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ABSTRACT

The popularity of coverage-guided greybox fuzzers has led to a
tsunami of security-critical bugs that developers must prioritize
and fix. Knowing the capabilities a bug exposes (e.g., type of vulner-
ability, number of bytes read/written) enables prioritization of bug
fixes. Unfortunately, understanding a bug’s capabilities is a time-
consuming process, requiring (a) an understanding of the bug’s
root cause, (b) an understanding how an attacker may exploit the
bug, and (c) the development of a patch mitigating these threats.
This is a mostly-manual process that is qualitative and arbitrary,
potentially leading to a misunderstanding of the bug’s capabilities.

Evocatio automatically discovers a bug’s capabilities. EvocAaTio
analyzes a crashing test case (i.e., an input exposing a bug) to
understand the full extent of how an attacker can exploit a bug.
Evocario leverages a capability-guided fuzzer to efficiently uncover
new bug capabilities (rather than only generating a single crashing
test case for a given bug, as a traditional greybox fuzzer does).

We evaluate Evocatio on 38 bugs (34 CVEs and four bug re-
ports) across eight open-source applications. From these bugs, Evo-
caTIO: (i) discovered 10X more capabilities (that is, the number of
unique capabilities induced by a set of crashes was 10x higher) than
AFL++’s crash exploration mode; (ii) converted 19 of the 38 bugs to
new bug types (demonstrating the limitations of manual qualitative
analysis); and (iii) generated new proof-of-concept (PoC) test cases
violating patches for 7 out of 16 tested CVEs, one of which still
triggers in the latest version of the software.

CCS CONCEPTS

« Security and privacy — Software and application security.

KEYWORDS
Bug Capability, Bug Triaging, Fuzzing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS 22, November 7-11, 2022, Los Angeles, CA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9450-5/22/11...$15.00
https://doi.org/10.1145/3548606.3560575

ACM Reference Format:

Zhiyuan Jiang, Shuitao Gan, Adrian Herrera, Flavio Toffalini, Lucio Rome-
rio, Chaojing Tang, Manuel Egele, Chao Zhang, and Mathias Payer. 2022.
Evocario: Conjuring Bug Capabilities from a Single PoC. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security
(CCS °22), November 7-11, 2022, Los Angeles, CA, USA. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3548606.3560575

1 INTRODUCTION

Dynamic software testing techniques generate proof-of-concept
(PoC) test cases that trigger bugs in a target program. Developers
analyze these PoCs to locate the bug’s root cause and then develop
a patch to fix it. Modern bug-finding tools (notably, fuzzers) au-
tomatically (and quickly) discover large numbers of PoCs, greatly
improving software security. However, as the number of discovered
PoCs increases, developers face a challenge: given finite developer re-
sources, how can PoCs be analyzed quickly and efficiently to prioritize
bug fixes based on bug severity?

Clustering techniques for grouping PoCs based on their root
cause are widespread [7, 35]. PoC clustering helps developers esti-
mate the number of bugs in a set of PoCs. Afterwards, developers
can focus their efforts on bugs (with PoCs corresponding to the
same bug clustered together). However, simply clustering PoCs
does not reveal the full set of capabilities an attacker can leverage
when exploiting the given bug; after clustering, an analyst must
invest resources to understand a bug’s capabilities from its PoC (or
cluster of PoCs).

Intuitively, capabilities allow an attacker to “program the weird
machine” [17] that emerges when exploiting a bug. This may in-
clude reading (arbitrary) memory locations or altering the runtime
state of the program. In the context of memory safety bugs, a capa-
bility is defined as a unique tuple of: bug type (e.g., out-of-bounds
read/write, use-after-free, out-of-memory); access type (read or
write); the number of bytes accessed; the name of victim object
(e.g., buffer); the offset within the victim object; and the location
(e.g., stack, heap, global). An example capability is (00B, read,
5, buffer, 10, stack) which describes a 5 bytes out-of-bounds
read access that starts at the 10! byte to buffer on the stack. Any
input that crashes with an unobserved “capability-tuple” is consid-
ered to expose a new capability (thereby increasing the number of
discovered capabilities).
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Understanding these capabilities is crucial for prioritizing bug
fixes: an incomplete understanding may lead to unexploitable bugs
receiving too much attention, or, vice versa, exploitable bugs being
disregarded. While all bugs should be fixed, security-critical vulnera-
bilities must be prioritized.

Ideally, bug fixes are prioritized by the level of risk the bug poses
under some threat model (e.g., when considering code execution,
arbitrary memory writes are considered more severe than illegal
reads at fixed, unmapped addresses). However, prioritization is
hampered by the overwhelming number of bug reports developers
face [16, 61]. At the time of writing, Google’s automated fuzzing
platform, syzbot, has filed 971 unfixed open bug reports on the
Linux kernel [26]. Moreover, a single PoC (or cluster of PoCs) may
not completely demonstrate the complete set of capabilities. For
example, if a PoC crashes with a 1-byte out-of-bounds (OOB) read,
is this the full extent of the bug? If an attacker were to exploit this
bug, what capabilities would they have?

Interestingly, coverage-guided greybox fuzzers (the de facto stan-
dard for automatic bug finding) may obscure the answers to these
questions: the goal of a fuzzer is to find bugs, not to investigate
their capabilities. Fuzzers consider PoCs triggering the same bug
through the same execution path as duplicates: they keep the first
one encountered and discard all others, irrespective of their full
set of capabilities. Consequently, the full attack power of a bug
may remain hidden, placing a greater burden on the developer to
judge a bug’s capabilities. Automated techniques for exploring and
assessing bugs’ capabilities are required to reduce this burden.

In theory, Automatic Exploit Generation (AEG) [3, 13, 30, 72-74]
can determine a bug’s capabilities (in the context of a given threat
model). However, most AEG engines rely on symbolic execution to
generate an exploit [3]. In practice, symbolic execution engines are
inherently incomplete (e.g., due to path divergence [4]) and suffer
from state explosion. For example, while SyzScope [78] uncovers
the security impact of fuzzer-exposed kernel bugs, its application
is limited by state explosion [1, 66].

Observing the lack of reliable tools to automatically asses a
bug’s capabilities, we propose EvocaTio!: a tool for conjuring (i.e.,
discovering) a bug’s capabilities and assisting human analysts in
severity estimation. EvocaT1o reduces the amount of time spent on
bug analysis while improving the developer’s evaluation of a bug.

Evocartio leverages fuzzing and sanitization to uncover new
capabilities for memory corruption bugs, ensuring these capabilities
are captured as separate PoCs. From this, we propose a framework
to derive a quantitative score of a bug’s severity according to a
given threat model.

In summary, we make the following contributions:

e EVOCATIO, a system for assisting developers prioritize and
develop critical bug fixes. EvocaTio consists of a custom
fuzzer and sanitizer that uncover new attack capabilities
beyond those exercised by a single PoC (as discovered by a
traditional greybox fuzzer).

o A demonstration of EvocaT1o’s utility when applied to mem-
ory corruption bugs. We show how EvocATio can automati-
cally (a) derive a quantitative severity score (analogous to

! Evocatio is Latin for “calling forth”—or conjuring—a deity.
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existing vulnerability scoring systems), and (b) verify the
efficacy of software patches.

e An evaluation of EvocaTio using 38 bugs across eight open-
source applications. From these bugs, EvocaTio: (i) discov-
ered 10X more capabilities than AFL++’s crash exploration
mode; (ii) converted 19 of the 38 CVEs to new bug types; and
(iii) generated new PoCs that violated the patches for 7 out
of 16 tested CVEs, one of which triggers in the latest version.

Our results highlight the need for automated bug assessment
and show that Evocario is well-placed to achieve this goal.

2 BACKGROUND

The following sections formalize capabilities (Section 2.1), discuss
existing approaches for vulnerability scoring (Section 2.2), and
provide a motivating example for our work (Section 2.3).

2.1 Using Capabilities to Program the Weird
Machine

A vulnerable, buggy program exposes a weird machine that can be
“programmed” by an attacker via an exploit [5, 17]. The ability to
program this weird machine depends on the capabilities a particular
bug exposes. Put another way, when modeling a weird machine as
a collection of “weird states” in an intended finite state machine [17],
different capabilities allow an attacker to transition to different
weird states. Ultimately, a capability defines what a bug “can do”
(when exploited).

For example, the ability to write a sequence of bytes to a function
pointer (e.g., in a vtable data structure) in the heap may allow
an attacker to crash or redirect execution in the target program
(depending on the values written). Similarly, the ability to read
several bytes of stack memory from which sensitive data can be
gleaned (such as in CVE-2020-11104 [70]) is another capability.

Depending on the defender’s threat model, some capabilities may
be more severe than others. For example, if system up time is critical,
then a null pointer dereference is a severe bug (that may crash
the system). However, if arbitrary code execution is the primary
concern, then the same bug may be relatively benign on its own.
Regardless, it is difficult to assess the severity of a bug without
a complete understanding of the capabilities the bug possesses;
intuitively, the more capabilities a bug has, the more severe the bug
is. This lack of understanding may lead to the misclassification of a
bug’s severity and/or release of an incomplete patch.

2.2 Current Approaches for Measuring Bug
Severity

The Common Vulnerability Scoring System (CVSS) [51] is the
de facto measure of a bug’s severity. Several indicators (e.g., attack
vector, complexity, user interaction) are manually aggregated and
summarized by a value between zero and ten; the higher the value,
the higher the severity. Some of these indicators are qualitative
and cannot be generated programmatically (e.g., attack complexity).
Analysts must carefully inspect the bug and determine a value for
these qualitative metrics. This is a time-consuming, error-prone,
and subjective process; potentially leading different analysts to
assign different scores to the same bug [9, 43]. Moreover, analysts
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Listing 1: A motivating example program.

void foo(char #*src, char xdes){
int len_one = src[4]; // Single capability byte
// Multiple capability bytes
int len_two = src[20] + src[22] * src[33];

memcpy (des, src, len_one);
memcpy (des + len_one, src, len_two);

}

10  int main(){

11 // Difficult for symbolic execution

12 char xsrc = inflate(input_file);

13

14 // Control flow bytes

15 if(src[0] == 'a' && src[1] == 'b'){

16 char xdata = parseData(src);

17 if (strlen(data) != 120)

18 return 1;

19

20 // Capability bytes with constraints

21 int buf_size = src[40]+src[41]+src[42]+src[43];
22 if (src[40] + src[41] > 50 || src[42] < 100)
23 return 1;

24

25 char xdest = malloc(buf_size);

26 foo(src, dest); // Buggy function

27 3}

28 return 0;

29}

are typically provided with only a single PoC [65] from which they
must manually determine the full extent of the bug.

For these reasons, we argue that a more complete understanding
of a bug’s capabilities empowers analysts to accurately estimate a
vulnerability score that truly reflects the full extent of the bug.

