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Homology Spheres Bounding Acyclic Smooth Manifolds
and Symplectic Fillings

John B. Etnyre & Bülent Tosun

Abstract. In this paper, we collect various structural results to deter-
mine when an integral homology 3-sphere bounds an acyclic smooth
4-manifold, and when this can be upgraded to a Stein manifold. In
a different direction, we study whether a smooth embedding of con-
nected sums of lens spaces in C

2 can be upgraded to a Stein embed-
ding, and we have determined that this never happens.

1. Introduction

The problem of embedding one manifold into another has a long, rich history,
and it has proved to be tremendously important for answering various geometric
and topological problems. The starting point is the Whitney embedding theorem:
every compact n-dimensional manifold can be smoothly embedded in R

2n.
In this paper we will focus on smooth embeddings of 3-manifolds into R

4 and
embeddings that bound a convex symplectic domain in (R4,ωstd). One easily sees
that if a (rational) homology sphere has such an embedding, then it must bound
a (rational) homology ball. Thus much of the paper is focused on constructing or
obstructing such homology balls.

1.1. Smooth Embeddings

In this setting, an improvement on the Whitney embedding theorem, due to Hirsch
[23] (also see Rokhlin [32] and Wall [34]), proves that every 3-manifold embeds
in R

5 smoothly. In the smooth category this is the optimal result that works for all
3-manifolds; for example, it follows from the work of Rokhlin that the Poincaré
homology sphere P cannot be embedded in R

4 smoothly. On the other hand, in
the topological category one can always find embeddings into R

4 for any integral
homology sphere by Freedman’s work [17]. Combining the works of Rokhlin
[31] and Freedman [17] for P yields an important phenomenon in 4-manifold
topology: there exists a closed oriented nonsmoothable 4-manifold—the so called
E8 manifold. In other words, the question of when does a 3-manifold embeds
in R

4 smoothly is an important question from the point of smooth 4-manifold
topology. This is indeed one of the questions in the Kirby’s problem list [26,
Problem 3.20]. Since the seminal work of Rokhlin in 1952, there has been a great
deal of progress towards understanding this question. On the constructive side,
Casson and Harrer [3], Stern, and Fickle [12] have found many infinite families

Received October 26, 2020. Revision received April 24, 2021.

1

https://www.lsa.umich.edu/math/outreach/michiganmathematicaljournal
https://doi.org/10.1307/mmj/20206003


2 John B. Etnyre & Bülent Tosun

of integral homology spheres that embed in R
4. On the other hand, techniques

and invariants, mainly springing from Floer and gauge theories, and symplectic
geometry [15; 6; 30] have been developed to obstruct smooth embeddings of 3-
manifolds into R

4. It is fair to say that despite these advances and lots of work
done in the last seven decades, it is still unclear, for example, which Brieskorn
homology spheres embed in R

4 smoothly and which do not.
A weaker question is whether an integral homology sphere can arise as the

boundary of an acyclic 4-manifold. A manifold that has all its reduced homology
trivial is called acyclic. So (rationally) acyclic 4-manifold is the same as (rational)
homology ball. Note that an integral homology sphere that embeds in R4 neces-
sarily bounds an integral homology ball, and hence is homology cobordant to the
3-sphere. Thus a homology cobordism invariant could help to find restrictions,
and plenty of such powerful invariants have been developed. For example, for
odd n, �(2,3,6n − 1) and �(2,3,6n + 1) have a nonvanishing Rokhlin invari-
ant. For even n, �(2,3,6n − 1) has R = 1, where R is the invariant of Fintushel
and Stern [15]. Hence none of these families of homology spheres can arise as
the boundary of an acyclic manifold. On the other hand, for �(2,3,12k + 1),
all the known homology cobordism invariants vanish. Indeed, it is known that
�(2,3,13) [1] and �(2,3,25) [12] bound contractible manifolds of Mazur type.
Motivated by the questions and progress mentioned above and view towards their
symplectic analogue, we would like to consider some particular constructions of
3-manifolds bounding acyclic manifolds.

