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NILPOTENT ALGEBRAS, IMPLICIT FUNCTION THEOREM,
AND POLYNOMIAL QUASIGROUPS

YURI BAHTURIN! AND ALEXANDER OLSHANSKII?

ABSTRACT. We study finite-dimensional nonassociative algebras. We prove the
implicit function theorem for such algebras. This allows us to establish a corre-

@\ spondence between such algebras and quasigroups, in the spirit of classical corre-

N spondence between divisible torsion-free nilpotent groups and rational nilpotent

g Lie algebras. We study the related questions of the commensurators of nilpotent

B0 gfoulios, filiform Lie algebras of maximal solvability length and partially ordered

: algebras.
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INTRODUCTION

We consider nilpotent algebras over fields. The algebras need not be associative
or Lie.

In the first part of the paper (sections 1, 2), we observe that a finite system of
equations over an algebra A has well defined Jacobian matrix J. If A is finite-
dimensional and J has maximal rank, then the implicit function theorem holds.
The resulting polynomial function is defined everywhere, not only in the neighbor-
hood of zero.

Polynomial functions define new operations on A, which we call (derived) poly-
nomial operations. Some classical examples of such derived operations, turning A
into a group, include so called “circle product” aob = a+ b+ ab, if A is associative,
and the product given by the Baker - Campbell - Hausdorff formula, if A is a Lie
algebra.

In the case where A is a more general nonassociative algebra, any polynomial
operation o turns A into a quasigroup or a loop. One of our main results in Part I
of this paper, see Theorem 2.4, states that the original operations of addition and
multiplication in A can be, in a sense, restored from the derived operation o. So
the results of Part I can be viewed as a far reaching generalization of the classical
correspondence between torsion-free nilpotent groups and nilpotent Lie algebras.

In the second part, dealing with the most popular case of the above connection,
we discuss in depth three topics concerning the classical Malcev correspondence
between rational nilpotent Lie algebras and divisible torsion-free nilpotent groups.

Firstly, we apply this connection to the computation of the group of commen-
surators in finitely generated nilpotent groups.

Secondly, we look at the groups of polynomial mappings of nilpotent power-
associative algebras. Their corresponding Lie algebras provide examples of nilpo-
tent filiform Lie algebras of interest in Differential Geometry.

Lastly, in the concluding sections, we look at the the partial orderings of finite
dimensional algebras. We show that in the case of nilpotent Lie algebras, they
are closely connected to the orderings on their corresponding divisible torsion-free
nilpotent groups. In the case of general ordered algebras, we introduce a new
invariant: the rank of the maximal partial order on an algebra. For solvable Lie
algebra this rank is shown to be equal to the ordinary rank, that is, the dimension
of a Cartan subalgebra.

The orderings on Lie algebras have been introduced and studied by V. Kopytov
[KVM].

1. EQUATIONS IN NILPOTENT ALGEBRAS AND POLYNOMIAL QUASIGROUPS

1.1. Polynomial functions on algebras and Jacobians. An arbitrary algebra
A is a vector space over a field F with bilinear operation A x A — A. An absolutely
free algebra F(X) is the formal linear span of all so called nonassociative monomi-
als (with parentheses) in the alphabet X, where the product of two monomials u
and v is the monomial (u)(v). Obvious parentheses are usually omitted, so instead
of ((1’1)(1’2))(1'2) we write (I‘ll’g)IQ.
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For a nonassociative monomial u = u(zy,...,x,) € F(X), the degree is defined
as the length of its associative support, that is, the word in X obtained by dropping
the parentheses in u. So, deg(z) =1 for x € X, and by induction, deg((u)(v)) =
degu + degv.

Given a monomial u = u(xy, .., z,) € F(X) and the elements ay, ..., a, € A, the
value u(ay,...,a,) € A of u(xy,..,x,) is defined by an obvious induction on the
degree deg(u), as soon as the value of z; is set to be a;, i = 1,...,n. Once the
values of the monomials are defined on all a1, as,--- € A, the value f(aq,...,a,)
of any polynomial f(xy,...,x,) € F{X} is well defined. Given an algebra A
over F and ay,...,a, € A, the map f(xy,...,x,) — f(ai,...,a,) is the unique
homomorphism of algebras @ : F(z1,...,x,) — A extending the set map ¢ : 1 >
Ay, ..., Ty, > ap. If ai,... a, generate A, then ¥ is a homomorphism onto, and
A F(zy,...,x,)/ ker .

If the value of every monomial of degree ¢+ 1 in an algebra A is zero, then A is
called a nilpotent algebra of class < c. The linear span of the values of monomials
of degree i in A is denoted by A’. So the nilpotency class of A is ¢ if At = {0},
but A¢ # {0}.

We will also consider polynomial functions f : A™ — A with coefficients in A,
defined by algebraic expressions. For example, (z,y) — a + bx — 2y + (yc)z + xy,
where a, b, c € A, is a function in two variables.

Formally speaking, a function f is an element of the free product F(X )+ A. The
latter free product is an algebra generated by the subalgebra A and the subset X
such that the following holds. For any algebra B, it is true that any homomorphism
A — B and any mapping X — B uniquely extend to a homomorphism F(X)xA —
B. Such free products always exists for algebras over a field (See [L|.) Moreover,
one can take free products in any variety M of algebras containing the algebra A,
where a variety is a class of algebras defined by a set of laws (e.g., the variety of
associative algebras over a field F'). In this case, the free factor F(X) is a free
algebra in the variety.

Every function f is the sum of the monomials involving coefficients from A and
an element v from F(X). Such presentation is not unique, but v is a uniquely
defined element of F(X), because we have f +— v under the homomorphism A —
{0}, x> x for all x € X. If the variety M contains a 1-dimensional algebra with
zero multiplication, then the coefficients \; of the linear part \jxq + - - -+ A\, x,, of
v are the uniquely defined elements of the field F' (no matter whether F is infinite
or not). To see this, one can choose in M an algebra B which is a vector space
over F with trivial multiplication and {ej, es, ...} and consider a homomorphism
A—= {0}, zi—e,i=1,2,....

It follows that for a family of polynomial functions fi, .., f, of m variables on a
nilpotent non-zero algebra A we have a well defined r x m matrix J = [a;;], where
the element «;; € [F is the coefficient at x; in the linear part of the function f;. We
will call this matrix the Jacobian matrix of the set (fi,..., f;).

Remark 1.1. We use the nilpotency in the definition of J, since every nonzero
nilpotent algebra contains a 1-dimensional subalgebra, with zero multiplication.
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Otherwise, one can meet impediments. For example, in the category of commuta-
tive algebras with 1, the multiplication by a nonzero scalar can coincide with the
multiplication by an element of the algebra A.

A solution to a system

(1) filzy, .. .,xp) =0, fulzr, ..., 2m) =0

is an m-tuple (29,...2%) € A™ such that f;(z,...,2°)=0fori=1,....r, ie.
every f; maps to zero under the homomorphism F(X)* A — A, which is identical
on A and substitutes x; — 29,... 2, — 22..

1.2. Nonsingular square systems of equations. A system (1) is called “non-
singular square” if r = m and its Jacobian matrix J is nonsingular.

The following Proposition 1 and its proof mimic A. L. Shmelkin’s result in [SHM]|
about the equations in the nilpotent groups. See §1.2.

Proposition 1. Every nonsingular square system of polynomial equations with
coefficients in a nilpotent algebra A has a unique solution in A.

Proof. Let ¢ denote the nilpotency class of A. If ¢ = 1, i.e. A is equipped with
zero multiplication, then we have a nonsingular square system of linear equations

a1 T+ -+ Ty = Uy

@

QAp1T1 + -+ QT = Upy,

where u1, ..., u,, are vectors from A and «a;; € F. Since the unknowns z,..., 2,
are also vectors from A, the system (2) splits into d systems (d = dim A < 00) of
ordinary numerical systems each with the same nonsingular matrix of coefficients
[a;;]. Thus, there is a (unique) solution to (2), hence to (1), if ¢ = 1.

If ¢ > 1, then by induction, there is a unique solution of (1) modulo A°. Let
(29,...,2%) be a preimage of the solution mod A®. Then f;(2?, ..., 20) = ¢,
where ¢; € A, i=1,...,r.

Let (y?,...,42) be the solution in A¢ to the following system with write-hand
sides in A%

Ap1T1 + -+ QT = Oy
Then (29 — 49, ...,2% —42) will be a solution to (1). Indeed, since all y? € A°
are annihilating, this follows because the substitution z{ + 2% — 49 i =1,... m,
only changes the linear part of each equation.

As for the uniqueness, it follows by a similar inductive argument. Assume there
is uniqueness modulo A¢. Thus, the difference of two solutions consists of anni-
hilating vectors. In this case, the difference satisfies a homogeneous system with
nonsingular matrix [a;;]. It follows that the difference equals zero. O

1.3. Implicit function theorem for nilpotent algebras. Now we consider a
system of r polynomial equations in m variables (1) under the assumption that
r < m and that the Jacobian matrix of (1) has rank r. Passing to the reduced
row-echelon form of the Jacobian matrix, we may assume that the system has the
form
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{z; = Fi(x1,...,xp)i=1,...,71},
where x1,...,x, are the pivot variables in the Jacobian part of the system. It is
possible that the pivot variables still enter the F;’s, but only to the monomials of
degree > 1, with respect to the variables and the coefficients from A.

On the next step, we replace each occurrence of each pivot z; in each Fj, ¢, 5 =
1,...,7, by Fi(z1,...,2,). As a result, on the right side of the ith equation we
will obtain a new polynomial G;(x,...,x,,), where the pivot x; enters only the
monomials of degree > 2. The left hand sides remain intact:

{oi= Gilor, o) i =1 1)

Clearly, every solution of the first system will be a solution of the second one. The
Jacobi matrix does not change. Repeating the same argument ¢ — 1 times, we
obtain a system

(3) {:L’Z-:Hi(xl,...,xm)\i:1,...,7"},
where the right hand sides do not have terms containing pivot variables, except
for the terms of degree ¢ + 1.

As before, every solution of the original system is the solution of the latter one.
By Proposition 1, both systems have a unique solution if the values of the free
variables are fixed. Thus the solutions of the latter systems will be the solutions
of the original system, meaning that the systems are equivalent. Therefore the
following is true.

Theorem 1.2. If A is a nilpotent algebra and the Jacobian matrixz of the system
(1) has maximal rank r, then one can express the solutions as polynomial functions
of m —r free variables defined on the entire algebra A.

Moreover, if A has finite dimension d, then the set of solutions of this system is
an affine space of dimension d(m —r).

Proof. The values of the right-hand sides of (3) depend on the choice of values for
free variables in the (m — r)th direct power of A. So the set of solutions form
a graph of a polynomial mapping defined on this power, which has dimension
d(m — r) over the ground field F. The theorem is proved. O

The set of solutions can be found in an effective way, by subsequently finding
solutions mod A%, mod A3, and so on, for non-singular square systems or by
iterative computation of functions H; (see (3)) if the Jacobian matrix has maximal
rank.

