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Abstract—The integrity of the entire computing ecosystem
depends on the security of our operating systems (OSes). Unfor-
tunately, due to the scale and complexity of OS code, hundreds
of security issues are found in OSes, every year [32]. As such,
operating systems have constantly been prime use-cases for
applying security-analysis tools. In recent years, fuzz-testing has
appeared as the dominant technique for automatically finding
security issues in software. As such, fuzzing has been adapted
to find thousands of bugs in kernels [14]. However, modern OS
fuzzers, such as Syzkaller, rely on precise, extensive, manually-
created harnesses and grammars for each interface fuzzed within
the kernel. Due to this reliance on grammars, current OS fuzzers
are faced with scaling-issues.

In this paper, we present FUZZNG, our generic approach to
fuzzing system-calls on OSes. Unlike Syzkaller, FUZZNG does not
require intricate descriptions of system-call interfaces in order to
function. Instead FUZZNG leverages fundamental kernel design
features in order to reshape and simplify the fuzzer’s input-space.
As such FUZZNG only requires a small config, for each new
target: essentially a list of files and system-call numbers the fuzzer
should explore.

We implemented FUZZNG for the Linux kernel. Testing
FuzzZNG over 10 Linux components with extensive descrip-
tions in Syzkaller showed that, on average, FUZZNG achieves
102.5% of Syzkaller’s coverage. FUZZNG found 9 new bugs
(5 in components that Syzkaller had already fuzzed extensively,
for years). Additionally, FUZZNG’s lightweight configs are less
than 1.7% the size of Syzkaller’s manually-written grammars.
Crucially, FUZZNG achieves this without initial seed-inputs, or
expert guidance.

I. INTRODUCTION

The Operating System continues to serve as one of the
most security-critical building blocks in modern computing.
The OS’ role in managing resources and enforcing isolation
between applications makes it a target for attackers who seek
to violate OS-provided guarantees. Recognizing the critical
nature of OS security, fuzzers have identified and helped
fix thousands of bugs in OS kernels. Recently, the success
of OS fuzzers has emphasized difficulty of writing secure
low-level code, and has even spurred initiatives such as
support for safer languages in the Linux kernel, and the
usage of hardware-features such as Memory Tagging to enable
advanced low-overhead defenses against memory-corruption
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issues [23], [44]. Most OS fuzzers focus on the critical system-
call interface, which enables user-space applications to request
services from the kernel.

Syzkaller[14], the most prolific system-call fuzzer, has
become an integral component of the Linux Kernel develop-
ment lifecycle, with over 2,700 mentions in kernel commit
messages. As such, syzkaller, itself, has grown to be a sizeable
project, with over 200 contributors. Crucially, Syzkaller can
only fuzz system-calls that are sufficiently described by a
“syzlang” grammar. These grammars encode and annotate the
types of resources provided as inputs and returned as outputs,
by system-calls. Therefore, much of the syzkaller community’s
work is focused around developing and refining “syzlang”
descriptions for system-calls, which are essential to Syzkaller’s
success.

Developing such grammars is a manual process, and re-
quires detailed knowledge about the interface (i.e., set of
system calls) in question. As such, grammars are prone to
human-error, and can lead to gaps in coverage, or over-fitting
(preventing the fuzzer from exploring all states and scenarios
in which code could be covered). Additionally, syzkaller
sometimes requires writing supplementary harnessing code to
fuzz particularly complex interfaces. For example, to fuzz the
Linux Kernel Virtual Machine (KVM) interface, which powers
security-critical virtualization software, Syzkaller developers
committed 891 lines of detailed syscall descriptions, 243
KVM-related constants, and a further 879 lines of KVM-
specific C harnessing code (illustrated in Figure Al). Even
though Syzkaller features tens-of-thousands of hand-crafted
“syzlang” rules, the current process cannot scale to fuzz
the millions of lines of code added to the Linux Kernel
each year [33]. Academic works have recognized Syzkaller’s
scalability problem with manually-created syzlang grammars,
and have focused on automatically generating grammars.
Works such as Difuze, IMF, SyzGen, and KSG apply static
and dynamic-analysis techniques to automatically generate
system-call descriptions [12], [18], [9], [51]. Difuze, IMF and
SyzGen are designed and evaluated against interfaces, such
as Android Drivers, and macOS APIs, for which no base-
line manual-descriptions exist. KSG’s descriptions appear to
improve Syzkaller’s coverage, however source-code has not
been released and upstream Syzkaller-based Linux fuzzing
efforts continue to rely only on manually-written descriptions.
Some upstream efforts for description generation are limited
to identifying the types of struct arguments passed to ioctl
system-calls [36]. Importantly, the Syzkaller project has been
tracking the need for automatic generation of Linux system-
call descriptions as an open issue, since 2018 [53].