Our first result is the following, which follows by adapting a method of Fickle.

Theorem 1. Let K be a knot in the boundary of an acyclic, respectively rationally
acyclic, 4-manifold W , which has a genus one Seifert surface F with a primitive
element [b] ∈ H1(F ) such that the curve b is slice in W . If b has F -framing
s, then the homology sphere obtained by 1

(s±1)
Dehn surgery on K bounds an

acyclic, respectively rationally acyclic, 4-manifold.

Remark 2. Notice that the normal bundle to the slice disk for b has a unique
trivialization and thus frames b. The F -framing on b is simply the difference
between the framing of b given by F and the one given by the slicing disk.

Remark 3. Fickle [12] proved this theorem under the assumption that ∂W was S3

and b was an unknot, but under these stronger hypotheses he was able to conclude
that the homology sphere bounds a contractible manifold.

Remark 4. Fintushel and Stern conjectured, see [12], the above theorem for
1

k(s±1)
Dehn surgery on K for any k ≥ 0. So the above theorem can be seen to

verify their conjecture in the k = 1 case.
As noted by Fickle, if the conjecture of Fintushel and Stern is true, then

�(2,3,12k + 1) will bound an acyclic manifold for each k ≥ 1 since they can be
realized by −1/2k surgery on the right-handed trefoil knot, and this knot bounds
a Seifert surface containing an unknot to which the surface gives framing −1.
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Remark 5. Notice that if b is as in the theorem, then the Seifert surface F can
be thought of as obtained by taking a disk around a point on b, attaching a 1-
handle along b (twisting s times) and then attaching another 1-handle h along
some other curve. The proof of Theorem 1 will clearly show that F does not have
to be embedded, but just ribbon immersed so that cutting h along a co-core to the
handle will result in a surface that is “ribbon isotopic” to an annulus. By ribbon
isotopic, we mean there is a 1-parameter family of ribbon immersions between the
two surfaces, where we also allow a ribbon immersion to have isolated tangencies
between the boundary of the surface and an interior point of the surface. (In the
proof we will see that it is important that the handle attached along b does not
pierce the rest of the surface. We can only allow the handle h to pierce the surface.)

Example 6. Consider the n-twisted ± Whitehead double W±
n (Kp) of Kp from

Figure 1 (here the ± indicates the sign of the clasp in the double). In [4], Cha
showed that Kp is rationally slice. That is, Kp bounds a slice disk in some rational
homology B4 with boundary S3. (Notice that K1 is the figure eight knot originally
shown to be rationally slice by Fintushel and Stern [14].) Thus Theorem 1 shows
that 1

n±1 surgery on W±
n (Kp) bounds a rationally acyclic 4-manifold. This is easy

to see as a Seifert surface for W±
n (Kp) can be made by taking an n-twisting ribbon

along Kp and plumbing a ± Hopf band to it. JungHwan Park noted that when
n = 0 these knots are rationally concordant to the unknot, and hence ±1 surgery
on W±

0 (Kp) bounds a rational homology ball.
Moreover, from Fickle’s original version of the theorem, ± 1

2 surgery on
W±

0 (Kp) bounds a contractible manifold.
We can generalize this example as follows. Given a knot K , we denote by

Rm(K) the m-twisted ribbon of K . That is, take an annulus with core K such
that its boundary components link m times. We can now plumb Rm1(K1) and
Rm2(K2) by identifying a neighborhood Ni of a point on Ki in Rmi

(Ki) with
[−1,1] × [−1,1] so that [−1,1] × {0} is a neighborhood of the point on Ki , and
then gluing N1 to N2 by interchanging the interval factors. Denote the boundary of
this new surface by P(K1,K2,m1,m2). If the Ki are rationally slice, then 1

mi±1
surgery on P(K1,K2,m1,m2) yields a manifold bounding a rationally acyclic
manifold; moreover, if the Ki are slice in some acyclic manifold, then the result
of these surgeries will bound an acyclic manifold.