1.4. What if A is not nilpotent? Being nilpotent algebra in Theorem 1.2 is
essential, as shown by the following. Recall that the multiplication algebra M(A)
of an algebra A is an (associative) subalgebra of the algebra of linear operators on
the vector space A generated by the left and right multiplications x +— ax, z — xa,
where a,z € A.

Theorem 1.3. For any non-nilpotent finite-dimensional algebra A, there is an
I-variable equation f(x) = 0 with Jacobian matriz J = [1] but without solutions in

A.
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Proof. Tt is sufficient to produce an equation without solutions in a homomorphic
image of A. Let us view A as a left module over its multiplication algebra M (A)
and consider a chief (Jordan-Holder) series in A. Since A is not nilpotent, there is a
factor U/V where the action of M(A) is nontrivial. Without any loss of generality,
we may assume that V' = {0} and A/U is nilpotent (could be {0}).

There is u € U and a € A such that either au or ua is nonzero. Assume au # 0.
Since U is a simple M (A)-module, there is A € M(A) such that u = A(au). The
kernel of the linear map g : U — U given by g(z) = x — A(ax) contains u, hence
nonzero. Then Im (g) # U, and there is v € U such that for no x € U we have
g(x) = v. Thus the equation z — A(az) = v has no solutions in U. Note that
A(az) is the sum of products involving both the variable z and at least one factor
a from A. So the function A(az) — v has zero Jacobian matrix, while the Jacobian
matrix of the function f(x) =2 — A(ax) — v is [1].

Suppose now there is a solution y € A of the equation f(x) = 0 outside of U.
Because A/U is nilpotent, it follows that there is k such that y € (A¥+U)\ (A1 +
U). At the same time, both A(ay) and v belong to A¥*1 + U. Thus y # A(y) + v
and y is not a solution to our equation, as well. O]

A simple example is the following.

Example 1.4. Let L be a two-dimensional Lie algebra L = (e, f | ef = f). Then
the equation

r+xe=f

has no solutions in L.

1.5. Implicit functions and quasigroups. Recall the most-known example of
an implicit function in (nilpotent) algebras. Let F be a field of characteristic 0 and
A(X) be the free associative algebra over F with free basis X = {ay,...,a,}. Every
element of A(X) is a unique linear combination of noncommutative monomial in
X. The algebra L(X) generated by the set X with respect to the commutator
operation (u,v) = uv —vu is a free Lie algebra with basis X (|Bou], 3.1, Theorem
1), and so L(c, X) = L(X)/L“T(X) is a free nilpotent Lie algebra of nilpotency
class ¢. The exponent expx = Y .- 2"/i! has finitely many terms in the algebra
A(X) factorized by all monomials of degree > ¢ + 1, and the equation expz =
exp x exp y with Jacobian matrix [—1,—1, 1] has a unique solution z for arbitrary
x,y € L(e,X). This is given (by a finite version of) the Baker - Campbell -
Hausdorff (BCH) formula (|Bou], 6.4)

(1) == loglexprexpy) = -+ + 5{ey) + 150 (0:9) = 500 (5.9) + -

The mapping (z,y) — z = z oy given by (4) defines a group operation o on an
arbitrary nilpotent Lie algebra L (|Bou], 8.3).

A weaker generalization is valid for the polynomial functions p: Ax AxA — A
in 3 variables defined on arbitrary nilpotent algebra A over a field F. Assume that
the Jacobian matrix [a, 8,7] of the function ¢(x,y,2) : A x A x A — A has all
non-zero entries. Then by Theorem 1.2, the equation ¢(x,y, z) = 0 can be resolved
with respect to each of the variables, e.g. z = Ax+puy+ f(z,y), where \, u # 0 and
the polynomial f does not contain the monomial z and y with coefficients from F.
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Then the obvious change of variables makes A = ¢ =1, and the function ¢ define
the binary operation on A:

(5) aocb=a+b+ f(a,b)
Let Q(A) be the set A with the operation o.

Proposition 1.5. The operation o on A given by formula (5) makes Q(A) a
quasigroup, that s, each equation of the form aoy = c and xr ob = c has a unique
solution in A, for any a,b,c € A.

Proof. Each of the equations a oy = ¢ and x o b = ¢ has a unique solution by
Theorem 1.2 since the Jacobian matrix of the equation z — z — y — f(z,y) is
[—1,—1, 1], and so every variable can be selected as the pivotal. O

From now we will assume that the polynomial f(x,y) defining the operation (5)
contains no constants from A, that is, belongs to the free algebra F(z,y).

Remark 1.6. This assumption immediately implies that every subalgebra A" C
A becomes a subquasigroup of Q(A), because o is a derived operation, i.e. the
composition of the defining operations on A. Also, any algebra homomorphism
A — B is also a quasigroup homomorphism Q(A) — Q(B).

Proposition 1.7. If the polynomial f(x,y) from (5) has no monomials depending
on one variable only, Q(A) is a loop in the sense that it has a neutral element 0.

Proof. Indeed, under the assumption of the statement, f(a,0) = f(0,a) = 0 for
every a € A, i.e. ao0=00a=a by (5). O

For the detailed treatment of quasigroups and loops see [Bruck|.

An algebra (a quasigroup, loop, group,...) A is called relatively free or free in a
variety V of algebras (quasigroups,...) if it belongs to V and has a set of generators
X (free basis) such that every mapping X — B to arbitrary B € V extends to
a homomorphism A — B. It follows from Birkhoff’s theorem that A is relatively
free iff every mapping X — A extends to a homomorphism A — A.

Proposition 1.8. Suppose a nilpotent algebra A over a field F is relatively free
with a free basis X, then the subquasigroup Q(X) generated by X in the quasigroup
(loop) Q(A)) defined by (5), is relatively free, too.

Proof. Since any mapping o : X — A extends to a homomorphism of algebras
@: A — A and @ is also a quasigroup homomorphism Q(A) — Q(A) by Remark
1.6, every mapping X — Q(A) (in particular, X — Q(X)) extends to a quasigroup
homomorphism, which completes the proof. O

Examples. (1) If A is a free nilpotent Lie algebra of nilpotency class ¢ with a
basis X, over the field of rational numbers, then Q(X) is a free nilpotent group of
class c¢. For other nilpotent varieties of algebras Lie, the group varieties obtained
by (4) are described in [Ba, Chapter §|.

(2) The same formula (5) sets a correspondence between the real (nilpotent)
Malcev algebras and analytic Moufang loops [Kul.

(3) Mostovoy, Shestakov and Perez-Izquierdo ( [MSPI1|) prove that in the free
nilpotent, nonassociative algebra with free generators z,y, the loop generated by
x,y with respect to the operation x xy = z 4+ y + xy is a free nilpotent loop.
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Remark 1.9. Given a set S and natural numbers m, n, one can consider multiple
operations

(6) w:SX--x8S—=>8x---x8.

In the case where S = A is a nilpotent algebra, such operations appear while
solving systems of polynomial equations (1) with Jacobian matrix of maximal rank.
Namely, given such a system, according to Theorem 1.2, we can write the solutions

to (1) in the form (3). Giving z,11,...,2, values in S, we compute the values
for z1,..., 2, in S, using (3). This provides us with an operation A x --- x A —
—_——
m-—-r

Ax---xA If m=2,r=1 (or m=2r) and there are two disjoint non-singular
—_—
1 x 1 (resp., r X r) submatrices in J, then we have two mutual inverse polynomial
mappings A — A (resp., r-th power of A to itself). In the case m = 3, r = 1,
we obtain an operation A x A — A, considered above. An important case of
polynomial mappings m = 2, r = 1 is treated in Section 3.4.

Thus, we get a large family of quasigroups and their generalizations depending
on the choice of A and the choice of polynomial operations. If F is a finite field,
they might be interesting for the Cryptography (see, for instance, [G], [CGV]).

2. RECONSTRUCTION OF ALGEBRAS

2.1. Quadratic part of the operation o. The function f(z,y) from (5) has
quadratic part kxy + lyz + ma® + ny?, where k,l,m,n, € F. In this section, we
want to simplify this quadratic part, that is, to derive a new operation with a
simpler quadratic part, using o and the multiplication by scalars from F. This
technical result is used in the proof of the main Theorem 2.4 in the next section.
Thus, A is a nilpotent algebra of class ¢ > 2, and we have

(7) aob=a+b+ kab+ lba + ma®+nb* + ...,
where the dots here and everywhere in this section are used for the monomials of
degree > 3.

We will assume in this section that the ground field F has at least 3 elements,
kE#1 and if m=n =0, then k # —I.

Lemma 2.1. Under the above hypotheses, there is a derived operation a#b =
a’?+ ... for o and the scalar multiplications.

Proof. At first, we want to find a derived operation for (7), where one of m, n is
nonzero. Since we can multiply by any scalars, any a xb = Aa, A € F, is a derived
operation. Now if aob = a+b+kab+1ba+. .., then the following derived operation
for o:

a#tb = (aob)o(—a) =b+ (k—1)ab+ (I — k)ba — (k +1)a® + ...

has k + [ # 0 as a coefficient of a?.
So we may assume that m # 0, the case n # 0 being similar. We set ug = a and
Ugp1 =us00,s=1,2,.... Then u, = a + sma® + .... Indeed, by induction,

Usi1 = us00 = (a+sma*+...)00
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=a+sma’+0+m(a+sa®)’ +---=a+ (s+1)ma*+...,
as claimed.
Then consider

vy = ug o (—a) = (a+ sma® +...) o (—a)
=a+sma®—a+ (—k—1l+m+n)a®+--=(s+1)m—k—1l+n)a®+...
Since m # 0, one of (sm —k —1+n) or ((s+ 1)m — k — [+ n) is nonzero. For
instance, one of (—k — 1+ n)a®> + ... or (m —k — [+ n)a® + ... is a derived

operation. Thus, multiplying by a nonzero scalar, we can see that a®> + ... is a
derived operation. U

Lemma 2.2. There is a derived operation
(8) a*b=a+b+kab+lba +nb*+ ..., where k # +I

Proof. Lemma 2.1 and multiplication by ¢ € [ provide us with a derived operation
ta® +.... Now

(aob)o(ta* +...) = (a+ b+ kab + lba + ma® + nb?®) + ta®
+m(a + b+ kab + lba + ma® + nb*)* + ...

(9) =a+b+ (k+m)ab+ (I +m)ba + (2m +t)a* + (n +m)b* + ...
If char (F) = 2, then choosing ¢ = 0 we get rid of m and still have k + m #
+(l+m).

Now assume char (F) # 2. If t = —2m, then setting ¥’ = k+m, I’ = + m and
n' =mn+ m we turn (9) into

axb=(aob)o(=2ma*+...)=a+b+kab+1Uba+nb*+...

Although &' # I, we might have k' = —I’. So we treat this case separately. Let us
assume k +m = —l —m and choose t = —m in (9). Then we get

a$b = (aob)o(—ma®+...) =a+b+Kab+1'ba+ma*+n'b’+ ...
Next we create a desired operation a * b = (a$b) o (—2ma? + ...). In this case,

axb=(a$b) o (—2ma® +...) = a + b+ K'ab + U'ba + ma® + n'b* — 2ma*

+m(a+b+Kab+1'ba +ma®> +n'b*)* + - =a+b+k'ab+1"ba +n"b* + ...,
where £/ = k+2m = —l —m+2m = —l +m and —I" = —] — 2m. Since we
assume m # 0, we have that k" # —I”. We still have k" £ [”, and so the lemma is
proved. O]

Lemma 2.3. There are derived operations a$b = a + b + kab + lab + . .., where
k # <1, and a#b = kab + lba + ... with k # +l.

