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Abstract. We present our speed records for Falcon signature genera-
tion and verification on ARMv8-A architecture. Our implementations
are benchmarked on Apple M1 ’Firestorm’, Raspberry Pi 4 Cortex-
AT72, and Jetson AGX Xavier. Our optimized signature generation is 2x
slower, but signature verification is 3-3.9x faster than the state-of-the-
art CRYSTALS-Dilithium implementation on the same platforms. Faster
signature verification may be particularly useful for the client side on con-
strained devices. Our Falcon implementation outperforms the previous
work targeting Jetson AGX Xavier by the factors 1.48x for signing in
falcon512 and falcon1024, 1.52x for verifying in falcon512, and 1.70x
for verifying in falcon1024. We achieve improvement in Falcon signature
generation by supporting a larger subset of possible parameter values for
FFT-related functions and applying our compressed twiddle-factor table
to reduce memory usage. We also demonstrate that the recently proposed
signature scheme Hawk, sharing optimized functionality with Falcon, has
3.3x faster signature generation and 1.6-1.9x slower signature verifica-
tion when implemented on the same ARMvS8 processors as Falcon.
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1 Introduction

When large quantum computers arrive, Shor’s algorithm [39] will break almost
all currently deployed public-key cryptography in polynomial time [16] due to
its capability to obliterate two cryptographic bastions: the integer factorization
and discrete logarithm problems. While there is no known quantum computer
capable of running Shor’s algorithm with parameters required to break current
public-key standards, selecting, standardizing, and deploying their replacements
have already started.

In 2016, NIST announced the Post-Quantum Cryptography (PQC) standard-
ization process aimed at developing new public-key standards resistant to quan-
tum computers. In July 2022, NIST announced the choice of three digital signa-
ture algorithms [2]: CRYSTALS-Dilithium [5], Falcon [23], and SPHINCS™ [11]
for a likely standardization within the next two years. Additionally, NIST has
already standardized two stateful signature schemes, XMSS [26] and LMS [34].
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Compared to Elliptic Curve Cryptography and RSA, PQC digital signatures
have imposed additional implementation constraints, such as bigger key and
signature sizes, higher memory usage, support for floating-point operations, etc.
In many common applications, such as the distribution of software updates and
the use of digital certificates, a signature is generated once by the server but
verified over and over again by clients forming the network.

In this paper, we examine the PQC digital signatures’ speed on ARMvS8-A
platforms. NEON is an alternative name for Advanced Single Instruction Multi-
ple Data (ASIMD) extension, available since ARMv7. NEON includes additional
instructions that can perform arithmetic operations in parallel on multiple data
streams. It also provides a developer with 32 128-bit vector registers. Each reg-
ister can store two 64-bit, four 32-bit, eight 16-bit, or sixteen 8-bit integer data
elements. NEON instructions can perform the same arithmetic operation simul-
taneously on the corresponding elements of two 128-bit registers and store the
results in the respective fields of a third register. Thus, an ideal speed-up vs. tra-
ditional single-instruction single-data (SISD) ARM instructions varies between
2 (for 64-bit operands) and 16 (for 8-bit operands).

In this work, we developed an optimized implementation of Falcon targeting
ARMvS cores. We then reused a significant portion of our Falcon code to imple-
ment Hawk — a new lattice-based signature scheme proposed in Sep. 2022 [21].
Although this scheme is not a candidate in the NIST PQC standardization pro-
cess yet, it may be potentially still submitted for consideration in response to
the new NIST call, with the deadline in June 2023.

We then benchmarked our implementation and existing implementations of
Falcon, Hawk, CRYSTALS-Dilithium, SPHINCS+, and XMSS using the
"Firestorm’ core of Apple M1 (being a part of MacBook Air) and the Cortex-A72
core (being a part of Raspberry Pi 4), as these platforms are widely available
for benchmarking. However, we expect that similar rankings of candidates can
be achieved using other ARMvS8 cores (a.k.a. microarchitectures of ARMvS).

Contributions. In this paper, we overcome the high complexity of the Falcon
implementation and present a speed record for its Signature generation and
Verification on two different ARMvS8 processors.

In a signature generation, we constructed vectorized scalable FFT implemen-
tation that can be applied to any FFT level greater than five. We compressed
the twiddle factor table in our FFT implementation using a method inspired by
the complex conjugate root of FFT. In particular, we reduced the size of this
table from 16 Kilobytes in the reference implementation down to 4 Kilobytes
in our new ref and neon implementations. The modified FFT implementation
with 4x smaller twiddle factor table is not specific to any processor. Thus, it
can be used on any platform, including constrained devices with limited storage
or memory.

In the Verify operation, we applied the best-known Number Theoretic Trans-
form (NTT) implementation techniques to speed up its operation for Falcon-
specific parameters. Additionally, we present the exhaustive search bound anal-
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ysis applied to twiddle factors per NTT level aimed at minimizing the number
of Barrett reductions in Forward and Inverse NTT.

We also optimized the performance of hash-based signatures, and comprehen-
sively compare three stateless and one stateful digital signature schemes selected
by NIST for standardization — Falcon, CRYSTALS-Dilithium, SPHINCS™*, and
XMSS — and one recently-proposed lattice-based scheme Hawk. We rank them
according to signature size, public-key size, and Sign and Verify operations’ per-
formance using the best implementations available to date.

Our code is publicly available at

2 Previous Work

The paper by Streit et al. [10] was the first work about a NEON-based ARMv8
implementation of the lattice-based public-key encryption scheme New Hope
Simple. Other works implement Kyber [11], SIKE [28], and FrodoKEM [32] on
ARMv8. The most recent works on the lattice-based finalists NTRU, Saber, and
CRYSTALS-Kyber are reported by Nguyen et al. [35,36]. The paper improved
polynomial multiplication and compared the performance of vectorized Toom-
Cook and NTT implementations. Notably, the work by Becker et al. [6] showed a
vectorized NEON NTT implementation superior to Toom-Cook, introduced fast
Barrett multiplication, and special use of multiply-return-high-only sq[r]dmulh
instructions. The SIMD implementation of Falcon was reported by Pornin [37]
and Kim et al. [31]. On the application side, Falcon is the only viable option in
hybrid, partial, and pure PQC V2V design described in the work of Bindel et
al. [12]

In the area of low-power implementations, most previous works targeted the
ARM Cortex-M4 [29]. In particular, Botros et al. [14], and Alkim et al. [3]
developed Cortex-M4 implementations of Kyber. Karmakar et al. [30] reported
results for Saber. Chung et al. [17] on Saber and NTRU, and later work by
Becker et al. [8] improved Saber by a large margin on Cortex-M4,/M55. The latest
work by Abdulrahman et al. [1] improved Kyber and Dilithium performance on
Cortex-M4.