Other kernel-fuzzing work focuses on improving
syzkaller’s input-generation [52], [57], improving fuzzing
support for complex kernel interfaces [59], fuzzing specific
device-kernel interfaces [40], [49], improving the performance
of kernel-fuzzing using snapshots [50], developing tools for
coverage-guided gray-box fuzzing of OS kernels [47], or
combining fuzzing with symbolic-execution to find more
bugs [27]. Moonshine[38] has identified the expense of

maintaining accurate syscall-descriptions. However, the
alternatives proposed require collecting and analyzing
extensive system-call traces from real-world programs.

Finding and exercising programs that interact extensively with
the complex kernel-interfaces is, itself, a complex problem
with scalability issues. Fuzzers based on manually-written
descriptions or real-world traces can quickly reach deep
parts of the kernel code. However, the process of manually
collecting system-call traces, or writing descriptions is
prone to human-error: the immediate coverage gains from
descriptions and traces risk obscuring parts of the code that
the fuzzer can no longer exercise meaningfully. As testament
to this, FUZZNG found bugs in code that Syzkaller marked
as covered.

In this paper, we present FUZZNG, our system for fuzzing
system-calls without detailed descriptions of each interface. By
default, the kernel exposes an enormous input-space through
the system-call interface, encompassing all of a process’
virtual-memory (e.g., via pointers to buffers), and the entire
file-descriptor table. Thus, even though, on the surface, system-
calls accept up to six numerical arguments, a trivial fuzzing
strategy that simply passes random arguments to system-calls
will not achieve adequate results, since most arguments will
be semantically invalid (e.g. pointers to unmapped memory,
or non-existent file-descriptor numbers). Current system-call
fuzzers rely on detailed system-call descriptions and real-
world traces to generate valid system-call arguments, thereby
avoiding fuzzing the entire input space associated with process-
memory and file-descriptors, provided to user-space applica-
tions by the kernel. However, these grammar-based approaches
simply shift much of the burden of generating valid system-
calls onto the developer.

FuzzNG’s core insight is that instead of relying on exten-
sive system-call descriptions, the system-call input space can
be reshaped, to (1) obviate the need for system-call specific
grammars, and (2) make system-call fuzzing conducive to
fuzzing with battle-tested off-the-shelf fuzzing tools. To realize
this reshaping, FUZZNG leverages the very APIs kernel code
already uses to handle system-calls in normal operation —
specifically APIs to access user-space memory and manage
file-descriptors. By applying input-space reshaping, FUzzZNG
essentially relies on a variation of the aforementioned “trivial”
fuzzing strategy, passing system-call arguments directly from
a fuzzer (e.g., libFuzzer). Through this technique, FUzZZNG
eliminates the need for detailed descriptions and harnesses for
individual system-calls. In short, FUzzZNG does not rely on
any detailed preliminary analysis of each system-call, prior to
fuzzing.