2.3 Motivating Example

The program? in Listing 1 motivates the need for Evocatio. This
program contains a heap buffer overflow in foo, which may crash
at Lines 6 and 7 depending on the values of buf_size, len_one,
and len_two. Importantly, the abilities granted to an attacker (when
exploiting this overflow) vary depending on these values.

The program first calls z1ib’s inflate (Line 12) to read the
contents of the input file. Most symbolic execution engines fail
at this point, because they are often unable to accurately model
external libraries (such as z1ib) and succumb to state explosion
during the decompression process. Following decompression, a
validity check is performed on the first two bytes of the input data
(Line 15). We label these two bytes “control-flow bytes” because they
impact the program’s control flow. Reaching the bug at Lines 6
and 7 requires satisfying these control-flow constraints.

Once these control-flow constraints are satisfied, the input bytes
at offsets 40-43 are read (Line 21). The data contained at these offsets
effects the size of the buffer used in foo, ultimately determining
the size of the overflow. We label these four bytes “capability bytes”
(astute readers will recognize these capability bytes correspond to
changes in data flow). Additional checks are performed on bytes 40—
42 (Line 22), ensuring these bytes fall within a certain range. These
bytes are thus both capability and control-flow bytes.

The foo function (Lines 11 to 22) demonstrates different types of
capability bytes: single capability bytes (Line 2), where a single byte

2Modeled after CVE-2016-9532. We have simplified the logic and variable names.
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affects the capability and sequences of capability bytes (Line 4, here
the three-byte sequence at offsets {20, 22, 33} affects the capability.

Listing 1 contains ten critical bytes: two control-flow bytes, five
capability bytes, and three bytes that are both control-flow and
capability bytes. Identifying these bytes is important for efficiently
discovering new capabilities, ensuring time is not wasted exploring
erroneous states in the state space (i.e., states unrelated to the given
bug). Satisfying control-flow bytes ensures a new PoC maintains the
same control-flow that triggered the original bug, while exploring
different capability byte values leads to new PoCs that manifest
the same bug in different ways. We use fuzzing to automatically
explore this state space.

3 EVOCATIO

Fuzzers discover bugs in target programs by exercising a large num-
ber of randomly-generated inputs. Crash-inducing inputs (exercis-
ing one or more bugs) grant an attacker control over the resulting
weird machine. Importantly, these inputs also grant an attacker a
set of capabilities that allow them to program this weird machine.
Given a crash-inducing input (generated by a fuzzer), what level
of control is granted to an attacker when they trigger the underlying
bug? Evocatio answers this question by systematically explor-
ing the range of capabilities a bug possesses from a given PoC.
EvocaTio consists of the following components (Fig. 1):

Capability detection (CAPSAN). New capabilities are detected
via CAPSAN. CAPSAN extends AddressSanitizer’s (ASan) visi-
bility into triggered memory safety bugs (Section 3.1).

Capability discovery (CapPFuzz). New capabilities are discovered
via CapFuzz. CAPFuUzz perturbs an input PoC to uncover new
capabilities by rescoping traditional coverage-guided fuzzers.
CaPFuzz uses CAPSAN to hone in on new capabilities that
grant an attacker more power and control (Section 3.2).

The newly-discovered capabilities can be used by analysts and
developers alike. We demonstrate two applications—estimating bug
severity and patch testing—in Section 4.

3.1 Capability Detection

Evocartio requires a mechanism to efficiently extract capabilities
from a given PoC. In the spirit of fuzzing, the most natural way to
achieve this is through a sanitizer. Indeed, sanitizers and fuzzers are
often paired together, increasing the fuzzer’s sensibility towards
specific behaviors. Given our focus on memory errors, we adopt Ad-
dressSanitizer (ASan) [63] as our capability detector and collector.?
ASan instruments the target program so that it crashes on memory
safety violations. Importantly, ASan generates a detailed report
whenever an invalid memory access is detected. While fuzzers typ-
ically ignore this report (as they only care if a crash occurs), it
contains rich bug information required to determine when a new
capability is discovered. Capability detection is based on the five
properties listed in Section 2.1. We modify ASan—dubbing our tool
CaprSaN—to expose a machine-readable version of this crash report.

3The design can be extended to cover other types of sanitizers, provided capabilities
can be extracted from the sanitizer.
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The Architecture of CAPFUZZ

Critical Bytes
Guided Mutation

| Critical Bytes Prioritization (3.2.2) |

\ 4

Initial input
(PoC)

| C-Bytes/D-Bytes Mutation Rule (3.2.3) |

Bug Capability Generator

@_’

Test (Core Fuzzing)

1
| Seed Retention (3.2.4) | —.
v

— Single-byte inference ‘

v
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‘ Byte-sequence inference

Figure 1: Evocario workflow.

3.1.1 Forced Execution to Detect Out-of-Bounds Accesses. By de-
fault, ASan aborts program execution at the first error encoun-
tered [25]. For example, if a bug overwrites multiple OOB bytes,
ASan aborts execution at the first OOB write. This design works
in most scenarios; i.e., when analysts needs to locate the cause
of a crash. And while this limits false positives, it also loses the
opportunity for deep exploration of bug capabilities; ASan cannot
discover bugs hiding behind other bugs (e.g., several OOB writes).

For example, CVE-2021-3156 (Listing 2) performs multiple writes
when copying bytes from the from buffer to the to buffer. However,
because the code copies a single byte at a time (Line 5), ASan termi-
nates the program on the first OOB write, reporting an OOB length
of one. Instead, the bug allows the attacker to overflow multiple
bytes (provided the conditional on Line 3 remains satisfiable). Here,
ASan’s early exit hides the complete set of bug capabilities.

CAPSAN mitigates this limitation by continuing execution after
an error has been detected to fully explore bug capabilities (by
disabling ASan’s halt_on_error option). To correctly detect the
OOB capability for each buffer (and prevent false positives), CAPSAN
records the overflow length and identifies the data structure being
overflowed. This allows CAPSAN to distinguish different overflow
lengths across different buffers. We stop exploration whenever a
new data structure is reached (intuitively, this means we are no
longer triggering the same bug).

Listing 2: Code snippet from CVE-2021-3156.

1 if (ISSET(sudo_mode, MODE_SHELL |MODE_LOGIN_SHELL)) {
2 while (xfrom) {

3 if (from[@] == '\\' && !isspace(from[1]))

4 from++;

5 *to++ = *from++;

6 3

7}

3.2 Capability Discovery

Coverage-guided greybox fuzzers explore a target program’s state
space by continuously generating new inputs via random mutation.
Fuzzers do not suffer from the scalability limitations inherent in
approaches like symbolic execution, making them ideal for dis-
covering new capabilities in real-world programs. Unfortunately,

existing fuzzers are designed to explore the target’s code, thus mov-
ing exploration away from recently-discovered bugs. In doing so,
fuzzers may ignore crashes exposing other capabilities (associated
with the same bug). This implies analyzing a single fuzzer-produced
PoC is insufficient for fully capturing a bug’s security impact. Con-
versely, a complete security assessment must—at least—consider
all unique crashes for the same bug. We propose CaPFuzz to meet
these requirements. CAPFUZz is a capability-driven fuzzer for dis-
covering new crashes (and thus, new capabilities) from an initial
PoC. CarFuzz is comprised of two stages: a module for labeling and
prioritizing critical bytes leading to new capabilities (Sections 3.2.1
to 3.2.2), and a mutation engine for exploring the capability space
(Sections 3.2.3 to 3.2.5).

3.2.1 Ciritical Bytes Inference. As shown in Section 2.3 and by prior
work [21, 46, 76], only a subset of the input bytes affect program
behavior, and hence a bug’s capabilities. Thus, efficient capability
exploration requires understanding which bytes impact a bug’s
capabilities. Per Section 2.3, we classify critical bytes into two cate-
gories: those affecting control flow (Cpyte), and those affecting data
flow (Dpyte). Algorithm 1 outlines our approach for identifying and
categorizing critical bytes.

Single-byte inference. Prior work [21, 76] has successfully lever-
aged single-byte inference techniques to improve a fuzzer’s ability
to expand code coverage. In contrast, EvocAaTIO uses single-byte
inference to determine which bytes contribute to a new capability.
It does this by performing an exhaustive search to label a given
input byte a Cpyte Or Dpyte (or both). Lines 2 to 10 in Algorithm 1
describes this process. For each input byte i, every possible value v
is tested. Byte i is labeled a Cyyte if (a) a new v induces a change
in ’s control flow and (b) it does not introduce a new capability.
Conversely, i is labeled a Dyyre if a change in capabilities is detected.
We infer changes in control flow through variations in the coverage
map (recorded in p), while data flow changes are inferred through
differences in capabilities (recorded in C).

Byte-sequence inference. The previously-described exhaustive
search is fast and efficient at performing single byte inference, but
is oblivious to multi-byte relations (e.g., due to a specific grammar).
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Algorithm 1: Critical Bytes Inference.

Algorithm 2: Mutation Rule on Critical Bytes.

Input: Instrumented program %, initial PoC S, exploration times #
Output: Chyte, Dpyte

/* Get bug capability C and coverage map p, O is the
capability of uncrashed seed */

{C, p} « Execute(P,S)

2 foreachi € {0, 1, ...|S|} do /* Single byte inference */
3 N

4 foreach v € {0, 1, ...255} do /* Exhaustive search */
5 S'[i] <o

6 {C", p’} « Execute(P,S")

7 if p’ #p A (C' =0V C' =C) then

8 ‘ bete[s] — Coyte [STu{i}

9 elseif C’ # CAC’ # O then

10 | Diyeel ST — Doyee[S1U {{i}}

1 repeat/x Byte-sequence inference x/

12 z « RndByteSequenceSelect(S)

13 S’ « RndMutate(S, z)/* Apply a random mutation x/
14 {C’, p’} « Execute(P,S")

15 if C" # CAC’ # O then

16 z' « ByteSequenceReduction(z)
17 L Dyyte [S] < Dyyte [STu{z'}

18 te—t—-1

19 until £ =0

These relations require related bytes to be mutated together. An
example of a multi-byte relation is shown at Lines 4 and 22 in
Listing 1. These sequences can quickly grow in size, making an
exhaustive search impossible; fortunately, fuzzing has been shown
to efficiently handle such large search spaces. Lines 11 to 19 (Al-
gorithm 1) describes our fuzzing-based approach for multi-byte
sequence inference.

Our multi-byte inference first selects a random subset of input
bytes and mutates them to create S” (Lines 12 to 13). The program #
is then executed with $’. The sequence is added to Dy if new
capabilities are discovered. Unfortunately, the discovered sequences
may be irreducible (i.e., redundant bytes cannot be removed) and
noisy (due to the random selection of input bytes). This noise exists
in bytes not contributing to changes in #’s behavior. Incorrectly
identifying these bytes as critical significantly reduces performance
(because time is wasted mutating these bytes). Noisy bytes must be
filtered out as early as possible.

