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ABSTRACT

The popularity of coverage-guided greybox fuzzers has led to a

tsunami of security-critical bugs that developers must prioritize

and fix. Knowing the capabilities a bug exposes (e.g., type of vulner-

ability, number of bytes read/written) enables prioritization of bug

fixes. Unfortunately, understanding a bug’s capabilities is a time-

consuming process, requiring (a) an understanding of the bug’s

root cause, (b) an understanding how an attacker may exploit the

bug, and (c) the development of a patch mitigating these threats.

This is a mostly-manual process that is qualitative and arbitrary,

potentially leading to a misunderstanding of the bug’s capabilities.

Evocatio automatically discovers a bug’s capabilities. Evocatio

analyzes a crashing test case (i.e., an input exposing a bug) to

understand the full extent of how an attacker can exploit a bug.

Evocatio leverages a capability-guided fuzzer to efficiently uncover

new bug capabilities (rather than only generating a single crashing

test case for a given bug, as a traditional greybox fuzzer does).

We evaluate Evocatio on 38 bugs (34 CVEs and four bug re-

ports) across eight open-source applications. From these bugs, Evo-

catio: (i) discovered 10× more capabilities (that is, the number of

unique capabilities induced by a set of crashes was 10× higher) than

AFL++’s crash exploration mode; (ii) converted 19 of the 38 bugs to

new bug types (demonstrating the limitations of manual qualitative

analysis); and (iii) generated new proof-of-concept (PoC) test cases

violating patches for 7 out of 16 tested CVEs, one of which still

triggers in the latest version of the software.

CCS CONCEPTS

• Security and privacy → Software and application security.

KEYWORDS

Bug Capability, Bug Triaging, Fuzzing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’22, November 7ś11, 2022, Los Angeles, CA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9450-5/22/11. . . $15.00
https://doi.org/10.1145/3548606.3560575

ACM Reference Format:

Zhiyuan Jiang, Shuitao Gan, Adrian Herrera, Flavio Toffalini, Lucio Rome-

rio, Chaojing Tang, Manuel Egele, Chao Zhang, and Mathias Payer. 2022.

Evocatio: Conjuring Bug Capabilities from a Single PoC. In Proceedings of

the 2022 ACM SIGSAC Conference on Computer and Communications Security

(CCS ’22), November 7ś11, 2022, Los Angeles, CA, USA. ACM, New York, NY,

USA, 15 pages. https://doi.org/10.1145/3548606.3560575

1 INTRODUCTION

Dynamic software testing techniques generate proof-of-concept

(PoC) test cases that trigger bugs in a target program. Developers

analyze these PoCs to locate the bug’s root cause and then develop

a patch to fix it. Modern bug-finding tools (notably, fuzzers) au-

tomatically (and quickly) discover large numbers of PoCs, greatly

improving software security. However, as the number of discovered

PoCs increases, developers face a challenge: given finite developer re-

sources, how can PoCs be analyzed quickly and efficiently to prioritize

bug fixes based on bug severity?

Clustering techniques for grouping PoCs based on their root

cause are widespread [7, 35]. PoC clustering helps developers esti-

mate the number of bugs in a set of PoCs. Afterwards, developers

can focus their efforts on bugs (with PoCs corresponding to the

same bug clustered together). However, simply clustering PoCs

does not reveal the full set of capabilities an attacker can leverage

when exploiting the given bug; after clustering, an analyst must

invest resources to understand a bug’s capabilities from its PoC (or

cluster of PoCs).

Intuitively, capabilities allow an attacker to łprogram the weird

machinež [17] that emerges when exploiting a bug. This may in-

clude reading (arbitrary) memory locations or altering the runtime

state of the program. In the context of memory safety bugs, a capa-

bility is defined as a unique tuple of: bug type (e.g., out-of-bounds

read/write, use-after-free, out-of-memory); access type (read or

write); the number of bytes accessed; the name of victim object

(e.g., buffer); the offset within the victim object; and the location

(e.g., stack, heap, global). An example capability is (OOB, read,

5, buffer, 10, stack) which describes a 5 bytes out-of-bounds

read access that starts at the 10th byte to buffer on the stack. Any

input that crashes with an unobserved łcapability-tuplež is consid-

ered to expose a new capability (thereby increasing the number of

discovered capabilities).
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Understanding these capabilities is crucial for prioritizing bug

fixes: an incomplete understanding may lead to unexploitable bugs

receiving too much attention, or, vice versa, exploitable bugs being

disregarded. While all bugs should be fixed, security-critical vulnera-

bilities must be prioritized.

Ideally, bug fixes are prioritized by the level of risk the bug poses

under some threat model (e.g., when considering code execution,

arbitrary memory writes are considered more severe than illegal

reads at fixed, unmapped addresses). However, prioritization is

hampered by the overwhelming number of bug reports developers

face [16, 61]. At the time of writing, Google’s automated fuzzing

platform, syzbot, has filed 971 unfixed open bug reports on the

Linux kernel [26]. Moreover, a single PoC (or cluster of PoCs) may

not completely demonstrate the complete set of capabilities. For

example, if a PoC crashes with a 1-byte out-of-bounds (OOB) read,

is this the full extent of the bug? If an attacker were to exploit this

bug, what capabilities would they have?

Interestingly, coverage-guided greybox fuzzers (the de facto stan-

dard for automatic bug finding) may obscure the answers to these

questions: the goal of a fuzzer is to find bugs, not to investigate

their capabilities. Fuzzers consider PoCs triggering the same bug

through the same execution path as duplicates: they keep the first

one encountered and discard all others, irrespective of their full

set of capabilities. Consequently, the full attack power of a bug

may remain hidden, placing a greater burden on the developer to

judge a bug’s capabilities. Automated techniques for exploring and

assessing bugs’ capabilities are required to reduce this burden.

In theory, Automatic Exploit Generation (AEG) [3, 13, 30, 72ś74]

can determine a bug’s capabilities (in the context of a given threat

model). However, most AEG engines rely on symbolic execution to

generate an exploit [3]. In practice, symbolic execution engines are

inherently incomplete (e.g., due to path divergence [4]) and suffer

from state explosion. For example, while SyzScope [78] uncovers

the security impact of fuzzer-exposed kernel bugs, its application

is limited by state explosion [1, 66].

Observing the lack of reliable tools to automatically asses a

bug’s capabilities, we propose Evocatio1: a tool for conjuring (i.e.,

discovering) a bug’s capabilities and assisting human analysts in

severity estimation. Evocatio reduces the amount of time spent on

bug analysis while improving the developer’s evaluation of a bug.

Evocatio leverages fuzzing and sanitization to uncover new

capabilities for memory corruption bugs, ensuring these capabilities

are captured as separate PoCs. From this, we propose a framework

to derive a quantitative score of a bug’s severity according to a

given threat model.

In summary, we make the following contributions:

• Evocatio, a system for assisting developers prioritize and

develop critical bug fixes. Evocatio consists of a custom

fuzzer and sanitizer that uncover new attack capabilities

beyond those exercised by a single PoC (as discovered by a

traditional greybox fuzzer).

• A demonstration of Evocatio’s utility when applied to mem-

ory corruption bugs. We show how Evocatio can automati-

cally (a) derive a quantitative severity score (analogous to

1Evocatio is Latin for łcalling forthžÐor conjuringÐa deity.

existing vulnerability scoring systems), and (b) verify the

efficacy of software patches.

• An evaluation of Evocatio using 38 bugs across eight open-

source applications. From these bugs, Evocatio: (i) discov-

ered 10× more capabilities than AFL++’s crash exploration

mode; (ii) converted 19 of the 38 CVEs to new bug types; and

(iii) generated new PoCs that violated the patches for 7 out

of 16 tested CVEs, one of which triggers in the latest version.

Our results highlight the need for automated bug assessment

and show that Evocatio is well-placed to achieve this goal.

2 BACKGROUND

The following sections formalize capabilities (Section 2.1), discuss

existing approaches for vulnerability scoring (Section 2.2), and

provide a motivating example for our work (Section 2.3).

2.1 Using Capabilities to Program the Weird
Machine

A vulnerable, buggy program exposes a weird machine that can be

łprogrammedž by an attacker via an exploit [5, 17]. The ability to

program this weird machine depends on the capabilities a particular

bug exposes. Put another way, when modeling a weird machine as

a collection of łweird statesž in an intended finite state machine [17],

different capabilities allow an attacker to transition to different

weird states. Ultimately, a capability defines what a bug łcan dož

(when exploited).

For example, the ability to write a sequence of bytes to a function

pointer (e.g., in a vtable data structure) in the heap may allow

an attacker to crash or redirect execution in the target program

(depending on the values written). Similarly, the ability to read

several bytes of stack memory from which sensitive data can be

gleaned (such as in CVE-2020-11104 [70]) is another capability.

Depending on the defender’s threat model, some capabilities may

bemore severe than others. For example, if system up time is critical,

then a null pointer dereference is a severe bug (that may crash

the system). However, if arbitrary code execution is the primary

concern, then the same bug may be relatively benign on its own.