Figure 1 The rationally slice knot Kp .
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The knots in Figure 1 give a good source for the Ki in the construction above.
Another good source comes from a result of Kawauchi [25]. He showed that if K

is a strongly negative-amphichiral knot (meaning there is an involution of S3 that
takes K to its mirror with reversed orientation), then the (2m,1)-cable of K is
rationally slice for any m �= 0. We can apply this to the knots in Figure 1 to obtain
another family of rationally slice knots.

1.2. Symplectic Embeddings

Another way to build examples of integral homology spheres that bound con-
tractible manifolds is via the following construction. Let K be a slice knot in
the boundary of a contractible manifold W (e.g. W = B4), then 1

m
Dehn surgery

along K bounds a contractible manifold. This is easily seen by removing a neigh-
borhood of the slice disk from W (yielding a manifold with boundary the 0 surgery
on K) and attaching a 2-handle to a meridian of K with framing −m. With this
construction one can find examples of 3-manifolds modeled on not just Seifert
geometry, for example, �(2,3,13) is the result of 1 surgery on the stevedore knot
61, but also hyperbolic geometry, for example, the boundary of the Mazur cork
is the result of 1 surgery on the pretzel knot P(3,−3,−3), which is also known
as m(946). See Figure 2 (we use the standard conventions to frame knots that run
over 1-handles, see [21, Section 2]).

We ask the question of when 1
m

surgery on a slice knot produces a contact 3-
manifold that bounds a Stein contractible manifold. Here there is an interesting
asymmetry not seen in the smooth case.

Theorem 7. Let L be a Legendrian knot in (S3, ξstd) that bounds a regular La-
grangian disc in (B4,wstd). Contact (1 + 1

m
) surgery on L (so this is smooth 1

m

surgery) is the boundary of contractible Stein manifolds if and only if m > 0.

This result points out an interesting angle on a relevant question in low dimen-
sional contact and symplectic geometry: which compact contractible 4-manifolds

Figure 2 On the left is the 3-manifold Ym,n described as a smooth
1
m surgery on the slice knot P(3,−3,−n) for n ≥ 3 odd. On the right
is the contractible Mazur-type manifold Wm,n with ∂Wm,n

∼= Ym,n.
Note the m = 1, n = 3 case yields the original Mazur manifolds (with
reversed orientation).
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admit a Stein structure? In [28] the second author and Mark found the first ex-
ample of a contractible manifold without Stein structures with either orientation.
This manifold is a Mazur-type manifold with boundary the Brieskorn homology
sphere �(2,3,13). A recent conjecture of Gompf remarkably predicts that no
nontrivial Brieskorn homology sphere bounds an acyclic Stein manifold. As ob-
served above, �(2,3,13) is the result of smooth 1 surgery along the stevedore
knot 61. The knot 61 is not Lagrangian slice, and indeed if Gompf conjecture is
true, then by Theorem 7 �(2,3,13) can never be obtained as a smooth 1

n
surgery

on a Lagrangian slice knot for any natural number n. Motivated by this example,
Theorem 7, and Gompf’s conjecture, we make the following weaker conjecture.

Conjecture 8. No nontrivial Brieskorn homology sphere �(p,q, r) can be ob-
tained as smooth 1

n
surgery on a regular Lagrangian slice knot.

On the other hand, as in Figure 2, we list a family of slice knots that are regular
Lagrangian slice because they bound decomposable Lagrangian discs and by [7]
decomposable Lagrangian cobordisms/fillings are regular. We explicitly draw a
contractible Stein manifold Xm,n these surgeries bound in Figure 3.

