibrium of Lemma 5. It remains only to show
that Proposer has no profitable deviation in the first period. Since Proposer’s belief
when his initial offer of 0 is rejected is Fj, oufer /2,27, it follows from Lemma 7 that
Proposer’s on-path payoff is approximately fcl*/z u(max{v, ¢*})dF(v) + ffu(l)dF(v),
which equals U(F). On the other hand, Proposition 2 implies that deviating to a
first-period offer other than 0 yields a payoff no more than approximately U(F'). As
U(F) < U(F), no such deviation is profitable.

Second, consider v > 0 (and correspondingly v < 1/2). If the first-period offer of
0 is rejected, Bayes rule implies that Proposer updates to the belief Fj.. /o 5. Contin-
uation play then follows the skimming equilibrium of Lemma 5 applied to this belief,
i.e., replacing F' in that lemma with Fj./25). If Proposer makes a first-period offer
other than 0, continuation play follows the skimming equilibrium of Lemma 5 with
the original belief F'. It follows from an essentially identical argument to that in the

previous paragraph that no first-period deviation is profitable for Proposer. Q.E.D.

B.4. Is Leapfrogging Necessary?

Proof of Proposition 4. Towards contradiction, suppose there is a sequence of
0, — 1 and corresponding skimming equilibria such that Proposer’s payoff converges
to U(F'). For each n and v, let B, (v) denote the expected discounted proposal that
type v accepts: B, (v) := E[é'a;], where the expectation is taken over the accepted
proposals and agreement times for type v given the equilibrium strategies. Since B,,
is monotonic (because the corresponding mechanism is IC) and uniformly bounded,
Helly’s selection theorem implies that there is some B and a subsequence of B,,, which

we also index by n for convenience, along which B,, — B pointwise and in L'-norm.

49



Since interval delegation is (essentially) uniquely optimal, it must hold that (up
to measure zero sets) B(v) = 0 for v € [v,¢*/2), B(v) = ¢* for v € (¢*/2,c¢"),
B(v) = v for v € (¢*,min{7,1}), and B(v) = 1 for v € [1,7]. (Suppose not. B
corresponds to some feasible mechanism in the static problem and therefore, by the
essential uniqueness assumption, yields payoff at most U(F) — e for some £ > 0. Since
B,, — B in the L'-norm, for all n large enough Proposer’s payoff in the equilibrium
corresponding B, is at most U(F') — /2, a contradiction.)

For any ¢ > 0, there is N such that for all n > N, B,(v) < ¢ for all v €
[v,¢*/2 —¢]. Then for all n large enough, there is a history at which Proposer’s belief
is Fy,q for some cutoff ¢ > ¢*/2 — ¢ (since on-path offers are accepted by upper sets)
and Proposer’s payoff in the continuation equilibrium is at most u(e). But, for any
e’ € (0,c¢), Proposer can deviate to make decreasing offers on a fine grid between
¢’ and ¢ such that all types in [¢/,¢] accept one of the offers close to their type or
higher, and there is approximately no cost of delay as § — 1.** Proposer’s payoff
from this deviation is strictly greater than u(e) for £ and ¢’ small enough and § large
enough, contradicting Proposer’s payoff in the continuation equilibrium being at most
u(e). Q.E.D.

*One can verify that type v > 0 strictly prefers any action in (v —vv1—0,v+vV1—14) to
action v next period. Therefore, if Proposer makes decreasing offers between &' and ¢ on a fine grid
with diameter £’v/1 — §, every type in [¢/, ] will accept one of the offers close to its type or higher

in any best response. Moreover, agreement with those types is reached within at most E,C\;% +1

— 1 as 6 — 1, Proposer incurs essentially no cost of delay for types in

7
. i+1
rounds. Since 5(5’“*5 )

[€',c] as 6 — 1.
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C. Supplementary Appendix (For Online Publica-
tion)

This supplementary appendix provides proofs for the lemmas stated in Appendix
B.2. To reduce notation, we denote S(v) := P(t(v)).