Proof. Lemmas 2.2 and 2.1 provide us with the following operation
(axb)o(—nb*+...) =a+b+kab+lba+nb*>—nb*+---=a+b+kab+lba+...

Now we can get rid of the linear part, as follows. First, we assume that F' has
more than three elements. We pick 0 # p € F and consider the derived operations

(—pa)$(—pb) = —pa — pb + p?kab + p2lba + . . .,
p(a$h) = pa + pb + pkab + plba + . . .
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and their derived operation
((=pa)3(—pb))$(u(ash))

= (p+ p®)kab + (p + p*)lba — (k + )p*(a® + ab + ba + b*) + . ..

= (puk — p2l)ab + (ul — p?k)ba — (k + Dp*a® — (b + Dpb* + .. .,
that after division by u, has the form

alb = (k — pl)ab + (I — pk)ba — (k + Dpa® — (K + Dpb* + . ..

It now follows by Lemma 2.1 that we can form a derived operation
((a|b)|(k+Dpa®+ .. |(k+Dub? +...) = (k—pl)ab+ (I — pk)ba = kab+Iba+ . . .,

where k = (k— pul) and [ = (I — pk). Now, considering k # +l, we have that k = [
implies ; = —1 while k = —I implies u=1. So if we take any u # +1, we arrive
at a derived operation of the form #, as in the formulation of the lemma.

In the remaining case ' = Z3 (or just if char (F) # 3), we proceed as follows.
Applying the operation $, we have (—a)$(—b) = —a — b+ kab + lba + ... and

(a$h)$((—a)$(—b)) = —(k + 1)(a + b)* + 2kab + 2lba + . . ..
Now since (a$b)? = (a + b)? + ..., we obtain
[(—(k + 1)(a + b)* + 2kab + 2lba + ... )]$[(k + 1)(a$b)® + ...] = 2kab + 2lba + . ...

Here (a$0)? + ... is a derived operation provided by Lemma 2.1, and so is 2kab +
2lba + . ... After dividing by 2, we have proved that in all cases, we have a desired
derived operation #. U

2.2. From (quasi)groups back to algebras. In this section, we show that the
addition and multiplication in an nilpotent algebra can be restored from the quasi-
group operation o (7) and scalar multiplication.

Theorem 2.4. Let F be a field with at least 3 elements. Then for any nilpotent of
class ¢ > 2 algebra A, the operations a+ b and ab are derived from the o-operation
(7) and the scalar multiplications by the elements of F, if and only if k # 1 in all
cases and k # —l if m =n = 0.

Proof. Let us start with the part “only if”. In case k = [, even for ¢ = 2, one can
take a nilpotent Lie algebra A and notice that o is just the addition in A, and thus
no nonzero product can be obtained from a and b by repeated application of o and
scalar multiplications.

If K = —I, while m = n = 0, the same kind of contradiction appears when we
consider an image which is a nilpotent commutative algebra of class ¢ = 2.

To prove part “if”, one may assume that A is a free nonassociative nilpotent
algebra N of class ¢ > 2, because every nilpotent algebra A is a homomorphic
image of a free nilpotent algebra.

If ¢ = 2, then changing a and b places, we have a derived operation a&b =
lab 4+ kba from the operation # given by Lemma 2.3. The linear combination
of these two operations with arbitrary coefficients r, s is the derived operation
(r(a#tb) o (s(a&D)). Since k # £, the coefficients can be chosen so that we simply
have the derived operation ab.
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Now using the operations $ from Lemma 2.3 and ab from the previous paragraph,
we get

(a$0)$(—kab) = a + b+ kab+ lba — kab = a + b+ lba.

The summand [ba can be removed in a similar way, and so we obtain the derived
operation a + b. Thus we have finished the case ¢ = 2.

As a result, we have proved that any element of the free nilpotent algebra of class
2 can be expressed in terms of o and the scalar multiplications. We will proceed
by induction on ¢ in order to prove that the same claim holds for any ¢ > 2.

We consider a monomial w = wv € N° By induction, the factor u can be
expressed in terms of o and the scalar multiplications modulo NV¢, that is, there
is v’ € N¢ such that u + v’ can be expressed in the desired form. Similarly, there
is v € N¢ such that v + v’ is expressible. We will plug these expressions in the
derived formula for the expression of ab modulo N¢, which has the form ab+g(a, b),
where g(a,b) € N¢.

Let us write g(a,b) = gi(a,b) + ga(a) + g3(b), where all monomials in g¢(a,b)
contain both a and b, g(a) only a and ¢g(b) only b. Substituting 0 for b in ab+g(a, b),
we will obtain two derived operations ¢gs(a) and —gs(a). Combining them with
ab + g(a,b) by means of the operation # from Lemma 3 and using that g-terms
belong to N¢, we get

(ab+ g(a,b))#(—ga(a)) = ab + gi(a, b) + g3(b).

in NV. In a similar way, we remove g3(b). As a result, we obtain a derived operation
ab+ gi1(a,b). Returning to our previous notation, we now have a derived operation
ab + g(a,b), where each monomial of g(a,b) contains both a and b to a nonzero
degree.

Then we will get in N the equality

(u+u)v+0)+glu+u,v+v)=uv.

Indeed, (u+ u')(v + v') = uv, because «’' and v belong to M. Now since ¢ >
2, one of u + v or v+ v is in N? and g(a,b) is an annihilating polynomial.
So g(u + u,v 4+ v') = 0. As a result, uv is expressible in terms of o and the
multiplication by the scalars.

So far we have seen that every monomial from N is expressible, but then also
every polynomial (element) in F°¢ is expressible since for monomials of degree ¢,
the o product is just the summation.

By induction, we already had a derived operation of the form a&b = a+b+g(a,b),
where g(a,b) € N¢. For any h € N¢, we would have

(a&b)&h =a+ b+ g(a,b) + h+gla+b,h) =a+b+g(a,b) + h+ g(a+b,0),
following since h is annihilating in A" and g € N2, Choosing
h = _g(a'> b) - g(a + ba 0)7

we will have (a & b) & h = a+b in N. Quite similarly, since by induction there is a
derived operation e such that aeb = ab+g¢(a, b), we can write (aeb)e(—g(a,b)) = ab,
for nilpotent algebras of class c. So both a 4+ b and ab are derived operations for o
and the multiplication by scalars in the nilpotent of class ¢ algebra N. 0
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Example. If ' has cardinality 2, the conclusion of Theorem 2.4 is not true. Let
us look at a commutative nilpotent 3-dimensional algebra A over Z/2Z given by

A= {a,bla* = b* = 0),

Any operation (7) satisfying the hypotheses of Theorem 2.4 becomes aob = a +
b+ ab. It is easy to check that with respect to this operation, a and b generate
the Klein’s Viergruppe {0, a, b, a + b+ ab}, the multiplication by 0 and 1 does not
change this. So we cannot get a%b = ab as a derived operation (and cannot recover
the whole algebra, consisting of 8 elements).

2.3. Operations defined by power series. The BCH formula (4) is given by
an infinite power series, which, provided char(F) = 0, can be applied to a nilpotent
Lie algebra L of arbitrary class c if one trims it to the Lie polynomial of degree c.
Similarly one can treat formula (5) as a power series (neither associative nor Lie
in general) and apply its trimmed version o, to an arbitrary nilpotent algebra of
class < c.

Assume now that A = @;°, A; is a graded algebra with (A;)(A;) C Ay, for
i,7 = 1,2,.... For example, arbitrary relatively free algebra A = F(X) over an
infinite field I is graded by degrees of monomials in X; see [Ba|, Theorem 4.2.4.

So under the assumptions of Theorem 2.4, we are able to obtain the basic opera-
tions 4. and X, as derived from o and the scalar multiplications in every nilpotent
factor algebra A/A°tl. When one changes ¢, these formulas interact in the same
way as in the BCH-formula (4), that is, are truncations of a single infinite series.
More precisely, the following is true.

Proposition 2.5. Under the assumptions of Theorem 2.4, +. and X. coincide as
deriwed operations with +._1 and X._1, respectively, on nilpotent algebras of class
c— 1> 1. Moreover, there exist a natural number k = k(c) and the operations
H#1,...Hr, 00, ..., 0 derived from +. and the scalar multiplications, such that

(10) atcb=(((a+e-1b)#1(aeb))#a...)#r(aeb),

where each application of #;(ae;b) does not change the value of the preceding prefix
of this formula in the nilpotent algebras of class < ¢ —1. The same statement (but
with different auzxiliary operations #1, ..., e;) relates the operations X. and X._1.

Proof. The statement directly follows from the proof of Theorem 2.4. For instance
(see the last paragraph there), a +.b = (a +._1 b) +._1 h, where h is a polynomial
of degree ¢ derived from o. and the scalar multiplications. O

Proposition 1.7 defines the quasigroup @Q(A) for power series (5) and every
graded algebra A, but the elements of QQ(A) are power series in this case. Propo-
sition 2.5 shows that the basic operations in the algebra of power series can be
restored, but the formula (10) must be extended by the obvious induction on ¢ to
an infinite one.

2.4. Anticommutative algebras. Assume now that the operation (5) is defined
in the variety V of anti-commutative algebras given by the identity 22 = 0 or in a
subvariety of V (for example in the variety of Lie algebras), over a field F. Then
ao0 = 0o0a = a in a nilpotent algebra A € V, i.e. zero element of A is neutral
in the quasigroup Q(A). Furthermore, a o (—a) = (—a) o a = 0, that is, there is
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a two-sided inverse element for every element of Q(A). In other words, Q(A) is a
loop with respect to the operation o.

It is obvious that na o ma = (n 4+ m)a for arbitrary n,m € F, i.e. every element
of Q(A) is contained in a subgroup (with the same neutral element) isomorphic to
the additive group of F. Thus, Q(A) is a power-associative loop.

Definition 2.6. Let L be a power-associative loop. We call L divisible if for any
a € L and any natural number n there is x € L such that 2™ = a. If such x is
unique, we call L uniquely divisible.

Obviously, for a € F\{0}, the equation axz = a has a unique solution a™'a.

Therefore if char F = 0, then L = Q(A) is a (uniquely) divisible loop. Passing
to the multiplicative notation, we have a unique n-th root of any a € L for every
integer n # 0. In particular, L is a torsion free loop.

If F = Q, it follows that the power a? is well defined for rational ¢ = s/t, and in
additive notation, it is equal to qa € A. However a? is a solution of the equation
2! = a®. Therefore the multiplication by scalars in A can be expressed in pure loop
terms, and Theorem 2.4 implies

Theorem 2.7. Let A be a rational nilpotent of class > 2 anticommutative algebra.
Let Q(A) be the loop obtained from A by the circle operation (7), where k # 1.
Then Q(A) is a uniquely divisible nilpotent loop.

The original operations a + b and ab can be uniquely reconstructed as derived
operations from the circle operation alone.