CapFuzz handles noisy bytes with a ByteSequenceReduction

operation (Line 16). When a sequence is found, By teSequenceReduction

restores as many bytes as possible to their original value, while
simultaneously ensuring new program behaviors remain. Because
byte sequences may be large, we adopt a “divide-and-conquer” ap-
proach (inspired by delta debugging [44, 47]) where we restore
blocks of bytes, rather than single bytes. Here, all bytes in a block
are restored to their original value: if the new behavior persists, the
reduction was successful; otherwise, a smaller block size is selected
and the process repeats until we reach a single byte.

3.2.2 Critical Bytes Prioritization. Critical bytes inference may
result in a large number of sequences in Dyyte. This is particularly
pronounced when the target program has a complex input syntax.
Although mutating any of these sequences will introduce new
capabilities, careful prioritization of sequence mutation is crucial
to improve CapPFuzz’s efficiency. Sequences contributing most to

Input: Instrumented program , initial PoC s, Cpyte, Dpyte
Output: Seed after mutation s’

/* seqs is a set of sequence, seq is one sequence */
seqs < PrioritizedSeqSelect (Dpyre)
s' s
foreach seq € seqs do
if seq € Dyyy then
bytes < RndPositionsSelect(seq)
foreach byte € bytes do
if byte € Cpyyr, then
| continue

9 s” « RndMutate(s’, byte)
10 s’ —s”

P I L S

the discovery of new capabilities should be prioritized over other
sequences. At each cycle, for each sequence s € S, we use the
following predicate for determining if s induces a new capability c;:

1 c¢jisfroms
' (1)

0 otherwise.

P(ci,s) = {

This predicate is applied over the last N = 20 seeds* to determine
their contribution W (s):

N
W(s) = ) P(ci.s), @)
i=0

Here, W (s) represents the most energetic sequence that changes dy-
namically over time. By prioritizing sequences with higher values
of W(s), CarFuzz focuses on sequences that (a) find more capa-
bilities, and (b) is faster at finding them. Sequences are prioritized
using the PrioritizedSeqSelect function (Line 1 in Algorithm 2).

3.2.3 Mutation. CaPFuzz mutates critical bytes to explore the sur-
rounding state space and discover new capabilities. CAPFUzz uses
the information collected during the critical byte inference phase
(Section 3.2.1) to discover new crashes sharing the same control
flow with the original PoC. We recall the inference phase assigns
a Cpyte OF Dpyte label to each input byte (or sequence of) affecting
the control flow and/or data flow. To concentrate exploration to-
wards data flow—thus finding new crashes that follow the same
execution path as the original PoOC—CaPFuzz only considers Dyytes
and sequences during the mutation phase (Algorithm 2).

Critical bytes are tightly related to the input length; changing
the input length invalidates the previously-collected information.
CarFuzz therefore keeps the input length constant and mutations
changing the input length are disabled (e.g., inserting, copying, and
splicing). Similarly, the deterministic mutation phase is skipped be-
cause this process previously occurred during the inference phase.

3.24 Seed Retention. CAPFuUzz is designed to discover new capa-
bilities. Thus, it only retains crashing test cases that introduce new
capabilities. These test cases are also stored in the fuzzing queue,
ensuring they are also mutated (helping guide the fuzzer towards
uncovering new capabilities).

A check is performed on each newly-generated test case to verify
whether it introduces new capabilities. These checks are frequent

“We empirically select N and leave parameter optimization to future work.
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and could become a performance bottleneck for long fuzzing cam-
paigns (due to an increased number of capabilities required to be
checked). We use a hash table to make capability queries efficient
and prevent the number of capabilities from impacting performance.

3.25 Seed Selection. CapFuzz follows the strategy of traditional
coverage-guided fuzzers and stores “interesting” test cases (i.e.,
those reaching new code) in the fuzzer queue for further muta-
tion. At any point during the fuzzing campaign there may be many
test cases in the queue. Moreover, the probability a given test case
helps find new capabilities dynamically evolves over time. For these
reasons, a mechanism for selecting the most promising seeds for
mutation is required. We introduce the following two complemen-
tary rules for seed selection, where a new sequence is defined as
one for which no test cases have been executed yet: (1) prefer the
seed generated by a new sequence, and (2) prefer the seed gener-
ated by the most energetic sequence. CApFuzz applies these rules
sequentially. First, it verifies whether a new sequence exists. If true,
its first test case is set to the highest priority and the sequence is
labeled as tested (i.e., it is no longer a new sequence, and further
test cases of this sequence will not be set to the highest priority). If
no new sequence is found, CApFuzz identifies the most energetic
sequence using Eq. (2) and prioritizes that one instead.

4 APPLICATIONS

We demonstrate two scenarios where the discovery of bug capabili-
ties is useful to analysts and developers: bug severity assessment
(Section 4.1) and validating patch efficacy (Section 4.2).

4.1 Severity Assessment

Defenders must prioritize which bug to fix based on the bug’s
severity. However, scoring bug severity is a subjective process, and
is highly dependent on the defender’s threat model. Automating
this scoring process requires developing context-dependent rules
for determining a bug’s severity across multiple dimensions. While
this is impossible in the general case, we demonstrate how bug
capabilities help this process.

We design a scoring system that uses the bug capabilities dis-
covered by EvocArTio to automatically derive a severity score. Our
system is designed for a threat model in which an attacker desires to
achieve remote code execution over a target program. However, the
model can be configured to adhere to more specific users’ scenarios.
This model is presented in detail in Section 4.1.1, and experimental
results are presented in Section 6.3. Our results show combining
capabilities (discovered by EvocaTio) with an automatic scoring
system improves the efficiency of severity assessment.

4.1.1 Scoring Bug Severity. We merge the individual capability re-
ports produced by CapFuzz into a bug capability report composed of
the following six metrics (based on those introduced in Section 2.1):

Bug type: Different bug types—e.g., stack-buffer-overflow (SOF),
heap-buffer-overflow (HOF), and UAF—are discoverable by Car-
Fuzz. A larger variety of bug types leads to a higher probability of
satisfying an exploit condition (i.e., the minimum combination of
capabilities required to exploit a vulnerability).

Max. length of OOB reads/writes: The larger the length of OOB
reads/writes, the greater the area to exploit.
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Readable/writable address ranges The larger the range of ad-
dresses that can be read from/written to, the higher the probability
an arbitrary read/write succeeds.

Num. of OOB objects: The larger this number, the more oppor-
tunity an attacker has for different attacks (e.g., SOF, HOF).

Max. OOB size objects: CaPFuzz records the different sizes of
the overflown buffer, reporting information about the originating
memory object (ASan reports the closest object). The ability to
overflow objects with different sizes helps generate an exploit (e.g.,
the attacker can target different locations).

Num. of different read/write offsets: The ability to read/write
at different offsets within the original object gives an attacker more
flexibility (as more/different memory regions are potentially read-
able/writable).

Evocartio aggregates these metrics across multiple PoCs to com-
pute a bug severity score (between zero and ten) for each primitive
type (i.e., read and write). Providing two scores—rather than a sin-
gle score—allows a developer to more-accurately assess the impact
of a bug. Again, we stress that a scoring system requires a specific
threat model. Here we provide (a) an example threat model, and
(b) a configurable scoring system instance to show how capabilities
can be used to measure bug severity (based on human knowledge).
Further details are provided in our implementation.

4.2 Patch Testing

A developer requires a deep understanding of a given bug to develop
a complete patch. Ideally, this patch prevents transitions into all
weird states relating to the bug. EvocaTio is well-placed to help
developers implement complete patches, because it provides them
with an understanding of what weird states are reachable (through a
bug’s capabilities). Moreover, the PoCs generated by EvocaTio can
be used to test proposed patches. We demonstrate this in Section 6.4,
revealing patches for multiple CVEs were in fact incomplete.

5 IMPLEMENTATION

CarFuzz and CAPSAN (Section 3) are written in 7K LoC of C. Our
example capability aggregation and scoring system (Section 4.1)
is written in 1.5K LoC of Python. We make our code available at
https://github.com/HexHive/Evocatio to help future studies in this
area.

CAPSAN leverages ASan’s API for accessing crash details at run-
time. When a new crash is encountered, the capabilities of that
crash are deduplicated with those previously encountered. This
means comparisons between capabilities is a frequent operation,
and is thus required to be as efficient as possible. During fuzzing,
capabilities are stored and compared through their hashes.

Prior to fuzzing, Evocatio performs the dual-phase inference
process described in Section 3.2.1. The first phase (single byte infer-
ence) is an exhaustive search and always runs to completion. The
second phase (sequence inference) is fuzzing based and thus has a
variable execution time. We empirically determined 10 minutes to
be a reasonable default.

Capability exploration uses seeds that introduce new capabili-
ties (discovered during the inference phase) as the initial corpus,
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and the critical bytes mapping to guide mutation. The capability-
driven fuzzing engine is built on top of AFL++ [19], which has been
modified to use the capability hash as a guidance metric.

While our current prototype is tailored to memory safety bugs,
Evocario is implemented so other bug types and threat models
can also be explored. For example, rather than building on ASan,
CaprSAN could be modified to leverage UBSan and thus explore
capabilities associated with undefined behavior bugs. Similarly,
other severity scoring systems can be constructed based on other
threat models. We leave this for future work.

6 EVALUATION

We evaluate Evocario by answering the following research ques-
tions:

RQ1 Does Evocatio discover a greater range of capabilities (com-
pared to other crash exploration tools)? (Section 6.1)

RQ2 How do the different design components affect EvocaTio’s
performance? (Section 6.2)

RQ3 Can Evocario be applied to severity scoring? (Section 6.3)

RQ4 Can Evocario be applied to patch testing? (Section 6.4)

Finally, we use a case study to illustrate the practical benefits of
Evocario (Section 6.6).

Benchmark suite. Our benchmark is composed of 38 bugs belong-
ing to six different bug types: 34 CVEs and four open issues across
eight targets. Table 1 summarizes the target programs. We selected
these targets due to their popularity in fuzzing research [2, 21, 29],
functionality, code diversity, development activeness, and varying
code base sizes (ranging from 50k to 2M LoC).

Baseline. Capability/crash exploration is an under-explored re-
search topic; AFL++’s “crash exploration mode”(afl-cexp) is the
only tool we are aware of. Af1-cexp is similar to CApFuzz: it takes
a single PoC as input and mutates it in an attempt to generate new
crashes. We compare EvocaTio to afl-cexp in our evaluation.

Performance metrics. We evaluate performance by considering
(a) the number of new capabilities discovered over time, and (b) the
diversity of these capabilities.

Testing time. Unlike traditional fuzzers, crash exploration tools
cannot run for long periods of time; doing so introduces lengthy
delays in bug fixing. In our evaluation, we found eight hours to

Table 1: Benchmark summary. Bug types are: heap buffer
overflow (HOF), integer overflow (IOF), use-after-free (UAF),
stack buffer overflow (SOF), global buffer overflow (GOF),
and off-by-one (OBO).

s Bugs
Program  Description LoC Type %
Libtiff Image library 84K  HOF, IOF 11
Libming Flash library 114K HOF, UAF 9
Binutils Binary tools 2.1IM  HOF, UAF, SOF, OBO 6
Libsixel Image library 37K HOF, SOF 3
Jasper Image manipulation 53K  HOF 5
Libsndfile  Audio manipulation 85K  HOF 1
Nasm x86 asssembler 122K UAF 1
Fig2dev Graphics creation 47K UAF, SOF, GOF 2
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be a suitable compromise between execution time and capability
discovery. We run Evocartio and afl-cexp for eight hours unless
otherwise stated. Experiments are repeated five times to ensure
statistical significance.