The most comprehensive Fast Fourier Transform (FFT) work is by Becoulet
et al. |[9]'. The publications by Frigo et al. [24] and Blake et al. [13] describe the
SIMD FFT implementations.

3 Background

Table 1 summarizes values of parameters n and g for various signature schemes
and NIST security levels. n is a parameter in the cyclotomic polynomial ¢ =
(z™ +1), and ¢ is a prime defining a ring Zq[x]/(¢). The sizes of the public key
and signature in bytes (B) are denoted with |pk| and |sig|. The signature ratio
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Table 1. Parameter sets, key sizes, and signature sizes for FALCON, HAWK, DILITHIUM,
xMss, and sPHINCS'. The last column shows the signature size ratio in comparison to
FALCON512, DILITHIUM3, or FALCON1024, depending on the security level.

NIST

level n q |pk| |sig| |[pk + sig| |sig| ratio
FALCONH512 I 512 12,289 897 652 1,549 1.00
HAWK512 65,537 1,006 542 1,548 0.83
DILITHIUMZ2 I 256 8,380,417 1,312 2,420 3,732 3.71
XMSS6-SHA256 - - 64 2,692 2,756 4.12
SPHINCST128s I - - 32 7,856 7,888 12.05
SPHINCST128 f - - 32 17,088 17,120 26.21
DILITHIUM3 256 8,380,417 1,952 3,293 5,245 1.00
spHINCST192s 11T - - 48 16,224 16,272 4.93
SPHINCST192f - - 48 35,664 35,712 10.83
FALCON1024 1024 12,289 1,793 1,261 3,054 1.00
HAWK 1024 65,537 2,329 1,195 3,524 0.95
DILITHIUMS V 256 8,380,417 2,592 4,595 7,187 3.64
SPHINCS 12565 - - 64 29,792 29,856 23.62
SPHINCS 256 f - - 64 49,856 49,920 39.53

|sig| ratio is the result of dividing the signature size of other schemes by the
signature size of FALCON512, DILITHIUM3, and FALCON1024.

3.1 Falcon

Falcon is a lattice-based signature scheme utilizing the ’hash-and-sign’ paradigm.
The security of Falcon is based on the hardness of the Short Integer Solution
problem over NTRU lattices, and the security proofs are given in the random
oracle model with tight reduction. Falcon is difficult to implement, requiring tree
data structures, extensive floating-point operations, and random sampling from
several discrete Gaussian distributions. The upsides of Falcon are its small public
keys and signatures as compared to Dilithium. As shown in Table 1, the signature
size of Falcon at the highest NIST security level is still smaller than that of the
lowest security level of Dilithium, XMSS, and SPHINCS™. Key generation in
Falcon is expensive. However, a key can be generated once and reused later.

The signature generation (Algorithm 1) of Falcon first computes hash value
¢ from message m and salt r. Then, it uses (f,g,F,G) from the secret key
components to compute two short values si,so such that s; + soh = ¢ mod
(¢, q). Falcon relies extensively on floating-point computations during signature
generation, used in Fast Fourier Transform (FFT) over the ring Q[x]/(¢), and
Gaussian and Fast Fourier Sampling (ffSampling) for Falcon tree T.
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Algorithm 1: Falcon Sign

Input: A message m, a secret key sk, a bound [3?]
Output: sig = (r, s)

1 7 < {0,1}%29 uniformly ¢ < HashToPoint(r||m, g, n)

2t (—3 FFT(c) ® FET(F), 1 FFT(c) © FFT(f)) > teQlz]/(4)
3 do

4 do

5 z < ffSampling, (¢t,T)

6 s=(t— z)B > s € Gaussian distribution: s ~ D(.0)+A(B),0,0
v | while ||| > [87);

8 (s1,82) + invFFT(s) > 81+ $2h = cmod (¢, q)
9 s < Compress(ss, 8 - sbytelen — 328)

10 while (s =1);
11 return sig = (r, s)

Algorithm 2: Falcon Verify
Input: A message m,sig = (r,s), pk = h € Z4[z]/(¢), a bound LBQJ
Output: Accept or reject
1 ¢ + HashToPoint(r|m,q,n) S9 < Decompress(s, 8 sbytelen —328)
2 if (s2 =1) then
3 ‘ reject
4 51 ¢ ¢ — seh mod (¢, q) > [s1| < £ and s1 € Zg[z]/(¢)
5 if ||(s1,52)]> < [8?] then
6
7
8

‘ accept ;
else
‘ reject

The signature verification (Algorithm 2) checks if two short values (s1, s2) are
in acceptance bound | 3?] using the knowledge from public key pk, and signature
(r, s). If the condition at line 5 is satisfied, then the signature is valid; otherwise,
it is rejected. As opposed to signature generation, Falcon Verify operates only
over integers.

Falcon supports only NIST security levels 1 and 5. A more detailed descrip-
tion of the underlying operations can be found in the Falcon specification [23].

3.2 Dilithium

Dilithium is a member of the Cryptographic Suite for Algebraic Lattices (CRYS-
TALS) along with the key encapsulation mechanism (KEM) Kyber. The core
operations of Dilithium are the arithmetic of polynomial matrices and vectors.
Unlike ’hash-and-sign’ used in Falcon, Dilithium applies the Fiat-Shamir with
Aborts [20, 33] style signature scheme and bases its security upon the Mod-
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ule Learning with Errors (M-LWE) and Module Short Integer Solution (M-SIS)
problems.

Compared with Falcon, Dilithium only operates over the integer ring Z,[z]/(¢)
with ¢ = (2™ + 1). Thus, it is easier to deploy in environments lacking floating-
point units. Dilithium supports three NIST security levels: 2, 3, and 5, and its
parameters are shown in Table 1. More details can be found in the Dilithium
specification [5].

3.3 XMSS

XMSS [26] (eXtended Merkle Signature Scheme) is a stateful hash-based sig-
nature scheme based on Winternitz One-Time Signature Plus (WOTS+) [27].
XMSS requires state tracking because the private key is updated every time
a signature is generated. Hence, the key management of XMSS is considered
difficult. Consequently, XMSS should only be used in highly controlled environ-
ments [19]. The advantages of XMSS over SPHINCS™ are smaller signature sizes
and better performance. XMSS is a single-tree scheme, with a multi-tree variant
XMSSMT also included in the specification. The security of XMSS relies on the
complexity of the collision search of an underlying hashing algorithm.
Single-tree XMSS has faster signature generation and verification than the
multi-tree XMSSMT" and comes with three tree heights: h = [10, 16, 20], which
can produce up to 2" signatures. We select a single-tree variant of XMSS with
a reasonable number of signatures, 2!¢, and choose optimized SHA256 as under-
lying hash functions. This variant is denoted as xMS$s'6-sHA256 in Table 1.