Regardless, it is difficult to assess the severity of a bug without

a complete understanding of the capabilities the bug possesses;

intuitively, the more capabilities a bug has, the more severe the bug

is. This lack of understanding may lead to the misclassification of a

bug’s severity and/or release of an incomplete patch.

2.2 Current Approaches for Measuring Bug
Severity

The Common Vulnerability Scoring System (CVSS) [51] is the

de facto measure of a bug’s severity. Several indicators (e.g., attack

vector, complexity, user interaction) are manually aggregated and

summarized by a value between zero and ten; the higher the value,

the higher the severity. Some of these indicators are qualitative

and cannot be generated programmatically (e.g., attack complexity).

Analysts must carefully inspect the bug and determine a value for

these qualitative metrics. This is a time-consuming, error-prone,

and subjective process; potentially leading different analysts to

assign different scores to the same bug [9, 43]. Moreover, analysts
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Listing 1: A motivating example program.

1 void foo(char *src , char *des){

2 int len_one = src [4]; // Single capability byte

3 // Multiple capability bytes

4 int len_two = src [20] + src [22] * src [33];

5

6 memcpy(des , src , len_one);

7 memcpy(des + len_one , src , len_two);

8 }

9

10 int main(){

11 // Difficult for symbolic execution

12 char *src = inflate(input_file);

13

14 // Control flow bytes

15 if(src[0] == 'a' && src[1] == 'b'){

16 char *data = parseData(src);

17 if (strlen(data) != 120)

18 return 1;

19

20 // Capability bytes with constraints

21 int buf_size = src [40]+ src [41]+ src [42]+ src [43];

22 if (src [40] + src [41] > 50 || src [42] < 100)

23 return 1;

24

25 char *dest = malloc(buf_size);

26 foo(src , dest); // Buggy function

27 }

28 return 0;

29 }

are typically provided with only a single PoC [65] from which they

must manually determine the full extent of the bug.

For these reasons, we argue that a more complete understanding

of a bug’s capabilities empowers analysts to accurately estimate a

vulnerability score that truly reflects the full extent of the bug.

2.3 Motivating Example

The program2 in Listing 1 motivates the need for Evocatio. This

program contains a heap buffer overflow in foo, which may crash

at Lines 6 and 7 depending on the values of buf_size, len_one,

and len_two. Importantly, the abilities granted to an attacker (when

exploiting this overflow) vary depending on these values.

The program first calls zlib’s inflate (Line 12) to read the

contents of the input file. Most symbolic execution engines fail

at this point, because they are often unable to accurately model

external libraries (such as zlib) and succumb to state explosion

during the decompression process. Following decompression, a

validity check is performed on the first two bytes of the input data

(Line 15). We label these two bytes łcontrol-flow bytesž because they

impact the program’s control flow. Reaching the bug at Lines 6

and 7 requires satisfying these control-flow constraints.

Once these control-flow constraints are satisfied, the input bytes

at offsets 40ś43 are read (Line 21). The data contained at these offsets

effects the size of the buffer used in foo, ultimately determining

the size of the overflow. We label these four bytes łcapability bytesž

(astute readers will recognize these capability bytes correspond to

changes in data flow). Additional checks are performed on bytes 40ś

42 (Line 22), ensuring these bytes fall within a certain range. These

bytes are thus both capability and control-flow bytes.

The foo function (Lines 11 to 22) demonstrates different types of

capability bytes: single capability bytes (Line 2), where a single byte

2Modeled after CVE-2016-9532. We have simplified the logic and variable names.

affects the capability and sequences of capability bytes (Line 4, here

the three-byte sequence at offsets {20, 22, 33} affects the capability.

Listing 1 contains ten critical bytes: two control-flow bytes, five

capability bytes, and three bytes that are both control-flow and

capability bytes. Identifying these bytes is important for efficiently

discovering new capabilities, ensuring time is not wasted exploring

erroneous states in the state space (i.e., states unrelated to the given

bug). Satisfying control-flow bytes ensures a new PoCmaintains the

same control-flow that triggered the original bug, while exploring

different capability byte values leads to new PoCs that manifest

the same bug in different ways. We use fuzzing to automatically

explore this state space.

3 EVOCATIO

Fuzzers discover bugs in target programs by exercising a large num-

ber of randomly-generated inputs. Crash-inducing inputs (exercis-

ing one or more bugs) grant an attacker control over the resulting

weird machine. Importantly, these inputs also grant an attacker a

set of capabilities that allow them to program this weird machine.

Given a crash-inducing input (generated by a fuzzer), what level

of control is granted to an attacker when they trigger the underlying

bug? Evocatio answers this question by systematically explor-

ing the range of capabilities a bug possesses from a given PoC.

Evocatio consists of the following components (Fig. 1):

Capability detection (CapSan). New capabilities are detected

via CapSan. CapSan extends AddressSanitizer’s (ASan) visi-

bility into triggered memory safety bugs (Section 3.1).

Capability discovery (CapFuzz). New capabilities are discovered

via CapFuzz. CapFuzz perturbs an input PoC to uncover new

capabilities by rescoping traditional coverage-guided fuzzers.

CapFuzz uses CapSan to hone in on new capabilities that

grant an attacker more power and control (Section 3.2).

The newly-discovered capabilities can be used by analysts and

developers alike. We demonstrate two applicationsÐestimating bug

severity and patch testingÐin Section 4.

3.1 Capability Detection

Evocatio requires a mechanism to efficiently extract capabilities

from a given PoC. In the spirit of fuzzing, the most natural way to

achieve this is through a sanitizer. Indeed, sanitizers and fuzzers are

often paired together, increasing the fuzzer’s sensibility towards

specific behaviors. Given our focus on memory errors, we adopt Ad-

dressSanitizer (ASan) [63] as our capability detector and collector.3

ASan instruments the target program so that it crashes on memory

safety violations. Importantly, ASan generates a detailed report

whenever an invalid memory access is detected. While fuzzers typ-

ically ignore this report (as they only care if a crash occurs), it

contains rich bug information required to determine when a new

capability is discovered. Capability detection is based on the five

properties listed in Section 2.1. We modify ASanÐdubbing our tool

CapSanÐto expose a machine-readable version of this crash report.

3The design can be extended to cover other types of sanitizers, provided capabilities
can be extracted from the sanitizer.
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Figure 1: Evocatio workflow.

3.1.1 Forced Execution to Detect Out-of-Bounds Accesses. By de-

fault, ASan aborts program execution at the first error encoun-

tered [25]. For example, if a bug overwrites multiple OOB bytes,

ASan aborts execution at the first OOB write. This design works

in most scenarios; i.e., when analysts needs to locate the cause

of a crash. And while this limits false positives, it also loses the

opportunity for deep exploration of bug capabilities; ASan cannot

discover bugs hiding behind other bugs (e.g., several OOB writes).

For example, CVE-2021-3156 (Listing 2) performs multiple writes

when copying bytes from the from buffer to the to buffer. However,

because the code copies a single byte at a time (Line 5), ASan termi-

nates the program on the first OOB write, reporting an OOB length

of one. Instead, the bug allows the attacker to overflow multiple

bytes (provided the conditional on Line 3 remains satisfiable). Here,

ASan’s early exit hides the complete set of bug capabilities.

CapSan mitigates this limitation by continuing execution after

an error has been detected to fully explore bug capabilities (by

disabling ASan’s halt_on_error option). To correctly detect the

OOB capability for each buffer (and prevent false positives),CapSan

records the overflow length and identifies the data structure being

overflowed. This allows CapSan to distinguish different overflow

lengths across different buffers. We stop exploration whenever a

new data structure is reached (intuitively, this means we are no

longer triggering the same bug).

Listing 2: Code snippet from CVE-2021-3156.

1 if (ISSET(sudo_mode , MODE_SHELL|MODE_LOGIN_SHELL)) {

2 while (*from) {

3 if (from [0] == '\\' && !isspace(from [1]))

4 from ++;

5 *to++ = *from ++;

6 }

7 }

3.2 Capability Discovery

Coverage-guided greybox fuzzers explore a target program’s state

space by continuously generating new inputs via random mutation.

Fuzzers do not suffer from the scalability limitations inherent in

approaches like symbolic execution, making them ideal for dis-

covering new capabilities in real-world programs. Unfortunately,

existing fuzzers are designed to explore the target’s code, thus mov-

ing exploration away from recently-discovered bugs. In doing so,

fuzzers may ignore crashes exposing other capabilities (associated

with the same bug). This implies analyzing a single fuzzer-produced

PoC is insufficient for fully capturing a bug’s security impact. Con-

versely, a complete security assessment mustÐat leastÐconsider

all unique crashes for the same bug. We propose CapFuzz to meet

these requirements. CapFuzz is a capability-driven fuzzer for dis-

covering new crashes (and thus, new capabilities) from an initial

PoC. CapFuzz is comprised of two stages: a module for labeling and

prioritizing critical bytes leading to new capabilities (Sections 3.2.1

to 3.2.2), and a mutation engine for exploring the capability space

(Sections 3.2.3 to 3.2.5).