Proof. If A is nilpotent of class ¢, then we can see from (5) that every element
z € A° commutes in the loop L with every element a € L. We also have zo(aob) =
(zoa)ob=ao(z0b) for a,b € L. Therefore L; = A° is a central subgroup in
L. Hence it is normal in L, and the factor loop L/L; is well defined and consists
of cosets modulo A (see |Bruck]|). By induction, one obtains an ascending central

series 0 < L1 < Ly <--- < L.= L, and so L is a nilpotent loop.
The proof of the second claim follows from the remarks preceding the theorem.
O

The most important and well-known example of the correspondence of the type
A < Q(A) was found by A.I. Mal'cev as the correspondence between rational
nilpotent Lie algebras and divisible torsion free nilpotent groups in [AIM]. Now it
can be formulated as follows.

Theorem 2.8. [Malcev Correspondence| For every rational nilpotent Lie algebra
A, the operation o defined by (4) converts A into a divisible torsion free nilpotent
group G(A), of the same nilpotency class. At the same time, one can convert
any torsion free nilpotent divisible group G, into a rational nilpotent Lie algebra
L(G), where the scalar multiplication is qa = a? (¢ € Q) and the addition and
multiplication are the derived operations, obtained in Theorem 2.7. Moreover, for
a group G converted into a Lie algebra L(G), we have G(L(G)) = G and for a Lie
algebra A converted into a group G(A), we have L(G(A)) = A. In both cases, not
only the sets but also the operations are the same. [J

The original formulation did not say about the way of reconstructing A from
G(A). But it was not a big secret, and the formula z +y = xy[z,y]"*/2... can
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be already seen in |Laz, Gl, St|. Here [z,y] is the commutator in a nilpotent
torsion free, divisible group G, the addition is the operation in L(G), and ...
stand for the product of rational powers of longer group commutators. A number
of further factors in the formulas for + and x in the nilpotent Lie algebra L(G)
were computed in [CAGV].

An important paper is [Laz|. In this paper, the author deals also with the case
of p-groups and Lie algebras over the fields of positive characteristic. A modern
presentation of BCH-operation and the inverse formulas is given in [KHU]|. For the
convenience of the reader, we will give more precise statement of these and other
properties of Malcev correspondence in an auxiliary section 3.

2.5. More attention to polynomial quasigroups! The quasigroup Q(A) de-
pends on the choice of the nilpotent algebra A in some variety of algebras over a
field F and on the polynomial operation (7). Even under assumptions of Theorem
2.4, different polynomial operations o and * on the same algebra A can define
isomorphic quasigroups (A, o) and Q(A, *).

For example, consider a free anti-commutative algebra A of nilpotency class 2
with r free generators ay,...,a, and two operations

roy=x+y+ayand xxy=1x+y+ kry, where k € F\{0}.

It is easy to check that both Q(A, o) and Q(A,*) are divisible nilpotent groups
of class two, and they are isomorphic under the following mapping defined on A,
where the coefficients \; and p;; are arbitrary elements of A:

ZT: )\iai + Z Hij Qi Qg — Z )\iai + k Z Mij Qi Q.
i=1

1<i<j<r i=1 1<i<j<r

Similarly one can modify the BCH formula (4), multiplying every homogeneous
summand of degree d by k%=1, In general, if ¢ : Q(A, o) — Q(A,*) is a quasigroup
isomorphism, i.e., () * p(y) = ¢(z o y), then we have z oy = ¢! (p(x) * ©(y)).
Therefore choosing an appropriate bijections ¢ on A and applying the last formula
to an operation %, one can produce new operations with isomorphic quasigroup
Q).

Groups are too good to occur frequently among polynomial quasigroups Q(A).
However other polynomial quasigroups and loops appear in the literature very
seldom in comparison with groups and their correspondence to Lie algebras men-
tioned in Theorem 2.8. Just few examples of this kind are mentioned in Subsection
1.5. Let us consider one more rather particular example.

Let o be the operation aob = a+b+ab on a nilpotent Lie algebra A. It is easy to
see that Q(A) is now a power-associative nilpotent loop. Moreover, one can easily
check the law x o (y o ) = (x o y) o x in this loop. Further computations give a
commutator identity. Namely, denote by [a, b], the commutator (aob)o(a=tob™1).
(Here we use multiplicative notation for the loop Q(A).) Then the commutator
[, y]o, [x71, 47 o] is always the neutral element of this loop. Thus we obtain an
identity which is not a consequence of the associativity.

Here we do not obtain neither the defining laws nor the structures for the class
of polynomial loops arising due to this particular correspondence. Our goal is just
to convince the reader that polynomial quasigroups and loops form a large and
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interesting class of algebraic structures connected to algebras They deserve to be
studied closely, and there is a hope that many important subclasses of nilpotent
algebras and polynomial operations will be found, where the theory generalizes
in the spirit of what is known for the BCH-correspondence between nilpotent (or
graded, see subsection 2.3) Lie algebras and groups.

In this part, we still try to work with the general nilpotent algebras, wherever
possible. At the same time, the applications mostly deal with Lie algebras and
nilpotent groups. For the reader’s convenience, we provide the details of now
classical results on divisible groups and Malcev correspondence, which we briefly
discussed in Section 2.4.

3. APPLICATIONS AND RELATED TOPICS

In the next auxiliary section we provide some known facts for the reader’s con-
venience.

3.1. Divisible hulls of nilpotent groups. To apply Malcev Correspondence to
arbitrary finitely generated nilpotent groups, we first recall some known facts about
the embedding of torsion free nilpotent groups in divisible nilpotent groups.

A subgroup B of a group A is called isolated if for any natural n and any a € A
such that ¢" € B it follows that a € B.

A (multiplicative) torsion free group H is called a divisible hull of a group G
if H is a divisible group, containing GG as a subgroup and for every h € H, there
is n > 0 such that A" € G. Typical examples are Q" and the group of upper
unitriangular matrices UT'(n, Q) as divisible hulls for the additive group Z" and
the group UT(n,Z), respectively.

The following theorem due to A. I. Malcev [AIM] is now classical. In the book
K53, §67] A. G. Kurosh calls Malcev’s Theorem “the main theorem in the whole
theory of torsion-free nilpotent groups”. The original topological treatment in
[AIM] was later complemented by the algebraic approaches in [Laz| and also in
[SH|. For an up-to-date treatment see |[KHU, §9.3|

Lemma 3.1. For every torsion free nilpotent group G, there is a divisible hull,
denoted VG. It is unique, in the sense that every isomorphism of torsion free
nilpotent groups Gy — Gy uniquely extends to an isomorphism /G1 — /Gs.

If G is finitely generated, then the group G has finite rank, i.e. there is an
integer r such that every finite subset of /G is contained in an r-generated subgroup

of VG.

There is an extensive array of literature devoted to the divisible groups and
their generalizations (see a survey [MR]). Divisible groups are a particular case of
A-groups, where A is an associative ring with 1. In these groups one can raise any
element of the group to the power equal to an element of A, with natural axioms
satisfied. Thus any group is a Z-group while a divisible group is a Q-group. If this
terminology is used then the isolated subgroups in divisible groups are called Q-
subgroups. This terminology is used in [KHU], to which we give several references
in the sections that follow.



16 YURI BAHTURIN! AND ALEXANDER OLSHANSKII?

3.2. Commensurators of nilpotent groups. Many groups are saturated with
the subgroups of finite index. In a number of situations in Mathematics, it is
vital to consider not only the automorphisms of a given group G but also the
isomorphisms between the subgroups of finite index in G. Such isomorphisms are
called a virtual automorphisms of G. We refer to the classical work [Ma] of G. A.
Margulis on discrete subgroups of Lie groups. For more references related to the
concept we treat in this section, see, for example, [BB| and [DK].

Given another pair of subgroups of finite index H’ and K’ and a virtual isomor-
phism ¢ : H" — K’  the product of these partial mappings v is defined and its
domain and range also have finite indices. We say that ¢ and ¢’ are equivalent,
p ~ ¢, if there is a subgroup L of finite index both in H and H’ such that the
restrictions of ¢ and ¢’ to L are equal. Clearly, ~ is an equivalence relation, ac-
tually a congruence, that is, if o ~ ¢’ and ¥ ~ 9’ then b ~ ¢'1)’'. As a result,
the set of the congruence classes Comm(G) is a group called the commensurator
of the group G.

For example, it is easy to check that Comm(Z) is isomorphic to the multiplica-
tive group of rational numbers. The commensurator of an arbitrary torsion free
nilpotent group can be described as follows.

Theorem 3.2. If G is a finitely generated torsion free nilpotent group, then the
commensurator Comm(G) is isomorphic to the automorphism group Aut(L), where
L = L(V/G) is the rational Lie algebra corresponding to the divisible hull /G of G
in Theorem 2.8.

Proof. Let ¢ : H — K be a virtual automorphism of G. Since H and K have
finite indices in G, it follow from the definition of the divisible hull and Lemma
3.1 that VG = vVH = VK. Therefore by Lemma 3.1, the isomorphism ¢ extends
to a unique automorphism @ of the group v/G.

Since equivalent virtual automorphisms ¢ and ¢’ coincide on a subgroup H”
of finite index in G, it follows (again by Lemma 3.1) that the above-mentioned
extension mapping can be treated as a well defined function f : Comm(G) —
Aut(v/G). Moreover, f is a group homomorphism. For a nontrivial ¢, the extension
© is nontrivial too, and so the mapping f is injective.

Let a be an automorphism of VG. Then VG is the divisible hull of both
G and o(G). Hence for every 2 € v/G, there is a positive integer n such that
2" € K = GNa(G). Since every subgroup of a nilpotent group is subnormal
and G is polycyclic (see [KM], ch. 6), K must have finite index in G. This
follows because otherwise the Hirsch rank of K (the number of infinite factors in
a subnormal series with cyclic factors) would be less than the Hirsch rank of G.
In its turn, this would imply the existence of x € G such that no nontrivial power
of z is in K, a contradiction. For the same reason, the subgroup H = a~!(K) has
finite index in G. Hence « is an extension of the isomorphism H — K. Thus, the
mapping f is surjective hence an isomorphism.

Recall that by the BCH-formula (4), the group operation in v/G is derived from
the algebra operations in L . It remains to note that by Theorem 2.8, one may
assume that the group v/G and the Lie algebra L have the same underlying set,
and all algebra operations are derived from the group operations (including raising
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to rational powers). It follows that every automorphism of L is an automorphism
of VG, and vice versa. This completes the proof. O

Corollary 3.3. For every finitely generated nilpotent group G, the commensurator
Comm(G) is a linear algebraic group over Q.

Proof. For arbitrary finitely generated nilpotent group G, by Hirsch’ theorem [H|,
there exists n > 0, such that the (finitely generated) subgroup G™ generated by all
n-th powers of the elements is torsion free and has finite index in G. Soif H — K
is a virtual automorphism of GG , then H" — K" is a virtual automorphism of the
subgroup G". This correspondence agrees with the equivalence and the product,
and so we get a homomorphism Comm(G) — Comm(G™). It is injective since
nonequivalent ¢ and ¢’ cannot coincide on a subgroup of finite index. It is also
surjective since every isomorphism H — K, where H and K have finite index in
G™ is equivalent to its restriction H" — K™.