3.4 SPHINCS*

SPHINCS™ [11] is a stateless hash-based signature scheme that avoids the com-
plexities of state management associated with using stateful hash-based sig-
natures. SPHINCS™ security also relies on hash algorithms. The algorithm is
considered a conservative choice, preventing any future attacks on lattice-based
signatures. SPHINCS™ provides ’simple’ and ’robust’ construction. The robust’
construction affects the security proof and runtime. In addition, small (’s’) and
fast parameters (’f’) influence execution time. These parameter set variants are
over 128, 192, and 256 quantum security bits.

Based on the performance provided in the specification of SPHINCS™, we
select the ’simple’ construction, and both ’s” and ’f’ parameters for NIST secu-
rity levels 1, 3, and 5, as shown in Table 1. Unlike in XMSS, we select optimized
SHAKE as the underlying hash function.

3.5 Hawk

Hawk is a recent signature algorithm proposed by Ducas et al. [21] based on
the Lattice Isomorphism Problem (LIP). Hawk avoids the complexities of the
floating-point discrete Gaussian sampling, which is a bottleneck in our optimized
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Falcon implementation. Hawk chooses to sample in a simple lattice Z™ [10,22]
with a hidden rotation.

An AVX2 implementation of HAWK1024 is faster than the equivalent imple-
mentation of FALCON1024 by 3.9x and 2.2x. With our optimized neon imple-
mentation of Falcon, we decided to port our optimized Falcon code to Hawk and
investigate if such performance gaps between Hawk and Falcon still hold. In this
work, we select HAWK512 and HAWK 1024 at NIST security levels 1 and 5.

4 Number Theoretic Transform Implementation

The Number Theoretic Transform (NTT) is a transformation used as a basis for a
polynomial multiplication algorithm with the time complexity of O(nlogn) [18].
In Falcon, the NTT algorithm is used for polynomial multiplication over the ring
R, = Z,[z]/ (2™ +1), where degree n = [512,1024] and g = 12289 = 213 + 2121
with ¢ = 1 mod 2n.

Complete NTT is similar to traditional FFT (Fast Fourier Transform) but
uses the root of unity in the discrete field rather than in a set of real numbers.
NTT and NTT~! are forward and inverse operations, where NTT~Y(NTT(f)) =
f for all f € Ry.

NTT(A) « NTT(B) denotes pointwise multiplication. Polynomial multipli-
cation using NTT is shown in Equation 1.

C(x) = A(z) x B(z) = NTT Y(NTT(A) * NTT(B)) (1)

4.1 Barrett multiplication

In our Falcon implementation, Barrett multiplication is used extensively when
one factor is known [6]. As shown in Algorithm 3, b must be a known constant,
and ' = [(b- R/q)/2], where | | represent truncation. In fact, b and ¥ in NTT
are from the precomputed table w; and wj.

Algorithm 3: Signed Barrett multiplication with a constant [6]
Input: Any |a| < R = 2%, constant |b|] < ¢ and ¥’ =[(b- R/q)/2]
Output: ¢ = barrett_mul(a,b,d’) = a-bmod ¢, and |¢| < 3—2‘1 < %
1 t + sqrdmulh(a,b’) > hi(round((2-a-b))
2 ¢+ mul(a,b) > lo(a-b)
3 ¢+ mls(c,t,q) > lo(c—t-q)
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4.2 Montgomery multiplication

First, Falcon Verify computes only one polynomial multiplication (as in line 4
of Algorithm 2). Two polynomials (sq, k) are converted to NTT domain. Then,
we perform pointwise multiplication between two polynomials in NTT domain.
To efficiently compute modular reduction for two unknown factors during point-
wise multiplication, the conventional way is to convert one polynomial to the
Montgomery domain and perform Montgomery multiplication. Eventually, the
multiplication with a constant factor n~! is applied at the end of Inverse NTT.
We apply a small tweak by embedding n~! into Montgomery conversion during
pointwise multiplication (a;b;n~! instead of a;b; for i € [0,...,n — 1]) to avoid
multiplications with n~! in Inverse NTT.

The Montgomery n~! conversion uses Barrett multiplication with a known

factor amont = barrett_mul(a,b,b’), with b = R-n~! mod ¢. Furthermore, it
is beneficial at the instruction level to embed n~' when n is a power of 2 in
Montgomery conversion. In particular, when (R,n) = (2'¢,210) then
b=R-n! =216.2710 = 96 mod ¢q. Hence, multiply instruction at line 2 of
Algorithm 3 can be replaced by a cheaper shift left (shl) instruction.

Secondly, we apply Montgomery multiplication with rounding for pointwise
multiplication (Section 3 in Becker et al. [6]).

4.3 Minimizing the number of Barrett reductions

In Barrett multiplication (Algorithm 3), the theoretical bound of output ¢ is in
—3—2[1 <c< ?’Q—q. Details of the proof can be found in Becker et al. [6]. Given that
q = 12289, R = 2'6, the maximum bound of signed arithmetic centered around
0is 2.6g ~ % instead of 5.3¢ ~ R in unsigned arithmetic.

During Forward and Inverse NTT, we carefully control the bound of each
coefficient by applying our strict Barrett multiplication bound analysis. The
naive 2.6¢g bound assumption will lead to performing Barrett reduction after
every NTT level. To minimize the number of Barrett reductions, we validate
the range of ¢ = barrett_mul(b,w,w’) for all unknown values of [b| < & and
w € w; and w’ € wj table according to each NTT level by exhaustive search
(aka. brute-force all possible values in space R = 216). The bound output ¢ of
barrett_mul is increasing if |b| < ¢ and decreasing if |b| > ¢. For example, if
% ~ (0.5,1.0,2.0,2.5), then after Barrett multiplication, the obtained bounds

are £ ~ (0.69,0.87,1.25,1.44).

As a result, we were able to minimize the number of reduction points in the
Forward and Inverse NTT from after every one NTT level to every two NTT
levels. In our case, an exhaustive search works in an acceptable time for the
16-bit space. A formal, strict bound analysis instead of an exhaustive search
approach is considered as future work.
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Algorithm 4: Signed Barrett reduction [6] for prime ¢ = 12289
Input: Any |a|] < R = 2%, constants (¢, w,v,i) = (12289, 16,5461, 11)
Output: ¢ = barrett_mod(a,q) =amod ¢, and — % <c< {

1 t + sqdmulh(a,v) > hi(2-a-v)
2 t + srshr(t, ) > round(t > i)
3 ¢+ mls(a,t,q) > lo(a—t-q)

4.4 Forward and Inverse NTT Implementation

Falcon uses NTT to compute polynomial multiplication in the Verify operation.
To avoid a bit-reversal overhead, Cooley-Tukey (CT) and Gentleman-Sande (GS)
butterflies are used for Forward and Inverse NTT, respectively.