3.2.1 Critical Bytes Inference. As shown in Section 2.3 and by prior

work [21, 46, 76], only a subset of the input bytes affect program

behavior, and hence a bug’s capabilities. Thus, efficient capability

exploration requires understanding which bytes impact a bug’s

capabilities. Per Section 2.3, we classify critical bytes into two cate-

gories: those affecting control flow (𝐶byte), and those affecting data

flow (𝐷byte). Algorithm 1 outlines our approach for identifying and

categorizing critical bytes.

Single-byte inference. Prior work [21, 76] has successfully lever-

aged single-byte inference techniques to improve a fuzzer’s ability

to expand code coverage. In contrast, Evocatio uses single-byte

inference to determine which bytes contribute to a new capability.

It does this by performing an exhaustive search to label a given

input byte a 𝐶byte or 𝐷byte (or both). Lines 2 to 10 in Algorithm 1

describes this process. For each input byte i, every possible value 𝑣

is tested. Byte i is labeled a 𝐶byte if (a) a new 𝑣 induces a change

in P’s control flow and (b) it does not introduce a new capability.

Conversely, i is labeled a𝐷byte if a change in capabilities is detected.

We infer changes in control flow through variations in the coverage

map (recorded in 𝑝), while data flow changes are inferred through

differences in capabilities (recorded in C).

Byte-sequence inference. The previously-described exhaustive

search is fast and efficient at performing single byte inference, but

is oblivious to multi-byte relations (e.g., due to a specific grammar).
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Algorithm 1: Critical Bytes Inference.

Input: Instrumented program P, initial PoC 𝑆 , exploration times 𝑡
Output:𝐶byte , 𝐷byte

/* Get bug capability C and coverage map 𝑝, 𝑂 is the

capability of uncrashed seed */

1 {C, 𝑝 } ← Execute(P, 𝑆)

2 foreach 𝑖 ∈ {0, 1, . . . |𝑆 | } do /* Single byte inference */

3 𝑆 ′ ← 𝑆

4 foreach 𝑣 ∈ {0, 1, . . . 255} do /* Exhaustive search */

5 𝑆 ′ [𝑖 ] ← 𝑣

6 {C′, 𝑝′ } ← Execute(P , 𝑆 ’)

7 if 𝑝′ ≠ 𝑝 ∧ (C′ = 𝑂 ∨ C′ = C) then
8 𝐶byte [𝑆 ] ← 𝐶byte [𝑆 ] ∪ {𝑖 }

9 else if C′ ≠ C ∧ C′ ≠ 𝑂 then
10 𝐷byte [𝑆 ] ← 𝐷byte [𝑆 ] ∪ {{𝑖 }}

11 repeat/* Byte-sequence inference */

12 𝑧 ← RndByteSequenceSelect(𝑆)

13 𝑆 ′ ← RndMutate(𝑆 , 𝑧)/* Apply a random mutation */

14 {C′, 𝑝′ } ← Execute(P , 𝑆 ’)

15 if C′ ≠ C ∧ C′ ≠ 𝑂 then
16 𝑧′ ← ByteSequenceReduction(𝑧)

17 𝐷byte [𝑆 ] ← 𝐷byte [𝑆 ] ∪ {𝑧
′ }

18 𝑡 ← 𝑡 − 1

19 until 𝑡 = 0

These relations require related bytes to be mutated together. An

example of a multi-byte relation is shown at Lines 4 and 22 in

Listing 1. These sequences can quickly grow in size, making an

exhaustive search impossible; fortunately, fuzzing has been shown

to efficiently handle such large search spaces. Lines 11 to 19 (Al-

gorithm 1) describes our fuzzing-based approach for multi-byte

sequence inference.

Our multi-byte inference first selects a random subset of input

bytes and mutates them to create 𝑆 ′ (Lines 12 to 13). The program P

is then executed with 𝑆 ′. The sequence is added to 𝐷byte if new

capabilities are discovered. Unfortunately, the discovered sequences

may be irreducible (i.e., redundant bytes cannot be removed) and

noisy (due to the random selection of input bytes). This noise exists

in bytes not contributing to changes in P’s behavior. Incorrectly

identifying these bytes as critical significantly reduces performance

(because time is wasted mutating these bytes). Noisy bytes must be

filtered out as early as possible.

CapFuzz handles noisy bytes with a ByteSequenceReduction

operation (Line 16).When a sequence is found, ByteSequenceReduction

restores as many bytes as possible to their original value, while

simultaneously ensuring new program behaviors remain. Because

byte sequences may be large, we adopt a łdivide-and-conquerž ap-

proach (inspired by delta debugging [44, 47]) where we restore

blocks of bytes, rather than single bytes. Here, all bytes in a block

are restored to their original value: if the new behavior persists, the

reduction was successful; otherwise, a smaller block size is selected

and the process repeats until we reach a single byte.

3.2.2 Critical Bytes Prioritization. Critical bytes inference may

result in a large number of sequences in 𝐷byte. This is particularly

pronounced when the target program has a complex input syntax.

Although mutating any of these sequences will introduce new

capabilities, careful prioritization of sequence mutation is crucial

to improve CapFuzz’s efficiency. Sequences contributing most to

Algorithm 2:Mutation Rule on Critical Bytes.

Input: Instrumented program P, initial PoC 𝑠 ,𝐶byte , 𝐷byte

Output: Seed after mutation 𝑠’

/* seqs is a set of sequence, seq is one sequence */

1 seqs← PrioritizedSeqSelect(𝐷byte)

2 𝑠′ ← 𝑠

3 foreach seq ∈ seqs do
4 if seq ∈ 𝐷byte then
5 bytes← RndPositionsSelect(seq)

6 foreach byte ∈ bytes do
7 if byte ∈ 𝐶byte then
8 continue

9 𝑠′′ ← RndMutate(𝑠’, byte)

10 𝑠′ ← 𝑠′′

the discovery of new capabilities should be prioritized over other

sequences. At each cycle, for each sequence 𝑠 ∈ 𝑆 , we use the

following predicate for determining if 𝑠 induces a new capability 𝑐𝑖 :

𝑃 (𝑐𝑖 , 𝑠) =

{︄

1 𝑐𝑖 is from 𝑠

0 otherwise.
(1)

This predicate is applied over the last 𝑁 = 20 seeds4 to determine

their contribution𝑊 (𝑠):

𝑊 (𝑠) =

𝑁
∑︂

𝑖=0

𝑃 (𝑐𝑖 , 𝑠), (2)

Here,𝑊 (𝑠) represents the most energetic sequence that changes dy-

namically over time. By prioritizing sequences with higher values

of𝑊 (𝑠), CapFuzz focuses on sequences that (a) find more capa-

bilities, and (b) is faster at finding them. Sequences are prioritized

using the PrioritizedSeqSelect function (Line 1 in Algorithm 2).

3.2.3 Mutation. CapFuzz mutates critical bytes to explore the sur-

rounding state space and discover new capabilities. CapFuzz uses

the information collected during the critical byte inference phase

(Section 3.2.1) to discover new crashes sharing the same control

flow with the original PoC. We recall the inference phase assigns

a 𝐶byte or 𝐷byte label to each input byte (or sequence of) affecting

the control flow and/or data flow. To concentrate exploration to-

wards data flowÐthus finding new crashes that follow the same

execution path as the original PoCÐCapFuzz only considers 𝐷bytes

and sequences during the mutation phase (Algorithm 2).

Critical bytes are tightly related to the input length; changing

the input length invalidates the previously-collected information.

CapFuzz therefore keeps the input length constant and mutations

changing the input length are disabled (e.g., inserting, copying, and

splicing). Similarly, the deterministic mutation phase is skipped be-

cause this process previously occurred during the inference phase.

3.2.4 Seed Retention. CapFuzz is designed to discover new capa-

bilities. Thus, it only retains crashing test cases that introduce new

capabilities. These test cases are also stored in the fuzzing queue,

ensuring they are also mutated (helping guide the fuzzer towards

uncovering new capabilities).

A check is performed on each newly-generated test case to verify

whether it introduces new capabilities. These checks are frequent

4We empirically select 𝑁 and leave parameter optimization to future work.
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and could become a performance bottleneck for long fuzzing cam-

paigns (due to an increased number of capabilities required to be

checked). We use a hash table to make capability queries efficient

and prevent the number of capabilities from impacting performance.

3.2.5 Seed Selection. CapFuzz follows the strategy of traditional

coverage-guided fuzzers and stores łinterestingž test cases (i.e.,

those reaching new code) in the fuzzer queue for further muta-

tion. At any point during the fuzzing campaign there may be many

test cases in the queue. Moreover, the probability a given test case

helps find new capabilities dynamically evolves over time. For these

reasons, a mechanism for selecting the most promising seeds for

mutation is required. We introduce the following two complemen-

tary rules for seed selection, where a new sequence is defined as

one for which no test cases have been executed yet: (1) prefer the

seed generated by a new sequence, and (2) prefer the seed gener-

ated by the most energetic sequence. CapFuzz applies these rules

sequentially. First, it verifies whether a new sequence exists. If true,

its first test case is set to the highest priority and the sequence is

labeled as tested (i.e., it is no longer a new sequence, and further

test cases of this sequence will not be set to the highest priority). If

no new sequence is found, CapFuzz identifies the most energetic

sequence using Eq. (2) and prioritizes that one instead.