We implemented FuzzNG for the Linux Kernel, and eval-
vated it for 10 Linux interfaces for which Syzkaller features
extensive descriptions. We found that even though input-
space reshaping allows FuzzNG to avoid detailed system-

call descriptions, FUZZNG achieves competitive coverage,
and significant bug-finding capabilities when compared with
Syzkaller. For example, FUZZNG is able to set up a KVM-
based VM, configure it with virtual-memory slots, fill it with
instructions, run it, causing an exit into KVM instruction-
emulation code, and reach a bug, with no special knowledge of
the KVM interface, or its 100+ distinct ioctl commands. Simi-
larly, FUZZNG creates inputs that automatically create and ex-
ecute complex bpf programs, and io_uring sequences. All prior
systems that are capable of targeting these complex interfaces,
require human-written system-call descriptions. Furthermore,
FuzzNG found new issues (detailed in Section V-D) in code
that was already covered by Syzkaller, highlighting the fact
that manually-written descriptions can often underfit or overfit
the interface in question. In summary, we make the following
contributions:

e We describe the main features of the input-space exposed
by the Linux system-call interface. Then, we cover the
system-call grammars common among current fuzzers.
Finally, we describe the subtle pitfalls of these manually-
written grammars.

e We present FUZZNG, our system-call fuzzer, which ob-
viates the need for expert-curated grammars. Unlike pre-
vious approaches, FUZZNG reshapes the kernel’s input
space, rather than attempting to automatically generate
system-call descriptions. We demonstrate that FUZZNG is
competitive, when compared with Syzkaller, achieving an
average of 102.5% of Syzkaller’s coverage over compo-
nents for which Syzkaller has extensive descriptions. Our
results show the pitfalls of grammar-based approaches, by
finding bugs in code that Syzkaller already covered.

e We describe FUZZNG’s snapshot-based fuzzing approach
along with the mutation and execution strategies that we
tailored to the problem of grammarless kernel-fuzzing.
We present FUzzZNG’s novel approach to “refining” in-
puts, leveraging information learned as they are executed,
to improve the quality of the input-corpus.

e We report on the 9 new bugs discovered by FuzzNG,
of which 5 are in components covered by Syzkaller. To
enable further research into grammarless kernel fuzzing,
we will open source all of FUzZNG’s components.

II. BACKGROUND

In this section, as background for our work, we describe
relevant aspects of operating-systems, system-calls, and OS-
Fuzzers. On Linux, system-calls are identified by an inte-
ger “id”. System-calls support up to six word-sized argu-
ments (communicated through registers on most architectures).
System-calls can return a value, which is also provided through
a register. As the numeric arguments passed to a system-call
are limited in size, some system-call arguments semantically
represent larger data-structures. Specifically, the linux kernel-
documentation highlights the two types of system-call argu-
ments that are used to indirectly pass arbitrary-sized data to
the kernel: pointers and file-descriptors [1], [2]. System-calls
use file-descriptor arguments to allow “userspace to refer to a
kernel object”[1]. For system-calls that involve a large number
of arguments, the arguments are placed “into a structure that is
passed in [to the kernel] by pointer”’[2]. For example, alarm
schedules the delivery of a signal to the process. The only



argument — the number of seconds until the alarm expires —
is passed to the kernel, directly, as an integer. However, the
write system-call expects three arguments: a file-descriptor,
a buffer that will be written to the file, and the length of the
buffer. While the file-descriptor and the length of the buffer are
represented as integers that can fit into registers, the buffer can
have arbitrary length. As such, the kernel expects the register
for the buffer argument to contain the address of the actual
buffer.

Linux has hundreds of system-calls that serve as the
main mechanism by which user-space applications can request
services from the kernel. Internally however, the kernel can
feature many implementations for the same system-call. For
example, the ioctl system-call, which is used to control
devices, serves as main configuration-mechanism for many
drivers in the kernel. Applications obtain references (i.e.,
file descriptors) to drivers, by opening so-called special files
associated with the devices (i.e., files commonly located in
the /dev directory). Then, applications can configure the
drivers, by invoking ioctl, with the file-descriptor as the
first argument. Internally, the kernel associates each file-
descriptor with a file_operations struct, which points
to the functions that will be called transparently for operations
such as read-ing, write-ing and close-ing the file. Using
file_operations, the kernel routes the ioct1 request to
a device-specific implementation of the system-call, depending
on the type of special file (e.g., character device vs. graphics
accelerator). As such, due to file-descriptor and pointer argu-
ments, the hundreds of Linux system-calls are simply a narrow
window to tens of millions of lines of kernel code.