Instead of vectorizing the original reference Falcon NTT implementation, we
rewrite the NTT implementation to exploit cache temporal and spatial locality.
Our NTT implementation is centered around 0 to use signed arithmetic instruc-
tions instead of the unsigned arithmetic approach used by default in Falcon. This
choice of implementation significantly improved our work compared to Kim et
al. [31] due to special sq[r]dmulh instructions, which only work in signed arith-
metic. We recommend utilizing multiply-return-high-only instruction for NTT
implementation on any platform that supports it.

In Forward and Inverse NTT operations, barrett_mul is used extensively
due to its compactness, thus yielding optimal performance, eliminating depen-
dency chains by using only 3 instructions [6] rather than 9 instructions from
Nguyen et al. [35,36]. At the instruction level, based on the Becker et al. [(]
micro-architecture pipeline trick, we gather the addition and subtraction from
multiple butterflies in a group and arrange multiple barret_mul together. Note
that this behavior also appeared in modern compiler optimization. Since our
implementation uses intrinsic instructions instead of assembly instructions, we
confirmed that the output assembly code showed similar order of instructions
as in intrinsic implementation. On the low-end Cortex-A72 ARMv8 processor,
we achieved 10% performance improvement by grouping instructions compared
with ungrouping multiply instructions. However, this improvement is negligible
in the high-end Apple M1 processor.

In terms of storage, the Barrett multiplication requires twiddle factor table w
and additional storage for the precomputed table w’: w; = [(w; - R/q)/2], where
w; = w’ mod q. We prepared the twiddle factor tables w; and w! so that every
read from such tables is in the forward direction, and each entry is loaded only
once during the entire operation.

Our Forward and Inverse NTT consist of two loops with the constant-stride
(cache-friendly) load and store into memory and the permutation following steps
in Nguyen et al. [35,36]. Our Forward and Inverse NTT implementations are
constructed by two loops, seven NTT levels are combined into the first loop, and
the remaining two (resp. three) NTT levels are in the second loop for n = 512
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O
Inverse FFT Fold by 2 Fold by 4

............

applied O applied

conjugate : ; rotation

Fig. 1. Deriving full twiddle factor table by applying complex conjugate and rotation.

(resp. 1024). Each coefficient is loaded and stored once in each loop. With two
loops, our implementation can reach up to n = 2048, R = 26 or n = 1024, R =
232 with a minimal number of load and store instructions.

5 Fast Fourier Transform Implementation

The Fast Fourier Transform (FFT) is a fast algorithm that computes a Discrete
Fourier Transform from the time domain to the frequency domain and vice versa.

N-1
Xi= Y ane 7™V with k € [0,N — 1] (2)

n=0

The discrete Fourier transform in Equation 2 has time complexity of O(n?).
FFT improves the transformation with the time complexity of O(nlogn) [18].

The advantage of FFT over NTT for polynomial multiplication is that the
root of unity e’?™/N always exists for arbitrary N. Additionally, FFT suffers
precision loss caused by rounding in the floating-point-number computations,
while polynomial multiplication using NTT guarantees correctness due to NTT
operating in the integer domain.

5.1 Compressed twiddle factor table

In Falcon, each complex point utilizes 128 bits of storage. Reducing the required
storage amount improves cache locality and minimizes memory requirements.
Both improvements are especially important in constrained devices. When an-
alyzing the twiddle factor table, we realized that the real and imaginary parts
of complex points are repeated multiple times because of the complex number
negation, conjugation, and rotation. For example, complex roots of 2® + 1 can
be derived from a single complex root a = (aye, @im) to [a, —a, —ia,ia] as the
first half of the roots, and [4,—a, —id,ia] as the second half of the roots. It
is notable that the second half is the complex conjugate of the first half, where
a = conjugate(a) = (are, —aim). As aresult, we only need to store a = (aye, Gim)
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and use the add and subtract instructions to perform negation, conjugation, and
rotation.

In summary, we fold the twiddle factor table by a factor of 2 by applying
the complex conjugate to derive the second half from the first half. Furthermore,
we use addition, subtraction, and rotation to derive the variants of complex
roots within the first half, thus saving another factor of 2, as shown in Fig. 1.
However, the FFT implementation in the reference implementation of Falcon no
longer works with our new twiddle factor table (tw). As a result, we rewrite our
FFT implementation in C to adopt our newly compressed twiddle factor table.

In general, we can compress complex roots from n down to Z. In particular,
when n = 512,1024, the default twiddle factor table size is 16n bytes. With
compressed twiddle factors, we only need to store 128,256 complex roots, and
the table size becomes 4n bytes. A special case in 2* 4 1, when a = (@, @) =
(v/2,4/2), thus we exploit the fact that a,. = a;, to save multiply instructions
by writing a separate loop at the beginning and end of Forward and Inverse
FFT, respectively.

In Forward FFT, only the first half of the roots is used, while in Inverse FFT,
only the second half is used.

Our Iterative SIMD FFT. Many FFT implementations prefer a recursive
approach for high degree N > 213 [13,24], as it is more memory cache-friendly
than the iterative approach. First, we decided to avoid using a vendor-specific
library to maintain high portability. Secondly, we gave preference to an itera-
tive approach to avoid function call overheads (since Falcon’s N < 1024) and
scheduling overheads for irregular butterfly patterns. Thirdly, we must support
our compressed twiddle factor since the cost of deriving complex roots is minimal.
Lastly, we focused on simplicity, so our code could be deployed and implemented
on constrained devices and used as a starting point for hardware accelerator de-
velopment.

In our literature search, we could not find either an FFT implementation or
detailed algorithms fitting our needs. Hence, we wrote our own iterative FFT
in C, then we vectorized our C FFT implementation. We are not aware of any
published FFT implementation similar to our work.

5.2 Improved Forward FFT implementation

Similar to NTT, we use Cooley-Tukey butterflies in Algorithms 5 and 6 to ex-
ploit the first half of the roots in Forward FFT. We rewrote the Forward FFT
implementation, so each twiddle factor is always loaded once, and the program
can take advantage of the cache spatial and temporal locality with constant ac-
cess patterns when load and store instructions are executed. All the butterflies
in Algorithm 9 are computed in place. Note that the two for loops from line 10
to 17 can be executed in parallel, which may be of interest when developing a
hardware accelerator.

In a signature generation, at line 5 in Algorithm 1, Fast Fourier sampling
(ffSampling) builds an FFT tree by traveling from the top level, I = log,(NV),
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Algorithm 5: CT_BF Algorithm 6: CT_BF_90

Input: a,b,w Input: a,b,w

Output: (a,b) = (a+wb, a—wb) Output: (a,b) = (a+iwb, a—iwb)
1t bxw 1t bx*(iw)
2b—a—t 2b—a—-1t
s a<+a+t sa<+a+t
Algorithm 7: GS_BF Algorithm 8: GS_BF_270

Input: a,b,w Input: a,b,w

Output: (a,b) = (a+b, (a—b)D) Output: (a,b) = (a+b, (a—b)iw)
1t<a—>b 1t+<b—a >  avoid negation
2a4a+b 2a+a+b
3 b+ t* conjugate(w) 3 b+t x conjugate(—iw)

to the lower level [—1,1—2,...1, where N is a total number of real and imaginary
points. Hence, FFT implementation must support all FFT levels from log,(N)
to 1.

