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ARTICLE INFO ABSTRACT

This manuscript was handled by Marco Borga, Lake evaporation plays an important role in the water budget of lakes. Predicting lake evaporation responses to
Editor-in-Chief, with the assistance of Lixin climate change is thus of paramount importance for the planning of mitigation and adaption strategies. However,
Wang, Associate Editor most studies that have simulated climate change impacts on lake evaporation have typically utilised a single

mechanistic model. Whilst such studies have merit, projected changes in lake evaporation from any single lake
model can be considered uncertain. To better understand evaporation responses to climate change, a multi-model
approach (i.e., where a range of projections are considered), is desirable. In this study, we present such multi-
model analysis, where five lake models forced by four different climate model projections are used to simu-
late historic and future change (1901-2099) in lake evaporation. Our investigation, which focuses on sub-
tropical Lake Kinneret (Israel), suggested considerable differences in simulated evaporation rates among the
models, with the annual average evaporation rates varying between 1232 mm year  and 2608 mm year !
during the historic period (1901-2005). We explored these differences by comparing the models with reference
evaporation rates estimated using in-situ data (2000-2005) and a bulk aerodynamic algorithm. We found that
the model ensemble generally captured the intra-annual variability in reference evaporation rates, and compared
well at seasonal timescales (RMSEc = 0.19, R = 0.92). Using the model ensemble, we then projected future
change in evaporation rates under three different Representative Concentration Pathway (RCP) scenarios: RCP
2.6, 6.0 and 8.5. Our projections indicated that, by the end of the 21st century (2070-2099), annual average
evaporation rates would increase in Lake Kinneret by 9-22 % under RCPs 2.6-8.5. When compared with pro-
jected regional declines in precipitation, our projections suggested that the water balance of Lake Kinneret could
experience a deficit of 14-40 % this century. We anticipate this substantial projected deficit combined with a
considerable growth in population expected for this region could have considerable negative impacts on water
availability and would consequently increase regional water stress.
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1. Introduction important physical controls on lake ecosystems (Schindler, 2001; Len-
ters et al., 2005; Riveros-Iregui et al., 2017; Woolway et al., 2020). Not

Lake evaporation plays a fundamental role in the basic functioning of only does lake evaporation play a fundamental role in these budgets
lakes. Evaporation directly and, in some cases, substantially modifies the through the physical removal of fresh water, but the cooling effect of
hydrologic, chemical, and energy budgets, making it one of the most latent heat flux is also central to the modification of lake temperature,
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and related processes such as stratification (Mishra et al., 2011; Lenters
et al., 2013; Spence et al., 2013; Van Cleave et al., 2014) and vertical
mixing (Maclntyre et al., 2009; Ye et al., 2019), with likely impacts on
lake chemistry and biota (Likens et al., 2009; Williamson et al., 2009;
Wahed et al., 2014). Importantly, lake evaporation also contributes to
critical feedbacks within lakes, including interactions between evapo-
ration and lake surface temperature (Lenters et al., 2013; Spence et al.,
2013; Van Cleave et al., 2014; Ye et al., 2019; Kishcha et al., 2021),
feedbacks between salinity and evaporation rates (Shilo et al., 2015;
Riveros-Iregui et al., 2017), and the coupling of evaporation with
changes in lake level and extent (Marsh and Bigras, 1988; Li et al., 2013;
Friedrich et al., 2018; Zhan et al., 2019). While evaporation substan-
tially influences various processes within the lake, fluctuations in water
level represent, arguably, one of the most important ones for the
ecosystem services that lakes provide. A decline in lake water level can
have major implications for access to clean water, collection of food via
fishing, the transportation of goods, energy generation, and ecosystem
loss (Zohary and Ostrovsky, 2011).

Evaporation in lakes is largely governed by the magnitude of the
vapor pressure gradient between the lake surface and the overlying at-
mosphere (Hostetler and Bartlein, 1990; Lenters et al., 2005, 2014). This
gradient, and thereafter the transfer of latent heat, is determined pri-
marily by the temperature of the lake surface, the absolute humidity in
the atmosphere, and the amount of wind-induced turbulent mixing at
the air-water interface (Lenters et al., 2014; Woolway et al., 2018).
Some of the most direct atmospheric drivers of lake evaporation are thus
wind speed and absolute humidity i.e., the basis of eddy covariance
measurements. However, due to the influence of lake surface tempera-
ture on the vapor pressure gradient, other atmospheric and limnological
factors which influence the lake heat budget also play a considerable
role in evaporation (Brutsaert, 1982; Lenters et al., 2005; Friedrich et al.,
2018). Overall, the sources of available energy that influence lake
evaporation are numerous, including incoming radiation (both solar and
longwave), sensible heat flux (via changes in the Bowen ratio), advected
heat (snowfall, groundwater, etc.), and changes in heat stored within the
lake itself. The energy available for evaporation is also modulated by the
amount of outgoing longwave and shortwave radiation, which are
dictated by lake surface temperature and shortwave albedo, respec-
tively. In addition to these climatic drivers, numerous lake-specific
features, such as water clarity, wind sheltering and lake depth, can
modify the timing and/or intensity of lake evaporation, primarily
through influences on lake surface temperature, heat storage, and wind
mixing (McVicar et al., 2012; Read et al., 2012; Zhan et al., 2019). As a
result of these complex interactions and the dependence of many lake-
specific factors, evaporation is highly variable between lakes (Marsh
and Bigras, 1988; Woolway et al., 2018; Wang et al., 2018; Konapala
et al., 2020; Zhou et al., 2021).

Given the significance of lake evaporation, as well as its complex
interactions with other within-lake processes, predicting its response to
climate change is of paramount importance. To accurately simulate lake
evaporation responses to historic and future climatic variations, process-
based numerical models that can compute complex air-water and
within-lake thermodynamic fluxes are needed. A number of such
process-based models have been developed in recent decades, including
those based on, among other things, eddy-diffusion (Hostetler and
Bartlein, 1990; Hostetler et al., 1993), bulk formulation (Mironov,
2008), energy balance (Hipsey et al., 2019), and turbulence closure
(Burchard et al., 1999; Goudsmit et al., 2002). However, most studies
that simulate climate change impacts on lake evaporation have utilised
only a single mechanistic model (Hostetler and Bartlein, 1990; Vallet-
Coulomb et al., 2001; Lenters et al., 2005; Wang et al., 2018). Whilst
such studies have merit, most lake models implement approximate
forms of relationships, either due to incomplete knowledge of some
processes or for practical computing purposes. Furthermore, any indi-
vidual model provides an approximation of reality, for which uncer-
tainty is often not quantified (Moore et al., 2021). An alternate method is
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to adopt an ensemble approach, where multiple, independently devel-
oped models are used. Such coordinated experiments have become the
de facto standard in climate science including, for example, the Coupled
Model Intercomparison Project (Meehl et al., 2005). Ensemble model-
ling of lake responses to climate change is, however, in its infancy
(Trolle et al., 2014; Gal et al., 2020; Mesman et al., 2020; Grant et al.,
2021; Moore et al., 2021; Woolway et al., 2021; Feldbauer et al., 2022).