Lemma 8. For any v and z < y € T(v), we have P(z) < P(y).

Proof. Suppose that there are v and z < y such that P(z) > P(y). We prove that
y ¢ T(v). Since P is increasing, it is constant on [z,y]; call that value p. It follows
that

<

—
S
=

v) — F(y)] + 6 R(y)
<u(p)[F(v) — F(y)] + 0 {u(p)[F(y) — F(2)] + R(2)}
<u(p)[F(v) — F(2)] + 6R(2),

where the first inequality is because the payoff from any type in [z, y] is at most u(p)
(and hence R(y) — R(z) < u(p)[F(y) — F(2)]). Thus, y ¢ T'(v). Q.E.D.

Below, we will use the fact that T" is upper hemicontinuous. This follows from the
generalized theorem of the maximum in Ausubel and Deneckere (1989b, p. 527). The
theorem is applicable because: (i) the maximand function u(P(y))[F(v) — F(y)] +
dR(y) is upper semicontinuous as a function of y for every v, which in turn is because
P is upper semicontinuous, and u and F are continuous and increasing on the relevant
range {y : y < v and P(y) < 1};* and (ii) for any sequence v, — v, the maximand

function converges uniformly.

Proof of Lemma 5. Step 1: We begin by specifying beliefs and strategies:

e 1 is derived from Bayes’ rule whenever possible; if at history h = (h/,a) a

probability 0 rejection occurs, p(h) puts probability 1 on 7 if v < 1/2 and
probability 1 on 0 if ¥ > 1/2 (in the latter case, v < 0 by assumption);

e At any history h = (R, a), any Vetoer type not in the support of Proposer’s

current belief plays an arbitrary best response; type v > 0 in the support accepts

45 There is no loss in restricting attention to this range by a similar argument to that in the proof
of Lemma 8.
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a if and only if @ € [0, P(v)]; type v < 0 in the support accepts if and only if
uy(a,v) > uy(0,v);

e Proposer’s first offer is S(v). To describe the rest of Proposer’s strategy, consider
any history h = (h/, a). Given Vetoer’s strategy and the belief updating specified
above, if Proposer holds a non-degenerate belief upon rejection of a then this
belief equals [}, 4 for some d. We stipulate that if a = P(d) = P(d), then
Proposer offers S(d); if a = P(d) > P(d), then Proposer offers limgy S(d');
if a € [limgq P(d'), P(d)), then Proposer randomizes between limgg S(d’) and
S(d) so that type d is indifferent between a in the current period and the lottery
in the next period; and for any a ¢ [P(v), P(v)], Proposer offers S(d). Finally,
whenever Proposer’s belief is degenerate on 2 > 0 (z € {0,7}), Proposer offers
min{2x, 1} in all future periods.

Observe that at any history, Proposer’s subsequent on path offers are decreasing,
either trivially if the current belief is degenerate, or for any non-degenerate belief
because the belief cutoffs are decreasing by definition and P and t are increasing.

Step 2: We verify that Proposer is playing a best response to Vetoer’s strategy
given beliefs p. As this is obvious whenever he has a degenerate belief, assume he has
a non-degenerate belief. As noted above, any such belief is of the form Fj, 4 for some
d. Proposer’s strategy prescribes some randomization (possibly degenerate) between
S(d) and limgq S(d').

We first claim that S(d) is an optimal proposal. Given Vetoer’s strategy, R(d) is
an upper bound on Proposer’s payoff. Furthermore, it follows from Lemma 8 that
Vetoer’s strategy has all types above t(d) accepting S(d) and all types strictly below
rejecting. The claim follows.

We next claim that limg+4 S(d’) is also an optimal proposal. Since T is upper hemi-
continuous, limggt(d’) € T(d). Hence, given Vetoer’s strategy, P(limggt(d’)) is an
optimal proposal. It therefore suffices to show that limgg S(d') = P(limgrg t(d')), or
equivalently, limgyq P(t(d')) = P(limg1qt(d')). Note that limgg P(¢(d')) < P(limgyqt(d'))
because t and P are increasing. But if limgyq P(t(d’)) < P(limgqt(d’)) then con-

tinuity of R and u and strict monotonicity of v in the relevant range imply the
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contradiction

R(d) = u(lim P(t(d")))[F(d) — F(limt(d"))] + §R(lim t(d"))

d'1d d'1d d'"1d
< u(P(m ) [F(d) - F(lim t(d)] + 6R(m ) = R(d).