4 APPLICATIONS

We demonstrate two scenarios where the discovery of bug capabili-

ties is useful to analysts and developers: bug severity assessment

(Section 4.1) and validating patch efficacy (Section 4.2).

4.1 Severity Assessment

Defenders must prioritize which bug to fix based on the bug’s

severity. However, scoring bug severity is a subjective process, and

is highly dependent on the defender’s threat model. Automating

this scoring process requires developing context-dependent rules

for determining a bug’s severity across multiple dimensions. While

this is impossible in the general case, we demonstrate how bug

capabilities help this process.

We design a scoring system that uses the bug capabilities dis-

covered by Evocatio to automatically derive a severity score. Our

system is designed for a threat model in which an attacker desires to

achieve remote code execution over a target program. However, the

model can be configured to adhere to more specific users’ scenarios.

This model is presented in detail in Section 4.1.1, and experimental

results are presented in Section 6.3. Our results show combining

capabilities (discovered by Evocatio) with an automatic scoring

system improves the efficiency of severity assessment.

4.1.1 Scoring Bug Severity. We merge the individual capability re-

ports produced byCapFuzz into a bug capability report composed of

the following six metrics (based on those introduced in Section 2.1):

Bug type: Different bug typesÐe.g., stack-buffer-overflow (SOF),

heap-buffer-overflow (HOF), and UAFÐare discoverable by Cap-

Fuzz. A larger variety of bug types leads to a higher probability of

satisfying an exploit condition (i.e., the minimum combination of

capabilities required to exploit a vulnerability).

Max. length of OOB reads/writes: The larger the length of OOB

reads/writes, the greater the area to exploit.

Readable/writable address ranges The larger the range of ad-

dresses that can be read from/written to, the higher the probability

an arbitrary read/write succeeds.

Num. of OOB objects: The larger this number, the more oppor-

tunity an attacker has for different attacks (e.g., SOF, HOF).

Max. OOB size objects: CapFuzz records the different sizes of

the overflown buffer, reporting information about the originating

memory object (ASan reports the closest object). The ability to

overflow objects with different sizes helps generate an exploit (e.g.,

the attacker can target different locations).

Num. of different read/write offsets: The ability to read/write

at different offsets within the original object gives an attacker more

flexibility (as more/different memory regions are potentially read-

able/writable).

Evocatio aggregates these metrics across multiple PoCs to com-

pute a bug severity score (between zero and ten) for each primitive

type (i.e., read and write). Providing two scoresÐrather than a sin-

gle scoreÐallows a developer to more-accurately assess the impact

of a bug. Again, we stress that a scoring system requires a specific

threat model. Here we provide (a) an example threat model, and

(b) a configurable scoring system instance to show how capabilities

can be used to measure bug severity (based on human knowledge).

Further details are provided in our implementation.

4.2 Patch Testing

A developer requires a deep understanding of a given bug to develop

a complete patch. Ideally, this patch prevents transitions into all

weird states relating to the bug. Evocatio is well-placed to help

developers implement complete patches, because it provides them

with an understanding of what weird states are reachable (through a

bug’s capabilities). Moreover, the PoCs generated by Evocatio can

be used to test proposed patches. We demonstrate this in Section 6.4,

revealing patches for multiple CVEs were in fact incomplete.

5 IMPLEMENTATION

CapFuzz and CapSan (Section 3) are written in 7K LoC of C. Our

example capability aggregation and scoring system (Section 4.1)

is written in 1.5K LoC of Python. We make our code available at

https://github.com/HexHive/Evocatio to help future studies in this

area.

CapSan leverages ASan’s API for accessing crash details at run-

time. When a new crash is encountered, the capabilities of that

crash are deduplicated with those previously encountered. This

means comparisons between capabilities is a frequent operation,

and is thus required to be as efficient as possible. During fuzzing,

capabilities are stored and compared through their hashes.

Prior to fuzzing, Evocatio performs the dual-phase inference

process described in Section 3.2.1. The first phase (single byte infer-

ence) is an exhaustive search and always runs to completion. The

second phase (sequence inference) is fuzzing based and thus has a

variable execution time. We empirically determined 10 minutes to

be a reasonable default.

Capability exploration uses seeds that introduce new capabili-

ties (discovered during the inference phase) as the initial corpus,
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and the critical bytes mapping to guide mutation. The capability-

driven fuzzing engine is built on top of AFL++ [19], which has been

modified to use the capability hash as a guidance metric.

While our current prototype is tailored to memory safety bugs,

Evocatio is implemented so other bug types and threat models

can also be explored. For example, rather than building on ASan,

CapSan could be modified to leverage UBSan and thus explore

capabilities associated with undefined behavior bugs. Similarly,

other severity scoring systems can be constructed based on other

threat models. We leave this for future work.

6 EVALUATION

We evaluate Evocatio by answering the following research ques-

tions:

RQ1 Does Evocatio discover a greater range of capabilities (com-

pared to other crash exploration tools)? (Section 6.1)

RQ2 How do the different design components affect Evocatio’s

performance? (Section 6.2)

RQ3 Can Evocatio be applied to severity scoring? (Section 6.3)

RQ4 Can Evocatio be applied to patch testing? (Section 6.4)

Finally, we use a case study to illustrate the practical benefits of

Evocatio (Section 6.6).

Benchmark suite. Our benchmark is composed of 38 bugs belong-

ing to six different bug types: 34 CVEs and four open issues across

eight targets. Table 1 summarizes the target programs. We selected

these targets due to their popularity in fuzzing research [2, 21, 29],

functionality, code diversity, development activeness, and varying

code base sizes (ranging from 50k to 2M LoC).

Baseline. Capability/crash exploration is an under-explored re-

search topic; AFL++’s łcrash exploration modež(afl-cexp) is the

only tool we are aware of. Afl-cexp is similar to CapFuzz: it takes

a single PoC as input and mutates it in an attempt to generate new

crashes. We compare Evocatio to afl-cexp in our evaluation.

Performance metrics. We evaluate performance by considering

(a) the number of new capabilities discovered over time, and (b) the

diversity of these capabilities.

Testing time. Unlike traditional fuzzers, crash exploration tools

cannot run for long periods of time; doing so introduces lengthy

delays in bug fixing. In our evaluation, we found eight hours to

Table 1: Benchmark summary. Bug types are: heap buffer

overflow (HOF), integer overflow (IOF), use-after-free (UAF),

stack buffer overflow (SOF), global buffer overflow (GOF),

and off-by-one (OBO).

Bugs
Program Description LoC

Type #

Libtiff Image library 84K HOF, IOF 11
Libming Flash library 114K HOF, UAF 9
Binutils Binary tools 2.1M HOF, UAF, SOF, OBO 6
Libsixel Image library 37K HOF, SOF 3
Jasper Image manipulation 53K HOF 5
Libsndfile Audio manipulation 85K HOF 1
Nasm x86 asssembler 122K UAF 1
Fig2dev Graphics creation 47K UAF, SOF, GOF 2

be a suitable compromise between execution time and capability

discovery. We run Evocatio and afl-cexp for eight hours unless

otherwise stated. Experiments are repeated five times to ensure

statistical significance.

Experiment environment. All experiments were conducted on an

Ubuntu 18.04 LTS server, with 200GiB of RAM on an Intel® Xeon®

Gold 6254 3.10GHz CPU with 60 cores.

6.1 Capability Discovery (RQ1)

Table 2 summarizes the capabilities discovered across our bench-

mark.5 Here, we report the bug effect; that is, the measurable conse-

quence that follows from the bug’s root cause. For example, the root

cause of CVE-2016-9532 is an integer overflow. However, the effect

of this overflow is a heap-overflow (HOF)/ stack-overflow (SOF).

This distinction allows us to highlight additional bug capabilities.

Overall, Evocatio successfully discovers new capabilities for 50 %

of the bugs in Table 1. For example, both integer overflow (root

cause of CVE-2016-9532) and off-by-one errors (root cause of CVE-

2021-3156) lead to OOB accesses. Thus, we use the bug type in

Table 2 to show how many different effects can be discovered by

Evocatio. This experiment also shows Evocatio is not limited to

memory corruption errors, but can also identify other bug types

(e.g., UAF in CVE-2016-10092).

Prior work has shown more flexible overflows simplify exploita-

tion, resulting in higher security impact [12, 71]. The correlation

between capability diversity and new bug types in Table 2 empiri-

cally confirms this: all bugs for which a new effect was discovered

had a wide range of origin, size and origin offset values. The capabil-

ities found by Evocatio help developers at prioritizing those bugs

with a more diverse range of capabilities.