Experiment environment. All experiments were conducted on an
Ubuntu 18.04 LTS server, with 200 GiB of RAM on an Intel® Xeon®
Gold 6254 3.10 GHz CPU with 60 cores.

6.1 Capability Discovery (RQ1)

Table 2 summarizes the capabilities discovered across our bench-
mark.> Here, we report the bug effect; that is, the measurable conse-
quence that follows from the bug’s root cause. For example, the root
cause of CVE-2016-9532 is an integer overflow. However, the effect
of this overflow is a heap-overflow (HOF)/ stack-overflow (SOF).
This distinction allows us to highlight additional bug capabilities.

Overall, Evocario successfully discovers new capabilities for 50 %
of the bugs in Table 1. For example, both integer overflow (root
cause of CVE-2016-9532) and off-by-one errors (root cause of CVE-
2021-3156) lead to OOB accesses. Thus, we use the bug type in
Table 2 to show how many different effects can be discovered by
Evocario. This experiment also shows Evocartio is not limited to
memory corruption errors, but can also identify other bug types
(e.g., UAF in CVE-2016-10092).

Prior work has shown more flexible overflows simplify exploita-
tion, resulting in higher security impact [12, 71]. The correlation
between capability diversity and new bug types in Table 2 empiri-
cally confirms this: all bugs for which a new effect was discovered
had a wide range of origin, size and origin offset values. The capabil-
ities found by Evocario help developers at prioritizing those bugs
with a more diverse range of capabilities.

6.1.1 CapFuzz vs. af1-cexp. Here we compare EVOCATIO against
AFL++’s crash exploration mode (af1-cexp). Table 3 summarizes
the total number of capabilities and seeds obtained after 8 hours of
execution,® while Fig. 2 shows the evolution of capabilities/seeds
over time for 8 CVEs that we choose as representative of the bugs
effect in our benchmark. This allows us to compare the results of
the two tools across targets and bug types.

Table 3 shows the number of different discovered unique crash
capabilities (e.g., unique array access index, unique size of the read-
/write, or the bug type). Evocario finds 10X more capabilities than
afl-cexp. EvocaTiOo generates significantly more unique seeds
than af1l-cexp, not only because EvocaTIo is better at discovering
new capabilities, but also because af1-cexp will wrongly discard
some inputs (afl-cexp may exercise a capability but discard the
corresponding inputs due to its seed selection strategy).

Figure 2 shows afl-cexp’s ability to uncover new capabilities
quickly plateaus. While the number of crashing seeds increases, the
number of capabilities remains low. This is due to afl-cexp’s code-
coverage-based feedback mechanism; it is unable to detect changes
in data flow. As a result, af1-cexp finds new seeds, but they trigger
the same capabilities along different execution paths. In contrast,

SWe applied an extra eight hours (on average) of manual analysis with the aid of the
original bug reports to verify the discovered capabilities.

®We considered different invalid memory addresses. We also merged the consecutive
addresses with ASLR disabled. Therefore, the numbers are larger than Table 2 in which
memory addresses are not shown.
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Table 2: Capabilities discovered by EvocaTio. Bug effect refers to the bug effect witnessed during a crash, expressed as “original
bug effect[new bug effect]”. HOF = heap overflow, UAF = use-after-free, SOF = stack overflow, GOF = global buffer overflow,
#W = wild address read, #N = null pointer dereference, #A = allocation size too bug, #U = unknown crash. Newly introduced
effects are in blue. The sizes column contains the size of the access, origins the count of different objects accessible from a valid
memory access, origin sizes the size of these objects, and origin offsets the offsets from these objects. The sizes, origin sizes, and
origin off sets columns differentiate between read and write capabilities. For these columns we use the notation [min. .x..max] y
to indicate a range (rather than total count). Here, x is the value of the capability for the original PoC, and y the number of
unique values observed within this range. Finally, origins differentiates between stack and heap, reporting the total count of

origin objects found in each location.

CVE Bug Effect Size Origin Origin Size Origin Offset

Read Write Stack Heap Read ‘Write Read Write
issue-278 HOF[-] [20..213] 1542 [23.212] 4 0 34 [23.2%0.2%7] 39263 [28.21%]5  [21.23.28] 214 [2°]1
issue-277 HOF[-] [20.2%]3 - 0 1 [2°0..23..2°] 97 - [2°11 -
issue-275 HOF[UAF] [2°71 [2°71 0 2 [2°..21°] 25560 [2°..218] 7387 [2°71 [2°71
issue-269 HOF[-] [20.22]3 - 0 2 [20.23.20] 78 - [2°11 -
CVE-2018-17795  HOF[-] - [2%]1 0 1 - [2%]1 - [2°]1
CVE-2018-12900  HOF[#U] [2°]1 [2°]1 0 5 [20.2%5] 43852 [2°.223.2%4] 2178 [2°..213] 1602 [2°71
CVE-2018-8905  HOF[-] [2°11 0 1 - [23]1 - [2°71
CVE-2016-10272  HOF[-] [2°. z"] 1 [2°11 0 5 [214.28%] 6 [28..2%8] 33440 [2%.2%2.24] 4 [2°..2°] 33
CVE-2016-10092  HOF[UAF] [2°71  [2°.2°] 259 0 11 [2°..27] 611 [23..2%7] 8746 [20.21]4  [2°.2%%] 1817
CVE-2016-9532  HOF[SOF] [2°.2%] 2 [2°71 1 9 [2°..2%°] 65374 [2°11 [20.28] 2 [2°11
CVE-2016-9273  HOF[SOF] [23]1 [22.2%] 2 0 1 2311 [23.2%]1 [2°]1 [27.27]1
CVE-2020-11895 HOF[#A/HOF|UAF]  [2°. 21 23] 4 [22.2%]6 0 370 [2°.211.213] 204 [22.218]13  [20.2%.211] 74 [2°1
CVE-2020-11894  HOF[#W|UAF] [2°.23] 5 [2°.2%] 10 0 346 [2°.211 213] 152 [22.2%] 11 [2°.23.2!1] 45 [2°]1
CVE-2020-6628  HOF[#W|UAF[#N] [2" 23] 5 [2%.20]7 0 170 [2°..211.213] 90 [2%.2'%] 8 [23.211] 26 [2°11
CVE-2019-16705  HOF[#W|UAF] [2°.20.210] 3 [2°.2°]1 0 42 [20.28.212] 81 [21°.218] 11 [23.210] 44 [2°11
CVE-2019-9114  HOF[-] - [2°]1 0 26 - [2%.2%.2%] 49 - [2°]1
CVE-2018-20591  HOF[UAF|#N] [20.20.21913 [2¢.2%]6 0 168 [20.23.213] 157 [2%.28]14 [2°.23.2'1] 44 [2°71
CVE-2018-9009  UAF[#W|HOF] [20.20.23]3 [22.2%]5 0 93 [20.2°.214] 241 [22.2%12  [20.26.2%]11 [2°71
CVE-2018-8964  UAF[HOF] [23] 1 [22.2%]5 0 45 [20.28]9 [22.2%] 2 [2°.2°]7 [2°]1
CVE-2018-7871  HOF[#W|UAF}#N] L2314 [2%2.2%]6 0 408 [2°..214] 216 [2%.2'8] 13 [23..210] 54 [2°11
CVE-2021-45078  HOF[-] - [23]1 0 - [24]1 - [2°11
CVE-2021-3156  HOF[-] - [20.2197 694 0 2 - [22.2%.25] 31 - [20.210] 2
CVE-2021-20294  SOF[-] - [2°.2°] 2 1 1 - [2°]1 - [28.28]1
CVE-2021-20284 HOF[UAF[#N] [2°.2%]3 - 0 19 [2°..212] 841 - [2°.2°] 11 -
CVE-2020-35493  HOF[-] [2°]1 - 0 20 [22.213] 2072 - [2°11 -
CVE-2020-16592  UAF[-] [23..26] 95 - 0 1 [22..27] 200 - [22.27] 181 -
CVE-2020-21050 ~ SOF[HOF] - [20.21] 2 1 2 - [2°.22] 11 - [20.214] 2
CVE-2019-20094  HOF[-] - [2°]1 0 1 - [2'1.2%5.2%0] 2655 - [2°]1
CVE-2019-20024  HOF[-] - [2°]1 0 1 - [2%°]1 - [2°]1
CVE-2021-26926 ~ HOF[-] [2°]1 - 0 1 [22]1 - [2°11 -
CVE-2021-3272  HOF[-] [23]1 - 0 1 2311 - [2°11 -
CVE-2020-27828  HOF[#N] [2°71 2311 0 1 - [2°11 - -
CVE-2018-19543  HOF[UAF|#N] [23]1 - 0 1 [2°11 - [2°71 -
CVE-2018-19540  HOF[-] - [2°]1 0 1 - [2°]1 - [2°]1
CVE-2021-3246  HOF[-] [21]1 0 2 - [28.212.21%] 5640 - [2°]1
CVE-2020-24241  UAF[-] [2°.2%] 6 - 0 1 [2°.2°]6 - [25]1 -
CVE-2020-21676 ~ SOF[GOF] [2°11 - 0 1 [26]1 - [2°11 -
CVE-2020-21675  GOF[SOF] [2°71  [2°.2°] 105 2 2 [26]1 - [2°11 [211.214] 2

the number of capabilities found by EvocaTio steadily increases. For
Evocario, the number of seeds equals the number of capabilities;
each newly-saved seed corresponds to a new capability. CapFuzz
continues to discover new capabilities, reaching a total number that
is generally orders-of-magnitudes larger than the number found
by afl-cexp. Section 6.5 explains the advantage of Evocario over
afl-cexp when it comes changes in bug type.

6.2 Design Validation (RQ2)

We perform an ablation study to measure the contributions of Cap-
Fuzz’s core components (critical byte inference and seed selection).
We randomly select four CVEs and use the three configurations

to measure these contributions: (i) retention only: the dual-phase
critical bytes inference is disabled, as a consequence all other ele-
ments but the seed retention strategy are also removed; (i) critical
bytes only: the most energetic sequence is removed. This implies
disabling the seed selection and the energy scheduling strategies.
Additionally, the mutation strategy will randomly mutate critical
bytes instead of prioritizing them by their contribution; and (iii) full
design: all design elements are enabled.

Figure 3 summarizes the capability discovery rate across these
three configurations. On average, critical bytes only improves per-
formance over retention only. While this improvement is small for
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Figure 2: Capabilities discovered over time by CapFuzz and afl-cexp (for afl-cexp the seeds are also reported). Colors indicate
the number of capabilities discovered by: CapFuzz; afl-cexp; and the number of seeds generated by afl-cexp (dashed[line).