The overarching aim of this study was to investigate changes in lake
evaporation under historic and future climate using a suite of indepen-
dently developed lake models forced with projections from multiple
General Circulation Models (GCMs) to produce an ensemble of lake-
climate model projections. Our study was focused on Lake Kinneret
(Israel), a lake with high socio-economic, political, and religious value.
Also known as the Sea of Galilee, Lake Kinneret provides ~ 25-30 % of
the drinking water in Israel (Shilo et al., 2015) and ~ 100 million m?
year ! to the Kingdom of Jordan. Analysing the impacts of climate
change on evaporation rates in Lake Kinneret is thus of primary
importance for adaptation and mitigation strategies. Here, we investi-
gate (i) multi-model projections of lake evaporation during the historical
period and evaluate key differences across the model ensemble; (ii)
assess the accuracy of the model ensemble relative to a reference
evaporation estimated using observed data at seasonal, annual and
intra-annual timescales; and (iii) using the model ensemble, we inves-
tigate future projections of lake evaporation this century under different
climate change scenarios.

2. Methods and materials
2.1. Study area

Lake Kinneret is a sub-tropical monomictic lake located in the
northern region of Israel (Fig. 1). The average surface area of the lake is
168.7 km? with an average volume of 4100 Mm?> (Zohary et al., 2014).
The mean and maximum depths of Lake Kinneret are 25.6 and 41.7 m,
respectively (Shilo et al., 2015), and its average residence time is ~
8-10 years (Rimmer et al., 2009; Van Emmerik et al., 2013). Climatic
conditions in the region can be categorised as warm and dry, with
annual average air temperatures of ~ 21 °C (maximum > 36 °C), annual
average rainfall of 380 mm year ?, and surface winds often exceeding ~
10ms! (Zohary et al., 2014; Gal et al., 2020). The main inflows of Lake
Kinneret are the Jordan and Meshushim rivers, and considerable water
input comes as runoff and from saline springs as groundwater. The most
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Fig. 1. Map of Israel with the location of Lake Kinneret shown by the filled
black circle. The shaded region represents the spatial domain of the ISIMIP2b
input data used to drive the lake models.
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important outflows from the lake consist of water withdrawals via the
National Water Carrier (NWC), the Degania dam and pumping around
the lake by local consumers (Gal et al., 2003).

2.2. Multi-model projections of lake evaporation

Lake projections investigated in this study were a lake-climate model
ensemble of 20 model realizations. More specifically, from five lake
models driven by four GCMs. The lake models, namely FLake (Mironov,
2008), GLM (Hipsey et al., 2019), GOTM (Burchard et al., 1999),
MyLake (Saloranta and Andersen, 2007), and Simstrat (Goudsmit et al.,
2002) (Table 1), contributed to the Inter-Sectoral Impact Model Inter-
comparison Project (ISIMIP) phase 2b Lake Sector (Golub et al., 2022). A
description of each lake model used is provided below.

2.2.1. Lake models description

FLake is a 1-D bulk model based on a two-layer parametric repre-
sentation of the evolving temperature profile and on the integral budgets
of heat and kinetic energy for the layers in question. The structure of the
stratified layer between the upper mixed layer and the basin bottom is
described using the concept of self-similarity (assumed shape) of the
temperature-depth curve (Kirillin, 2002). The same concept is used to
describe the temperature structure of the thermally active upper layer of
bottom sediments and, when present, of the ice and snow cover (Mir-
onov, 2008). FLake uses a lake-specific parameterization scheme to
compute the fluxes of momentum, and of sensible and latent heat flux at
the lake surface based on the Monin-Obukhov similarity relations.

GLM (General Lake Model) (Hipsey et al., 2019) is a process-based 1-

Table 1
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D hydrodynamic model that provides lake volume-averaged output over
the vertical axis. It applies the integral energy assumption to calculate
mixed layer depth from external turbulent kinetic energy. Mixing below
the mixed layer depth is calculated through a parameterization of the
eddy diffusivity coefficient to local gradients of buoyancy and shear.
GLM applies a flexible grid structure, which allows the model grid cells
to vary in thickness and total number of cells during a simulation. The
latent heat flux in GLM is calculated using the algorithm presented in
Imberger and Patterson (1981).

GOTM (General Ocean Turbulence Model) (Burchard et al., 1999) is
a vertical 1-D hydrodynamic water column model that includes key
processes related to vertical mixing in marine and fresh waters (Umlauf
and Lemmin, 2005). It has been adapted for use in hydrodynamic
modelling of inland water bodies (Sachse et al., 2014). GOTM is often
used as a stand-alone model for investigating boundary layer dynamics
in natural waters, but it can also be coupled to biogeochemical models.
The surface fluxes of momentum, sensible and latent heat are calculated
according to the bulk formulae explained by Fairall et al. (1996). This
model has been used to model CO, dissolution (Enstad et al., 2008),
water quality in lakes (Kong et al., 2022), to predict lake ecosystem state
(Andersen et al., 2020) and to hindcast the thermal structure of lakes
(Ayala et al., 2020; Moras et al., 2019).

MyLake is a 1-D process-based model used to simulate physical,
chemical and biological dynamics in lakes (Saloranta and Andersen,
2007). The model simulates thermal stratification, lake ice and snow
cover, and phytoplankton dynamics, along with sediment-water in-
teractions using a simple sediment box model (v.1.12). MyLake uses
regularly spaced water layers whose vertical resolution is defined by the

Summary of the lake models used in this study, including a description of their structure, parameterization and key references.

Lake Timestep Vertical Parameterization of
model Simulated/ structure / turbulent fluxes at
(version) Reported layers reported air-water interface

Turbulent mixing parameterization

Calibrated parameters Key references

The Monin-Obukhov
similarity relations

FLake (ver.  Daily Two-layer self-
2.0) similar
structure / 4

The water surface temperature is equal to
the mixed-layer temperature, this is
computed from calculation and constant

1. Parameter for profile Mironov (2008)

relaxation time

update of heat fluxes

GLM (ver. Daily Multilayer / Algorithm used in Energy balance approach for surface layer 1. Diffuse attenuation Hipsey et al.
3.0.0) 0.5 m - max. Imberger and Patterson mixing, eddy diffusivity approach for deep  coefficient 2. Longwave (2019)
depth (1981) mixing (or cloud)
scaling factor
3. Wind speed scaling
factor
GOTM Daily Multiple / 0.5 Based on Fairall et al. k-&¢ model 1. e-folding depth for Umlauf and
(ver. 5.1) m - max.depth (1996) visible; and e-folding Lemmin (2005);