6.1.1 CapFuzz vs. afl-cexp. Here we compare Evocatio against

AFL++’s crash exploration mode (afl-cexp). Table 3 summarizes

the total number of capabilities and seeds obtained after 8 hours of

execution,6 while Fig. 2 shows the evolution of capabilities/seeds

over time for 8 CVEs that we choose as representative of the bugs

effect in our benchmark. This allows us to compare the results of

the two tools across targets and bug types.

Table 3 shows the number of different discovered unique crash

capabilities (e.g., unique array access index, unique size of the read-

/write, or the bug type). Evocatio finds 10× more capabilities than

afl-cexp. Evocatio generates significantly more unique seeds

than afl-cexp, not only because Evocatio is better at discovering

new capabilities, but also because afl-cexp will wrongly discard

some inputs (afl-cexp may exercise a capability but discard the

corresponding inputs due to its seed selection strategy).

Figure 2 shows afl-cexp’s ability to uncover new capabilities

quickly plateaus. While the number of crashing seeds increases, the

number of capabilities remains low. This is due to afl-cexp’s code-

coverage-based feedback mechanism; it is unable to detect changes

in data flow. As a result, afl-cexp finds new seeds, but they trigger

the same capabilities along different execution paths. In contrast,

5We applied an extra eight hours (on average) of manual analysis with the aid of the
original bug reports to verify the discovered capabilities.
6We considered different invalid memory addresses. We also merged the consecutive
addresses with ASLR disabled. Therefore, the numbers are larger than Table 2 in which
memory addresses are not shown.
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Table 2: Capabilities discovered by Evocatio. Bug effect refers to the bug effect witnessed during a crash, expressed as łoriginal

bug effect[new bug effect]ž. HOF = heap overflow, UAF = use-after-free, SOF = stack overflow, GOF = global buffer overflow,

#W = wild address read, #N = null pointer dereference, #A = allocation size too bug, #U = unknown crash. Newly introduced

effects are in blue. The sizes column contains the size of the access, origins the count of different objects accessible from a valid

memory access, origin sizes the size of these objects, and origin offsets the offsets from these objects. The sizes, origin sizes, and

origin offsets columns differentiate between read and write capabilities. For these columns we use the notation [min..x..max] y

to indicate a range (rather than total count). Here, x is the value of the capability for the original PoC, and y the number of

unique values observed within this range. Finally, origins differentiates between stack and heap, reporting the total count of

origin objects found in each location.

CVE Bug Effect
Size Origin Origin Size Origin Offset

Read Write Stack Heap Read Write Read Write

issue-278 HOF[-] [20 ..213] 1542 [23 ..212] 4 0 34 [23 ..220 ..227] 39263 [28 ..219] 5 [21 ..23 ..28] 214 [20] 1
issue-277 HOF[-] [20 ..22] 3 - 0 1 [20 ..23 ..25] 97 - [20] 1 -
issue-275 HOF[UAF] [20] 1 [20] 1 0 2 [29 ..219] 25560 [20 ..218] 7387 [20] 1 [20] 1
issue-269 HOF[-] [20 ..22] 3 - 0 2 [20 ..23 ..26] 78 - [20] 1 -
CVE-2018-17795 HOF[-] - [22] 1 0 1 - [26] 1 - [20] 1
CVE-2018-12900 HOF[#U] [20] 1 [20] 1 0 5 [20 ..225] 43852 [25 ..223 ..224] 2178 [20 ..213] 1602 [20] 1
CVE-2018-8905 HOF[-] - [20] 1 0 1 - [23] 1 - [20] 1
CVE-2016-10272 HOF[-] [20 ..20] 1 [20] 1 0 5 [214 ..215] 6 [28 ..228] 33440 [22 ..22 ..24] 4 [20 ..25] 33
CVE-2016-10092 HOF[UAF] [20] 1 [20 ..26] 259 0 11 [20 ..227] 611 [23 ..227] 8746 [20 ..21] 4 [20 ..214] 1817
CVE-2016-9532 HOF[SOF] [20 ..23] 2 [20] 1 1 9 [20 ..220] 65374 [20] 1 [20 ..28] 2 [20] 1
CVE-2016-9273 HOF[SOF] [23] 1 [22 ..23] 2 0 1 [23] 1 [23 ..23] 1 [20] 1 [27 ..27] 1
CVE-2020-11895 HOF[#A|HOF|UAF] [20 ..21 ..23] 4 [22 ..23] 6 0 370 [20 ..211 ..213] 204 [22 ..218] 13 [20 ..24 ..211] 74 [20] 1
CVE-2020-11894 HOF[#W|UAF] [20 ..23] 5 [20 ..23] 10 0 346 [20 ..211 ..213] 152 [22 ..218] 11 [20 ..23 ..211] 45 [20] 1
CVE-2020-6628 HOF[#W|UAF|#N] [20 ..23] 5 [23 ..26] 7 0 170 [20 ..211 ..213] 90 [22 ..218] 8 [23 ..211] 26 [20] 1
CVE-2019-16705 HOF[#W|UAF] [20 ..20 ..210] 3 [25 ..25] 1 0 42 [20 ..28 ..212] 81 [215 ..218] 11 [23 ..210] 44 [20] 1
CVE-2019-9114 HOF[-] - [20] 1 0 26 - [22 ..24 ..25] 49 - [20] 1
CVE-2018-20591 HOF[UAF|#N] [20 ..20 ..210] 3 [22 ..23] 6 0 168 [20 ..23 ..213] 157 [22 ..218] 14 [20 ..23 ..211] 44 [20] 1
CVE-2018-9009 UAF[#W|HOF] [20 ..20 ..23] 3 [22 ..23] 5 0 93 [20 ..25 ..214] 241 [22 ..23] 2 [26 ..26 ..28] 11 [20] 1
CVE-2018-8964 UAF[HOF] [23] 1 [22 ..23] 5 0 45 [20 ..28] 9 [22 ..23] 2 [25 ..25] 7 [20] 1
CVE-2018-7871 HOF[#W|UAF|#N] [20 ..23] 4 [22 ..23] 6 0 408 [20 ..214] 216 [22 ..218] 13 [23 ..210] 54 [20] 1
CVE-2021-45078 HOF[-] - [23] 1 0 1 - [24] 1 - [20] 1
CVE-2021-3156 HOF[-] - [20 ..210] 694 0 2 - [22 ..24 ..25] 31 - [20 ..210] 2
CVE-2021-20294 SOF[-] - [29 ..29] 2 1 1 - [20] 1 - [28 ..28] 1
CVE-2021-20284 HOF[UAF|#N] [20 ..23] 3 - 0 19 [20 ..212] 841 - [20 ..25] 11 -
CVE-2020-35493 HOF[-] [20] 1 - 0 20 [22 ..213] 2072 - [20] 1 -
CVE-2020-16592 UAF[-] [23 ..26] 95 - 0 1 [22 ..27] 200 - [22 ..27] 181 -
CVE-2020-21050 SOF[HOF] - [20 ..21] 2 1 2 - [25 ..227] 11 - [20 ..214] 2
CVE-2019-20094 HOF[-] - [20] 1 0 1 - [211 ..225 ..226] 2655 - [20] 1
CVE-2019-20024 HOF[-] - [29] 1 0 1 - [226] 1 - [20] 1
CVE-2021-26926 HOF[-] [20] 1 - 0 1 [22] 1 - [20] 1 -
CVE-2021-3272 HOF[-] [23] 1 - 0 1 [23] 1 - [20] 1 -
CVE-2020-27828 HOF[#N] [20] 1 [23] 1 0 1 - [29] 1 - -
CVE-2018-19543 HOF[UAF|#N] [23] 1 - 0 1 [20] 1 - [20] 1 -
CVE-2018-19540 HOF[-] - [20] 1 0 1 - [20] 1 - [20] 1
CVE-2021-3246 HOF[-] - [21] 1 0 2 - [28 ..212 ..215] 5640 - [20] 1
CVE-2020-24241 UAF[-] [20 ..23] 6 - 0 1 [25 ..26] 6 - [25] 1 -
CVE-2020-21676 SOF[GOF] [20] 1 - 0 1 [26] 1 - [20] 1 -
CVE-2020-21675 GOF[SOF] [20] 1 [20 ..26] 105 2 2 [26] 1 - [20] 1 [211 ..214] 2

the number of capabilities found by Evocatio steadily increases. For

Evocatio, the number of seeds equals the number of capabilities;

each newly-saved seed corresponds to a new capability. CapFuzz

continues to discover new capabilities, reaching a total number that

is generally orders-of-magnitudes larger than the number found

by afl-cexp. Section 6.5 explains the advantage of Evocatio over

afl-cexp when it comes changes in bug type.

6.2 Design Validation (RQ2)

We perform an ablation study to measure the contributions of Cap-

Fuzz’s core components (critical byte inference and seed selection).

We randomly select four CVEs and use the three configurations

to measure these contributions: (i) retention only: the dual-phase

critical bytes inference is disabled, as a consequence all other ele-

ments but the seed retention strategy are also removed; (ii) critical

bytes only: the most energetic sequence is removed. This implies

disabling the seed selection and the energy scheduling strategies.