Thus, one may assume that the group G is torsion free. By Lemma 3.1, the
group v/G has finite rank. It follows by the definition of the group operation in (4)
claim (4) that the mapping vG — L/(L, L), given by the formula x ~ z + (L, L)
is a group epimorphism. As a result, if L is the rational Lie algebra L = L(v/G)
then the factor algebra L/(L, L) is finite dimensional. Now since L is nilpotent,
the entire algebra L is finite dimensional.

By Theorem 3.2, the group Comm(G) is isomorphic with the group Aut L. For
a basis (e1,...,e4) in a finite dimensional algebra L over Q, the property that
a nonsingular linear operator o : L. — L is an isomorphism is equivalent to the
finite set of equalities (a(e;), a(e;)) = a((e;, e;)), which leads to a finite system of
algebraic equations imposed on the entries of the matrix of a with respect to the
basis (e1,...,€q). O

Examples.

1. Let us explicitly produce the matrix form for the group of virtual isomor-
phisms of the free 2-generator nilpotent group G' = G(z,y) of class 2 (the
Heisenberg group). The group Comm(G) can be presented as the group
of all nonsingular rational 3 x 3-matrices [a;;] such that a3 = ass = 0,
while ass is equal to its complementary minor. This follows because this
same group is the automorphism group of the free 2-generator nilpotent
Lie algebra L = L(z,y) of class 2. Any automorphism ¢ of L is defined by
the images of z, vy,

() = anz + any + as(x,y), ©(y) = a12x + axny + as(z,y).

If we set A = [a;;] fori,j < 2, then A = det A # 0. Also we set u = [a31, az2]
and choose z,y,z = zy as a basis of L. Then the matrix [¢] of ¢ with
respect to this basis will have the form

(1) =4 2)

where A = det A. Clearly, this is an algebraic group of dimension 6 over

Q.
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2. In a similar manner one can determine the group Comm(G(m, ¢)) of virtual
automorphisms of an m-generated free nilpotent group G(m,c) of class c.
This follows because, again, any map of the free generators of free Lie alge-
bra L(m,c) of class ¢ to L(m,c) extends to a Lie algebra homomorphism,
which is an automorphism if and only it induces a nonsingular linear map
on the space L(m,c)/(L(m,c), L(m,c)) over Q. The automorphisms that
are identical modulo (L(m,c), L(m,c)) form a nilpotent normal subgroup
N and Aut(L(m,c))/N = GL(m, Q).

Next, it was proved in [VML| and reproved in [AM], that the automor-
phism group of UT'(n,Q) is generated by inner automorphisms, central
automorphisms (that is, identical modulo the center), diagonal automor-
phisms (conjugation by the diagonal matrices) together with the flip, which
is the refection with respect to the anti-diagonal. It follows that these au-
tomorphisms generate the group isomorphic to Comm(UT(n,Z)), because
UT(n,Q) is the divisible hull of the group UT'(n,Z).

3. One more series of examples is provided by “filiform” nilpotent groups G
of nilpotent class ¢ > 2, which are semidirect product of an infinite cyclic
group (a) and a free abelian group Z°. The matrix of the action of a is the
Jordan cell with 1 on the diagonal. The divisible hull v/G is the semidirect
product of Q as the hull for (a) and Q° as the hull for Z¢. If b is the generator
for the Z¢ with respect to the described action of a, then v/G is generated,
as a divisible group, by a and b. Mapping a to any element outside Q¢ and b
to any element y outside (a —1)Q°, we obtain an automorphism of v/G and
L(v/G). Conversely, under every automorphism, a should stay outside of
an abelian group Q°, (¢ > 2). This follows because the centralizer of a has
rank 2. At the same time, b should stay outside (a —1)Q¢. This completely
describes Comm (G) as an algebraic group of dimension ¢+ 1+ ¢ = 2c¢+ 1.

3.3. Determinants in commensurators. One more fact is worth mentioning.
Since the automorphism group of an algebra is a subgroup of a matrix group, every
automorphism has determinant. Let H, Kbe subgroups of finite index in a finitely
generated nilpotent group G and ¢ is an isomorphism ¢ : H — K/ The vp defines
an automorphism of L = £(v/G. of a , defined with the help of the subgroups , we
define its determinant det ¢ as the determinant of the respective automorphism of

the divisible hull \/@, viewed as a Lie algebra.

Theorem 3.4. The absolute value of the determinant of a virtual automorphism
¢ : H— K of a finitely generated torsion free nilpotent group G is the ratio of the
index of K to the index of H.

As a quick example, the map 2Z — 37Z (2 — —3) in the group of integers Z is

given by the matrix [—%}, whose determinant equals —%.

Proof. We start with a finitely generated additive torsion-free abelian group G.
Choose a basis (eq,...,e,) of G. The same set will be the basis over Q in the
divisible hull v/G of G. Any basis (hy,...,h,) of a subgroup H of finite index
in G is defined by a square matrix A such that (hy, ..., h,) = (e1,...,e,)A. It is
well-known by the theorem on the subgroups of free abelian groups, that [G : H| =
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| det A|. If we have another subgroup of finite index K with a basis (ky, ..., kp),
then (ki,...,k,) = (e1,...,e,)B, for a square matrix B, and [G : K] = | det B].

Any isomorphism H — K extends to an automorphism of v/G such that the
map of the bases (hy,...,h,) — (ki,..., k) is given by the formula (ki,. .., k,) =
(hi,...,h,)C, where C' = A7'B. The determinant of this automorphism of the
group v/G, or the respective abelian Lie algebra, equals det C' = (det A)~! det B.

It follows that [G : K|/[G : H] = |det B/ det A| = |det C|. Thus the ratio of
the indexes of subgroups of finite index under a virtual automorphism equals the
absolute value of the determinant under an automorphism of the group vG.

In the case of non-abelian groups, we will proceed by induction. It should be
reminded that in a torsion-free nilpotent group G, if the elements a and z" (n > 1)
commute then also a and z commute [KM]. As a result, the factor-group G/Z(G)
of G by the center Z = Z(G) of G is also torsion-free. By the same reason, for
any subgroup H of finite index in G we have H N Z = Z(H), where Z(H) is the
center of H.

One more formula is useful for our inductive argument.

G:H| = [G:HZ|HZ :H|=|G:HZ]|[Z:HNZ
(12) = |G/Z:HZ/Z)|[Z : Z(H)].

Now we are ready to proceed with the proof.
An isomorphism H — K of the subgroups of finite index induces an isomorphism
Z(H) = Z(K). Thus we have a well-defined isomorphism

H/ZNH=H/Z(H)— K/Z(K) = K/ZN K

as well as an induced isomorphism HZ/Z — KZ/Z. By induction, [G : KZ]/|G :
HZ] is the absolute value of the determinant of the Lie algebra automorphism
built using the group G/Z while [Z : Z(K)|/[Z : Z(H)] is the absolute value of
the determinant of the automorphism of a Lie algebra built using the group Z and
its divisible hull.

Let v/G be the divisible hull of G. Recall that a nontrivial power of any element
of VG is in G. Thus the divisible hull v/Z of the center Z is the center of the
divisible hull of VG, vVZ NG = Z, and VG /v/Z is the divisible hull of G/Z.

If we view a Lie algebra £ built on the elements of v/G by Theorem 2.8, then
V/Z is the center (invariant with respect to Aut(L)). Thus the matrix of any
automorphism with respect to a basis complementary to a basis of the center, is of
the block shape, with the square matrices A and B and zeros under these blocks,
but not above them. Here A is the matrix of the restriction to the center, while B
is the matrix of the induced automorphism of £/v/Z.

For the isomorphism K — H, we have

|det A| = [Z: Z(K)]/[Z : Z(H)],
and at the same time,

\det B| = [G/Z : KZ/2)/|G/Z - HZ/Z.
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As a result, we derive from formula (12) that the absolute value of the determi-
nant of the automorphism equals

|detC| = |(det A)~*(det B)|
= (2:2(K)|/1Z: Z(H))G/Z - KZ]Z]]|G]Z : HZ]Z]))
= [G: K]/|G: H],
which is what we needed to prove. O

Conversely, if we have a finite-dimensional nilpotent Lie algebra L over Q then
using Baker—Campbell-Hausdorft’s formula makes L a nilpotent divisible group.
This group is a divisible hull of a finitely generated torsion-free nilpotent group.
So, we can say that the automorphism group AutL is at the same time a group of
virtual automorphisms of a finitely generated torsion-free nilpotent group

An observation. In the first example of Section 3.2, the determinant of the
automorphism of the 3-dimensional algebra was always the square of a rational
number. Hence, the ratio of indexes of isomorphic subgroups of finite index in
that group is always the square of a rational number. In particular, if H is a
subgroup of finite index in the free nilpotent group G(z,y) and H is isomorphic
to the whole group G(z,y) then the index |G(z,y) : H| is a perfect square!

3.4. Groups of polynomial mappings. Let A be a nilpotent algebra of class ¢ >
1 over a field F. On A, we consider polynomial mappings f : © — a1x +asz?® +. . .,
where a; # 0 and dots stand here for a linear combination of (nonassociative)
monomials in z of degrees d € {3,...,c}. By Remark 1.9, f is bijective on A, f~*
is a polynomial mapping, and so such mappings form a group G = G(A) under
the composition (fg)(x) = f(g(x)).

Since A is nilpotent and nonzero, the coefficient a; is uniquely defined by f.
If g: 2+ biw+ byw® + ..., then we see that the product fg in G has the form
x — abyx + ..., and so the mapping f — a; is a homomorphism of G onto the
multiplicative group F* of the field F. The functions from the kernel U = U(A) have
the form z — z + az? + ..., and G/U = F*. Moreover the functions z — ax form
a semidirect complement to U in G. The group U is torsion free if char F = 0,
because for a function f : x + z + az® + ... with k > 2 and a # 0, we have
fm 2 — x4+ nar*+ .... The same equality implies that U is a p-group if
char F =p > 0.

Some auxiliary computations will be helpful below.

Lemma 3.5. (1) Let U 5 f : o — p(z) and f' : © — p(z) + u(x), where p(x)
does not contain monomials of degree < k. Then the product f='f" (and f'f=!)
has the form x — x + p(x)+ ..., where ... does not contain monomials of degree
<k.

(2) For every f,g € U, the commutator f~ g~ fg has the form x — x + h(x),
where h does not contain monomials of degree less than 4.

(3) If f : x — x+u(x), where u(x) contains monomials of degrees > k > 4 only,
and g € U, then the commutator fgf~tg~' has the form z — x + v(x), where the
polynomial v(x) does not contain monomials of degree < k.
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Proof. (1) The function f~!is given by = + A(z). Here A\(z) = x + ... is a poly-
nomial such that A(p(z)) = = + p(z), where p is a polynomial without monomials
of degree < c. It follows that A(p(z) + p(x)) = Ap(x)) + p(x) + ..., as required.