MyLake Daily Multilayer / Diffusion coefficient in
(ver. 0.5 m - max. heat balance model
1.12) depth
Simstrat Daily Multilayer / Dirichlet condition
(ver. 0.5 m - max
2.1.2) depth

Hondzo and Stefan thermal diffusion

k-¢ turbulence model with buoyancy and
internal seiche parameterization

Burchard et al.
(2006)

depth for non-visible
fraction of light

2. Minimum turbulent
kinetic energy

3. Surface heat-flux factor
4. Shortwave radiation
factor

5. Wind factor

1. Wind shelter parameter
2. Minimum stability
frequency

3. Non-PAR diffuse
attenuation coefficient

4. PAR diffuse attenuation
coefficient

1. Fraction of wind energy
transferred to seiche
energy

2. As above during
summer and winter

3. Fraction of forcing
wind to wind at 10 m

4. Fit parameter scaling
absorption of IR radiation
from sky

Saloranta and
Andersen (2007)

Goudsmit et al.
(2002)
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user. The turbulent fluxes at the air-water interface are estimated using a
diffusion coefficient in the heat balance as explained by Hondzo and
Stefan (1993). Different versions of the model have been developed to
simulate algal blooms (Salk et al., 2022), CO, and CH4 (Kiuru et al.,
2019), internal phosphorus loads (Markelov et al., 2019) and light
attenuation dynamics (Pilla and Couture, 2021).

Simstrat is a physical deterministic 1-D hydrodynamic model,
including vertical mixing induced by internal seiches and surface ice
(Goudsmit et al., 2002; Gaudard et al., 2019). This model uses layers of
fixed depth (at 0.5 m intervals for lakes with < 50 m maximum depth
and at 1 m intervals for lakes > 50 m), and supports multiple options for
external forcing, comprising several meteorological variables or surface
energy fluxes. Simstrat simulates thermal stratification and ice and snow
formation (Gaudard et al., 2019). The surface fluxes are calculated using
the Livingstone and Imboden (1989) formulae. Simstrat has been
applied in lakes of varying climatic and morphometric conditions
(Thiery et al., 2014; Kobler and Schmid, 2019; Mesman et al., 2020;
Raman Vinna et al., 2021; Barenbold et al., 2022).

2.2.2. Input data and calibration

Bias-adjusted climate projections from the Coupled Model Inter-
comparison Project (CMIP5) (Lange, 2019) were used to drive each lake
model in a one-way direction (i.e. lake-to-atmosphere interactions were
not considered). Specifically, the lake models were driven by four GCMs:
GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, and MIROC5 during the
20th and 21st century (1901-2099). Historic simulations were forced
using anthropogenic greenhouse gas and aerosol forcings in addition to
natural forcing, and covered the period 1901 to 2005. Future projections
simulate the evolution of the climate system under three different
greenhouse gas emission scenarios Representative Concentration Path-
ways (RCP): RCP 2.6 (low-emission scenario), RCP 6.0 (medium-high-
emission scenario), and RCP 8.5 (high-emission scenario), over the
period 2006 to 2099. These pathways encompass a range of potential
future global radiative forcing from anthropogenic greenhouse gases
and aerosols. The climate data used to drive each lake model included
projections of air temperature at 2 m, wind speed at 10 m, surface
downwelling shortwave and longwave radiation, precipitation and
specific humidity (Table 2). The climate data had a spatial resolution of
0.5° and covered the whole lake surface (Fig. 1). Additional input data to
the lake models included the hypsographic relationship between depth
and surface area (i.e. lake bathymetry), and water transparency (Golub
et al., 2022). Salinity feedbacks, water inputs and withdrawals were not
considered in the ISIMIP2b simulations. The calibration of the lake
models in ISIMIP2b consisted of parameters and coefficients related to
processes controlling surface heat and energy fluxes, light attenuation
and turbulent kinetic energy and wind (Table 1). In addition, different
optimization functions were used to minimize the difference between
simulated and measured water temperatures. Specific details of model
calibration and optimization are given by Golub et al. (2022).

Lake models in ISIMIP2b simulated historic and future projections of
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lake physical properties including, among other things, daily simula-
tions of lake surface water temperature and latent heat flux. These data
were used in this study to estimate evaporation rates in Lake Kinneret as:

E — Qe
poLy

€8]

where E is evaporation rate (m s’l), Q. is the latent heat flux (W m’z), Po
is density of surface water (kg m’3), calculated as a function of surface
water temperature, To (°C), and L, = 2.501 x 10® —2370T) is the latent
heat of vaporization (J kg’l) (Henderson-Sellers, 1986).

2.3. Validation of simulated evaporation rates

We compared our simulations of lake evaporation from Lake Kin-
neret with those estimated from observed data (2000-2005), hereafter
referred to as the reference evaporation. Most notably, meteorological
data measured on the lake surface, and the algorithms available within
the LakeMetabolizer package in R (Woolway et al., 2015; Winslow et al.,
2016), were used to estimate the latent heat flux over the observational
period, and subsequently the evaporation rates (Eq. (1)), using the bulk
aerodynamic algorithm of Zeng et al. (1998). The motivation to use the
algorithm of Zeng et al. (1998), as opposed to the many others available
(Fairall et al., 2003; Verburg and Antenucci, 2010), is that this bulk
transfer method has been described as one of the least problematic bulk
aerodynamic algorithms used by the scientific community for estimating
surface energy fluxes (Brunke et al., 2003) and due to the open-access
tools available for its calculation (Woolway et al., 2015; Winslow
et al., 2016). In brief, this algorithm applies the Monin-Obukhov simi-
larity theory to the atmospheric boundary layer and states that wind,
temperature and humidity profile gradients depend on unique functions
of the stability parameter (Text S1).

The latent heat flux, Q., used to estimate the reference evaporation
was calculated as:

0. = szvCezMZ (qo - qz) @

where p, = 100p/[Rq(T, + 273.16)] is the density of the overlying air (kg
m~3); p is the surface air pressure (hPa); R, = 287(1 + 0.608¢q,) is the
gas constant for moist air (J kg’1 °C’1; u, is the wind speed (m s’l) at
height z, (7.8 m) above the water surface;T; is air temperature (°C) at
height z; (6.3 m) above the water surface; qo = des,/p is the specific
humidity at saturation pressure in kg kg ™!, with 1 representing the ratio
of the molecular weights for dry and moist air; ey is the saturated