Additionally, the mutation strategy will randomly mutate critical

bytes instead of prioritizing them by their contribution; and (iii) full

design: all design elements are enabled.

Figure 3 summarizes the capability discovery rate across these

three configurations. On average, critical bytes only improves per-

formance over retention only. While this improvement is small for
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(a) CVE-2021-20284. (b) CVE-2021-3272. (c) CVE-2018-9009. (d) CVE-2018-19540.

(e) CVE-2018-20591. (f) CVE-2019-9114. (g) CVE-2021-45078. (h) CVE-2020-16592.

Figure 2: Capabilities discovered over time by CapFuzz and afl-cexp (for afl-cexp the seeds are also reported). Colors indicate

the number of capabilities discovered by: CapFuzz; afl-cexp; and the number of seeds generated by afl-cexp (dashed line).

CVE-2020-21675, it is significant for the other three CVEs, rang-

ing from a factor of 2× (CVE-2018-7871) to 10× (CVE-2018-12900).

Adding the most energetic sequence in addition to the critical byte

inference further improves performance. Indeed, the full design

performs twice as good as the critical bytes only configuration (on

average). These results confirm the importance of the two main

design elements of CapFuzz: critical byte inference and most ener-

getic sequences.

6.3 Bug Severity Assessment (RQ3)

We investigate whether the capabilities discovered by Evocatio as-

sist developers in assessing bug severity. As described in Section 4.1,

the severity of a bug is based on a specific threat model. Here we

use the threat model presented in Section 4.1.1 to quantitatively

derive a severity score.

We compare our scoring system against CVSS; specifically, the

impact and base metrics. The impact metric łreflects the direct conse-

quence of a successful exploitž [20], while the base metric łrepresents

the intrinsic characteristics of a vulnerability that are consistent over

time and across user environmentsž [20]. The impact metric also

contributes to the base metric, providing a comprehensive repre-

sentation of the bug [54]. Both scores range between zero and ten

(with a higher score corresponding to higher severity). We select

the impact metric because it is conceptually closer to our scoring

system. In contrast, the base metric provides a broader perspective

that also depends on non-quantifiable metrics (e.g., the context in

which a technology is deployed). Importantly, both metrics require

a thorough analysis of the bug and likely exploit, often resulting in

substantial manual efforts. In contrast, Evocatio is fully automatic.

Table 4 shows the scores assigned by the different metrics. Scores

are highlighted according to CVSS risk levels: low (0.1ś3.9), medium

(4.0ś6.9), high (7.0ś8.9), and critical (9.0ś10.0). Evocatio and the

CVSS base metric place ∼50% of the bugs in the same risk level.

The remaining bugs are typically only one level lower in severity. In

contrast, Evocatio łunderestimatesž the severity of 17 bugs when

compared to CVSS’s impact metric. We use our results in Table 2 as

a proxy to validate our findings: the range of capabilities exposed

by the original PoC were fewer than those discovered by CapFuzz,

potentially biasing the original CVSS analysis. We discuss some of

these results below.

CVE-2018-17795. Evocatio ranks this bug asmedium risk (score=

4.9). In contrast, the CVSS base metric ranks the bug as high risk

(score = 8.8). The description provided by CVSS for this bug states

that it łpossibly has other unspecified impactž [52]. This vague mes-

sage does not provide an indication of the security impact of the bug.

Per Table 2, the bug causes a single byte write with limited address

flexibility. CVSS assigned a high score because of an unspecified

possible additional impact; Evocatio found no such impact. This

bug is an example of overestimation due to imprecise knowledge.

CVE-2021-3246. This bug presents another score difference be-

tween the Evocatio and CVSS basemetrics: 4.9 and 8.8, respectively.

According to the CVSS report, this bug is high risk because it effects

a network service and requires no privileges. Our system is purely

based on capabilities and does not take into account attack surfaces

nor required privileges. Per Evocatio, this bug grants a single-byte

write with little address flexibility (Table 2).

CVE-2019-16705. The CVSS base metric considers this bug criti-

cal (scoring it 9.1), while the impact metric assigns a medium score

(5.3). In contrast, Evocatio ranks this bug as high risk. Here, Evo-

catio would help an analyst assign a more representative impact
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(a) CVE-2020-21675. (b) CVE-2018-7871. (c) CVE-2018-12900. (d) Libtiff-issue-278.

Figure 3: Comparison of different CapFuzz strategies (one seed represents one new capability). Colors indicate different

strategies: retention only; critical bytes only; and the full design.

Table 3: Capabilities discovered in eight hours by CapFuzz

and afl-cexp. For afl-cexp, the number of seeds are also

provided. łInc. Ratež represents the capability increment

rate, computed as (CapFuzz − afl-cexp)/afl-cexp.

Bug
Capabilities (#) Seeds (#)

Inc. Rate
CapFuzz afl-cexp afl-cexp

issue-275 45,825 192 775 37.7
issue-277 1,855 1 1,224 1,854
issue-278 37,689 1 3,051 37,688
issue-269 779 86 3,153 8.1
CVE-2018-17795 59 9 1,252 5.6
CVE-2018-12900 60,188 1 1,154 60,187
CVE-2018-8905 16 1 990 15
CVE-2016-10272 42,454 187 5,178 227.0
CVE-2016-10092 17,004 330 4,726 50.5
CVE-2016-9532 73,209 440 14,900 165.4
CVE-2016-9273 12 9 1,044 0.3
CVE-2020-11895 13,672 19 350 718.6
CVE-2020-11894 4,645 24 3,650 193.5
CVE-2020-6628 1,692 119 2,921 13.2
CVE-2019-16705 1,785 20 336 88.3
CVE-2019-9114 963 29 2,684 32.2
CVE-2018-20591 2,966 98 3,313 29.3
CVE-2018-9009 1,269 74 2,988 16.1
CVE-2018-8964 946 177 3,236 4.3
CVE-2018-7871 17,561 194 3,652 89.5
CVE-2021-45078 5 5 553 0
CVE-2021-3156 2352 1 478 2351
CVE-2021-20294 7,327 21 428 347.9
CVE-2021-20284 2,552 24 659 105.3
CVE-2020-35493 3,411 5 186 681.2
CVE-2020-16592 10,728 41 155 260.7
CVE-2020-21050 10 0 27 +∞
CVE-2019-20094 2,176 1 11 2,175
CVE-2019-20024 0 0 105 0
CVE-2021-26926 0 0 734 0
CVE-2021-3272 152 2 1,223 75
CVE-2020-27828 1 0 596 +∞
CVE-2018-19543 0 0 1,338 0
CVE-2018-19540 172 16 1,449 9.8
CVE-2021-3246 5,602 0 102 +∞
CVE-2020-24241 78 28 1,820 1.8
CVE-2020-21676 1 1 482 0
CVE-2020-21675 2,534 15 396 167.9

score. Interestingly, both this and CVE-2020-6628 are the only bugs

Evocatio considers as high risk for both read and write scores.

From this result (and others in Table 4), we observe the following

trend: Bugs with high read and write scores have higher CVSS

scores. In general, if both scores are above 6, then the bug is likely

to be considered high risk by CVSS. Our scores are two dimensional;

when considered together Evocatio’s scores a good approximation

of the CVSS score.

Finally, Evocatio ranks CVE-2016-9532 and CVE-2018-20591

higher than CVSS’s base and impact metrics. This is because Evo-

catio discovered new bug types that go beyond those originally

reported in the CVSS base and impact metrics (Table 2), resulting

in an underestimation of severity.

To summarize, Evocatio’s metrics are automatic and provide

a fast estimate of a bug’s impact, along with a score to enable

comparisons between bugs. While there are variations between our

scores and those reported by CVSS, our scores are quick to compute

and can support human analysis with more concrete evidence. Our

scores are also oblivious to how the software is run and how much

effort is invested into exploitation. For example, a vulnerability

where an analyst invests hundreds of hours to demonstrate its

exploitability may receive a higher CVSS score than a similarly-

severe bug discovered and automatically reported by syzkaller.

Instead, our scores, provide a quantitative estimate of severity,

precisely capturing the read and write powers of an attacker. This

focus on quantitative results prevents both over-estimation (e.g.,

CVE-2018-17795) and under-estimation (e.g., CVE-2016-9536, CVE-

2018-20591) of severity. Analysts may leverage Evocatio as a fast

and automatic reporter of bug capabilities, using the results to

enrich their understanding of a bug.

6.4 Patch Violation (RQ4)

Our results demonstrate Evocatio’s ability to quickly and effi-

ciently discover new capabilities. Can this new knowledge about a

bug be used to test the efficacy of bug fixes/patches?

To answer this question, we selected the 16 bugs from our bench-

mark where we could identify a single commit that (supposedly)

fixed the given bug (and modified no other code). We applied

these patches and replayed all Evocatio-generated and afl-cexp-

generated PoCs to test the efficacy of each patch.

Table 5 summarizes the results of this process for Evocatio:

seven of the 16 patches (44 %) were violated (i.e., a crash occurred)

by a Evocatio-generated PoC. This is despite the bug being łfixedž.