All that remains is to verify that at a history h = (h/, a) with a € [limgg P(d'), P(d)),
there is a randomization between S(d) and limg+4 S(d') that makes type d indifferent
between a in the current period and the lottery in the next period. To confirm this,

note that since P is right-continuous and P(v) > v for any v, we have

uv(g’rﬁ P(d'),d) > uy(a,d) > uy(P(d),d).
The existence of a suitable randomization now follows from continuity of uy (-, d) and
Equation (7).

Step 3: We verify that Vetoer is playing a best response at each history. Consider
any history (h,a) with u(h) = Fj, 4. Since types outside of the support of Proposer’s
belief play a best response by assumption, we only consider types in [v, q].

e If a > P(q), Vetoer’s strategy prescribes that no type below ¢ accepts, and

Proposer will propose S(q) next period. Since type ¢ is indifferent between
P(q) in the current period and S(q) next period, and S(q) < P(q) < P(q) < a,
type ¢ prefers S(q) next period to a in the current period. The same holds for
all lower types, and hence Vetoer is playing a best response.

o If a <0, then: (i) it is clearly a best response for all types v > 0 to reject; and
(ii) types v < 0 accept if and only if they prefer a to 0, which is a best response
because Proposer will never make a strictly negative offer in the continuation
equilibrium.

e If a is positive but below the range of P, all types v > 0 accept. After a
rejection, Proposer will either perpetually offer 0 or 2v, yielding a continuation
payoff of 0 to all types, and so it is a best response for any type v > 0 to accept
a.

e Otherwise, a is between P(v) and P(q).

If a = P(d) = P(d) for some d < ¢, Vetoer’s strategy prescribes that all and
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only those types above d accept.S

On path, Proposer will propose S(d) next
period followed by lower offers; since type d is indifferent between a in the
current period and S(d) next period, and all future offers are below a, SCED
implies that it is a best response for all higher types to accept and for all lower
types to reject. Hence, Vetoer is playing a best response.

If there is d < ¢ such that a = P(d) > P(d), Vetoer’s strategy prescribes that
all and only those types above d accept. Proposer will propose limgqq S(d')
next period, followed by lower offers. Since type d’ is indifferent between P(d’)
in the current period and S(d') next period, continuity of u implies that type
d is indifferent between limgqg P(d’) = P(d) = a in the current period and
limg+q S(d') next period. Hence, Vetoer is playing a best response.

If there is d < ¢ such that a € [limgyq P(d'), P(d)), Vetoer’s strategy again
prescribes that all and only those types above d accept. Proposer will randomize
next period between limgq S(d’) and S(d) to make type d indifferent between
accepting a or getting the lottery next period. Therefore, Vetoer is playing a

best response. Q.E.D.

Proof of Lemma 6. Step 1: Suppose v > 0. We claim that there is € > 0 such that
(R, P) given by

R(v) := u(20)F(v)

P(v) := v+ /02 — 46v(v — )

supports a skimming equilibrium on [v,v+¢]. Plainly, R and P are continuous, given
that F is continuous. Also, P is increasing and hence P = P. Some algebra confirms
that R(v) is the value from securing acceptance from all types below v on action 2v,
while P(v) is the action that makes type v indifferent between accepting that action
now and getting action 2v in the next period. Therefore, it is sufficient for us to show
that there is € > 0 such that for all v € [v,v + €] the unique maximizer of the RHS
of Equation (6) is v, which implies ¢(v) = v.