17.27T,
237.3+T,

(°C) is water surface temperature; g, = de/p is the specific humidity of
the air (kg kg_l) at height z, (6.3 m) above the water surface, where e =
Rpe; /100 is actual vapour pressure, Ry, is the relative humidity (%) and

e; = 6.11exp [21377237&2] is the saturated vapour pressure (hPa) at z;. Here,

vapour pressure (hPa), calculated as esq; = 6.1lexp[ ] ; where Ty

Table 2

Climate forcing variables used as input to drive the lake models used in this study to simulate historical and future evaporation rates in Lake Kinneret.
Variable Abbreviation FLake GLM GOTM MyLake Simstrat
Near-surface relative humidity [%] hurs X X
Near-surface specific humidity [kg kg™'] huss X X X
Precipitation [kg m~? s’l] pr X X X X
Surface pressure [Pa] ps X X X
Surface downwelling longwave radiation [W m3 rlds X X X
Surface downwelling shortwave radiation [W m 2] rsds X X X X X
Near-surface wind speed at 10 m [m s~ '] sfcWind X X X X X
Near-surface air temperature [K] tas X X X X X
Eastward near-surface wind [ms~!] (*) uas X X
Northward near-surface wind [m s~'] (*) vas X X

(*) Not included in the bias-correction.
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C,; is the transfer coefficient for height z;, which was calculated after
correcting for wind measurement height and atmospheric stability (Zeng
et al., 1998) (Fig. S1). Using the estimated daily C,, we calculated an
average C,; of 1.7 x 10" during the study period, which is comparable to
those estimated in other lakes (Table S1). A detailed description of the
estimation of reference evaporation is provided in the supplementary
material (Text S1). The calculated Q, was then used to estimate E using
Eq. (1). The estimated reference evaporation was also validated with
monthly evaporation from water-solute-heat balances available from
the Israel National Water Supply Company (Mekorot) over the common
period 2000-2005.

Meteorological data over the 2000-2005 period was collected at a
fixed height on-lake weather station (Tabgha) located in the northwest
region of Lake Kinneret ~ 1 km offshore from the Kinneret Limnological
Laboratory (35.54° longitude and 32.86° latitude). Air temperature and
relative humidity were measured using a Young temperature/relative-
humidity sensor probe model 43372C at 6.3 m above water surface.
Shortwave radiation (305-2800 nm; W m~2) and downwelling long-
wave radiation (5-25 nm; W m™2) were measured using a Kipp & Zonen
Delft BV pyranometer CM11 and CG1, respectively at 6.5 m above water
surface. Wind speed and direction were measured using a Young wind
monitor MA-05106 at 7.8 m above the water surface. Water surface
temperature was measured by a Young platinum floating temperature
probe model 41,342 at a depth of ~ 0.05 m (Gal et al., 2003; Rimmer
et al., 2009). The reported measurement error of the water temperature
observations was 4 0.005 °C (Rimmer et al., 2009; Van Emmerik et al.,
2013). The sample frequency at the Tabgha station was 10 min, and
maintenance works were carried out once a month. Precipitation ob-
servations were collected from an on-shore weather station located ~ 2
km from the southern point of the lake.

2.4. Statistical methods

To assess the performance of the lake model simulations, we
compared reference and simulated evaporation rates over the common
period (2000-2005), by estimating the normalized Mean Bias Error
(MBE) and the normalized Root Mean Squared Error (RMSEc), and then
summarizing the results within a Target Diagram (Jolliff et al., 2009). In
addition, the Spearman Rank correlation (R) was used to assess the
ability of the models to reproduce seasonal and intra-annual variability
patterns from the reference evaporation.

2.5. Historic and future projections of precipitation and population

Complementary to our lake evaporation projections, we used historic
and future projections of precipitation (P) in the region. These were also
available from ISIMIP2b (Frieler et al., 2017). Projections of P and E
were used in this study to estimate changes to the net flux of water
between the atmosphere and the surface (P —E) during the historic and
future periods. This net flux was also used to provide insights into po-
tential future changes to the volume of water in Lake Kinneret. The
precipitation data consisted of daily values for historic and future sce-
narios available for the four GCMs and the three RCPs used in projecting
future changes in lake evaporation. In addition, we obtained historic and
future population projections for the study area that were available from
the ISIMIP3b for two Shared Socio-economic Pathways (i.e. SSP-1
comparable to RCP 2.6, and SSP-5 comparable to RCP 8.5) at a 0.5-de-
gree spatial resolution. For Lake Kinneret and the surrounding region,
we defined a bounding box of longitude: 34.25° — 36° and latitude:
29.25° — 33.75° when extracting the gridded population data. Concur-
rent changes in the local population and P —E are used here to provide
insights into changes in water stress within the region in the future.
Precipitation and population data are freely available from the ISIMIP

data repository at https://data.isimip.org.
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3. Results
3.1. Validation of simulated evaporation rates

We compared simulated evaporation rates from our lake-climate
model ensemble with the reference evaporation over the period
2000-2005. Our analysis suggests that lake evaporation estimates were
sensitive to the choice of lake model. At daily and seasonal timescales,
the reference evaporation was generally within the range of those
simulated by the model ensemble, which suggests that they adequately
capture the intra-annual variability of the reference evaporation.
Moreover, the mean of the model ensemble followed closely the seasonal
variation in the reference evaporation (Fig. 2). To better assess the
performance of the individual lakes models, we compared the monthly
reference and simulated evaporation rates with three performance
metrics, namely the Spearman Rank Correlation (R), RMSEc, and MBE
(Fig. 3; Table 3). Our analysis suggested that, among the lake models
tested, MyLake compared best with the reference evaporation (R = 0.88;
RMSEc = 0.14; MBE = -0.04), followed by FLake (R = 0.77; RMSEc =
0.19; MBE = -0.05), GOTM (R = 0.86; RMSEc = 0.23; MBE = 0.18),
Simstrat (R = 0.76; RMSEc = 0.31; MBE = 0.27) and GLM (R = 0.77;
RMSEc = 0.43; MBE = 0.41). Furthermore, a high correlation and low
error (R =0.92; RMSEc = 0.19; MBE = 0.15) was calculated between the
mean of the lake-climate model ensemble and the reference evaporation
(Fig. 4a). Overall, our comparison suggests that the mean of the models
performed better than most of the individual models, and considerably
better than the worst performing model (Fig. 4). Although, it is impor-
tant to note that the mean of the ensemble showed slightly higher
evaporation rates relative to the reference evaporation, particularly
when evaporation rates were low (Fig. 4a). Moreover, a comparison of
reference and simulated evaporation rates at seasonal timescales sug-
gested that some models (e.g., FLake and MyLake) generally under-
estimated the reference evaporation rates during all seasons except
winter, while the opposite was true for other models (e.g., GOTM, GLM
and Simstrat), which overestimated evaporation rates in all seasons
(Table 4). We also calculated the percent error in simulated seasonal
evaporation rates, which demonstrated considerable variability in the
performance of lake models across seasons. For instance, the models
with the lowest percent error across seasons were MyLake (—17 % to 21
%) and FLake (—24 % to 43 %). GOTM exhibited errors between 5 % and
45 %, followed by Simstrat (20 % and 99 %), and GLM (38 % and 111 %)
(Table 4). Overall, our results suggest that for this particular lake, and
during the time period of interest, one could argue that MyLake and
FLake performed best when simulating the reference evaporation.
However, this could be due to the positive and negative seasonal biases
of these lake models being compensated for, and thus resulting in an
overall lower bias than GOTM, GLM and Simstrat. Most impressive was
the performance of the model ensemble, and particularly the mean, in
capturing the seasonality in reference evaporation rates. Importantly,
our analysis suggests that some lake models perform better than others
during some parts of the year, and that including information from the
ensemble is desirable. Finally, a comparison revealed that the reference
evaporation closely captured the intra-annual variability of Mekorot
evaporation estimates, which is reflected by the high correlation and
low error estimated (R = 0.91; RMSEc = 0.10; MBE = —0.02) (see Fig. 2a
and Fig. S2), suggesting that our reference evaporation is robust and can
be used as a basis for validation of our simulations.