A related embedding question is the following: when does a lens space L(p,q)

embed in R
4 or S4? Two trivial lens spaces S3 and S1 × S2 obviously have such

embeddings. On the other hand, Hantzsche in 1938 [22] proved, by using some
elementary algebraic topology, that if a 3-manifold Y embeds in S4, then the tor-
sion part of H1(Y ) must be of the form G ⊕ G for some finite abelian group G.
Therefore a lens space L(p,q) for |p| > 1 never embeds in S4 or R4. For punc-
tured lens spaces, however, the situation is different. By combining the works of
Epstein [10] and Zeeman [36], we know that a punctured lens space L(p,q) \ B3

embeds in R
4 if and only if p > 1 is odd. Note that given such an embedding

a neighborhood of L(p,q) \ B3 in R
4 is simply (L(p,q) \ B3) × [−1,1] a ra-

tional homology ball with boundary L(p,q)#L(p,p − q) (recall −L(p,q) is
orientation-preserving diffeomorphic to L(p,p − q)).

One way to see an embedding of L(p,q)#L(p,p − q) into S4 is as follows:
First, it is an easy observation that if K is a doubly slice knot (that is, there exists a
smooth unknotted sphere S ⊂ S4 such that S ∩ S3 = K), then its double branched
cover �2(K) embeds in S4 smoothly. Moreover, by a known result of Zeeman
K#−m(K) is a doubly slice knot for any knot K (here −m(K) is the mirror of
K with the reversed orientation). It is a classic fact that L(p,q) is the double

Figure 3 Stein contractible manifold with ∂Xm,n
∼= Ym,n.
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branched cover over the 2-bridge knot K(p,q) (this is exactly where we need p

to be odd, as otherwise K(p,q) is a link). In particular, L(p,q)#L(p,p − q),
being the double branched cover of the doubly slice knot K(p,q)#−m(K(p,q)),
embeds in S4 smoothly. On the other hand, Fintushel and Stern [13] showed this
is all that could happen. That is, they proved that L(p,q)#L(p,q ′) embeds in
S4 if and only if L(p,q ′) = L(p,p − q) and p is odd. (Previously Gilmer and
Livingston [18] had shown this when p was a prime power less than 231, though
they also obstructed topological embeddings, whereas Fintushel and Stern’s work
concerned smooth embeddings.) In particular, for p odd, L(p,q)#L(p,p − q)

bounds a rational homology ball in R
4. A natural question in this case is to ask

whether any of these smooth rational homology balls can be upgraded to be sym-
plectic or Stein submanifold of C2. We prove that this is impossible.

Theorem 9. No contact structure on L(p,q)#L(p,p−q) has a symplectic filling
by a rational homology ball, assuming p > 1 (that is, L(p,q) and L(p,p−1) are
not S3). In particular, L(p,q)#L(p,p − q) cannot embed in C2 as the boundary
of exact symplectic submanifold in C

2.

Remark 10. Donald [9] generalized Fintushel–Stern and Gilmer–Livingston’s
construction further to show that for L = #h

i=1L(pi, qi), the manifold L embeds
smoothly in R

4 if and only if each pi is odd, and there exists Y such that L ∼=
Y# − Y . Our proof of Theorem 9 applies to this generalization to prove none of
the sums of lens spaces that embed in R

4 smoothly can bound an exact symplectic
manifold in C

2.

To prove this theorem we need a preliminary result of independent interest.

Proposition 11. If a symplectic filling X of a lens space L(p,q) is a rational
homology ball, then the induced contact structure on L(p,q) is a universally tight
contact structure ξstd.

Remark 12. Recall that every lens space admits a unique contact structure ξstd

that is tight when pulled back the covering space S3. Here we are not considering
an orientation on ξstd when we say it is unique. On some lens spaces the two
orientations on ξstd give the same oriented contact structure and on some they are
different.

Remark 13. After completing a draft of this paper, the authors discovered that
this result was previously proven by Golla and Starkston [20, Proposition A.2.].
Fossati [16] had previously constrained the topology of fillings of virtually over-
twisted contacts structures on a restricted class of lens spaces. Since the proof we
had is considerably different, we decided to present it here.
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Figure 4 The knot K bounding the surface F (in grey) in ∂W repre-
sented by the diagram D. The two 1-handles of F can interact in the
box D and have ribbon singularities as described in Remark 5. The
1-handle neighborhood of b induces framing s on b. The framings on
K are with respect to the framing coming from the surface F .