To verify this result, we replayed the original PoCs through the

patched program; none of these PoCs violated the patch. In other

words, 44 % of these bugs were incorrectly fixed.
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Table 4: Evocatio read and write severity scores, and CVSS’s

impact and base scores. Colors indicate risk level: low (green),

medium (yellow), high (orange), and critical (red).

Evocatio CVSS
Bug

Read Write Impact Base

issue-269 6.3 3.1 − −

issue-275 7.3 6.8 − −

issue-277 5.1 5.1 − −

issue-278 6.2 6.2 − −

CVE-2016-9273 6.5 5.5 3.6 5.5
CVE-2016-9532 7.3 6.1 3.6 5.5
CVE-2016-10092 6.2 7.2 5.9 7.8
CVE-2016-10272 5.6 5.7 5.9 7.8
CVE-2018-7871 7.1 6.5 5.9 8.8
CVE-2018-8905 0 4.8 5.9 8.8
CVE-2018-8964 6.7 6.1 3.6 6.5
CVE-2018-9009 6.9 6.3 5.9 8.8
CVE-2018-12900 5.9 5.3 5.9 8.8
CVE-2018-17795 0 4.9 5.9 8.8
CVE-2018-19540 0 4.2 5.9 8.8
CVE-2018-19543 3.6 0 5.9 7.8
CVE-2018-20591 7.5 6.3 3.6 6.5
CVE-2019-20024 0 4.7 3.6 6.5
CVE-2019-20094 0 4.8 5.9 8.8
CVE-2019-16705 7.5 7.0 5.2 9.1
CVE-2019-9114 0 5.7 5.9 8.8
CVE-2020-6628 7.0 7.0 5.9 8.8
CVE-2020-11894 7.0 6.4 5.2 9.1
CVE-2020-11895 7.1 6.5 5.2 9.1
CVE-2020-16592 6.2 0 3.6 5.5
CVE-2020-21050 0 6.5 3.6 6.5
CVE-2020-21675 6.2 6.5 3.6 5.5
CVE-2020-21676 4.8 0 3.6 5.5
CVE-2020-24241 5.1 0 5.2 5.5
CVE-2020-27828 0 4.3 5.9 7.8
CVE-2020-35493 5.6 0 3.6 5.5
CVE-2021-3156 0 7.2 5.9 7.8
CVE-2021-3246 0 4.9 5.9 8.8
CVE-2021-3272 5.1 0 3.6 5.5
CVE-2021-20284 6.9 0 3.6 5.5
CVE-2021-20294 0 5.0 5.9 7.8
CVE-2021-26926 3.8 0 5.2 7.1
CVE-2021-45078 0 5.0 5.9 7.8

We further investigated the efficacy of these patches by replaying

the Evocatio-generated crash-inducing PoCs through the latest

version of the given program. We found one case (CVE-2018-7871)

where a crash still triggered due to other changes in the code.

While the bug was believed to have been fixed in March 2018, in

reality the bug remained unfixed for almost 4 years. This result

confirms the need for tools like Evocatio. With the information

provided by our system, the developers could have implemented a

more complete patch. We have reported the incomplete fix to the

developers and are carefully checking the other partial patches. At

the time of submission, all of the incomplete patchesÐexcept for

Libming, which is no longer maintainedÐhave been fixed in newer

versions of the code.

Only a single patch violation was found among the afl-cexp-

generated PoCs (CVE-2018-7871). This patch was also violated by

Evocatio. For the other six patches Evocatio successfully violated

(but afl-cexp failed to violate), we found that Evocatio discov-

ered new bug types and access types that afl-cexp was unable to

discover. We discuss the importance of this capability in Section 6.5.

Table 5: Leveraging CapFuzz to violate existing patches. For

each patch a reference is official patch link is provided. Cor-

rect patches are marked with ✓, incomplete patches with ✗.

Program Bug Fix details Complete

Libtiff CVE-2018-12900 [6] Limit variable size ✓

Libtiff CVE-2016-10272 [57] Increase buffer size ✓

Libtiff CVE-2016-10092 [56] Increase buffer size ✗

Libtiff CVE-2016-9532 [59] Add boundary check ✗

Libtiff CVE-2016-9273 [58] Recompute buffer size ✗

Libming CVE-2018-9009 [37] Add function to check var. ✓

Libming CVE-2018-8964 [36] Add check before using var. ✗

Libming CVE-2018-7871 [38] Add boundary check ✗

Binutils CVE-2021-45078 [49] Change var. to unsigned ✓

Binutils CVE-2021-20294 [48] Disable sprintf to buffer ✓

Binutils CVE-2021-20284 [15] Add check before using var. ✓

Libsixel CVE-2020-21050 [62] Add boundary check ✗

Jasper CVE-2020-27828 [77] Add boundary check ✗

Jasper CVE-2018-19543 [32] Change boundary check ✓

Jasper CVE-2018-19540 [31] Add boundary check ✓

Fig2dev CVE-2020-21675 [42] Increase buffer size ✓

Listing 3: CVE-2018-7871 code snippet.

1 char *getName(struct SWF_ACTIONPUSHPARAM *act) {

2 switch (act ->Type) {

3 case PUSH_CONSTANT:

4 t = malloc(strlenext(pool[act ->p.Constant8 ])+1);

5 strcpyext(t, pool[act ->p.Constant8 ]);

6 // ...

7 case PUSH_CONSTANT16:

8 t = malloc(strlenext(pool[act ->p.Constant16 ])+1);

9 strcpyext(t, pool[act ->p.Constant16 ]);

10 // ...

11 }

12 return t;

13 }

6.5 Case Study: Escalating Bug Types

Evocatio found new bug types for 18 out of 38 evaluated CVEs.

Moreover, Evocatio converted 10 out of 38 CVEs from a read prim-

itive into a write primitive. Evocatio can do this because of its

ability to distinguish different capabilities (via CapSan). In contrast,

afl-cexp is limited to knowledge gleaned from the fuzzer’s cov-

erage map. Here we showcase two case studies demonstrating the

power of these abilities.

6.5.1 CVE-2018-7871 (Libming). Illustrated in Listing 3, a heap

buffer overflow occurs when act->p’s Constant8 or Constant16

is greater than the size of pool (Lines 4 and 8, respectively). This

overflow is due to an incorrect check of the relationship between

act->p.Constant8, act->p.Constant16, and pool’s size. Impor-

tantly, act’s Type, Constant8 and Constant16 are all attacker con-

trolled. Once overflowed, the pool pointer will point to arbitrary

memory.

The exact memory location that is accessed when dereferencing

pool depends on a set of critical input bytes (leading to different

values in act’s Constant8, Constant16, etc. fields). We distinguish

four possible cases (and their effects): (i) a null-pointer dereference;

(ii) the address of a free chunk triggers a UAF; (iii) a few bytes after

the end of a heap chunk triggers a heap buffer overflow (invalid

out-of-bounds read); and (iv) invalid memory access triggers a

segmentation fault.
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Listing 4: CVE-2016-9273 code snippet.

1 static int

2 TIFFVGetField(TIFF *tif , uint32 tag , va_list ap){

3 if (fip ->field_passcount) {

4 if (fip ->field_readcount == TIFF_VARIABLE2)

5 // Stack -buffer -overflow write

6 *va_arg(ap, uint32 *) == (uint32)tv->count;

7 else

8 *va_arg(ap, uint16 *) == (uint16)tv->count;

9 // Heap -buffer -overflow write

10 *va_arg(ap, void **) = tv->value;

11 else

12 tstrip_t s, ns = TIFFNumberOfStrips(in);

13 uint64 *bytecounts;

14 TIFFVGetField(in, tag , &bytecounts);

15 for (s = 0; s < ns; s++) {

16 // Heap -buffer -overflow read

17 if (bytecount[s] > (uint64)bufsize)

18 bufsize = (tmsize_t)bytecounts[s];

19 }

20 }

21 // ...

22 }

23

24 int main(){

25 uint32 tag = get_tag_from_file(in);

26 va_list ap;

27 va_start(ap, tag);

28 // Invoke TIFFNumberOfStrips to initialize tif

29 TIFFVSetField(tif , tag , ap);

30 va_end(ap);

31

32 TIFFVGetField(tif , tag , ap);

33 }

Evocatio successfully uses its critical bytes inference process to

efficiently discover these four cases, while CapSan successfully dif-

ferentiates between the different bug types. In contrast, afl-cexp

only uncovers the UAF case (by tracing a new path).

6.5.2 CVE-2016-9273 (Libtiff). The root cause of this bug (List-

ing 4 7) lies in TIFFNumberOfStrips (a parsing routine), where file

content is transformed into a TIFF structure [60]. This function

returns an incorrect value used that is subsequently used to cal-

culate the buffer size of a structure member. If the program calls

TIFFNumberOfStrips in different locations, a wrong buffer size

will be allocated to different objects, resulting in different overflow

effects: if the program tries to read from the victim buffer, an invalid

read will be reported; if the program tries to write content to the

victim buffer, an invalid write will be reported.