3.2. Multi-model projections of lake evaporation during the 20th and 21st
century

Following the validation of our model ensemble from 2000 to 2005,
we investigated long-term historic and future changes in evaporation
rates over the period 1900-2099. Specifically, we investigated differ-
ences across the lake-climate model ensemble in order to evaluate any
discrepancies in projected future change (Fig. 5). The future projections
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showed noticeable differences in lake evaporation anomalies (i.e., the
difference between lake evaporation in a given time period relative to
the base period [1971-2000] average) across the model ensemble. By
the end of this century (2070-2099), our results indicate that, for the
high-emissions scenario (RCP 8.5), MyLake and FLake projected the
smallest increase in evaporation rates of 320 mm year * and 329 mm
year’l, respectively, whereas GOTM (452 mm yearfl), GLM (438 mm
year™!) and Simstrat (388 mm year ') projected the highest change in
evaporation rates (Table 5). Similar results were found during the his-
torical period where the highest evaporation rates were estimated by
GLM, GOTM and Simstrat. Furthermore, our analysis suggests that the
magnitude of projected change in evaporation rates differ considerably
depending on the GCM used to drive the lake models. Particularly, the
average end of century evaporation anomalies across the GCMs (i.e.
averaged across all lake models) varied between 109 mm year * (GFDL-
ESM2M) and 227 mm year’1 (HadGEM2-ES) under RCP 2.6, between
220 mm year_1 (GFDL-ESM2M) and 323 mm year_1 (HadGEM2-ES)
under RCP 6.0, and between 334 mm year’1 (GFDL-ESM2M) and 441
mm year’1 (HadGEM2-ES) under RCP 8.5. Thus, the lake simulations
using GFDL-ESM2M as input data projected considerably lower evapo-
ration rates this century, and those using HadGEM2-ES projected the
greatest change, on average.

Given the differences in simulated evaporation rates among the lake-
climate model ensemble, it seems relevant to combine the individual
ensemble members and to calculate the average and standard deviation
among them. The model ensemble indicated an average annual evapo-
ration of 1784 + 473 mm year ' (quoted uncertainties represent the
standard deviation from the model ensemble) during the latter stages of
the 20th century (1971-2000 average). During the 21st century (2006 to
2099), the average of the model ensemble demonstrates that evapora-
tion rates are projected to increase considerably in Lake Kinneret
(Fig. 6). Under RCP 2.6, lake evaporation is projected to increase by 160
4+ 70 mm year ! by the end of the 21st century (2070 to 2099). For RCP
6.0, lake evaporation is projected to increase by 258 + 76 mm year '
The largest change in lake evaporation is projected under RCP 8.5 with
evaporation rates increasing by 385 + 93 mm year . These projected
changes correspond to a percent increase of 9 %, 14 % and 22 %, for RCP
2.6, 6.0 and 8.5 respectively, compared to the base-period average
(Table 6).

The magnitude of change in lake evaporation will not be the same
throughout the year, but will change differently across seasons (Fig. 7).

Moreover, similar to our projections of annual evaporation rates, the
projected changes in evaporation across seasons will vary across the
lake-climate model ensemble. Our future projections of seasonal evap-
oration show an overall increase compared to the historic period for all
seasons and RCP scenarios (Fig. 7; Table 7). In the historic period
(1971-2000) evaporation estimates were between 314 + 77 mm season’
L in the winter and 621 + 197 mm season’ in the summer. We calcu-
lated the projected changes in seasonal evaporation by the end of the
21st century (2070-2099) and found that the greatest change occurred
in spring, corresponding to an increase of 12 % for RCP 2.6, 20 % for
RCP 6.0 and 30 % for RCP 8.5. These changes were followed by an in-
crease in evaporation during autumn, corresponding to an increase of 9
% for RCP 2.6, 14 % for RCP 6.0 and 20 % for RCP 8.5 (Table 7). The
lowest changes across RCP scenarios were detected in the winter with
increases of 8 %, 10 % and 19 % under RCPs 2.6, 6.0 and 8.5
respectively.

3.3. Concurrent changes in precipitation and evaporation

To evaluate the potential impact of the simulated changes in lake
evaporation on water level in Lake Kinneret, we analysed the combined
impacts of climate change on precipitation and evaporation at annual
timescales. Changes in precipitation for our study site were highly var-
iable, with an overall decreasing trend from 2005 until the end of the
21st century for all RCPs (Fig. 8a). The average precipitation over the
historic period was 454 + 100 mm year !, but decreased by —28 =+ 109
mm year_1 (-6%), —98 + 117 mm year‘1 (-22 %), and —145 + 102 mm
year~! (=32 %) by the end of the century under RCP 2.6, 6.0 and 8.5,
respectively (Table 8). By calculating the difference between precipita-
tion and evaporation (P-E), our analysis showed that the change in
multi-model average evaporation was projected to be greater than the
change in multi-model average precipitation. These results suggest that
changes in lake evaporation will likely be greater than those in precip-
itation under all RCPs this century. Notably, all RCPs suggested a
decrease in P-E until the end of the century (Fig. 8b). This change re-
flected the rapid increase in projected evaporation rates and the con-
current substantial decrease in projected precipitation this century
within the study region. Relative to the 1971-2000 base period average
(-1330 + 488 mm year_l), P-E continuously decreased throughout the
21st century. Notably, under RCPs 2.6, 6.0 and 8.5, P-E will decrease by
—188 £ 129 mm year !, —356 + 148 mm year !, and —530 + 145 mm
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Fig. 3. Monthly averaged simulated and reference evaporation rates from 2000 to 2005. Evaporation rates are compared with the Spearman Rank correlation (R),

which is shown in the bottom left of each panel. The dashed line represents the 1:1 rel

ationship between simulated and reference evaporation rates. Results are shown

for each combination of lake climate models, namely (a-d) FLake, (e-h) GLM, (i-1) GOTM, (m-p) MyLake and (g-t) Simstrat, driven by the four General Circulation

Models included in this study.

year™!, respectively, by the end of the 21st century (2070-2099)
(Fig. 8b). These changes represent a percent change in P-E of —14 %,
—27 % and —40 % under RCP 2.6, 6.0, and 8.5, respectively (Table 8).