2. Bounding Acyclic Manifolds

We now prove Theorem 1. The proof largely follows Fickle’s argument from [12],
but we repeat it here for the readers convenience (and to popularize Fickle’s beau-
tiful argument) and to note where changes can be made to prove our theorem.

Proof of Theorem 1. Suppose the manifold ∂W is given by a surgery diagram D.
Then the knot K can be represented as in Figure 4. There we see in grey the ribbon
surface F with boundary K and the curve b on the surface. One may see this as
follows: notice that since b is primitive in homology, it is a nonseparating curve
in F , and thus there is an arc a that intersects b exactly once (and transversely)
and has boundary on ∂F . If we cut F along a, then we see that the resulting
surface is an annulus and what is left of b runs from one boundary component to
the other. Let b′ be the core of this annulus. We can recover F from this annulus
by attaching a 1-handle to undo the cut along a. In particular, we see that the
surface F can be built with a single 0-handle and two 1-handles. Up to isotopy
we can take the 0-handle to be a neighborhood of the intersection between b and
b′ and the 1-handles to be thin neighborhoods of the parts of b and b′ outside the
0-handle. This establishes the claimed picture.

The result of 1
s−1 surgery on K is obtained by doing 0 surgery on K and

(−s + 1) surgery on a meridian as shown in Figure 4. (The argument for 1
s+1

surgery is analogous or can be seen by applying the argument below to −W and
the mirror of K .) Now part of b is the core of one of the 1-handles making up F .
So we can handle slide b and the associated 1-handle over the (−s + 1) framed
unknot to arrive at the left-hand picture in Figure 5. Then one may isotope the
resulting diagram to get to the right-hand side of Figure 5. We now claim that
the left-hand picture in Figure 6 is the same manifold as the right-hand side of
Figure 5. To see this, notice that the green part of the left-hand side of Figure 6
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Figure 5 On the left is the result of sliding b and the 1-handle that is
a neighborhood of b over the −s + 1 framed unknot. The right-hand
picture is obtained by an isotopy. (This is an isotopy of the knot, not
the surface. The grey surface on the right is not isotopic to the one on
the left.)

consists of two 0-framed knots. Sliding one over the other and using the new 0-
framed unknot to cancel the nonslid component results in the right-hand side of
Figure 5.

Before moving forward, we discuss the strategy of the remainder of the proof.
The left-hand side of Figure 6 represents the 3-manifold M obtained from ∂W by
doing 1

s−1 surgery on K . We will take [0,1] × M and attach a 0-framed 2-handle
to {1} × M to get a 4-manifold X with upper boundary M ′. We will observe that
M ′ is also the boundary of W with a slice disk D for b removed. Since W is
acyclic, the complement of D will be a homology S1 × D3. Let W ′ denote this
manifold. Attaching X upside down to W ′ (that is, attaching a 2-handle to W ′)
gives a 4-manifold W ′′ with boundary −M . Since −M is a homology sphere, we
can easily see that W ′′ is acyclic. Thus −W ′′ is an acyclic filling of M .

Now, to see we can attach the 2-handle to [0,1] × M as described above, we
just add a 0-framed meridian to the new knot on the left-hand side of Figure 6.
This will result in the diagram on the right-hand side of Figure 6.

We are left to see that the right-hand side of Figure 6 is the boundary of W

with the slice disk for b removed. To see this, notice that the two green curves
in Figure 6 cobound an embedded annulus with zero twisting (the grey in the
figure), and one boundary component links the (−s + 1) framed unknot and the
other does not. Sliding the former over the latter results in the left-hand diagram
in Figure 7. Canceling the two unknots from the diagram results in the right-hand
side of Figure 7, which is clearly equivalent to removing the slice disk D for b

from W . �

3. Stein Fillings

We begin this section by proving Theorem 7 concerning smooth 1
m

surgery on a
Lagrangian slice knot.
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Figure 6 The left-hand side describes the same manifold as the right-
hand side of Figure 5. The right-hand side is the result of attaching a
0-framed 2-handle to the meridian of the new unknot.