CVE-2020-21675, it is significant for the other three CVEs, rang-
ing from a factor of 2x (CVE-2018-7871) to 10x (CVE-2018-12900).
Adding the most energetic sequence in addition to the critical byte
inference further improves performance. Indeed, the full design
performs twice as good as the critical bytes only configuration (on
average). These results confirm the importance of the two main
design elements of CApFuzz: critical byte inference and most ener-
getic sequences.

6.3 Bug Severity Assessment (RQ3)

We investigate whether the capabilities discovered by EvocaTio as-
sist developers in assessing bug severity. As described in Section 4.1,
the severity of a bug is based on a specific threat model. Here we
use the threat model presented in Section 4.1.1 to quantitatively
derive a severity score.

We compare our scoring system against CVSS; specifically, the
impact and base metrics. The impact metric “reflects the direct conse-
quence of a successful exploit” [20], while the base metric “represents
the intrinsic characteristics of a vulnerability that are consistent over
time and across user environments” [20]. The impact metric also
contributes to the base metric, providing a comprehensive repre-
sentation of the bug [54]. Both scores range between zero and ten
(with a higher score corresponding to higher severity). We select
the impact metric because it is conceptually closer to our scoring
system. In contrast, the base metric provides a broader perspective
that also depends on non-quantifiable metrics (e.g., the context in
which a technology is deployed). Importantly, both metrics require
a thorough analysis of the bug and likely exploit, often resulting in
substantial manual efforts. In contrast, Evocario is fully automatic.

Table 4 shows the scores assigned by the different metrics. Scores
are highlighted according to CVSS risk levels: low (0.1-3.9), medium

(4.0-6.9), high (7.0-8.9), and critical (9.0-10.0). Evocartio and the
CVSS base metric place ~50 % of the bugs in the same risk level.
The remaining bugs are typically only one level lower in severity. In
contrast, EvocaTio “underestimates” the severity of 17 bugs when
compared to CVSS’s impact metric. We use our results in Table 2 as
a proxy to validate our findings: the range of capabilities exposed
by the original PoC were fewer than those discovered by CarFuzz,
potentially biasing the original CVSS analysis. We discuss some of
these results below.

CVE-2018-17795. Evocario ranks this bug as medium risk (score =
4.9). In contrast, the CVSS base metric ranks the bug as high risk
(score = 8.8). The description provided by CVSS for this bug states
that it “possibly has other unspecified impact” [52]. This vague mes-
sage does not provide an indication of the security impact of the bug.
Per Table 2, the bug causes a single byte write with limited address
flexibility. CVSS assigned a high score because of an unspecified
possible additional impact; EvocaTio found no such impact. This
bug is an example of overestimation due to imprecise knowledge.

CVE-2021-3246. This bug presents another score difference be-
tween the Evocatio and CVSS base metrics: 4.9 and 8.8, respectively.
According to the CVSS report, this bug is high risk because it effects
a network service and requires no privileges. Our system is purely
based on capabilities and does not take into account attack surfaces
nor required privileges. Per EvocaATIo, this bug grants a single-byte
write with little address flexibility (Table 2).

CVE-2019-16705. The CVSS base metric considers this bug criti-
cal (scoring it 9.1), while the impact metric assigns a medium score
(5.3). In contrast, Evocario ranks this bug as high risk. Here, Evo-
catio would help an analyst assign a more representative impact
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Table 3: Capabilities discovered in eight hours by CaprFuzz
and afl-cexp. For afl-cexp, the number of seeds are also
provided. “Inc. Rate” represents the capability increment
rate, computed as (CapFuzz — afl-cexp)/afl-cexp.

Bug Capabilities (#) Seeds (#) Inc. Rate
CapFuzz afl-cexp afl-cexp
issue-275 45,825 192 775 37.7
issue-277 1,855 1 1,224 1,854
issue-278 37,689 1 3,051 37,688
issue-269 779 86 3,153 8.1
CVE-2018-17795 59 9 1,252 5.6
CVE-2018-12900 60,188 1 1,154 60,187
CVE-2018-8905 16 1 990 15
CVE-2016-10272 42,454 187 5,178 227.0
CVE-2016-10092 17,004 330 4,726 50.5
CVE-2016-9532 73,209 440 14,900 165.4
CVE-2016-9273 12 9 1,044 0.3
CVE-2020-11895 13,672 19 350 718.6
CVE-2020-11894 4,645 24 3,650 193.5
CVE-2020-6628 1,692 119 2,921 13.2
CVE-2019-16705 1,785 20 336 88.3
CVE-2019-9114 963 29 2,684 32.2
CVE-2018-20591 2,966 98 3,313 29.3
CVE-2018-9009 1,269 74 2,988 16.1
CVE-2018-8964 946 177 3,236 43
CVE-2018-7871 17,561 194 3,652 89.5
CVE-2021-45078 5 5 553 0
CVE-2021-3156 2352 1 478 2351
CVE-2021-20294 7,327 21 428 347.9
CVE-2021-20284 2,552 24 659 105.3
CVE-2020-35493 3,411 5 186 681.2
CVE-2020-16592 10,728 41 155 260.7
CVE-2020-21050 10 0 27 +00
CVE-2019-20094 2,176 1 11 2,175
CVE-2019-20024 0 0 105 0
CVE-2021-26926 0 0 734 0
CVE-2021-3272 152 2 1,223 75
CVE-2020-27828 1 0 596 +00
CVE-2018-19543 0 0 1,338 0
CVE-2018-19540 172 16 1,449 9.8
CVE-2021-3246 5,602 0 102 +00
CVE-2020-24241 78 28 1,820 1.8
CVE-2020-21676 1 1 482 0
CVE-2020-21675 2,534 15 396 167.9

score. Interestingly, both this and CVE-2020-6628 are the only bugs

Evocario considers as high risk for both read and write scores.

From this result (and others in Table 4), we observe the following
trend: Bugs with high read and write scores have higher CVSS
scores. In general, if both scores are above 6, then the bug is likely

to be considered high risk by CVSS. Our scores are two dimensional;
when considered together EvocATIO’s scores a good approximation
of the CVSS score.

Finally, EvocaTtio ranks CVE-2016-9532 and CVE-2018-20591
higher than CVSS’s base and impact metrics. This is because Evo-
caTio discovered new bug types that go beyond those originally
reported in the CVSS base and impact metrics (Table 2), resulting
in an underestimation of severity.

To summarize, EVOCATIO’s metrics are automatic and provide
a fast estimate of a bug’s impact, along with a score to enable
comparisons between bugs. While there are variations between our
scores and those reported by CVSS, our scores are quick to compute
and can support human analysis with more concrete evidence. Our
scores are also oblivious to how the software is run and how much
effort is invested into exploitation. For example, a vulnerability
where an analyst invests hundreds of hours to demonstrate its
exploitability may receive a higher CVSS score than a similarly-
severe bug discovered and automatically reported by syzkaller.
Instead, our scores, provide a quantitative estimate of severity,
precisely capturing the read and write powers of an attacker. This
focus on quantitative results prevents both over-estimation (e.g.,
CVE-2018-17795) and under-estimation (e.g., CVE-2016-9536, CVE-
2018-20591) of severity. Analysts may leverage EvocaTIo as a fast
and automatic reporter of bug capabilities, using the results to
enrich their understanding of a bug.

6.4 Patch Violation (RQ4)

Our results demonstrate EvocaTio’s ability to quickly and effi-
ciently discover new capabilities. Can this new knowledge about a
bug be used to test the efficacy of bug fixes/patches?

To answer this question, we selected the 16 bugs from our bench-
mark where we could identify a single commit that (supposedly)
fixed the given bug (and modified no other code). We applied
these patches and replayed all EvocaTtio-generated and af1-cexp-
generated PoCs to test the efficacy of each patch.

Table 5 summarizes the results of this process for Evocario:
seven of the 16 patches (44 %) were violated (i.e., a crash occurred)
by a Evocario-generated PoC. This is despite the bug being “fixed”.
To verify this result, we replayed the original PoCs through the
patched program; none of these PoCs violated the patch. In other
words, 44 % of these bugs were incorrectly fixed.
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Table 4: EvocaTio read and write severity scores, and CVSS’s
impact and base scores. Colors indicate risk level: low (green),
medium (yellow), high (orange), and critical (red).

EvocaTtio CVSS

Bug Read Write Impact Base
issue-269 6.3 3.1 - -
issue-275 7.3 6.8 - -
issue-277 5.1 5.1 - -
issue-278 6.2 6.2 - -
CVE-2016-9273 6.5 53 3.6 55
CVE-2016-9532 7.3 6.1 3.6 55
CVE-2016-10092 6.2 7.2 5.9 7.8
CVE-2016-10272 5.6 5.7 5.9 7.8
CVE-2018-7871 7.1 6.5 5.9 8.8
CVE-2018-8905 0 4.8 b 8.8
CVE-2018-8964 6.7 6.1 3.6 6.5
CVE-2018-9009 6.9 6.3 5.9 8.8
CVE-2018-12900 5.9 5.3 5.9 8.8
CVE-2018-17795 0 4.9 5.9 8.8
CVE-2018-19540 0 4.2 59 8.8
CVE-2018-19543 3.6 0 5.9 7.8
CVE-2018-20591 7.5 6.3 3.6 6.5
CVE-2019-20024 0 4.7 3.6 6.5
CVE-2019-20094 0 4.8 5.9 8.8
CVE-2019-16705 7.5 7.0 5.2

CVE-2019-9114 0 5.7 5.9 8.8
CVE-2020-6628 7.0 7.0 5.9 8.8
CVE-2020-11894 7.0 6.4 5.2

CVE-2020-11895 7.1 6.5 5.2

CVE-2020-16592 6.2 0 3.6 55
CVE-2020-21050 0 6.5 3.6 6.5
CVE-2020-21675 6.2 6.5 3.6 55
CVE-2020-21676 4.8 0 3.6 5.5
CVE-2020-24241 5.1 0 5.2 5.5
CVE-2020-27828 0 4.3 5.9 7.8
CVE-2020-35493 5.6 0 3.6 55
CVE-2021-3156 0 7.2 5.9 7.8
CVE-2021-3246 0 4.9 5.9 8.8
CVE-2021-3272 5.1 0 3.6 5.5
CVE-2021-20284 6.9 0 3.6 58
CVE-2021-20294 0 5.0 5.9 7.8
CVE-2021-26926 3.8 0 5.2 7.1
CVE-2021-45078 0 5.0 5.9 7.8

We further investigated the efficacy of these patches by replaying
the Evocario-generated crash-inducing PoCs through the latest
version of the given program. We found one case (CVE-2018-7871)
where a crash still triggered due to other changes in the code.
While the bug was believed to have been fixed in March 2018, in
reality the bug remained unfixed for almost 4 years. This result
confirms the need for tools like EvocaTio. With the information
provided by our system, the developers could have implemented a
more complete patch. We have reported the incomplete fix to the
developers and are carefully checking the other partial patches. At
the time of submission, all of the incomplete patches—except for
Libming, which is no longer maintained—have been fixed in newer
versions of the code.