The local population within the study region, which was estimated to
be around 10 million people during the 1971-2000 base period, is
projected to increase during the twenty-first century (Fig. 8b). Pro-
jections for the shared socioeconomic pathways SSP-1 and SSP-5 (i.e.
comparable to RCP 2.6 and RCP 8.5, respectively) showed a pronounced

future increase compared to the historical period. In the case of SSP-1/
RCP 2.6 there was a steep increase projected for the local population
until the mid-21st century (i.e., 2050 s), and afterwards a more steady
increase towards 2099, with an average population of 33 million. Under
SSP-5/RCP 8.5, the future projections demonstrate a very steep increase
of population starting from 2005, with an average population of 42
million people by the end of this century. When comparing these in-
creases to the historical period, we estimated a striking increase in
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Table 3

Summary of Spearman rank correlation values (R), the Root Mean Square Error
(RMSECc) and the Mean Bias Error (MBE) for lake-climate models with respect to
reference evaporation over the period 2000-2005.

Lake model  Driving GCM Spearman RMSEc MBE
rank
correlation
[R]
FLake GFDL-ESM2M 0.76 0.19 —0.05
FLake HadGEM2-ES 0.77 0.20 —-0.06
FLake psicMsALR - 077 077 o019 %1% oo OO
FLake MIROC5 0.76 0.19 —0.05
GLM GFDL-ESM2M 0.77 0.43 0.41
GLM HadGEM2-ES 0.74 0.42 0.40
GLM IPSL-CM5A-LR  0.75 0.77 0.45 0.43 0.43 041
GLM MIROCS 0.81 0.44 0.42
GOTM GFDL-ESM2M  0.91 0.19 0.14
GOTM HadGEM2-ES 0.88 0.21 0.14
GOTM IPSL-CM5A-LR  0.87 0.86 0.23 0.23 0.18 0.18
GOTM MIROCS 0.79 0.30 0.24
MyLake GFDL-ESM2M 0.87 0.15 —0.05
MyLake HadGEM2-ES 0.85 0.16 —0.04
MyLake IPSL-CMS5A-LR 0.90 0.88 0.13 014 —0.02 —0.04
MyLake MIROC5 0.89 0.13 —0.03
Simstrat GFDL-ESM2M  0.89 0.25 0.23
Simstrat HadGEM2-ES 0.88 0.26 0.23
Simstrat IPSL-CM5A-LR 0.72 0.76 0.32 0.31 0.28 027
Simstrat MIROC5 0.53 0.41 0.34
Ensemble mean 0.92 0.19 0.15

population of 248 % for the RCP 2.6 scenario, and 337 % for the RCP 8.5
(Table 8).

4. Discussion

Projecting future changes in lake evaporation is critical for
ecosystem and water resource management, particularly in areas where
these resources are already under immense pressure (Givati et al., 2019;
Prange et al., 2020). In this study, we provide an assessment of projected
changes in evaporation rates in Lake Kinneret, a socioeconomically
important lake in the Middle East, using a model ensemble of 20 lake-

IN)
a
=]

a)

IN)
=3
S

o
S

o
S

Evaporation ensemble mean [mm month™ ]
o
o

o R=0092, p<0.05

0 50 100 150 200
Reference evaporation [mm month™ ]

250

FlLake_GFDL-ESM2M =
FLake_HadGEM2-ES e
FLake_IPSL-CM5A-LR A
FLake_MIROCS5 *

GLM_GFDL-ESM2M
GLM_HadGEM2-ES
GLM_IPSL-CM5A-LR
GLM_MIROC5

GOTM_HadGEM2-ES

shpbonm

GOTM_MIROCS

GOTM_GFDL-ESM2M

GOTM_IPSL-CM5A-LR

Journal of Hydrology 615 (2022) 128729

climate model combinations (5 lake models and 4 GCMs). We found
that the ensemble mean of the models tested was superior to most of the
individual lake-climate model realizations in describing the reference
evaporation rates in Lake Kinneret during the historical period. This is in
agreement with our expectations and in-line with experiences on the use
of ensemble modelling within the climate science community (Trolle
et al., 2014; Moore et al., 2021), which have often shown that an
ensemble approach provides more robust projections of complex sys-
tems compared to any single model. By applying 20 lake-climate model
combinations to simulate one lake, we were able to understand key
differences in model performance and, likewise, to demonstrate the
usefulness of an ensemble approach for projecting lake responses to
climate change. The lake-climate models generally agreed on the sea-
sonal variability in evaporation rates, and match those shown in the
reference evaporation calculated using observational data, with the
ensemble mean often showing the best performance. Regarding our
future projections, our analysis also demonstrated that it is critical to
consider an ensemble of both lake and climate model simulations when
projecting future change in lakes, given the spread of the projected
changes.

Although we believe that this study bridges an important knowledge
gap, there are some limitations that should be considered when inter-
preting our findings. Firstly, our projections are generated with 1-D
process-based lake models, and thus horizontal features in lakes and
the intra-lake responses to climate change will not be captured (Laval
et al., 2003). In practice, the 1-D lake models used in this study assume
that evaporation rates are uniform over the entire lake surface given that
input data to the models was available for one location representative of
the lake. However, field observations in different regions have shown
that the spatial distribution of lake evaporation is highly variable
(Mahrer and Assouline, 1993; Lenters et al., 2013). Similarly, one might
expect within-lake differences in the magnitude of change in lake
evaporation rates under climate change, as has already been demon-
strated for lake surface temperature (Mason et al., 2016; Woolway and
Merchant, 2018). The intra-lake variability in evaporation rates could be
simulated with 3-D lake models, but these complex models are data
intensive and computationally expensive (Amadori et al., 2021), and
therefore are not often used for ensemble lake modelling, particularly
for investigating future change (Zamani et al., 2021). Furthermore, our
comparison of the simulations with reference evaporation from Lake
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Table 4
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Comparison of seasonal evaporation rates between the lake models and the reference evaporation over the period 2000-2005. The colour code indicates when the lake
model overestimates (blue) and underestimates (red) the reference evaporation. Darker/lighter colours indicate a higher/lower overestimation/underestimation of