Figure 7 The left-hand side describes the same manifold as the right-
hand side of Figure 6. The right-hand side is the result of canceling the
two unknots from the diagram.

Proof of Theorem 7. We begin by recalling a result from [7] that says contact (r)

surgery on a Legendrian knot L for r ∈ (0,1] is strongly symplectically fillable if
and only if L is a Lagrangian slice and r = 1. Thus (1 + 1/m) contact surgery for
m < 0 will never be fillable, much less fillable by a contractible Stein manifold.

We now turn to the m > 0 case and start by a particularly helpful visual-
ization of the knot L, here and below L stands both for the knot type and the
Legendrian knot that bounds the regular Lagrangian disk D in B4. By [7, Theo-
rem 1.9, Theorem 1.10], we can find a handle presentation of the 4-ball B4 made
of one 0-handle, and n canceling Weinstein 1- and 2-handle pairs, and a maxi-
mum Thurston–Bennequin unknot in the boundary of the 0-handle that is disjoint
from 1- and 2-handles such that when the 1- and 2-handle cancelations are done
the unknot becomes L. See Figure 8. Now smooth 1/m surgery on L can also be
achieved by smooth 0 surgery (which corresponds to taking the complement of
the slice disk D) on L followed by smooth −m surgery on its meridian.

As the proof of Theorem 1.1 in [7] shows, removing a neighborhood of the
Lagrangian disk D that L bounds from B4 gives a Stein manifold with boundary
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Figure 8 A Stein presentation for the 4-ball together with an “un-
knot” labeled L. When the canceling 1- and 2-handles are removed,
the knot becomes L. In this case L is the pretzel knot P(3,−3,−3).

Figure 9 The left-hand diagram shows how the 2-handles in a pre-
sentation of L can be normalized. On the right is the result “blowing
down” L, that is, doing smooth 1 surgery on L and then smoothly
blowing it down. (The box indicates one full left-handed twist.)

(+1) contact surgery on L (that is, smooth 0 surgery on L). Now, since the merid-
ian to L can clearly be realized by an unknot with Thurston–Bennequin invariant
−1, we can stabilize it as necessary and attach a Weinstein 2-handle to it to get
a contractible Stein manifold bounding (1 + 1/m) contact surgery on L for any
m > 1.

For the m = 1 case we must argue differently. One may use Legendrian Reide-
meister moves to show that in any diagram for L as described above the 2-handles
pass through L as shown on the left-hand side of Figure 9. To see this, consider
Figure 10. There in the upper left we see a general picture for how the attaching
spheres for the 2-handles can run through L, here T is just some Legendrian tan-
gle and the labeling a, b, c, and d means there are a strands entering from the top
left, and similarly for the other labels. The next two diagrams in Figure 10 show
a Legendrian isotopy of one of the lower left strands. The lower left diagram in-
dicates that the upper right diagram has moved one of the lower left strands to an
upper right strand at the expense of changing the tangle T . We can continue to
get rid of all the lower left strands and similarly all of the lower right strands as
well. This results in the middle diagram on the bottom row of Figure 10. Finally,
one can isotopy the tangle T ′′ out from the region bounded by L. This gives the
claimed isotopy to the diagram on the left of Figure 9.

Smoothly doing contact (1 + 1/1)-surgery on L (that is, smooth 1 surgery) is
smoothly equivalent to replacing the left-hand side of Figure 9 with the right-hand
side and changing the framings on the strands by subtracting their linking squared
with L.
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Figure 10 Isotopy to normalize the way strands run through L.

Figure 11 Legendrian representations for negative twisting.