During critical byte inference CapFuzz discovered modifications

to one byte in the original PoC that introduces different capabilities.

According to our investigation, this byte determines which TIFF

structure will be initialized by TIFFNumberOfStrips . This single

byte causes the program to call TIFFNumberOfStrips from differ-

ent contexts, leading to an incorrectly-sized buffer (a) allocated at

different locations (heap or stack) and (b) accessed in different ways

(reads or writes).

The original PoC calls TIFFNumberOfStrips to calculate the

buffer size of a stack-allocated object. The allocated object is later

dereferenced, leading to a heap overflow and an out-of-bounds

read. CapFuzz discovered the critical byte and commences targeted

7Modeled after CVE-2016-273; we have simplified the logic and omitted variable
initialization.

mutation. This causes the program’s processing logic to enter dif-

ferent branches, generating new inputs allocated (with different

sizes) on the stack or heap (the buffer will be written to memory

later). This eventually leads to a stack/heap buffer overflow through

an out-of-bounds write. In our evaluation it took Evocatio two

minutes to discover new bug types and new access types.

6.6 Case Study: sudo

CVE-2021-3156 is a high-severity heap-based buffer overflow vul-

nerability in the sudo program. The NVD bug description states

łsudo before 1.9.5p2 contains an off-by-one error that can result in a

heap-based buffer overflow, which allows privilege escalation to root

via sudoedit -s and a command-line argument that ends with a

single backslash characterž [53]. We use this vulnerability to demon-

strate how Evocatio (a) discovers additional capabilities from a

seemingly low-impact PoC, and (b) accurately predicts the severity

of the vulnerability.

By fuzzing amodified sudo [41]withAFL++, we obtain a PoC [40]

exercising a 1-byte heap buffer overflow (reported by ASan). Evoca-

tio expands this single PoC to more than 200 new PoCs within 10

minutes. These PoCs result in OOB writes of varying lengths (the

largest of which is 120 bytes). Per Section 6.3, Evocatio scores this

bug as high risk. In comparison, AFL++’s crash mode is unable to

generate any new PoCs even after 8 hours of fuzzing.8

7 DISCUSSION

Here we discuss Evocatio’s limitations and how they can be ad-

dressed by future work. Importantly, the goal of Evocatio is not

to replace CVSS. CVSS requires manual analysis, which Evoca-

tio assists by focusing on łinterestingž bugs (based on discovered

capabilities). This, along with CVSS, helps decide bug severity.

Critical bytes (identified during the inference phase) are relative

to the input length.CapFuzz does not change the input length while

fuzzing to avoid breaking these bytes. Consequently, Evocatio does

not support the exploration of capabilities related to input length.

In addition to the bug types supported in this paper, common

memory safety bug types include null-pointer dereferences and

double frees. However, these two bug types do not directly lead

to memory corruption, and thus Evocatio is unable to discover

capabilities associated with these bug types. We leave the detection

of other bug types as future work.

The scoring system described in Section 4.1 is based on a threat

model where the number and diversity of capabilities is the most

important measure of łseverityž. However, more capabilities may

not always correlate with increased severity; even an off-by-one

error can lead to the compromise of a system. Evocatio can reason

about off-by-one errors provided they lead to a memory safety

violation (i.e., they are detectable by CapSan); we demonstrate

this in Section 6.6. However, generalizing these bug types (i.e.,

when they do not result in memory corruption) requires changes

to capability detection, which we leave to future work.

8 RELATED WORK

Symbolic tracing engines collect symbolic constraints along a

program’s execution path. These constraints can then be analyzed to

8Section 3.1.1 contains further discussion on why crash mode fails.
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infer all possible values of a variable at any point in time [23, 71, 72].

In theory, symbolic tracing enables both the identification of critical

bytes and bug capabilities. However, in practice, symbolic tracing

suffers from scalability and accuracy issues, making it difficult to

apply to real-world applications [1, 4].

Taint analysis tracks the flow of data in a target program from

a łtaint sourcež (e.g., a user input function) to a łtaint sinkž (e.g., a

security-critical function). This allows the relationships between

input bytes to be determined as taint propagates through the pro-

gram. Taint analysis has been used to locate: buffer boundary vio-

lations [27]; buffer over-read vulnerabilities [50]; and invocations

of sensitive library and system calls [22]. It has also been used to

improve fuzzer performance [11, 55]. Unfortunately, taint analysis

is subject to under- and over-tainting [14, 75]. While solutions to

under/over tainting have been proposed, they require manual effort

and result in performance degradation [33, 69]. Under/over tainting

is particularly pronounced in large, real-world programs, making

taint analysis difficult to use for critical byte identification.

Fuzzing-based taint inference has been used to overcome the

previously-discussed limitations of taint analysis [2, 21, 39, 45, 76].

Indeed,CapFuzz’s byte inference technique is similar to the one pro-

posed by GreyOne [21]. However, there are a number of important

distinctions. First, our goals differ: CapFuzz is focused on capabil-

ities, not bugs. Second, GreyOne does not consider relationships

between bytes (as discussed in Section 3.2.1).

AFL++’s crash explorationmode (afl-cexp) has similar goals

toCapFuzz: given a PoC, explore the crash’s state space (via fuzzing)

and generate new PoCs that induce the same crash. However,

afl-cexp is guided by code-coverage and is unable to detect changes

in data flow. In contrast,CapFuzz not only detects data flow changes,

but focuses on inducing these data flow changes. Our evaluation

(Section 6.1.1) shows this has a significant impact on CapFuzz’s

ability to discover new capabilities.

Patch validation and testing aims to ensure a patch fixes a

given bug while not introducing any new bugs (patch testing [8])

and that the program’s behavior remains correct (patch valida-

tion [10, 24]). In contrast, Evocatio aims at producing a set of PoCs

that trigger nontrivial behaviors in unpatched programs, helping

developers build correct patches. We demonstrate how Evocatio

assists this process in Section 6.4.

Automatic Exploit Generation (AEG) shares similar goals

to Evocatio. For example, Revery [71] uses fuzzing to extend a

PoC’s capabilities, but focuses on relatively strong capabilities (e.g.,

hijacking control flow), ignoring diversity. Evocatio’s goals dif-

fer from AEG engines such as ReveryÐwhere finding a single ex-

ploitable capability is sufficient: Evocatio aims to collect a large

set of diverse capabilities.9 Similarly, Gollum [30] and MAZE [72]

are heap-manipulating AEG engines. Gollum leverages fuzzing and

requires manually-specified templates describing the target’s input

syntax, while MAZE uses symbolic execution to solve complex

constraints. While automated heap manipulation enables AEG, we

target more general, łlower-levelž capabilities. In summary, Evo-

catio explores bug capabilities, while AEG builds exploits. While

severe vulnerabilities may facilitate an exploit, their development

9We contacted the authors of Revery to facilitate a side-by-side comparison. They
confirmed our evaluated programs are too complex for Revery.

requires knowledge about the program/environment; this is beyond

our goals.

Bug severity assessment systems commonly make use of qual-

itative metrics (e.g., attack complexity) [64, 67, 68] extracted from

vulnerability descriptions to rank bugs. Prior work has leveraged

machine learningÐwhich is more amenable to qualitative metricsÐ

to predict bug severity [18, 28, 34]. These systems use vulnerability

descriptions and reports, rather than program analyses, to deter-

mine bug severity. In contrast, Evocatio’s focus is not to use known

information to determine severity, but to provide a framework for

reasoning about severity based on the set of capabilities discovered

by Evocatio. For example, capabilities can be used in a human-in-

the-loop scenario to generate a CVSS-style severity score, similar

to our sudo case study (Section 6.6).

Kernel-space fuzzing shares similar design constraints to user-

space fuzzing. In particular, a bug is represented by a single PoC that

may only exercise a limited set of capabilities, resulting in a limited

understanding of the bug. SyzScope [78] combines fuzzing, static

analysis, and symbolic execution to analyze the security impact of

fuzzer-exposed bugs in the kernel. CapFuzz focuses on user-space

programs, which are not supported by SyzScope. Moreover, due to

its dependency on symbolic execution, SyzScope will inevitably suf-

fer from state explosion and complex constraint solving, potentially

leading to poor performance on larger kernel modules.

9 CONCLUSIONS

Developers are overwhelmed by the large number of discovered

bugs. In order to prioritize their fixes, developers must understand

the capabilities these bugs expose. By understanding these capabili-

ties, a more accurate assessment of a bug’s impact can be performed.

We developed Evocatio for this purpose. Evocatio uses a novel

capability-guided fuzzer, which, given an initial PoC, explores the

surrounding state space for new capabilities. In our evaluation, Evo-

catio outperformed existing crash exploration tools (in particular,

AFL++’s crash exploration mode). We demonstrated Evocatio’s

utility by applying it to automatic bug severity assessment and

patch testing. Notably, Evocatio was able to generate PoCs that

violate existing patches.

Our open-source release of the Evocatio prototype implemen-

tation is available at https://github.com/HexHive/Evocatio.
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