models.
Seasonal evaporation [mm season™'] Error [%]
Lake model Driving GCM Summer Autumn Winter Spring Summer Autumn Winter (DJF) Spring
JJA) (SON) (DJF) (MAM) (JJA) (SON) (MAM)
FLake GFDL-ESM2M 420 384 259 217 -19 -4 42 =27
FLake HadGEM2-ES 413 373 259 222 -20 -6 42 -25
-20 -3 43 -24
FLake IPSL-CM5A-LR 416 389 263 230 -20 -2 45 =22
FLake MIROCS 412 396 260 229 -20 -1 43 -23
GLM GFDL-ESM2M 703 609 397 433 36 53 - 46
GLM HadGEM2-ES 717 605 382 442 39 52 110 49
38 54 111 51
GLM IPSL-CM5A-LR 726 616 380 462 41 55 109 56
GLM MIROCS 712 622 380 456 38 56 109 54
GOTM GFDL-ESM2M 639 450 253 299 24 13 39 1
GOTM HadGEM2-ES 673 435 243 313 30 9 33 6
29 19 45 5
GOTM IPSL-CM5A-LR 669 467 277 317 29 17 52 7
GOTM MIROCS 696 539 285 313 35 35 57 6
MyLake GFDL-ESM2M 456 357 218 238 -12 -10 20 -20
MyLake HadGEM2-ES 469 358 229 243 -9 -10 26 -18
-10 -8 21 -17
MyLake IPSL-CM5A-LR 476 376 221 255 -8 -6 21 -14
MyLake MIROCS 469 382 216 251 -9 -4 19 -15
Simstrat GFDL-ESM2M 619 487 323 380 20 22 77 28
Simstrat HadGEM2-ES 632 489 323 387 22 23 77 31
20 34 99 27
Simstrat IPSL-CM5A-LR 626 522 391 366 21 31 24
Simstrat MIROCS 599 636 410 374 16 60 26
Ensemble mean 571 474 298 321
12 19 64 8
Reference evaporation 517 398 182 296

Kinneret, demonstrated some differences in the ability of the lake
models to capture some of the variability in evaporation rates. This was
particularly evident in winter, when seasonal evaporation rates in this
lake are at their lowest. However, evaporation rates at this time of year
are unlikely to have a considerable influence on annual evaporation
rates in this lake, which are the primary focus of our study. Some of the
differences between the simulations and reference evaporation are likely
due to the meteorological data used to drive the lake models. Specif-
ically, the GCMs used in this study provide historical and future pro-
jections of atmospheric conditions at a relatively coarse (0.5°) spatial
resolution. The gridded climate data are thus unlikely to capture all of
the short-scale spatial variations occurring at the lake surface, particu-
larly given the complex topography in the study region. In addition to
these limitations, our model simulations do not consider two-way in-
teractions between the lake and the overlying atmosphere. Furthermore,
when evaporation rates are relatively low (e.g., in winter), the percent
difference between simulated and reference evaporation will be rela-
tively large.

While we acknowledge the limitations of using GCMs in such regions,
these data are undoubtedly the most appropriate to predict future
changes in the climate (Busuioc et al., 2001) and, in turn, the studied
lake. In an attempt to address the spatial mismatch between observed
and simulated meteorological data from the study region, we used bias-
corrected GCM output data from ISIMIP2b as input to the lake models
(Frieler etal., 2017; Lange, 2019). This bias adjustment essentially alters
the statistics of climate simulation data for the purpose of making them
more similar to observations. To our knowledge, few studies have used
GCM data to project future impacts of climate change on Lake Kinneret
(Rimmer et al., 2011), with others using weather generators to forecast
changes in the near future (Gal et al., 2020). Finally, the results pre-
sented in this study, do not consider ongoing climate change adaptations

carried by the Israeli government. Despite the limitations described
above, we believe that our study provides important insights about the
future changes in evaporation rates in Lake Kinneret, and is a valuable
pilot study for larger scale, across lake, assessments.

The strength of this study is the use of a large ensemble of lake model
projections, which has allowed us to identify likely scenarios of future
change in lake evaporation within a socioeconomically critical lake. The
large ensemble was invaluable in allowing us to not only project future
change in evaporation, but also to consider a suite of simulations and, in
turn, include uncertainty bounds within our projections. It is our hope
that in underscoring the value of including ensemble modelling in lake
research, our work motivates continued efforts to employ an ensemble
of lake models for better understanding lake responses to climate
change. We see good prospects for continued coordination between lake
model development, as well as their inclusion in large climate simula-
tions, particularly given the recent expansion of computing resources
facilitates including increasing spatial resolution and correspondingly
improved process representation (non-thermodynamic processes in
lakes, improved large-scale hydrological processes, etc.). We believe
that upscaling the multi-model approach introduced in this study to
multiple lakes distributed across climatic gradients and in lakes of
varying sizes and physiographic characteristics, could provide impor-
tant insights into lake evaporation variability and responses to climate
change.

The access of water resources for human consumption and ecosystem
services highly depends on the spatio-temporal distribution of not only
evaporation, but also precipitation, two key components of the water
budget of lakes (Konapala et al., 2020). In this study, we estimated the
impact of changes in both of these metrics, and consequently on P-E, in
Lake Kinneret. We found that in all future climate change scenarios,
projected changes in lake evaporation were greater than the projected
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Fig. 5. Projected changes in annual lake evaporation during the historic (1901-2005) and future (2006-2099) periods. Projections are shown for each of the in-
dividual lake-climate models, namely for (a-d) FLake, (e-h) GLM, (i-1) GOTM, (m-p) MyLake and (g-t) Simstrat, driven by the four General Circulation Models
included in this study. Black lines represent the historical period, and the coloured lines represent the future period, with the blue, orange and red representing the
projected change under RCP (Representative Concentration Pathway) 2.6, 6.0, and 8.5, respectively. Anomalies (AE) are quoted relative to the 1971-2000 base-
period average. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 5

Annual evaporation projections under historical and future scenarios of climate change: RCP 2.6, 6.0 and 8.5 across lake-climate models. The values for the historical
period correspond to the average over the 1971-2000 period. The values for the RCP scenarios correspond to the average over the period 2070-2099. Lake evaporation
simulations are presented for each lake-climate combination. When presenting the change in evaporation, we also calculate the average for each lake model simulated
across the GCMs, shown in bold.

Lake model Driving GCM Evaporation [mm year '] Evaporation change [mm year ']
Historical RCP 2.6 RCP 6.0 RCP 8.5 RCP 2.6 RCP 6.0 RCP 8.5
FLake GFDL-ESM2M 1247 1339 1421 1519 92 127 173 228 272 329
FLake HadGEM2-ES 1252 1413 1501 1587 160 248 334
FLake IPSL-CM5A-LR 1257 1393 1555 1698 136 298 441
FLake MIROC5 1261 1383 1455 1529 121 194 268
GLM GFDL-ESM2M 2106 2220 2357 2505 114 169 251 278 399 438
GLM HadGEM2-ES 2110 2351 2469 2609 241 359 500
GLM IPSL-CM5A-LR 2106 2277 2338 2578 171 232 472
GLM MIROC5 2118 2269 2386 2500 152 268 382
GOTM GFDL-ESM2M 2340 2482 2619 2731 141 204 279 313 391 452
GOTM HadGEM2-ES 2376 2679 2787 2927 303 410 551
GOTM IPSL-CM5A-LR 2433 2621 2686 2898 187 253 465
GOTM MIROC5 2597 2782 2909 2998 186 312 401
MyLake GFDL-ESM2M 1253 1350 1446 1542 96 147 192 220 289 320
MyLake HadGEM2-ES 1269 1485 1555 1653 216 287 385
MyLake IPSL-CM5A-LR 1262 1406 1460 1610 145 199 348
MyLake MIROCS 1277 1406 1480 1535 129 203 258
Simstrat GFDL-ESM2M 1789 1889 1993 2110 100 153 204 250 321 388
Simstrat HadGEM2-ES 1805 2020 2116 2240 215 311 435
Simstrat IPSL-CMS5A-LR 1847 1998 2070 2275 151 222 427
Simstrat MIROC5 1970 2118 2231 2339 148 261 369
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Fig. 6. Projected changes in annual lake evaporation during the historic (1901-2005) and future (2006-2099) periods in Lake Kinneret. The average of the model
ensemble is shown by the thick lines, the standard deviation across the model ensemble is represented by the shaded area. Anomalies (AE) are quoted relative to the
1971-2000 base period average for RCP (Representative Concentration Pathway) 2.6, 6.0 and 8.5.