Now notice that if we realize the right-hand side of Figure 9 by concatenating
n copies of either diagram in Figures 11 (where n is the number of red strands
in Figure 9), then the Thurston–Bennequin invariant of each knot involved in
Figure 9 is reduced by the linking squared with L. We claim that this is a Stein
diagram for the result of (2) contact surgery on L. To see this, recall that (2)

contact surgery is effected by (1) contact surgery on L followed by (−1) contact
surgery on a once stabilized copy L′ of L (that is, L′ is obtained from L by
translating slightly up in the front diagram and then stabilizing), see [8]. Now, if
one handle slides the strands running through L on the left-hand side in Figure 9
over L′, as in the third row of Figure 25 in [2], then one may cancel L and L′ from
the diagram, resulting in a link that is Legendrian isotopic to the one described
above.

Notice that the diagram clearly describes acyclic 4-manifolds; moreover, the
presentation for its fundamental group is the same as for the presentation for the
fundamental group of B4 given by the original diagram. Thus the 4-manifolds are
contractible. �

We now turn to the proof that connected sums of lens spaces can never have
acyclic symplectic fillings, but first we prove Proposition 11 that says any contact
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structure on a lens space that is symplectically filled by a rational homology ball
must be universally tight.

Proof of Proposition 11. Let X be a rational homology ball symplectic filling of
L(p,q). We show that the induced contact structure must be the universally tight
contact structure ξstd. This will follow from unpacking recent work of Menke [29]
where he studies exact symplectic fillings of a contact 3-manifold that contains a
mixed torus.

We start with the set-up. Honda [24] and Giroux [19] have classified tight con-
tact structures on lens spaces. We review the statement of Honda in terms of the
Farey tessellation. We use notation and terminology that is now standard, but see
see [24] for details. Consider a minimal path in the Farey graph that starts at −p/q

and moves counterclockwise to 0. To each edge in this path, except for the first
and last edge, assign a sign. Each such assignment gives a tight contact structure
on L(p,q) and each tight contact structure comes from such an assignment. If
one assigns only +’s or only −’s to the edges, then the contact structure is uni-
versally tight, and these two contact structures have the same underlying plane
field, but with opposite orientations. We call this plane field (with either orienta-
tion) the universally tight structure ξstd on L(p,q). All the other contact structures
are virtually overtwisted, that is, they are tight structures on L(p,q) but become
overtwisted when pulled to some finite cover. The fact that at some point in the
path describing a virtually overtwisted contact structure the sign must change is
exactly the same as saying a Heegaard torus for L(p,q) satisfies Menke’s mixed
torus condition.

Theorem 14 (Menke). Let (Y, ξ) denote closed, cooriented contact 3-manifold,
and let (W,ω) be its strong (resp. exact) symplectic filling. If (Y, ξ) contains a
mixed torus T , then there exists a (possibly disconnected) symplectic manifold
(W ′,ω′) such that:
• (W ′,ω′) is a strong (rep. exact) symplectic filling of its boundary (Y ′, ξ ′);
• ∂W ′ is obtained from ∂W by cutting along T and gluing in two solid tori;
• W can be recovered from W ′ by symplectic round 1-handle attachment.

In our case we have X filling L(p,q). Suppose that the contact structure on
L(p,q) is virtually overtwisted. The theorem above now gives a symplectic man-
ifold X′ to which a round 1-handle can be attached to recover X; moreover, ∂X′
is a union of two lens spaces or S1 × S2. However, Menke’s more detailed de-
scription of ∂X′ shows that S1 × S2 is not possible. We digress for a moment to
see why this last statement is true. When one attaches a round 1-handle, on the
level of the boundary, one cuts along the torus T and then glues in two solid tori.
Menke gives the following algorithm to determine the meridional slope for these
tori. That T is a mixed torus means there is a path in the Farey graph with three
vertices having slope r1, r2, and r3, each is counterclockwise of the pervious one
and there is an edge from ri to ri+1 for i = 1,2. The torus T has slope r2 and the
signs on the edges are opposite. Now let (r3, r1) denote slopes on the Farey graph
that are (strictly) counterclockwise of r3 and (strictly) clockwise of r1. Any slope
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in (r3, r1) with an edge to r2 is a possible meridional slope for the glued in tori,
and these are the only possible slopes. Now, since our ri are between −p/q and
0, we note that if there was an edge from r2 to −p/q or 0, then r2 could not be
part of a minimal path from −p/q to 0 that changed sign at r2. Thus when we
glue in the solid tori corresponding to the round 1-handle attachment, they will
not have meridional slope 0 or −p/q , and thus we cannot get S1 × S2 factors.