To that end, observe that the derivative of the objective function in Equation (6)

46 Tf there are multiple values of d satisfying a = P(d), all types above the lowest one accept.
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with respect to y is

-/

U (P(y)P (y)[F(v) = Fy)] — u(P(y)f(y) + ou(2v) f (y)- (11)

Since 0 < u(2v) < u(P(y)) and f is bounded away from 0, the sum of the last two
terms in expression (11) is strictly negative and bounded away from 0. Since u/(P(y))
is bounded (by concavity), P (y) is bounded (as v? — 46v(v — v) > 0 for all v), F
is continuous, and v,y € [v,v + €], the first term in expression (11) goes to 0 as
e — 0. It follows that there is € > 0 such that expression (11) is strictly negative
for all y € [v,v + €], and hence the maximum of the RHS of Equation (6) is attained
uniquely at ¢(v) = v whenever v < v + €.

Step 2: Suppose (R,«, P,~) supports a skimming equilibrium on [v,v*], where
0 < v < v* < v We will show that there is (R, P) that supports a skimming
equilibrium on [v, ] with the property that P(v) = P,«(v) and R(v) = R, (v) for all
v € [u,vY].

Pick v" € (v*, 7] as large as possible such that
u(D[F () = F(v")] < (1/2)(1 = )R- (v"). (12)

Note that v’ is well-defined because F' is continuous and R,«(v*) > 0 (this inequality
holds because of v* > v and the property noted at the end of the paragraph following
Definition 1). Moreover, letting f denote an upper bound for f, it holds that

o e > WAL= DR () (13)

- u()f

We extend R, to R, defined on [v, v'] by setting R, (v) := R,«(v) for v € [v,v*],

and for v € (v*,v'],

Ru(v) == max {u(Por (1) [F(0) = Fy)] + R0 (1)}
and define t,,(v) to be the largest value in the argmax correspondence. Observe
that P~ is upper semicontinuous (since P« is right-continuous by assumption, and
hence P, is right-continuous) and R, is continuous; hence, R, (v) and t,(v) are
well-defined. We extend P,« to P, defined on [v, '] by setting P, (v) := Py (v) for
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v € [v,v*], and for v € (v*, '] by letting P, (v) be the largest value satisfying
uy (Py(v),v) = Suy (Pt (v)),v).

So (R, P,) satisfies Equation (7). We can apply the generalized theorem of the max-
imum in Ausubel and Deneckere (1989b, p. 527) analogously to the discussion after
Lemma 8 and conclude that R, is continuous and 7}, is non-empty and upper hemi-
continuous. Therefore, t,, is upper semicontinuous and, since it is increasing, right-
continuous. These properties of ¢,, and the hypothesis that P, is right-continuous

imply that P, is right-continuous. (R, P,) also satisfies Equation (6), i.e.,

Ry (v) = max {u(Py(y))[F(v) — F(y)] + 6Rw(y)}

y€[v,v]

for all v € [v,v], because for all y € [v*, ],

u(Py(y))[F(v) = F(y)] + 0Ru (y)
<u(1)[F(v) — F(y)] + 6 Rw (y)
<(1/2)(1 = 8) Ry (v") + 0 Ry (y)
<(1/2)(1 = 0) Ry (y) + 0 R (y)
<Ry (v).

Here the second inequality is because the choice of v’ satisfies inequality (12) and the
second inequality is because R,«(v*) = R, (v*) and R,/ is increasing. Therefore, the
maximum is attained for y € [v,v*) and the claim follows since R, (y) = R,~(y) for
any such y.

We have established that (R,, Py) supports a skimming equilibrium on [v, v'].
Since R, is increasing, it follows from inequality (13) that a finite number of repeti-
tions of this argument extends (R,«, Py+) to the entire [v, 7] interval.

Step 3: By an approximation argument analogous to that in Ausubel and De-
neckere (1989b, Theorem 4.2), there exists (R, P) that supports a skimming equi-
librium on [v,7] if v = 0; we omit details. The case of v < 0 is handled by setting
R(v) = 0and P(v) = 0 for all v < 0, and pasting that to a solution when we take v = 0
and set the distribution on [0, 7] to be the conditional distribution Fjy . Q.E.D.
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