Only a single patch violation was found among the afl-cexp-
generated PoCs (CVE-2018-7871). This patch was also violated by
Evocario. For the other six patches Evocatio successfully violated
(but afl-cexp failed to violate), we found that EvocaTio discov-
ered new bug types and access types that af1-cexp was unable to
discover. We discuss the importance of this capability in Section 6.5.
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Table 5: Leveraging CaPFuzz to violate existing patches. For
each patch a reference is official patch link is provided. Cor-
rect patches are marked with v/, incomplete patches with X.

Program  Bug Fix details Complete
Libtiff CVE-2018-12900 [6] Limit variable size v
Libtiff CVE-2016-10272 [57] Increase buffer size v
Libtiff CVE-2016-10092 [56]  Increase buffer size X
Libtiff CVE-2016-9532 [59] Add boundary check X
Libtiff CVE-2016-9273 [58] Recompute buffer size X
Libming CVE-2018-9009 [37] Add function to check var. v
Libming CVE-2018-8964 [36] Add check before using var. X
Libming CVE-2018-7871 [38] Add boundary check X
Binutils CVE-2021-45078 [49] ~ Change var. to unsigned v
Binutils CVE-2021-20294 [48]  Disable sprintf to buffer v
Binutils CVE-2021-20284 [15] ~ Add check before using var. v
Libsixel CVE-2020-21050 [62] Add boundary check X
Jasper CVE-2020-27828 [77]  Add boundary check X
Jasper CVE-2018-19543 [32] ~ Change boundary check v
Jasper CVE-2018-19540 [31]  Add boundary check v
Fig2dev CVE-2020-21675 [42]  Increase buffer size v
Listing 3: CVE-2018-7871 code snippet.
1 char xgetName(struct SWF_ACTIONPUSHPARAM x*act) {
2 switch (act->Type) {
3 case PUSH_CONSTANT:
4 t = malloc(strlenext(pool[act->p.Constant8])+1);
5 strcpyext(t, pool[act->p.Constant8]);
6 /7 ...
7 case PUSH_CONSTANT16:
8 t = malloc(strlenext(pool[act->p.Constant16])+1);
9 strcpyext(t, pool[act->p.Constanti6]);
10 //
11 }
12 return t;
13 3}

6.5 Case Study: Escalating Bug Types

Evocario found new bug types for 18 out of 38 evaluated CVEs.
Moreover, Evocartio converted 10 out of 38 CVEs from a read prim-
itive into a write primitive. EvocAaTIo can do this because of its
ability to distinguish different capabilities (via CAPSAN). In contrast,
afl-cexp is limited to knowledge gleaned from the fuzzer’s cov-
erage map. Here we showcase two case studies demonstrating the
power of these abilities.

6.5.1 CVE-2018-7871 (Libming). lllustrated in Listing 3, a heap
buffer overflow occurs when act->p’s Constant8 or Constant16
is greater than the size of pool (Lines 4 and 8, respectively). This
overflow is due to an incorrect check of the relationship between
act->p.Constant8, act->p.Constant16, and pool’s size. Impor-
tantly, act’s Type, Constant8 and Constant16 are all attacker con-
trolled. Once overflowed, the pool pointer will point to arbitrary
memory.

The exact memory location that is accessed when dereferencing
pool depends on a set of critical input bytes (leading to different
values in act’s Constant8, Constant16, etc. fields). We distinguish
four possible cases (and their effects): (i) a null-pointer dereference;
(ii) the address of a free chunk triggers a UAF, (iii) a few bytes after
the end of a heap chunk triggers a heap buffer overflow (invalid
out-of-bounds read); and (iv) invalid memory access triggers a
segmentation fault.
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Listing 4: CVE-2016-9273 code snippet.

static int
TIFFVGetField (TIFF *tif, uint32 tag, va_list ap){
if (fip->field_passcount) {
if (fip->field_readcount == TIFF_VARIABLE2)
// Stack-buffer-overflow write
*va_arg(ap, uint32%) == (uint32)tv->count;
else
*va_arg(ap, uintl16*) == (uintl16)tv->count;
// Heap-buffer-overflow write
*va_arg(ap, void *x) = tv->value;
else
tstrip_t s, ns = TIFFNumberOfStrips(in);
uint64 xbytecounts;
TIFFVGetField(in, tag, &bytecounts);
for (s = 0; s < ns; s++) {
// Heap-buffer-overflow read
if (bytecount[s] > (uint64)bufsize)
bufsize = (tmsize_t)bytecounts[s];
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int main(){
uint32 tag = get_tag_from_file(in);
va_list ap;
va_start(ap, tag);
// Invoke TIFFNumberOfStrips to initialize tif
TIFFVSetField(tif, tag, ap);
va_end(ap);
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TIFFVGetField(tif, tag, ap);
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Evocartio successfully uses its critical bytes inference process to
efficiently discover these four cases, while CAPSAN successfully dif-
ferentiates between the different bug types. In contrast, af1-cexp
only uncovers the UAF case (by tracing a new path).

6.5.2 CVE-2016-9273 (Libtiff). The root cause of this bug (List-
ing 4 7) lies in TIFFNumberOfStrips (a parsing routine), where file
content is transformed into a TIFF structure [60]. This function
returns an incorrect value used that is subsequently used to cal-
culate the buffer size of a structure member. If the program calls
TIFFNumberOfStrips in different locations, a wrong buffer size
will be allocated to different objects, resulting in different overflow
effects: if the program tries to read from the victim buffer, an invalid
read will be reported; if the program tries to write content to the
victim buffer, an invalid write will be reported.

During critical byte inference CapFuzz discovered modifications
to one byte in the original PoC that introduces different capabilities.
According to our investigation, this byte determines which TIFF
structure will be initialized by TIFFNumberOfStrips . This single
byte causes the program to call TIFFNumberOfStrips from differ-
ent contexts, leading to an incorrectly-sized buffer (a) allocated at
different locations (heap or stack) and (b) accessed in different ways
(reads or writes).

The original PoC calls TIFFNumberOfStrips to calculate the
buffer size of a stack-allocated object. The allocated object is later
dereferenced, leading to a heap overflow and an out-of-bounds
read. CapFuzz discovered the critical byte and commences targeted

"Modeled after CVE-2016-273; we have simplified the logic and omitted variable
initialization.
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mutation. This causes the program’s processing logic to enter dif-
ferent branches, generating new inputs allocated (with different
sizes) on the stack or heap (the buffer will be written to memory
later). This eventually leads to a stack/heap buffer overflow through
an out-of-bounds write. In our evaluation it took Evocario two
minutes to discover new bug types and new access types.

6.6 Case Study: sudo

CVE-2021-3156 is a high-severity heap-based buffer overflow vul-
nerability in the sudo program. The NVD bug description states
“sudo before 1.9.5p2 contains an off-by-one error that can result in a
heap-based buffer overflow, which allows privilege escalation to root
via sudoedit -s and a command-line argument that ends with a
single backslash character” [53]. We use this vulnerability to demon-
strate how Evocartio (a) discovers additional capabilities from a
seemingly low-impact PoC, and (b) accurately predicts the severity
of the vulnerability.

By fuzzing a modified sudo [41] with AFL++, we obtain a PoC [40]
exercising a 1-byte heap buffer overflow (reported by ASan). Evoca-
TIO0 expands this single PoC to more than 200 new PoCs within 10
minutes. These PoCs result in OOB writes of varying lengths (the
largest of which is 120 bytes). Per Section 6.3, EvocATIO scores this
bug as high risk. In comparison, AFL++’s crash mode is unable to
generate any new PoCs even after 8 hours of fuzzing.®

7 DISCUSSION

Here we discuss EvocaT1o’s limitations and how they can be ad-
dressed by future work. Importantly, the goal of Evocario is not
to replace CVSS. CVSS requires manual analysis, which Evoca-
TI1O assists by focusing on “interesting” bugs (based on discovered
capabilities). This, along with CVSS, helps decide bug severity.

Critical bytes (identified during the inference phase) are relative
to the input length. CaApFuzz does not change the input length while
fuzzing to avoid breaking these bytes. Consequently, Evocatio does
not support the exploration of capabilities related to input length.

In addition to the bug types supported in this paper, common
memory safety bug types include null-pointer dereferences and
double frees. However, these two bug types do not directly lead
to memory corruption, and thus Evocario is unable to discover
capabilities associated with these bug types. We leave the detection
of other bug types as future work.

The scoring system described in Section 4.1 is based on a threat
model where the number and diversity of capabilities is the most
important measure of “severity”. However, more capabilities may
not always correlate with increased severity; even an off-by-one
error can lead to the compromise of a system. EvOocATIO can reason
about off-by-one errors provided they lead to a memory safety
violation (i.e., they are detectable by CAPSAN); we demonstrate
this in Section 6.6. However, generalizing these bug types (i.e.,
when they do not result in memory corruption) requires changes
to capability detection, which we leave to future work.

8 RELATED WORK

Symbolic tracing engines collect symbolic constraints along a
program’s execution path. These constraints can then be analyzed to

8Section 3.1.1 contains further discussion on why crash mode fails.
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infer all possible values of a variable at any point in time [23, 71, 72].
In theory, symbolic tracing enables both the identification of critical
bytes and bug capabilities. However, in practice, symbolic tracing
suffers from scalability and accuracy issues, making it difficult to
apply to real-world applications [1, 4].

Taint analysis tracks the flow of data in a target program from
a “taint source” (e.g., a user input function) to a “taint sink” (e.g., a
security-critical function). This allows the relationships between
input bytes to be determined as taint propagates through the pro-
gram. Taint analysis has been used to locate: buffer boundary vio-
lations [27]; buffer over-read vulnerabilities [50]; and invocations
of sensitive library and system calls [22]. It has also been used to
improve fuzzer performance [11, 55]. Unfortunately, taint analysis
is subject to under- and over-tainting [14, 75]. While solutions to
under/over tainting have been proposed, they require manual effort
and result in performance degradation [33, 69]. Under/over tainting
is particularly pronounced in large, real-world programs, making
taint analysis difficult to use for critical byte identification.

Fuzzing-based taint inference has been used to overcome the
previously-discussed limitations of taint analysis [2, 21, 39, 45, 76].
Indeed, CaPFuzz’s byte inference technique is similar to the one pro-
posed by GREYONE [21]. However, there are a number of important
distinctions. First, our goals differ: CApFuzz is focused on capabil-
ities, not bugs. Second, GREYONE does not consider relationships
between bytes (as discussed in Section 3.2.1).