The manifold X′ is either connected or disconnected. We notice that it cannot
be connected because it is known that any contact structure on a lens space is
planar [33], and Theorem 1.2 from [11] says any filling of a contact structure
supported by a planar open book must have connected boundary. Thus we know
that X′ is, in fact, disconnected. So X′ = X′

1 ∪ X′
2 with ∂X′

i a lens space. The
Mayer–Vietoris sequence for the decomposition of X′ into X′

1 ∪ X′
2 (glued along

S1 × D2 in their boundaries) shows that the first homology of X′
1 or X′

2 has
rank 1, whereas both of their higher Betti numbers are 0. But now the long exact
sequence for the pair (X′

i , ∂X′
i ) implies that b1 must be 0 for both the X′

i . This
contradiction shows that a symplectic manifold, which is a rational homology ball
and with convex boundary L(p,q), must necessarily induce the universally tight
contact structure on the boundary. �

Proof of Theorem 9. The statement about embeddings follows directly from the
statement about symplectic fillings. To prove that result, let X be an exact sym-
plectic filling of L(p,q)#L(p,p − q) that is also a rational homology ball.
Since any contact structure on L(p,q)#L(p,p − q) is supported by a planar
open book, [33], Wendl’s result [35] tells us that X can be taken to be a Stein
filling of L(p,q)#L(p,p − q). Observe that there is an embedded sphere in
∂X as it is reducible. Eliashberg’s result in [5, Theorem 16.7] says that X is
obtained from another Stein manifold with convex boundary by attaching a 1-
handle. Thus X ∼= X1�X2, where X1 and X2 are exact symplectic manifolds with
∂X1 = L(p,q) and ∂X2 = L(p,p − q) or X ∼= X′ ∪ (1-handle), where X′ is
symplectic 4-manifold with boundary ∂X′ ∼= L(p,q) � L(p,p − q).

As argued above in the proof of Proposition 11, it is not possible to have X′
with disconnected boundary being lens spaces, and we must be in the case X ∼=
X1�X2; moreover, since X is a rational homology ball, so are the Xi . Moreover,
since X1 and X2 are symplectic fillings of their boundaries, they induce tight
contact structures on L(p,q) and L(p,p − q), respectively.

Proposition 11 says that these tight contact structures, which are unique up to
changing orientation, must be universally tight contact structures ξstd on L(p,q)

and ξ ′
std on L(p,p−q). Thus we have that X1 and X2 are rational homology balls

and are exact symplectic fillings of (L(p,q), ξstd) and (L(p,p −q), ξ ′
std), respec-

tively. In [27, Corollary 1.2(d)] Lisca classified all such fillings. According to
Lisca’s classification, symplectic rational homology ball fillings of (L(p,q), ξstd)

are possible exactly when (p, q) = (m2,mh − 1) for some m and h coprime nat-
ural numbers, and similarly for (L(p,p − q), ξ ′

std) exactly when (p,p − q) =
(m2,mk−1) for m and k coprime natural numbers. Now simple calculation shows
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that the only possible value for m satisfying these equations is m = 2. In particu-
lar, we get that p = 4, but then we must have {q,p − q} = {1,3}, and 3 cannot be
written as 2k − 1 for k coprime to 2. Thus there is no such X. �
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