Table 6

Annual evaporation projections by the end of the 21st century under future
scenarios of climate change: RCP 2.6, 6.0 and 8.5. The evaporation estimates for
the historic period correspond to the average over 1971-2000 and the future
period corresponds to 2070-2099. Anomalies (A) are calculated as future minus
historic.

changes in precipitation, with P-E being predominantly negative, and
increasingly so throughout the 21st century. Specifically, by the end of
this century, our projections suggest that P-E in Lake Kinneret will
decrease by between 14 and 40 % under RCP 2.6 and 8.5, respectively.
These projected changes largely align with those described by Givati
et al. (2019), who projected a future decrease in precipitation in this
region, resulting in a 44 % decrease in the flow of water from the Jordan

S i E ti E tion ch AE) E tion ch AE
cenario vapord 1?:1 vaporaon © aige( ) Evaporation change (A%) River (i.e. the main inflow to Lake Kinneret) by 2050-2079 under RCP
[mm year "] [mm year”] [%] 8.5. However, similar dramatic changes in the water budget of Lake

Historical ~ 1784 + 473 - - Kinneret have already been reported, with observational data demon-

RCP2.6 1944 + 498 160 £ 70 9 strating that precipitation in the Kinneret river basin has reduced

RCP6.0 2042+ 509 258 + 76 14 . . o ) ..

RCP 8.5 2165 + 530 385 1 93 2 conmdergbly since 1985 (Givati e':t al.: 2919). Similarly, streamflow
observations from the Jordan River indicate that flow rates have
decreased by more than 50 % since 2004, provoking historically low

Historical RCP 2.6 RCP 6.0 RCP 8.5
Autumn Spring
200
100+
‘TC 0
o
17}
®©
[
‘é’ ) Winter
00
E d)
Ll 1001
<
O 4
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21001900
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Fig. 7. Projected changes in seasonal lake evaporation during the historic (1901-2005) and future (2006-2099) periods in Lake Kinneret for (a) Autumn, (b) Spring,
(c) Summer, and (d) Winter. The average of the model ensemble is shown by the thick lines, the standard deviation across the model ensemble is represented by the
shaded area. Anomalies (AE) are quoted relative to the 1971-2000 base period average for RCP (Representative Concentration Pathway) 2.6, 6.0 and 8.5.

Table 7

Seasonal evaporation projections by the end of the 21st century under future scenarios of climate change: RCP 2.6, 6.0 and 8.5. The evaporation estimates for the
historic period correspond to 1971-2000 and the future estimates correspond to 2070-2099. Anomalies (A) are calculated as future minus historic.

Seasonal evaporation change

Scenarios Seasonal evaporation change (AE) [mm season™]
(AE) [%]
Autumn Spring Summer Winter Autumn Spring Summer Winter
RCP 2.6 46 + 27 39 + 27 50 + 26 24 + 25 9 12 8 8
RCP 6.0 72 + 33 68 + 32 85 + 32 32+ 26 14 20 14 10
RCP 8.5 102 + 39 101 £ 37 124 + 36 58 + 28 20 30 20 19
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W Historical @ RCP 2.6 RCP 6.0 RCP 8.5 Fig. 8. Projected changes during the historic (1901-2005)
and future (2006-2099) periods in Lake Kinneret for (a)
precipitation and (b) precipitation minus evaporation (P-
E) and population over the study area. The average of the
400 model ensemble is shown by the thick lines and the stan-
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Table 8

Summary of precipitation (P), precipitation minus evaporation (P-E), and population changes by the end of the 21st century under future scenarios of climate change:
RCP 2.6, 6.0 and 8.5. Estimates for the historic period correspond to 1971-2000 and the future estimates correspond to 2070-2099. Anomalies (A) are calculated as

future minus historic.

Scenario AP AP A(P-E) A(P-E) Population Population change
[mm year’l] [%] [mm year’l] [%] [Million inhabitants] [%]

Historical - - - - 10 -

RCP 2.6 —28 + 109 -6 —188 + 129 -14 33 248

RCP 6.0 —98 +£117 —22 —356 + 148 -27 ™) (@)

RCP 8.5 —145 + 102 -32 —530 + 145 —40 42 337

(*) Data not available.

levels in Lake Kinneret in 2018 (Tal, 2019).

If the P-E balance of Lake Kinneret changes in-line with our future
projections, water availability in the region will likely be severely
stressed this century. Notably, in the absence of substantial water inflow
changes (e.g., less water extraction for irrigation), a decrease in P-E will
likely reduce the total lake volume (Zhou et al., 2021). Our analysis has
also demonstrated that a decline in P-E this century will likely occur in
parallel with a rapid growth in population. Most notably, the population
in the studied region is projected to increase between 248 % and 337 %
by the end of this century under RCP 2.6 and 8.5, respectively. This
suggests that a growing population will likely become increasingly
dependent on water from Lake Kinneret. Notably, the intensification of
water scarcity driven by an increasing deficit in P-E combined with a
rapid growth in population, is likely to further enhance the depletion of
Lake Kinneret and further enhance the already existing water stress in
the region. However, it is also important to note that an increase in
water stress within the region might reduce the local population due to
possible migration in the future, which is not considered in our assess-
ment. As well as the serious socioeconomic implications of declining
water level, influenced by an increasing deficit in P-E, this could lead to
critical ecosystem disturbances, such as an increase in salinity with

12

implications for not only physical lake processes (Ladwig et al., 2021)
but also the community composition, biomass, and diversity of phyto-
plankton, zooplankton, macrophytes and fish (Jeppesen et al., 2015), as
well as a weakening of key species, the proliferation of invasive species,
and a loss of biodiversity (Zohary and Ostrovsky, 2011).

5. Code availability

The code used to produce the figures in this paper is available from
the corresponding author upon request.

Data availability

All lake model simulations, precipitation and population projections
are available at https://data.isimip.org/10.48364/ISIMIP.563533.
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