Our C FFT implementation supports all levels of Forward and Inverse FFT
trivially. However, our vectorized FFT must be tailored to support all FFT
levels. Instead of vectorizing [ —1 FFT implementations, first, we determined the
maximum number of coefficients that can be computed using 32 vector registers.
Then, we select [ = 5 as the baseline to compute FFT that only uses one load and
store per coefficient. To scale up to [ — 1 FF'T levels, we apply #FFT levels =
54 2-x 4 1-y where 2 - x supports multiple of 2 FFT levels with « load and
store per coeflicient, and 1 -y supports a single FFT level, we aim to minimize
y to minimize load and store, thus y € {0,1}. In case | < 5, we unroll the FFT
loop completely, and save instructions overhead. When [ > 5, we use the base
loop with [ = 5 with 32 64-bit coefficients and implement two additional FFT
loops. The second loop computes two FFT levels per iteration to save load and
store instructions. The third loop is an unrolled version of a single FFT level
per iteration. For example, when N = 2! = 210 applied the formula above,
l=5-1+2-2+1-1, in total, each coeflicient is loaded and stored 4 =1+2+1
times.

In short, using three FFT loops, we can construct arbitrary FFT level [ > 5
by using the base loop with 5 levels, then a multiple of two FFT levels by the
second loop. Finally, the remaining FFT levels are handled by the third loop.

5.3 Improved Inverse FFT implementation

The butterflies in Inverse FFT in Algorithm 7 and Algorithm 8 exploit complex
conjugate by using add and subtract instructions. A tweak at no cost in line
1 of Algorithm 8 to avoid floating-point negation instruction fneg in line 3.
Similar to Forward FFT, two loops from line 6 to 13 in Algorithm 10 can be
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Algorithm 9: In-place cache-friendly Forward FFT (split storage)

1
2

© ® N O op W

10
11
12
13
14
15
16
17
18
19

Input: Polynomial f € Q[z]/(z™V/? 4 1), twiddle factor table tw
Output: f = FFT(f)

w <+ tw([0][0]
for j=0to N/4—1do
CT_BF(f[j], flj + N/4],w) > exploit wre = Wim
jg+1
level <1
for len = N/8 to 1 do
k<0 > reset k at new level
for s=0to N/2—1do
w + tw[level][k] > w is shared between two loops

for j =sto s+len—1do

CT_BF(f[j], f[j + len], w)

je—g+1

s+ s+ (len<kl)for j=stos+len—1do
CT_BF_90(f[j], f[j + len],w)

j—j3+1
s s+ (lenk1)
k< Ek+1 > increase by one point
level < level + 1 > increase level
len < len>1 > half distance

Algorithm 10: In-place cache-friendly Inverse FFT (split storage)

1
2

© W N O bk W

10
11
12
13
14
15
16
17
18
19
20
21

Input: Polynomial f € Q[z]/(x"V/2 + 1), twiddle factor table tw
Output: f = invFFT(f)
level < logy(N) — 2 > tw index starts at 0, and N/2 re, im points
for len =1 to N/8 do
k<0 > reset k at new level
for s=0to N/2—1do
w + tw[level][k] > w is shared between two loops
for j=stos+len—1do

Gs_BF(f[j], /1) + len], )

j—i+1
— s+ (len k1)
for j =stos+len—1do
GS_BF_270(f[j], f[j + len],w)
j—i+1
s+ s+ (len < 1)
k+—k+1 > increase by one point
level < level — 1 >  decrease level
len +len < 1 > double distance
w + tw[0][0] - &
for j =0to N/4—1do
GS_BF(f[j], flj + N/4],w) > exploit wre = Wim
U« fl- &%
j—i+1

V)
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executed in parallel and share the same twiddle factor w. The last loop from
line 17 to 21 multiplies % by all coefficients of FFT, and exploits the special
case of twiddle factor w.. = w;y,. We also employ three FFT loop settings as
described in Forward FFT to implement vectorized multi-level [ of Inverse FFT
to maximize vector registers usage, hence improving execution time. Note that

butterflies in Algorithm 10 are computed in place.

5.4 Floating-point complex instructions and data storage

ARMv8.3 supports two floating-point complex instructions: fcadd and fcmla.
The floating-point complex fcadd instruction offers addition and counterclock-
wise rotation by 90 and 270 degrees: (a+ib) and (a—ib). The combination of fmul
and fcmla instructions can perform complex point multiplication (a b), (a * I;),
as shown in lines 1 and 3 of Algorithms 5 and 7 by applying counterclockwise
rotation by 90 and 270 degrees, respectively. Note that fcmla has the same cycle
count as fmla, fmls.

The floating-point complex instructions offer a convenient way to compute
single pair complex multiplications. Conversely, the fmla, fmls instructions
require at least two pairs for complex multiplication. The only difference between
floating-point complex instructions and traditional multiplication instructions is
the data storage of real and imaginary values during the multiplication.

Our first approach is to use floating-point complex fmul, fcmla, fcadd
instructions, where real and imaginary values are stored adjacent in memory
(adj storage). This data storage setting is also seen in other FFT libraries, such
as FFTW [24], and FFTS [13]. Complex multiplications using such instructions
are demonstrated in Fig. 2. The second approach uses default data storage in
Falcon: real and imaginary values are split into two locations (split storage).
The complex multiplication using fmul, fmla, and fmls instructions is shown at
Fig. 3. in Appendix A.

To find the highest performance gain, we implemented vectorized versions of
the first and second approaches mentioned above. The former approach offers
better cache locality for small [ < 4. However, it introduces a vector permuta-
tion overhead to compute complex multiplication in lines 1 and 3 of Algorithms 6
and 8 using aforementioned floating-point complex instructions. Another disad-
vantage of the first approach is preventing the deployment of Falcon to devices
that do not support ARMv8.3, such as Cortex-A53/A72 on Raspberry Pi 3/4,
respectively. The latter approach can run on any ARMvS8 platform. However,
the second approach computes at least two complex point multiplications in-
stead of one, and the pure C implementation is slightly faster compared to the
original reference FFT implementation of Falcon. On the other hand, the pure
C implementation of the first approach is slightly better than split storage
in our experiment. We recommend using the first approach (adj storage) for
non-vectorized implementation.

Eventually, we chose the second approach as our best-vectorized implemen-
tation and kept the reference implementation of the first approach in our code
base for community interest. For [ < 2, we unroll the loop, so the multiplication
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is done by scalar multiplication. By rearranging vector registers appropriately
using LD2, LD4, ST2, ST4 instructions, when [ > 3, the latter approach is
slightly faster than the first approach when benchmarked on the high-end Apple
M1 CPU.