AFL++’s crash exploration mode (af1-cexp) has similar goals
to CarFuzz: given a PoC, explore the crash’s state space (via fuzzing)
and generate new PoCs that induce the same crash. However,
afl-cexpisguided by code-coverage and is unable to detect changes
in data flow. In contrast, CAPFuzz not only detects data flow changes,
but focuses on inducing these data flow changes. Our evaluation
(Section 6.1.1) shows this has a significant impact on CaPFuzz’s
ability to discover new capabilities.

Patch validation and testing aims to ensure a patch fixes a
given bug while not introducing any new bugs (patch testing [8])
and that the program’s behavior remains correct (patch valida-
tion [10, 24]). In contrast, EvocaTIo aims at producing a set of PoCs
that trigger nontrivial behaviors in unpatched programs, helping
developers build correct patches. We demonstrate how EvocaTio
assists this process in Section 6.4.

Automatic Exploit Generation (AEG) shares similar goals
to Evocartio. For example, Revery [71] uses fuzzing to extend a
PoC’s capabilities, but focuses on relatively strong capabilities (e.g.,
hijacking control flow), ignoring diversity. Evocario’s goals dif-
fer from AEG engines such as Revery—where finding a single ex-
ploitable capability is sufficient: EvocAaTIo aims to collect a large
set of diverse capabilities.” Similarly, Gollum [30] and MAZE [72]
are heap-manipulating AEG engines. Gollum leverages fuzzing and
requires manually-specified templates describing the target’s input
syntax, while MAZE uses symbolic execution to solve complex
constraints. While automated heap manipulation enables AEG, we
target more general, “lower-level” capabilities. In summary, Evo-
caTIO explores bug capabilities, while AEG builds exploits. While
severe vulnerabilities may facilitate an exploit, their development

“We contacted the authors of Revery to facilitate a side-by-side comparison. They
confirmed our evaluated programs are too complex for Revery.
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requires knowledge about the program/environment; this is beyond
our goals.

Bug severity assessment systems commonly make use of qual-
itative metrics (e.g., attack complexity) [64, 67, 68] extracted from
vulnerability descriptions to rank bugs. Prior work has leveraged
machine learning—which is more amenable to qualitative metrics—
to predict bug severity [18, 28, 34]. These systems use vulnerability
descriptions and reports, rather than program analyses, to deter-
mine bug severity. In contrast, EvocaTio’s focus is not to use known
information to determine severity, but to provide a framework for
reasoning about severity based on the set of capabilities discovered
by Evocartio. For example, capabilities can be used in a human-in-
the-loop scenario to generate a CVSS-style severity score, similar
to our sudo case study (Section 6.6).

Kernel-space fuzzing shares similar design constraints to user-
space fuzzing. In particular, a bug is represented by a single PoC that
may only exercise a limited set of capabilities, resulting in a limited
understanding of the bug. SyzScope [78] combines fuzzing, static
analysis, and symbolic execution to analyze the security impact of
fuzzer-exposed bugs in the kernel. CaApFuzz focuses on user-space
programs, which are not supported by SyzScope. Moreover, due to
its dependency on symbolic execution, SyzScope will inevitably suf-
fer from state explosion and complex constraint solving, potentially
leading to poor performance on larger kernel modules.

9 CONCLUSIONS

Developers are overwhelmed by the large number of discovered
bugs. In order to prioritize their fixes, developers must understand
the capabilities these bugs expose. By understanding these capabili-
ties, a more accurate assessment of a bug’s impact can be performed.
We developed Evocartio for this purpose. EvocaTIo uses a novel
capability-guided fuzzer, which, given an initial PoC, explores the
surrounding state space for new capabilities. In our evaluation, Evo-
cario outperformed existing crash exploration tools (in particular,
AFL++’s crash exploration mode). We demonstrated EvocAaTio’s
utility by applying it to automatic bug severity assessment and
patch testing. Notably, EvocaTIo was able to generate PoCs that
violate existing patches.

Our open-source release of the EvocaTIO prototype implemen-
tation is available at https://github.com/HexHive/Evocatio.

ACKNOWLEDGEMENTS

We thank our shepherd Marcel Bohme, the anonymous reviewers,
and Ruilin Li for their careful feedback which greatly improved the
clarity of this paper. This project has received funding from the Eu-
ropean Research Council (ERC) under the H2020 grant 850868, SNSF
PCEGP2_186974, AFRL FA8655-20-1-7048, DARPA HR001119S0089-
AMP-FP-034, the National Key Research and Development Program
of China (2021YFB2701000), National Natural Science Foundation of
China (61972224), Beijing National Research Center for Information
Science and Technology (BNRist) under Grant BNR2022RC01006,
China Postdoctoral Science Foundation 2021M701942, and the Na-
tional Science Foundation (NSF) under Grant CNS1942793. Any
findings are those of the authors and do not necessarily reflect the
views of our sponsors.



CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

REFERENCES

(1]

[2

=

=
X0

=
=2

=
&2,

[14]

=
)

[16]

(17

[18

[19]

[20

[21]

[22

[23]

[24]

[25

[26]
[27

[28]

Saswat Anand, Patrice Godefroid, and Nikolai Tillmann. 2008. Demand-driven
compositional symbolic execution. In Tools and Algorithms for the Construction
and Analysis of Systems (TACAS). Springer, 367-381.

Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and
Thorsten Holz. 2019. REDQUEEN: Fuzzing with Input-to-State Correspondence..
In Network and Distributed Systems Security (NDSS, Vol. 19). 1-15.

Thanassis Avgerinos, Sang Kil Cha, Alexandre Rebert, Edward J. Schwartz, Mav-
erick Woo, and David Brumley. 2014. Automatic Exploit Generation. Commun.
ACM 57, 2 (feb 2014), 74-84. https://doi.org/10.1145/2560217.2560219

Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and
Irene Finocchi. 2018. A Survey of Symbolic Execution Techniques. Comput.
Surveys 51, 3, Article 50 (may 2018), 39 pages. https://doi.org/10.1145/3182657
Julian Bangert, Sergey Bratus, Rebecca Shapiro, and Sean W. Smith. 2013. The
Page-Fault Weird Machine: Lessons in Instruction-less Computation. In Workshop
on Offensive Technologies (WOOT). USENIX.

Thomas Bernard. 2018. CVE-2018-12900 Patch. https://gitlab.com/libtiff/libtiff/-
/merge_requests/60.

Tim Blazytko, Moritz Schldgel, Cornelius Aschermann, Ali Abbasi, Joel Frank,
Simon Wérner, and Thorsten Holz. 2020. AURORA: Statistical Crash Analysis for
Automated Root Cause Explanation. In USENIX Security (SEC). USENIX, 235-252.
Marcel Bshme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoudhury.
2017. Directed greybox fuzzing. In Computer and Communications Security (CCS).
ACM, 2329-2344. https://doi.org/10.1145/3133956.3134020

Rich Campagna. 2020. The 3 Reasons CVSS Scores Change Over Time. https://
securityboulevard.com/2020/05/the-3-reasons-cvss-scores-change-over-time/.
Lingchao Chen, Yicheng Ouyang, and Lingming Zhang. 2021. Fast and precise
on-the-fly patch validation for all. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). IEEE, 1123-1134.

Peng Chen and Hao Chen. 2018. Angora: Efficient fuzzing by principled search.
In Security and Privacy (S&P). IEEE, 711-725.

Weiteng Chen, Xiaochen Zou, Guoren Li, and Zhiyun Qian. 2020. KOOBE:
Towards Facilitating Exploit Generation of Kernel Out-Of-Bounds Write Vulner-
abilities. In USENIX Security (SEC). USENIX, 1093-1110.

Yueqi Chen and Xinyu Xing. 2019. Slake: Facilitating slab manipulation for
exploiting vulnerabilities in the linux kernel. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security. 1707-1722.
Zheng Leong Chua, Yanhao Wang, Teodora Baluta, Prateek Saxena, Zhenkai
Liang, and Purui Su. 2019. One Engine To Serve ’em All: Inferring Taint Rules
Without Architectural Semantics. In Network and Distributed Systems Security
(NDSS).

Nick Clifton. 2020. CVE-2021-20284 Patch. https://sourceware.org/git/gitweb.
cgi?p=binutils-gdb.git;h=f60742b2a1988d276¢77d5¢1011143f320d9b4cb.

Dino Distefano, Manuel Fahndrich, Francesco Logozzo, and Peter W. O’Hearn.
2019. Scaling Static Analyses at Facebook. Commun. ACM 62, 8 (jul 2019), 62-70.
https://doi.org/10.1145/3338112

Thomas Dullien. 2020. Weird Machines, Exploitability, and Provable Unex-
ploitability. Transactions on Emerging Topics in Computing 8, 2 (2020), 391-403.
https://doi.org/10.1109/TETC.2017.2785299

Clément Elbaz, Louis Rilling, and Christine Morin. 2020. Fighting N-day vulnera-
bilities with automated CVSS vector prediction at disclosure. In Proceedings of
the 15th International Conference on Availability, Reliability and Security. 1-10.
Andrea Fioraldi, Dominik Maier, Heiko Eif3feldt, and Marc Heuse. 2020. AFL++:
Combining incremental steps of fuzzing research. In Workshop on Offensive
Technologies (WOOT). USENIX.

FIRST. 2019. Common Vulnerability Scoring System v3.1: Specification Document.
https://www.first.org/cvss/specification-document.

Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao, Xiaojun Qin, Dong Wu,
and Zuoning Chen. 2020. GREYONE: Data Flow Sensitive Fuzzing. In USENIX
Security (SEC). USENIX, 2577-2594.

Vijay Ganesh, Tim Leek, and Martin Rinard. 2009. Taint-based directed whitebox
fuzzing. In International Conference on Software Engineering (ICSE). IEEE, 474—
484.

Xiang Gao, Bo Wang, Gregory J Duck, Ruyi Ji, Yingfei Xiong, and Abhik Roy-
choudhury. 2021. Beyond Tests: Program Vulnerability Repair via Crash Con-
straint Extraction. Transactions on Software Engineering and Methodology 30, 2
(2021), 1-27.

Luca Gazzola, Daniela Micucci, and Leonardo Mariani. 2017. Automatic software
repair: A survey. IEEE Transactions on Software Engineering 45, 1 (2017), 34-67.
Google. 2019. Default configuration of AddressSanitizer. https://github.com/
google/sanitizers/wiki/AddressSanitizer.

Google. 2022. Google syzbot. https://syzkaller.appspot.com/upstream.

Istvan Haller, Asia Slowinska, Matthias Neugschwandtner, and Herbert Bos. 2013.
Dowsing for overflows: a guided fuzzer to find buffer boundary violations.. In

USENIX Security (SEC). USENIX, 49-64.
Zhuobing Han, Xiaohong Li, Zhenchang Xing, Hongtao Liu, and Zhiyong Feng.

2017. Learning to predict severity of software vulnerability using only vulnera-
bility description. In 2017 IEEE International conference on software maintenance

[29]

[30

&
=

®
i

'S
=

'S
&

[45

[46

[47

(48]

[50

[51

(52

[53

[54

o
2

[56]

[57

(58]

Zhiyuan Jiang et al.

and evolution (ICSME). IEEE, 125-136.

Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. 2020. Magma: A ground-
truth fuzzing benchmark. Proceedings of the ACM on Measurement and Analysis
of Computing Systems 4, 3 (2020), 1-29.

Sean Heelan, Tom Melham, and Daniel Kroening. 2019. Gollum: Modular and
greybox exploit generation for heap overflows in interpreters. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security.
1689-1706.

Max Kellermann. 2018. CVE-2018-19540 Patch. https://github.com/jasper-maint/
jasper/pull/38.

Max Kellermann. 2018. CVE-2018-19543 Patch. https://github.com/jasper-maint/
jasper/pull/38/commits/69bba1480fb4b1fle2ab75a14a00721f4cf16e50.

Vasileios P. Kemerlis, Georgios Portokalidis, Kangkook Jee, and Angelos D.
Keromytis. 2012. Libdft: Practical Dynamic Data Flow Tracking for Commod-
ity Systems. In Virtual Execution Environments (VEE). ACM, 121-132. https:
//doi.org/10.1145/2151024.2151042

Atefeh Khazaei, Mohammad Ghasemzadeh, and Vali Derhami. 2016. An automatic
method for CVSS score prediction using vulnerabilities description. Journal of
Intelligent & Fuzzy Systems 30, 1 (2016), 89-96.

George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating Fuzz Testing. In Computer and Communications Security (CCS). ACM,
2123-2138. https://doi.org/10.1145/3243734.3243804

Hugo Lefeuvre. 2018. CVE-2018-8964 Patch. https://github.com/libming/libming/
issues/128.

Hugo Lefeuvre. 2018. CVE-2018-9009 Patch. https://github.com/libming/libming/
pull/145/commits/835cdd0776456483466c6d640d251548e7d9dcdb.

Hugo Lefeuvre. 2018. Patch of CVE-2018-7871. https://github.com/libming/
libming/pull/125/commits.

Caroline Lemieux and Koushik Sen. 2018. FairFuzz: A targeted mutation strategy
for increasing greybox fuzz testing coverage. In Automated Software Engineering
(ASE). ACM, 475-485.

LiveOverflow. 2021. Avaiable PoC to trigger the CVE-2021-3156. https://github.
com/LiveOverflow/pwnedit/tree/main/episode05.

LiveOverflow. 2021. Modification on sudo to enable it can be fuzzed by AFLplus-
plus. https://github.com/LiveOverflow/pwnedit/tree/main/episode01.

Thomas Loimer. 2020. CVE-2020-21675 Patch. https://sourceforge.net/p/mcj/
tickets/78/.

Steve Mancini. 2020. The subjective nature of a CVSS score. https://eclypsium.
com/2020/09/30/the-subjective-nature-of-a-cvss-score/.

Valentin JM Manés, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel
Egele, Edward J Schwartz, and Maverick Woo. 2019. The art, science, and engi-
neering of fuzzing: A survey. IEEE Transactions on Software Engineering 47, 11
(2019), 2312-2331.

Bjérn Mathis, Vitalii Avdiienko, Ezekiel O. Soremekun, Marcel Bohme, and An-
dreas Zeller. 2017. Detecting Information Flow by Mutating Input Data. In
Automated Software Engineering (ASE). IEEE, 263-273.

Xianya Mi, Sanjay Rawat, Cristiano Giuffrida, and Herbert Bos. 2021. LeanSym:
Efficient Hybrid Fuzzing Through Conservative Constraint Debloating. ACM, 62—
717.

Ghassan Misherghi and Zhendong Su. 2006. HDD: Hierarchical Delta Debugging.
In International Conference on Software Engineering (ICSE). ACM, 142-151. https:
//doi.org/10.1145/1134285.1134307

Alan Modra. 2020. CVE-2021-20294 Patch. https://sourceware.org/bugzilla/show_
bug.cgi?id=26929.

Alan Modra. 2021. Patch of CVE-2021-45078. https://sourceware.org/bugzilla/
show_bug.cgi?id=28694.

Matthias Neugschwandtner, Paolo Milani Comparetti, Istvan Haller, and Herbert
Bos. 2015. The BORG: Nanoprobing Binaries for Buffer Overreads. In Conference
on Data and Application Security and Privacy (CODASPY). ACM, 87-97. https:
//doi.org/10.1145/2699026.2699098

NIST. 2021. Common Vulnerability Scoring System. https://nvd.nist.gov/vuln-
metrics/cvss.

NVD. 2018. CVSS Description of CVE-2018-17795. https://nvd.nist.gov/vuln/
detail/CVE-2018-17795.

NVD. 2021. Description of CVE-2021-3156. https://nvd.nist.gov/vuln/detail/CVE-
2021-3156.

IBM QRadar. 2021. Common Vulnerability Scoring System (CVSS).
https://www.ibm.com/docs/en/qradar-on-cloud?topic=vulnerabilities-
common-vulnerability-scoring- system-cvss.

Sanjay Rawat, Vivek Jain, Ashish Kumar, and Herbert Bos. 2017. VUzzer:
Application-aware Evolutionary Fuzzing. In Network and Distributed Systems
Security (NDSS).

Even Rouault. 2016. CVE-2016-10092 Patch. https://github.com/vadz/libtift/
commit/9657bbe3cdce4aaa90e07d50c1c70ae52da0basa.

Even Rouault. 2016. CVE-2016-10272 Patch. https://github.com/vadz/libtiff/
commit/9657bbe3cdce4aaad0e07d50c1c70ae52da0basa.

Even Rouault. 2016. CVE-2016-9273 Patch. https://github.com/vadz/libtiff/
commit/d651abc097d91fac57f33b5f9447d0a9183f58e7.



EvocaTtio: Conjuring Bug Capabilities from a Single PoC

[59]
[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67

[68]

Even Rouault. 2016. CVE-2016-9532 Patch. https://github.com/vadz/libtift/
commit/21d39de1002a5e69caa0574b2cc05d795d6fbfad.

Even Rouault. 2016. Pull Request of CVE-2016-9273. https://github.com/vadz/
libtiff/commit/d651abc097d91fac57f33b5f9447d0a9183f58e7.

Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and Ciera
Jaspan. 2018. Lessons from Building Static Analysis Tools at Google. Commun.
ACM 61, 4 (mar 2018), 58—-66. https://doi.org/10.1145/3188720

Hayaki Saito. 2018. CVE-2020-21050 Patch. https://github.com/saitoha/libsixel/
commit/7808a06b88c11dbc502318cdd51fa374f8cd47ee.

Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In Annual
Technical Conference (ATC). USENIX, 28.

Mustafizur R Shahid and Hervé Debar. 2021. CVSS-BERT: Explainable Natural
Language Processing to Determine the Severity of a Computer Security Vulnera-
bility from its Description. In 2021 20th IEEE International Conference on Machine
Learning and Applications (ICMLA). IEEE, 1600-1607.

Shiqi Shen, Aashish Kolluri, Zhen Dong, Prateek Saxena, and Abhik Roy-
choudhury. 2021. Localizing Vulnerabilities Statistically From One Exploit.
In Asia Computer and Communications Security (ASIA CCS). 537-549. https:
//doi.org/10.1145/3433210.3437528

Shiqi Shen, Shweta Shinde, Soundarya Ramesh, Abhik Roychoudhury, and Pra-
teek Saxena. 2019. Neuro-Symbolic Execution: Augmenting Symbolic Execution
with Neural Constraints.. In Network and Distributed Systems Security (NDSS).
Georgios Spanos and Lefteris Angelis. 2018. A multi-target approach to estimate
software vulnerability characteristics and severity scores. Journal of Systems and
Software 146 (2018), 152-166.

Georgios Spanos, Lefteris Angelis, and Dimitrios Toloudis. 2017. Assessment of
vulnerability severity using text mining. In Proceedings of the 21st Pan-Hellenic
Conference on Informatics. 1-6.

[69
[70

[71

[72

(74

[75

(76

[77

]

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

The Clang Team. 2022. DataFlowSanitizer Design Document. https://clang.llvm.
org/docs/DataFlowSanitizerDesign.html.

Guido Vranken. 2020. CVE-2020-1104. https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2020-11104.

Yan Wang, Chao Zhang, Xiaobo Xiang, Zixuan Zhao, Wenjie Li, Xiaorui Gong,
Bingchang Liu, Kaixiang Chen, and Wei Zou. 2018. Revery: From Proof-of-
Concept to Exploitable. In Computer and Communications Security (CCS). ACM,
1914-1927. https://doi.org/10.1145/3243734.3243847

Yan Wang, Chao Zhang, Zixuan Zhao, Bolun Zhang, Xiaorui Gong, and Wei Zou.
2021. MAZE: Towards Automated Heap Feng Shui. In USENIX Security (SEC).
USENIX, 1647-1664.

Wei Wu, Yueqi Chen, Xinyu Xing, and Wei Zou. 2019. {KEPLER}: Facilitating
control-flow hijacking primitive evaluation for Linux kernel vulnerabilities. In
28th USENIX Security Symposium (USENIX Security 19). 1187-1204.

Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xing, Xiaorui Gong, and Wei Zou. 2018.
FUZE: Towards Facilitating Exploit Generation for Kernel Use-After-Free Vul-
nerabilities. In USENIX Security (SEC). USENIX, 781-797.

Babak Yadegari and Saumya Debray. 2014. Bit-level taint analysis. In Source Code
Analysis and Manipulation (SCAM). IEEE, 255-264.

Wei You, Xueqiang Wang, Shiging Ma, Jianjun Huang, Xiangyu Zhang, XiaoFeng
Wang, and Bin Liang. 2019. ProFuzzer: On-the-fly Input Type Probing for Better
Zero-Day Vulnerability Discovery. In IEEE Security and Privacy (S&P). IEEE.
https://doi.org/10.1109/SP.2019.00057

Yuan. 2018. CVE-2020-27828 Patch. https://github.com/jasper-software/jasper/
pull/253.

Xiaochen Zou, Guoren Li, Weiteng Chen, Hang Zhang, and Zhiyun Qian. 2022.
SyzScope: Revealing High-Risk Security Impacts of Fuzzer-Exposed Bugs in Linux
kernel. In USENIX Security (SEC). USENIX, Boston, MA.



	Abstract
	1 Introduction
	2 Background
	2.1 Using Capabilities to Program the Weird Machine
	2.2 Current Approaches for Measuring Bug Severity
	2.3 Motivating Example

	3 Evocatio
	3.1 Capability Detection
	3.2 Capability Discovery

	4 Applications
	4.1 Severity Assessment
	4.2 Patch Testing

	5 Implementation
	6 Evaluation
	6.1 Capability Discovery (RQ1)
	6.2 Design Validation (RQ2)
	6.3 Bug Severity Assessment (RQ3)
	6.4 Patch Violation (RQ4)
	6.5 Case Study: Escalating Bug Types
	6.6 Case Study: sudo

	7 Discussion
	8 Related Work
	9 Conclusions
	References