(2) For f : x> z+az®+br’z+cxa®+... and g : x — x4+ ka® +lx?z+max? . ..
we have

fg(x) =z + ka* + l2°z + maz® + a(z + ka? + l2°z + maz®)?+
b(x + kz® + lz*z + maa?)*(x + ka® + l2°z + maa®)+
c(x + ka® + 12z + maa?) (z + ka® + 2%z + maa®)’ + - =
x+ (k+a)z® + (I +ak + b)x*s + (m + ak + c)va® + ...

Up to the dots, we have the same expression for gf, because of its symmetry
with respect (a,b,c) <> (k,l,m). Since “...” contains only monomials of degrees
> 4, we have by statement (1), that the commutator (gf)~!(fg) is of the form
x +— x + h(z), where h(z) does not contain monomials of degree < 3.

(3) Since g € U, we obtain fg : z — g(x) + u(g(x)) = g(x) + u(z) + ..

where “...” contains no monomial of degree < k. Also gf : x — g(x + u(z))
g(z) + u(x) + .... Now by statement (1), we have (gf)"'(fg) : = + v(z), as
required. O

Let us denote by Uy the set of mappings © — = + u(x), where the polynomial
u(z) has no monomials of degree < k in x . It is easy to see that every Uy is an
isolated subgroup of U. So U; = U and U, is the trivial subgroup.

Proposition 3.6. The group G is solvable, the subgroup U is nilpotent of class
< max(1,c—2), and the series

(13) U=U,>Us>Uy > > Uy > U.={1}
1s a descending central series in G.

Proof. Tt suffices to prove the latter statement.
By Lemma 3.5 (2), we have [U,U;] < Us, and by Lemma 3.5 (3), we obtain
(U, U] < Uyyq for k > 3. Thus, the series (13) is indeed central. O

Lemma 3.7. The group U = U(A) is divisible if char F = 0.

Proof. By Propostion 3.6, U has a descending series (13). We first show that every
central factor Uy /Uy, is divisible. Indeed, if f: 2 — x+u(z)+... and g : z —

x+v(z)+ ..., where u(z) and v(x) are homogeneous polynomials of degree k + 1
and dots stand for the terms of higher degree, then fg: z — z+u(z)+ov(z)+....
In particular, for n > 1, we get f" : x — x + nu(z) + ..., which implies the

divisibility of the factor Uy /Ug,1, since n is invertible in F.
To complete the proof, notice that if a central subgroup Z of a group G is

divisible and G/Z is divisible then also G is divisible. So the divisibility of U
easily follows by induction on ¢ in (3.6). O

Remark 3.8. For an arbitrary characteristic of the field F, the same argument
implies that all the factors Uy /Ugs are vector spaces over F. The induced action
by conjugation of every non-k-root of the identity (k < ¢) from the factor group
G/U = F*, on Uy /Uiy does not have 1 as an eigenvalue. Indeed, let g : x — ax
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with a* # 1, and f : x — z+u(x)+... represent nontrivial element of Uy, /Uy, 1, as
above. Then g7'fg: x — a *(az+u(az)+...) = z+d*u(z)+... # z+u(x)+....

Corollary 3.9. If the field F s infinite, then U is the derived subgroup of G.

Proof. We have [G,G] < U, because G/U is an abelian group. Since F is infinite,
there is an element a € [F, as in Remark 3.8. Then the action of a—1 is nonsingular

on every central factor of the nilpotent group G, and so [a, U] = U, whence [G, G| >
U. U

The properties of G and U obtained in this section will be applied to the key
examples in the next one.

3.5. Filiform groups of mappings and filiform Lie algebras. Consider now
the groups of polynomial mappings for power-associative algebras. For example,
for ¢ > 3, let A, be the algebra of polynomials in t over F, char F = 0, with zero
constant terms factorised over the ideal (t“™!). It has dimension ¢ and nilpotency
class ¢ too. The group G(A.) acts in the regular way on the orbit O(t), and
the functions x — a1z + axz® + - -+ + a.2¢ with different vectors of parameters
(ay,...,a.) are different. In this case, the definition of the subgroup U(A.) given
in Section 3.4, becomes a trimmed version for the definition of the group G(F)
of formal power series under substitutions introduced by D. L. Johnson [J]. The
Johnson’s group G(F) is the projective limit of the groups U(A.), ¢ — oo. If
F = Z/pZ, The Johnson’s group is called the Nottingham group, important in the
theory of pro-p-groups [SSS|.

Lemma 3.10. (|J]) (1) If ¢ > 3, f :x — x +az* ' +b2¢, and g : © — x + 2?,
where © € A., we get fgf g7 x> x+ (¢ — 3)ax’.

(2) If k > 3, then we have [Uy, U] < Uspy1.

(3) If char F = 0 and ¢ > 3, the series (13) is the lower central series of the
group U(A,), and so this group is nilpotent of class ¢ — 2.

Lemma 3.11. Forc¢> 3 and U = U(A,), the factor group U/Us is isomorphic to
the additive group F@TF. If 3 < k < ¢ — 1 then the other terms Uy /Uy of the
lower central series are isomorphic to the additive group of F.

Proof. Every function from U is defined modulo Us by two parameters a,b € F,
namely, f,p: ® — x4+ ax? +bx® + .... Let us denote the coset of Us containing
fap by (a,0). If g : & — x + ka? + la® + ..., then by the formula from the proof
of Claim (2) in Lemma 3.5 (now with ¢ = m = 0), we obtain fg: z — x + (k +
a)x® + (I + 2ak + b)xz® + .... So for the bijection o : U/Us — FET given by the
correspondence (a,b) — (a, b—a?), we get a((a, b))+a((k,1)) = (a+k, b+1—a*—k?).
The product fg defines the pair (a + k, b+ [ + 2ak), whence

al(a+k,b+1+2ak) = (a+kb+1+2ak—(a+k)?) =(a+kb+l—a®—k),

and so « is the desired group isomorphism.

For the functions f : x + x+az**'+... and g : > x4+ bx* 4. .. representing
the elements of Uy /U1 with k > 3, we have fg: x — 2+ (a+b)z* 1 +.. . making
the isomorphisms Uy /U1 = F obvious. O
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Lemma 3.12. Assume that char F = 0 and a normal subgroup N of U = U(A,)
contains a function f : x +— x +ax® + ... for some k > 4 and a # 0. Then the
derived subgroup [N, N] contains a function x — x + d'z** + ... with a’ # 0.

Proof. Let f : z — x + az® + u(x), where all monomials in u(z) have degree
> k + 1. There is nothing to prove if 2k > ¢ + 1. Otherwise, by Claim (1)
of Lemma 3.10 applied to the factor group U(Ayy1), the subgroup N contains a
function g :  — x + ba**! 4+ v(x) for some b # 0, where all monomials in v(x)
have degree > k + 2. We compute modulo Us, the products fg and gf

fg:z = x+b" +u(z) +alz + br" + ()" + u(z + bz 4 v(2))
= z+az® + b2 4+ u(z) + kabe® + u(z) + ...,
and
gf :x = x4 ar® +u(x) +b(@ + az® + u(@)" +ole + az® + u(r))
= x+ar” +u(@)+ b +u(2) + (k+ Dbaz® + ...

So the difference (gf)(z) — (fg)(x) is abz®* +.... By Claim (1) of Lemma 3.5,
[N,N] > (9f) " (fg) : x> x+a'2®* + ... with a’ # 0, as required. O

Theorem 3.13. If char F = 0, Then the group U(As) is abelian and for ¢ > 3 the
group U(A,) is nilpotent of class ¢ — 2. It is solvable of length at least k if ¢ > 2F;
otherwise it is solvable of length < k. If the field F is infinite, then the solvability
length of the group G(A.) is by one greater than the solvability length of U(A.).

Proof. The statement on the nilpotency class follows from Lemma 3.5 (3).

Let U = U and by induction, U®) = [UG=D 6] for s > 1. Then UM <
Us by Claim (2) of Lemma 3.5 while Claim (2) of Lemma 3.10 provides us, by
induction, with inclusions U*~1) < Uy for k > 3. So this subgroup is trivial if
2% — 1 > ¢, and the solvability length of U does not exceed k — 1 if ¢ < 2%,

Lemma 3.12 and the obvious induction show that the k-th derived subgroup U®*)
contains an element from Uy_;\Us if 2% < ¢. Thus, in this case, the solvability
length of U is at least k.

The second statement is contained in Corollary 3.9. U

If F = Q, then by Lemmas 3.7 and 3.6, the torsion free group U = U(A,) is a
divisible nilpotent group. Hence, according to Malcev’s correspondence, we have
the rational nilpotent Lie algebra L = L(U) with algebra operations defined on
the same set. It follows from Lemma 3.11 that /U, = U, for each k. We refer to
[KHU, Theorem 10.13] for the claims that follow.

So every U, becomes a subalgebra Ly = L(Uy) of L and an ideal of L. Since
the factors Uy /Uy, are central, the addition in Ly /L1 coincides with the group
operation in Uy /U1, and so it is a Q-vector space of dimension 1 or 2 by Lemma
3.11. Therefore dimL = ), dim Ly/Lyy1 = 2+ (¢ —3) x 1 = ¢ — 1, and the
nilpotency class of L is ¢ — 2 by Theorems 3.13 and 2.8.

It is well known, that the factor-algebra L/[L, L] of a nilpotent Lie algebra L
of dimension d > 2 has dimension at least 2 and so the nilpotency class of L
is at most d — 1. 1If it is exactly d — 1, then all other nonzero factors of the
lower central series of L have to be one-dimensional. Such algebras are called
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filiform. Filiform Lie algebras are an important block in the classification theory
of finite-dimensional nilpotent algebras. They are also important in the theory of
nil-manifolds in Differential Geometry. For a book and a survey on this subject
see [GK] and [Rem].

Thus, we obtain a series of filiform Lie algebras L(U(A.)), c = 3,4,....

Since the solvability of length & in Lie algebra is defined by a commutator of
length 2%, a nilpotent Lie algebra of class n > 1 is solvable with derived length
< 1+ log,n, and every nilpotent Lie algebra of dimension < 2 has solvability
length at most k.

The algebra £(U) has the same solvability length as the group U (see [KHU,
Theorem 10.13, Claim (e)]). So by Theorem 3.13, the derived length of the filiform
algebra L(k) = U(Ayx) is k, the maximal derived length among the nilpotent
algebras of the same dimension 2¥ — 1. Thus, we have proved the first claim of the
following.

Proposition 3.14. The filiform nilpotent Lie rational Lie algebras L(k) have di-
mensions 28 — 1 and derived length k for every k > 2. There exist algebras of
dimension 2% and solvability class k + 1.

Proof. Let us prove the second claim. Remark 3.8 and Lemma 3.1 we have a
well-defined action of the group F* on each factor Us/Usy 1. If we identify this
factor with the additive group of F (see Lemma 3.11), the action of each a € F™* is
the multiplication by a®, that is the scalar multiplication via the weight function
Vs . a — a® defined on F™.

It is mentioned just before Proposition 3.6 that the subgroups U, are isolated.
It follows by [KHU, Theorem 10.13, Claims (a,f)]), they are subalgebras in £(U)
invariant under the action of F*. (Alternatively one could use Remark 1.6 and
Theorem 2.8). The isomorphism of the groups U,/Ug,; and 1-dimensional factor
space Ug/Usg,1, established in Lemma 3.11 shows that the action of F*in this
subspace has the same weight v;.