5.5 Floating-point to integer conversion

Notably, both GCC and Clang can generate native floating-point to integer con-
version instructions during compilation. These instructions include fpr_floor,
fpr_trunc using rounding toward zero instruction fcvtzs except for fpr_rint
function. As described in the 64-bit floating-point to 64-bit signed integer fpr_rint
implementation (a constant time conversion written in C), the obtained assem-
bly language code generated by Clang and GCC, respectively, is not consistent
and does not address constant-time concerns described in Howe et al. [25]. In
our implementation on an aarch64 ARMvS, we use the rounding to the nearest
with ties to even instruction fcvtns to convert a 64-bit floating-point to a 64-
bit signed integer?. This single instruction, used to replace the whole fpr_rint
implementation, costs 3 cycles on Cortex-A72/A7S8.

5.6 Rounding concern in Floating-point Fused Multiply-Add

Another concern while implementing vectorized code is floating-point round-
ing [4]. In ref implementation, when using the independent multiply (fmul) and
add (fadd, fsub) instructions, the floating-point rounding occurs after multi-
plication and after addition. In the neon implementation, when we use Fused
Multiply-Add instruction (fmla, fmls), the rounding is applied only after ad-
dition.

When we repeat our experiment with fpr_expm_p63 function used in Gaus-
sian sampling to observe the rounding of fmla and (fmul, fadd), the differ-
ences between them grow. In our experiment, we sample random values as in-
put to fpr_expm_p63 function on both Apple M1 and Cortex-AT72, the differ-
ences are consistent in both CPUs?, about 7,000 out of 100,000 output values of
fpr_expm_63 function with fmla are different from (fmul, fadd).

We have carefully tested our implementation according to the test vectors
and KATs (Known-Answer-Tests) provided by Falcon submitters. Although all
tests passed, the security of the floating-point rounding differences in ARMvS is
unknown. Therefore, by default, our code uses the independent multiply (fmul)
and add (fadd, fsub) instructions. We chose to optionally enable fmla instruc-
tions for benchmarking purposes only and observed negligible differences 3 — 4%
between the two approaches in terms of the total execution time for the Sign
operation, as shown in Table 2.

2
3


https://godbolt.org/z/esP78P33b
https://godbolt.org/z/613vvzh3Y
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Table 2. Performance of Signature generation with Fused Multiply-Add instructions
enabled (fmla), and disabled (fmul, fadd). Results are in kc - kilocycles.

CPU neon Sign |(fmul, fadd) fmla|fmla/(fmul, fadd)
falconb512 1,038.14 1,000.31 0.964
Cortex-AT2|. 1 Con1024 2,132.08 2,046.53 0.960
Aople M1 falcon512 459.19 44591 0.971
pp=e falcon1024 914.91 885.63 0.968

6 Results

ARMvS8 Intrinsics are used for ease of implementation and to take advantage
of the compiler optimizers. The optimizers know how intrinsics behave and tune
performance toward the processor features such as aligning buffers, scheduling
pipeline operations, and instruction ordering*. In our implementation, we al-
ways keep vector register usage under 32 and examine assembly language code
obtained during our development process. We acknowledge that the compiler
occasionally spills data from registers to memory and hides load/store latency
through the instructions supporting pipelining.

Falcon, Hawk, and Dilithium. The reference implementation of Hawk® uses a
fixed-point data type by default. Since our choice of processors supports floating-
point arithmetic, we convert all fixed-point arithmetic to floating-point arith-
metic and achieve a significant performance boost in reference implementation
as compared to the default setting. Notably, this choice disables NTT imple-
mentation in Hawk Sign and Verify, while Falcon Verify explicitly uses integer
arithmetic for NTT implementation by default. Although it is possible to vec-
torize NTT implementation in Hawk Verify, we consider this as future work.
In both implementations, we measure the Sign operations in the dynamic sign-
ing - the secret key is expanded before signing, and we do not use floating-point
emulation options. For Dilithium, we select the state-of-the-art ARMvS8 imple-
mentation from Becker et al. [6].

XMSS, SPHINCS*. To construct a comprehensive digital signature compar-
ison, we select the XMSS implementation® with the forward security by Buch-
mann et al. [15], which limited the way one-time signature keys are computed
to enhance security. We accelerate SHA-256 by applying the OpenSSL SHA2-
NI instruction set extensions in our neon implementation. For SPHINCST, we
select s, f-variant and ’simple’ instantiation to compare with lattice-based sig-
natures. Recent work by Becker et al. [7] proposed multiple settings to accelerate
Keccak-£1600, combine with scalar, neon and SHA3 instructions. To make sure
4

5
6


https://godbolt.org/z/zPr94YjYr
https://github.com/ludopulles/hawk-sign/
https://github.com/GMUCERG/xmssfs
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our hash-based signature is up-to-date, we measure and apply the best settings
on Apple M1 to yield our best result for a hash-based signature.

The optimized implementation of SPHINCS*7 already included high-speed
Keccak-F1600x2 neon implementation. For both, the ref implementation is a
pure C hash implementation.

Constant-time treatment. For operations that use floating-point arithmetic
extensively, we use vectorized division instruction as in the reference implemen-
tation [37]. In Falcon Verify, there is only integer arithmetic. Thus, the division
is replaced by modular multiplication. In both operations, secret data is not used
in branch conditions or memory access patterns.

Benchmarking setup Our benchmarking setup for ARMv8 implementations
included MacBook Air with Apple M1 @ 3.2GHz, Jetson AGX Xavier @ 1.9 Ghz,
and Raspberry Pi 4 with Cortex-A72 @ 1.8GHz. For AVX2 implementations,
we used a PC based on Intel 11th gen i7-1165G7 @ 2.8GHz with Spectre and
Meltdown mitigations disabled via a kernel parameter®.

For cycle count on Cortex-A72, we used the pqax® framework . In Apple
M1, we rewrote the work from Dougall Johnson'® to perform cycle count'!. On
both platforms, we use Clang 13 with -03, we let the compiler to do its best
to vectorize pure C implementations, denoted as ref to fairly compare them
with our neon implementations. Thus, we did not employ -fno-tree-vectorize
option. We acknowledge that compiler automatically enables Fuse Multiply-Add
to improve performance. Explicitly on Jetson AGX Xavier, we use Clang 6.0 and
count cycle using similar method in the work of Seo et al. [38].

We report the average cycle count of 1,000 and 10,000 executions for hash-
based and lattice-based signatures, respectively. Benchmarking is conducted us-
ing a single core and a single thread to fairly compare results with those obtained
for lattice-based signatures, even though hash-based signatures can execute mul-
tiple hash operations in parallel.