Thus, £(U) has a nonzero weight space for each of the wieghts vy,..., v. 1.
Since their number equals the dimension of £(U), all the respective weight space
are 1-dimensional and £(U) is their direct sum.

Since the product of two vectors with weights v, and v, in £(U) has weight vy,
the weight subspaces determine a Z grading of £(U), which provides us with an
adapted basis of L(U), that is a basis with the condition ese; = A tes4+ for some
Ast € F.

It is easy to see that the linear map D defined on the adapted basis by D :
es > seg is the derivation of £(G). Since D is nonsingular, D(L(G)) = L(G). If
we consider the semidirect product M = (D)y & L(U) then DL(U) = L(U) in M
and so the derived subalgebra of M equals £(U). Then the derived length of M is
by 1 greater than the derived length of £(U) so that M is the desired algebra of
dimension 2* and derived length k + 1. O

Note that the filiform nilpotent Lie algebras f 9 with the same parameters, that

is, of dimension 2¥ — 1 and maximal solvability length k for the algebras of this
dimension, have been obtained earlier (see D. Burde’s papers [BDV], [Bur, Propo-
sition 3.1| and also [BST]), in the context of Differential Geometry. Our second
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example in Proposition 3.14 matches another Burde’s example |[Bur, Proposition
5.2]. The results in the quoted paper are mostly obtained by direct computations,
using the structure constants. Our algebras L(k) admit a simple definition via
Malcev’s correspondence.

3.6. Partially ordered algebras and (quasi)groups. The concept of a par-
tially ordered group is well known. Namely, a multiplicative group G is partially
ordered if it is equipped with a partial order <, and for arbitrary a,b,c € G the
inequality a < b implies ac < bc and ca < ¢b (the multiplication is monotone).
The order is linear if either a < b or b < a for arbitrary a,b € G.

Extending this definition to quasigroups, one requests in addition that ac < bc
implies a < b and ca < ¢b implies a < b.

The following definition of the order on algebras was introduced by V. M. Kopy-
tov [KVM]. He suggested that a Lie algebra L over a linearly ordered field F should
be called partially ordered if L is a partially ordered vector space (L, <) such that
for any a,b € L, a > 0, one has ab < a. Kopytov studied linearly ordered Lie
algebras. To justify the definition, he showed that the group G(L) defined on a
rational partially ordered nilpotent Lie algebra (L, <) by the BCH-operation (4)
is linearly ordered with the same order <.

Generalizing Kopytov’s definition to arbitrary algebras, one has to require that
a > 0 implies that ab < a and ba < a. The set of polynomial operations can also
be much extended:

Theorem 3.15. Let (A, <) be an arbitrary nilpotent, linearly ordered algebra over
a linearly ordered field F, and Q(A) be a quasigroup with a polynomial operation o
of the form (5). Then Q(A) is a linearly ordered quasigroup with the same order
<.

Proof. For a non-negative x and a positive y in A, one writes x < y (“much less”)

if ax <y for every a € F. It follows from this definition that if each of xq,..., xy

is much less than y, the arbitrary linear combination Zle A;iz; is less than y.
Let a >bin A, i.e. a =0+ u for some v > 0. Then

aoc=(b+u)oc=boc+u+ h(b,c,u),

where every monomial w of the polynomial h involves u and at least one more
factor. By induction and the definition of an order on algebra, we have that
|lw| < u, where |w| = max(w,—w). Hence we have |h(b,c,u)| < u for the linear
combination monomials, and so a o ¢ > bo ¢, as desired. Similarly one obtains
coa>cob.

Conversely, with the preceding notation, the inequality a o ¢ > b o ¢ implies
u > h(b,c,u). If u> 0, then a > b, as required. Otherwise u < 0 since the order on
A is linear, and —u > 0. But in this case the argument of the previous paragraph
provides us with inequality —u > h(b,c,u), i.e. u < h(b,c,u), a contradiction.
Similarly, we have a > b if coa > cob. UJ

We support Kopytov’s definition of ordered algebra by the following statement,
which is the converse of the above-mentioned Kopytov’s theorem.
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Theorem 3.16. Let (G, <) be an arbitrary nilpotent, linearly ordered divisible
group and L(G) be the conversion of G into the rational Lie algebra, according to
Theorem 2.8. Then (L(G), <) is a linearly ordered algebra (notice that the order

remains the same).

Proof. We keep the notation o for the product in G. For two elements z,y of G
the relation x < y (“much less”) is defined if |2"| < y for every integer n. It follows
from the definition that if ; < y and x5 < y, then z;29 < y and z{ < y for any
rational exponent g. Therefore © < y implies |gx| < y since for every rational g,
the element gz in £(G) is just 27 in G.

Since for every positive y in a linearly ordered group G, we have |z~ lytoy| < y
for any x € G (|Sm]), we have |u| < y for arbitrary product u of rational powers
of commutators involving .

To prove that < is a linear order on the vector space £(G), one should show
that for a > b in G we get a + ¢ > b+ ¢, i.e. the element (a4 ¢)o (b+¢)7! is
positive in G.

At first, we get a = b oy for a positive y. Then by [KHU, Lemma 10.12, Claim
(a)], a = (b+ y) o u, where u is a product as above, and so |u| < y.

Then we obtain (b+ y) ou = (b+ y + u) o v, where |v| < |u|. By BCH formula
(4), the right-hand side is b+ y +u + v+ w, where w is a linear combination of Lie
commutators involving v. However if |21| < y and |z| < y in G, then for the sum
in £(G), we have |z; + 23] < y in G, because 1 + x9 = 11 0 25 o v/, where again
|u'| < |x1]. Also, for a group commutator [f,g], we have [f,g] = (fg) o z, where
z is a product of longer group commutators involving both f and ¢ ( see |[KHU,
Lemma 10.12, Claim (d)]. Therefore the reverse induction on the commutator
length shows that |w| < |v].

So, to prove that a = b+ z for a positive in G element z, it suffices to show that
for a positive y and |z| < y in G, we have y+x > 0 in G. This is true since again
Y+ =yoxowv, where [v| < y.

Now a+c=(z4+b+c) =2 o(z0(b+c)), where again |2/| < z. Therefore
(a+c)o(b+c)™t =2"02>0, as required.

Arbitrary Lie product ab is a product of rational powers of group commutators
involving both a and b (see [KHU, Lemma 10.12, Claim (b)]). Therefore, as above,
a > ab if a is a positive element for the order <. This completes the proof of the
theorem. 0J

1

We see that the categories of nilpotent divisible, linearly ordered groups and
nilpotent linearly ordered algebras are equivalent. Also, as shown in [KK]|, an
arbitrary linear order on a nilpotent group G uniquely extends to a linear order on
its divisible hull v/G. So it is not surprising that the two theories are absolutely
parallel.

3.7. Refining partial orders on algebras. Here we present some auxiliary stuff,
needed for the next sections.

An ideal I of a partially ordered algebra (po-algebra) A is called convez if for
every 0 < b < a, where a € I, we have b € I. A convex ideal I defines the induced
partial order on the quotient A/I: by definition x+1 < y+1I if there exist a,b € A
and a € x4+ I,b € y+ I, such that a < b. The relation < is well defined on the
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factor algebra A/I over a convex ideal, and the canonical mapping A — A/I is a
homomorphism of po-algebras with kernel 1.
We quote the following result from [KS| (also see [KVM]).

Lemma 3.17 (Analogue of Levi’s Theorem from Group Theory). Let A be an
algebra over a partially ordered field F and I an ideal in A such that both A/I and
I are partially ordered. If for any a >0, a € I and any b € A we have ab,ba < a
then one can define a partial order on A so that I is a convex ideal and the partial
orders on A/I and I are induced by the order on A.

It follows that an arbitrary nilpotent algebra over the field I is linearly orderable.
Indeed, to refer to Lemma 3.17, one can choose an arbitrary linear order on the
annihilator I of A, which is a vector space with zero multiplication, and a linear
order on the algebra A/I, where such an order exists by induction on the nilpotency
class.

The converse statement holds for finite-dimensional algebras.

Proposition 3.18. If a finite-dimensional algebra A over a linearly ordered field
F is linearly ordered, then it is nilpotent.

Proof. Following the paper [KS|, we consider the set M, for arbitrary positive
a € A. By definition, M, = {x € A | |z| < a}. Clearly, M, is a convex ideal,
which does not contain a.

One may assume that ab # 0 for some a,b € A. Then 0 # |ab| < a, and so the
ideal M, is not zero. Choosing such an ideal with minimal nonzero dimension, we
have xy = 0 for every (positive) x € M, and y € A, because otherwise one would
obtain 0 < dim M, < dim M, since M, C M, and x belongs to M,\M,.

By induction on the dimension, we conclude that the linearly ordered quotient
A/M, is nilpotent. Since the ideal M, annihilates A, the entire algebra A is
nilpotent. O

Remark 3.19. A simple algebra A with nontrivial multiplication admits only
trivial ordering. Indeed, if @ > 0 in A, then a ¢ M,, so the ideal M, is {0}. For
any r € A, ra,ar € M,, so that za = axr = 0, and the annihilator of A is a
nontrivial ideal. As a result, A has zero product, a contradiction.

Theorem 3.20. Let A be a finite-dimensional algebra with nonzero product and
nontrivial partial order <. Then A contains a convex ideal I such that {0} # I #
A, and the ideal I ether annihilates A or the restriction of < to I 1is the trivial
order.

Proof. Assume first that all positive elements a € A are annihilating, i.e. ar =
xa = 0 for every x € A. The annihilator I of A is a convex ideal since the positive
elements all lie in /. It is nonzero since the order is nontrivial, and it is proper
since the multiplication is not trivial.

Now suppose there is a non - annihilating positive element a. Being non -
annihilating means that there is © € A such that one of ax,za # 0. Since both
ar < a and ra < a, M, is a nonzero ideal. Now I = M, is a convex ideal, which
does not contain a, and so I # A. We may assume that the element a is chosen so
that the ideal I with these properties has minimal dimension.
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Thus, I is the desired ideal unless the restriction of the order < to I is nontrivial
and I does not annihilate A. In this case, we have a positive element in I, and every
positive element = € [ annihilates A, since otherwise we would have 0 # |zy| < =
for some y and {0} # I’ < M, for the convex ideal I’ = M, contrary to the choice
of a.

Then we denote by I” the linear envelope of all positive elements from I. We
see that [” is an annihilating ideal of A and {0} # I” < I < A. It follows from
the definition that I” is convex in I, and so is in A, because, in turn, [ is convex
in A.

The theorem is proved. O

The following Kopytov’s result was presented in [KVM, Theorem 4.10].

Lemma 3.21. Any partial order on a nilpotent Lie algebra A over a linearly
ordered field F can be extended to a linear order on A.

3.8. Ranks of maximal partial orders. Here we focus on finitely-dimensional
algebras and study their partial orders since by Proposition 3.18, only nilpotent
algebras admit linear orders.

A partial order <’ is called a refinement of a partial order < on a set if x < y
implies z <’ y for arbitrary elements x,y. A partial order is called mazimal if it
does not admit a proper refinement. Zorn’s lemma implies that for an arbitrary
partial order on an algebra, there exists a maximal refinement. Therefore every
algebra admits maximal partial orders.

A partial order < on an algebra A is called lexicographic with respect to a finite
series of convex ideals

(14) O=L<L<--<I,=A,

if for every pair of elements x # y and the maximal k such that x + I}, # y + I,
we have © < y or x and y are incomparable if and only if the same relation is true
for the cosets x + I and y + I with respect to the induced order on the quotient
A/ L.

A quotient 1,1/, is called a chief factor for a series of ideal (14) (not necessarily
convex) if it is a minimal (nonzero) ideal in A/I;. The quotient I;;,/I; is called a
central factor here if it annihilates the factor algebra A/I;.

Theorem 3.22. For arbitrary maximal partial order < on a finite-dimensional

algebra A over an linearly ordered field ¥, there is a finite series of convex ideals

(14) such that every factor Iy, /I_ is either central and the induced order on it is

linear, or a noncentral chief factor, and the induced order on it is trivial.
Furthermore, the order < is lexicographic with respect to (14).

Proof. We will proceed by induction on d = dim A with obvious base d = 0.

For d > 0, we set Iy = {0}, assume first that the order < is trivial, and choose
a minimal ideal Iy = I. Then it is convex, the factor I/l is a chief factor in
A/ly, and I, /I is not a central factor for the following reason. A central factor
has trivial multiplication, and so it admits a linear order <; by [KVM], 4.10. By
Lemma 3.17, <; is a restriction of a nontrivial partial order on A, contrary the
assumption that the trivial order is maximal. Thus the factor I /I, satisfies the
requirements of the theorem.
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Having trivial order, the ideal I = I; is convex, and the induced order <,/; is
maximal, because any proper refinement </, /1 of it defines the proper refinement
<'of <bytherulex < yifw+1 <, y+ 1. (This a refinement indeed, since
x < yimplies z —y ¢ I, and so z + I < y + I.) Since dim A/I < d, we get a
required series of convex ideals

(15) LI <L/I<---<AJl

in the quotient A/I, where the induced order on A/ is lexicographic with respect
to this series. Thus, Iy < I; < I, < ... is a required series of convex ideals in A.

Let now the order < be nontrivial. If the multiplication in A is trivial, then <
is a linear order by Lemma 3.21, and the statement of the theorem holds for the
series of ideals {0} < A.

In the remaining cases, we consider the convex ideal I provided by Theorem
3.20. If the order on [ is trivial, then we may assume that [ is a minimal ideal
since, in this case, every ideal contained in I is convex. The chief factor I/{0} is
not central. Indeed, otherwise there is a linear order <; on /. Together with the
induced order <,/ it defines an order <’ on A by Lemma 3.17, and < is a proper
refinement of <, since it is nontrivial on 1.

Therefore by induction, the series (15) allows us to obtain the required series
(14), as above.

If the order on [ is not trivial, and so [/ annihilates A, the factors I/{0} is
central in A. Then again one could extend the order on I to a linear order and
refer to Lemma 3.17 to obtain a partial order refining <. Since the partial order
is maximal, this refining is not proper, and so the restriction of < to [ is linear.
The induced order on A/I is maximal for the same reason. Then the induction on
d completes the proof as above. O

Given a maximal partial order < on a finite-dimensional algebra over a linearly
ordered field, we call the sum of the dimensions of all central factors, provided by
Theorem 3.22, the rank of the order <.

Corollary 3.23. The rank of a maximal partial order on a finite-dimensional
algebra A over a linearly ordered field does not depend on the choice of the series
(14) in Theorem 3.22. All maximal orders on A have equal ranks.

Proof. The series (14) has a refinement with the same noncentral factors, where
every factor is a chief factor (The ideal of the refinement are not necessarily con-
vex.) By Jordan - Holder Theorem, the sets of factors of two such series (with
multiplicities) are equal. Furthermore, we can use the operator version of this
theorem, where the operators are operators of left and right multiplications by the
elements of A. Thus, the sets of noncentral chief factors are the same. Since the
rank of < given by (14) is the difference of dim A and the sum of the dimensions
of all noncentral factors in (14), both statements of the corollary are proved. [

Definition 3.24. The common value of all ranks of maximal orders on a finite-
dimensional algebra A is called the partial order rank of A or p.o. rank of A.

Now the following is true.
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Corollary 3.25. If a finite-dimensional algebra A over a linearly ordered field
admits a linear order, then arbitrary partial order on A extends to a linear order.
Any partial order on a locally nilpotent algebra extends to a linear order.

The last claim generalizes Lemma 3.21, proven for nilpotent Lie algebras.

Proof. The first claim and the second in the case of finite-dimensional algebras
follow from the second claim of Corollary 3.23. Now if A is locally nilpotent,
then it has a local system of finitely generated nilpotent, hence finite-dimensional
subalgebras, that is, such a system of subalgebras whose union is the whole algebra
while any two terms of the system are contained in a third one.

Now the possibility of extending any partial order to a linear order is a local
property: if an algebra A has a local system of subalgebras with this property,
then A has this property. The proof that this is indeed a local property had been
proven in the case of groups (see, for example, [KM, Addendum, §2, Theorem 2|).
Since the proof only uses the general properties of the order relation and Malcev’s
Local Theorem, it transfers without changes to the case of algebras. U

One more characterization of order rank is given by

Theorem 3.26. The rank of a maximal partial order < in a finite-dimensional
algebra over a linearly ordered field is equal to the dimension of every subspace V
maximal with respect the property that the restriction of < to V is a linear order.

Proof. Let V be as in the formulation of the lemma. On one hand, the subspace
V' cannot contain a vector a € I;\I;_; if a quotient I;/1;_; in the series (14) given
in Theorem 3.22, has trivial induced order. Indeed, the cosets a + I;_; and ;4
are incomparable, and so a and 0 are, because the order < is lexicographical with
respect to the series (14). This contradicts the assumption that the order < is
linear on V. Then an induction on k shows that dim(V N I;) is at most the sum
of the dimensions of the central factors of A in the subseries {0} < ) < --- < .
For k = m, we have that dim V' does not exceed the rank of <.

Now we want to prove that I must contain n; vectors of I; linearly independent
modulo [;_;, where n; = dim(/;//;_1) and the quotient I;/I;_; is a central factor
of A. Arguing by contradiction, we choose a vector u € I;\V and consider the
larger subspace U = V + (u), where (u) is the span of u.

If x € U\I;, then 0 # 2 =y (mod I,), for some y € V. Since y is comparable
with 0 in A, so is z, because the order < is lexicographic. If z € I;\I;_; then x
is also comparable with 0, for the same reason, because the order on the factor
I;/1;_4 is linear. If + € UN1;_y, then we have z € V, and so z is again comparable
with 0, since the order < is linear on V.

Thus, the order < is linear on the larger subspace U, a contradiction. Therefore
dim V' is at least the sum of the dimensions of the central factors in (14), and the
theorem is proved. O

3.9. Maximal partial orders in solvable Lie algebras. It turns out that the
rank of maximal partial orders on finite-dimensional solvable Lie algebras A is
equal to the (common) dimension of the Cartan subalgebras of A. Recall that in
a finite-dimensional Lie algebra A there is a nilpotent subalgebra H equal to the
normalizer of it in A. It is called a Cartan subalgebra of A. In characteristic 0,
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all Cartan subalgebras of A have the same dimension called the rank of A (|Bou,
Chapter VII, §3]).

Theorem 3.27. If A is a finite-dimensional solvable Lie algebra over a linearly
ordered field, then the partial order rank on A is equal to the rank of A.

Proof. In characteristic 0, a finite dimensional Lie algebra A is solvable if and only
if its derived subalgebra (A, A) is nilpotent (|Bou, Chapter I, §3]. So the adjoint
action of (A, A) on the factors of a chief series going through (A, A) is trivial. Hence
by Jordan - Holder Theorem for algebras with operators, the derived subalgebra
acts trivially on an arbitrary chief factor M of A, i.e. the adjoint action of the
algebra A on M is, in fact, the action of the abelianizer A/(A, A). Every chief
factor of a solvable Lie algebra is an abelian algebra. It follows that the kernel of
the action of a particular adjoint operator ad a on the simple A/(A, A)-module M
is invariant with respect to the adjoint action of A, and so the induced action of
ad a on M is either nonsingular or trivial.

By Corollary 3.23, we may now consider arbitrary maximal partial order < on
A and arbitrary series (14) given in Theorem 3.22. We also consider a refinement
J Jy < Jp < ... of (14) with the same noncentral factors and one-dimensional
central factors in the chief series J. So by Theorem 3.22, the rank r of the order
< is just the number of central factors in 7.

Since the adjoint action ad a of every element a € A is trivial in every central
factor of J, the dimension of the null-component of the adjoint linear operator
ada : z — ax on A is at least r. (Recall that the null-component consists of all
vectors annihilated by some power of the operator ad a.)

For noncentral factors Ji/Jx+1 of J, the action of A is nontrivial, and so the
kernel K is a proper subspace of it. The union of all (although of finitely many) K-
s is a proper subset of A too, because the ground field is infinite. Therefore there is
an element a € A acting nontrivially, and therefore in a nonsingular way, on every
noncentral factor of 7. Hence the multiplicity of the root 0 in the characteristic
polynomial of ad a is exactly r. Hence the dimension of the null-component of the
linear operator ad a on A is minimal.

An element a with minimal dimension of the null-component for the action of
ada on A, is called regular. The null-component of ad a for a regular element « is
a Cartan subalgebra H of a finite-dimensional Lie algebra A (|[Bou|, VIL.3). Thus,
dim H = r, as required. O]

Remark 3.28. Since dim H is the sum of dimensions of central factors in (14)
and the regular element a € H provides a nonsingular action of ad a on noncentral
factors of the series (14), we see that the factors (HNI;)/(HNJj41) are isomorphic
with the central factors I;/1;1, as ordered spaces. Therefore the restriction of <
to H is a linear order, and a linear order on H uniquely defines the order on the
central factors of (14), and so on the entire Lie algebra A by Theorem 3.22 .(Also
by Theorem 3.26, the Cartan subalgebra H is a maximal subspace of A, where the
restriction of the maximal partial order < is linear.)

However not every linear order on a Cartan subalgebra extends to a maximal
partial order of the whole finite-dimensional solvable Lie algebra A over a linearly
ordered field. For an example, we take the following 4-dimensional Lie algebra A.
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This is the semidirect product of a 3-dimensional nilpotent algebra L with basis
{a,b,ab} by a 1-dimensional subalgebra (c) such the the inner derivation ad ¢ maps
a to a, b to —b, and ab to 0. The subspace H = (¢, ab) is a 2-dimensional Cartan
subalgebra of A.

It is easy to see that there are only two nonzero central factors A/L and
(ab)/{0} in A, and the latter factor must precede the former one in a series (14).
So by Theorem 3.22, any maximal (lexicographic) partial order on A induces a
lexicographic order on H with respect to the series {0} C (ab) C H. However H
admits many other linear orders for example any lexicographical order with respect
to the series {0} C (¢) C H.
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