Results for FFT and NTT. are summarized in Table 3 with FMA enabled.
When N < 4, we realized that our vectorized code runs slower than the C
implementation due to the FFT vectorized code being too short. Therefore, we
use unroll ref implementation when N < 4, and neon for N > 8. In Table 3,
when N > 128, our vectorized FFT achieved speed-up 1.9x — 2.3x and 2.1x —
2.4x compared to the ref implementation of the Forward and Inverse FFT on
Apple M1, and 2.2x — 1.9x in Forward and 2.3x — 1.9% in Inverse FFT on

7
8 mit igations=off
9

10
11


https://github.com/sphincs/sphincsplus
https://make-linux-fast-again.com/
https://github.com/mupq/pqax/tree/main/enable_ccr
https://github.com/dougallj
https://github.com/GMUCERG/PQC_NEON/blob/main/neon/kyber/m1cycles.c
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Table 3. Cycle counts for the implementation of FFT (with FMA enabled) and NTT
with the size of N coefficients on Apple M1 and Cortex-A72 - neon vs. ref.

Apple M1 Forward FFT(cycles) Inverse FFT(cycles)
N ref neon| ref/neon ref neon| ref/neon
128 759 404 1.88 847 401 2.11
256 1,633 789 2.07 1,810 794 2.28
512 3,640 1,577 2311 3,930 1,609 2.44
1024 7,998 3,489 2.29 8,541 3,547 241
Forward NTT(cycles) Inverse NTT(cycles)
512 6,607 840 7.87 6,449 811" 7.95
1024 13,783 1,693 8.14| 13,335 1,702" 7.83
Cortex-AT2 Forward FFT(cycles) Inverse FFT(cycles)
N ref neon| ref/neon ref neon| ref/neon
128 2,529 1,155 2.19 2,799 1,216 2.30
256 5,474 2,770 1.98 6,037 2,913 2.07
512 11,807 5,951 1.98| 13,136 6,135 2.14
1024 27,366 14,060 1.95| 28,151 14,705 1.91
Forward NTT(cycles) Inverse NTT(cycles)
512 22,582 3,561 6.34| 22,251 3,563 6.25
1024 48,097 7,688 6.26| 47,196 7,872" 6.00
Intel i7-1165G7 Forward FFT(cycles) Inverse FFT(cycles)
N REF  AVX2|REF/AVX2 REF  AVX2|REF/AVX2
128 787 481 1.64 873 499 1.75
256 1,640 966 1.70| 1,798 1,024 1.76
512 3486 2,040 171 3790 2,138 1.77
1024 7,341 4,370 1.68 7,961 4,572 1.74

™ no multiplication with n~! at the end of Inverse NTT

Cortex-AT72. These speed-ups are due to our unrolled vectorized implementation
of FFT, which supports multiple FFT levels and twiddle-factor sharing.

In Falcon Verify, our benchmark of Inverse NTT is without multiplication by
n~! because we already embed this multiplication during Montgomery conver-
sion. We achieve speed-up by 6.0x and 7.8x for NTT operations on Cortex-A72
and Apple M1, respectively. For both FFT and NTT, our neon implementation
in both Cortex-A72 and Apple M1 achieve better speed-up ratio than the AvXx2
implementation, as shown in Table 3. There is no AVX2 optimized implementa-
tion of Falcon Verify, it is the same as pure REF implementation. Overall, our
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Table 4. Comparison with previous work by Kim et al. [31] on Jetson AGX Xavier.
Additional results for Apple M1 and Raspberry Pi 4. Notation: kc-kilocycles.

Jetson AGX Xavier

ref(ke) neon(kc) ref/neon
S \'% S \'% S A%
falcon512 [31] 580.7 48.0 498.6 29.01 1.16 1.65
falcon512 (Ours) 582.3 441 336.6  19.1] 1.73 231
falcon1024 [31] 1,159.6 106.0 990.5 62.5| 1.17 1.69
falcon1024 (Ours)| 1,151.2  93.2 671.2  36.7] 1.72 254
Apple M1
falcon512 (Ours) 654.0 435 442.0  22.7| 148 1.92
falcon1024 (Ours)| 1,310.8 89.3 882.1 429 149 2.08
Raspberry Pi 4
falcon512 (Ours) 1,490.7 126.3| 1,001.9 58.8] 149 2.15
falcon1024 (Ours)| 3,084.8 274.3| 2,048.9 130.4| 1.51 2.10

neon N'TT implementation is greatly improved compared to ref implementation,
which determines the overall speed-up in Falcon Verify.

Comparison with previous work. As shown in Table 4, on the same plat-
form, Jetson AGX Xavier, our NEON-based implementation of Falcon is con-
sistently faster than the the implementation by Kim et al. [31]. The achieved
speed-up vs. [31] is 1.48x for signing in falcon512 and falcon1024, 1.52x for
verifying in falcon512, and 1.70x for verifying in falcon1024.

In a signature generation, as compared to the Kim et al. [31] approach, we
decided against replacing macro functions FPC_MUL, FPC_DIV, etc. Our manual
work of unrolled versions of the Forward and Inverse FFT, as well as splitfft,
mergefft, mulfft, etc. contribute to greatly improving the performance of Fal-
con. We also modify the code logic to reduce calling memcpy functions during
operation and sharing twiddle factors, which greatly reduces memory load and
store overhead. In signature verification, our NTT speed-up is 6.2x and 6.0x
with respect to ref implementation for Forward and Inverse NTT, as shown in
Table 3, while Kim et al. [31] only achieve less than 3x speed-up. The significant
speed-up is accomplished due to our signed-integer implementation of NTT, with
values centered around 0, while previous work used unsigned integer NT'T.

Falcon and Dilithium. In Table 5, we rank our implementations with respect
to the state-of-the-art CRYSTALS-Dilithium implementation from Becker et
al. [6] across all security levels. Please note that in the top rows, only DILITHIUM2,
XMSS'6-SHA256 have security level 2, while the rest algorithms have security level
1. For all security levels of Falcon and Dilithium, when executed over messages
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Table 5. Signature generation and Verification speed comparison (with FMA
disabled) over three security levels, for a 59-byte message. ref and neon results for
Apple M1. kc-kilocycles.

Apple-M1 NIST ref (kc) neon(kc) ref/neon
3.2 GHz level S \% S V S \%
FALCONbH12 654.0 43.5 459.2 22.711.42 1.92
HAWKS512 138.6 34.6 117.7 27.1|11.18 1.27
DILITHIUM2® 111 741.1 199.6 224.1 69.813.31 2.86
XMSS'0-SHA256%| 26,044.3 2,879.4 4,804.2 531.0/5.42 5.42
SPHINCS ™' 128s° 1,950,265.0 1,982.4| 549,130.7 658.6|3.55 3.01
SPHINCST128 % 93,853.9 5,483.8 26,505.3 1,731.213.54 3.16
DILITHIUM3? 1,218.0 329.2 365.2 104.8/3.33 3.14
SPHINCST192s% | III 3,367,415.5 2,753.1] 950,869.9 893.2|13.54 3.08
SPHINCST192f* 151,245.2  8,191.5 42,815.1 2,515.8|3.53 3.25
FALCON1024 1,310.8 89.3 915.0  42.9|1.43 2.08
HAWK1024 279.7 73.7 236.9 58.5|1.18 1.26
DILITHIUMB® A% 1,531.1 557.7 426.6 167.5/3.59 3.33
SPHINCS T 2565° 2,938,702.4  3,929.3| 840,259.4 1,317.5/3.50 2.98
SPHINCS 256 f% 311,034.3  8,242.5 88,498.9 2,593.8(3.51 3.17

b the work from Becker et al. [0]
$ our benchmark SPHINCS™ ’simple’ variants using Keccak-f1600
* our benchmark XMSs'6-SHA256 using SHA2 Crypto instruction

of the size of 59 bytes, for Signature generation, Falcon is comparable with
Dilithium in ref implementations. However, the landscape drastically changes
in the optimized neon implementations. Dilithium has an execution time 2x
smaller than Falcon at the lowest and highest security levels.

The speed-up ratio of Dilithium in ARMvS is 3.3x as compared to ref imple-
mentation. This result is due to the size of operands in the vectorized implemen-
tation. Dilithium uses 32-bit integers and parallel hashing SHAKE128 /256. This
leads to a higher speed-up ratio as compared to 64-bit floating-point operations,
serial hashing using SHAKE256, and serial sampling in Falcon. Additionally, the
computation cost of floating-point operations is higher than for integers. Hence,
we only achieve 1.42x speed-up (with FMA disable) compared to the ref imple-
mentation for the signature generation operation in Falcon. Although there are
no floating-point computations in Falcon Verify, our speed-up is smaller than for
Dilithium due to the serial hashing using SHAKE256. We believe that if Falcon
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adopts parallel hashing and parallel sampling algorithms, its performance could
be further improved.

In Verification across all security levels, Falcon is consistently faster than
Dilithium by 3.0x to 3.9x in both ref and neon implementations.

Hawk vs. Falcon and Dilithium. At security levels 1 and 5, Hawk out-
performs both Falcon and Dilithium in ref and neon implementations. The
exception is the neon implementation of Falcon Verify due to two polynomial
multiplications in Hawk instead of one in Falcon. An optimized neon implemen-
tation of Hawk Verify is unlikely to be faster than Falcon Verify, even if Hawk
has optimized neon NTT implementation in its signature verification. The per-
formance of Hawk versus Falcon and Dilithium in Sign are 3.9x and 1.9x faster,
and in Verify are 0.8x and 2.5x faster for the neon implementation at security
level 1. Our neon implementation of Hawk achieves a similar speed-up ratio as
in the case of AvX2 implementations reported in Ducas et al. [21] (Table 1).

Lattice-based signatures vs. Hash-based signatures. Notably, in Table 5,
the execution times of Falcon, Dilithium, and Hawk lattice-based signatures
are shorter than for XMSS and SPHINCS™ hash-based signatures by orders of
magnitude in both ref and neon implementations. In Verification alone, Falcon
is faster than XMSS and SPHINCS* by 23.4 to 28.8x. Similarly, the Dilithium
verification is faster than for XMSS and SPHINCS™ by 7.6 to 9.4x. The speed-
up of hash-based signatures is higher than for lattice-based signatures, and it
can be even greater if parallelism is fully exploited, e.g., through multithreading
in CPUs or GPUs. These improvements are left for future work.

Table 6. Signature generation and Verification speed comparison (with FMA disabled)
over three security levels, signing a 59-byte message. Ranking over the Verification

speed ratio. ref and neon results for Cortex-A72. kc-kilocycles.

Cortex-A72 |NIST ref(ke) neon(kce) ref/neon

1.8 GHz Level S \% S \% S V  V ratio
FALCONb512 1,553.4 127.8] 1,044.6 59.9] 149 2.09 1.0
HAWKS512 I 1T 400.3 127.1 315.9 94.8| 126 1.34 1.6
DILITHIUM2® 1,353.8 449.6 649.2 272.8) 2.09 1.65 4.5
pILITHIUM3? | III 2,308.6 728.9| 1,089.4 447.5| 2.12 1.63 -
FALCON1024 3,193.0 272.1) 2,137.0 125.2| 149 2.17 1.0
HAWK 1024 \% 822.1 300.0 655.2 236.9| 1.25 1.27 1.9
DILITHIUMB® 2,903.6 1,198.7| 1,437.0 764.9] 2.02 1.57 6.1

® the work from Becker et al. [(]
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Lattice-based signature in constrained devices. In Table 6, we rank the
Verfication performance of Falcon, Dilithium, and Hawk. Notably, our Hawk
Verify uses floating-point arithmetic, while the signature Verifications of Falcon
and Dilithium only require integer operations. We exclude hash-based signatures
from this comparison due to their low performance already shown for high-speed
processors in Table 5. Falcon Verify at security level 5 is faster than Dilithium
at security levels 1 and 5 by 2.2x and 6.1x. Hawk outperforms Dilithium and
is only slower than Falcon in Verify operation by 1.6x and 1.9x at the same
security level. In combination with Table 1, it is obvious that Falcon is more
efficient than Dilithium in terms of both bandwidth and workload.

7 Conclusions

Falcon is the only PQC digital signature scheme selected by NIST for standard-
ization using floating-point operations. Unless significant changes are introduced
to Falcon, floating-point instructions required in Key generation and Sign opera-
tions will continue to be a key limitation of Falcon deployment. Additionally, the
complexity of serial sampling and serial hashing significantly reduces the per-
formance of Falcon Key and Signature generation. We demonstrate that Hawk
outperforms Dilithium and has a faster Signature generation than Falcon. Its
performance and bandwidth may be interesting to the community.

In summary, we report the new speed record for Falcon Sign and Verify op-
erations using NEON-based instruction on Cortex-A72 and Apple M1 ARMvS8
devices. We present a comprehensive comparison in terms of performance and
bandwidth for Falcon, CRYSTALS-Dilithium, XMSS, and SPHINCS™ on both
aforementioned devices. We believe that in some constrained protocol scenar-
ios, where bandwidth and verification performance matter, Falcon is the better
option than Dilithium, and lattice-based signatures are a far better choice than
hash-based signatures in terms of key size and efficiency.

Lastly, we present a 7% mismatch between the Fuse Multiply-Add instruc-
tions on ARMv8 platforms. We recommend disabling the Fuse Multiply-Add
instruction to guarantee implementation correctness. Further security analysis
of this behavior is needed.
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A Visualizing complex point multiplication
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Fig. 2. Single pair complex multiplication using fmul, fcmla. Real and imagine points
are stored adjacently.
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Fig. 3. Two pairs complex multiplication using fmul, fmls, fmla. Real and imagine
points are stored separately.
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