A. System-call fuzzers and grammars

System-call fuzzers such as Syzkaller and Trinity rely on
grammars or rules that aid them in generating valid system-
calls and associated file-descriptor and pointer arguments. A
grammarless fuzzer could simply pass fuzzer-provided integers
as arguments to system-calls. However, such a fuzzer is
quickly rendered useless by the effectively boundless system-
call input-space induced by pointer and file-descriptor argu-
ments, as discussed in Section I. As such, current system-call
fuzzers rely on extensive grammars for kernel interfaces. For
example, Syzkaller requires annotations of struct types, flag
fields, enums and constants passed as system-call arguments.
Furthermore, Syzkaller relies on manual annotations of re-
sources created by each system-call (such as file-descriptors)
to determine valid system-call sequences. These annotations
will prevent Syzkaller from trying to use the ioctl system-
call to interact with a driver, without a prior call to open to
open the corresponding file in /dev/.

Even though Linux features several hundred system-calls,
system-call behavior can depend drastically on the arguments.
For example, the write system-call uses vastly different
code-paths depending on the type of file written to (e.g., a
file on disk vs. a socket or a pipe). Each of the different types
of system-call invocations requires its own Syzkaller descrip-
tion. As such Syzkaller features tens of thousands of lines
of descriptions, contributed by dozens of developers. These
descriptions are written in a domain-specific language called
“syzlang”, designed to describe system-call interfaces. Despite

1i0ct1$VHOST_SET_VRING_ADDR (fd fd_vhost,
cmd const [VHOST_SET_VRING_ADDR],
arg ptr[in, vhost_vring_addr])

VHOST_SET_VRING_ADDR = 1076408081

vhost_vring_addr {
index flags([vhost_vring_index, int32]
flags int32[0:1]
0 desc_user_addr ptréd[out, array[int8]]
1 used_user_addr ptré64[out, array[int8]]
12 avail_user_addr ptr64[out, array[int8]]
3 log_guest_addrs flags[kvm_guest_addrs, inté4]
4}

Fig. 1: Partial example of a Syzkaller description for a vhost ioctl

this gargantuan community effort, the lack of complete system-
call descriptions for kernel interfaces is a known limiting factor
for current system-call fuzzers [53].

In the remainder of this section, we will describe the main
difficulties for system-call fuzzers, and how the grammars used
by existing fuzzers attempt to alleviate them.

1) Pointers: As mentioned above, system-calls often expect
one or more arguments to contain pointers to data-structures
located in the user-space process’ memory. Effective fuzzers,
such as Syzkaller, feature descriptions of these data-structures,
allowing them to identify pointer arguments and to create and
mutate the corresponding data-structures. However, pointers
create a challenge for naive fuzzers that simply pass mutated
values as arguments; even if the value points to a valid virtual
address, the naive fuzzer has no knowledge that it should place
mutated data at the corresponding location in memory.

Through grammars, Syzkaller is aware when a system-
call expects a pointer argument. The grammars encode the
length and type of data that the pointer should reference
(e.g. a flat buffer, or a struct with individual fields). For
example, Figure 1, shows a Syzkaller description for the
VHOST_SET_VRING_ADDR ioctl call (related to the vhost
VIRTIO offload subsystem). The final argument to the system-
call is indicated as a “pointer” to a vhost_vring_addr-
type struct. Description-based fuzzers, such as Syzkaller, re-
quire detailed annotations of pointer arguments, and every
struct that the kernel accesses in a user-space process.

2) File-Descriptors: On Linux, files are privileged re-
sources, managed by the kernel. As such, file-operations are
initiated through system-calls. First, a user-space process opens
a file using a system-call, such as open, socket, or pipe.
Internally, the kernel keeps a table of opened files for each pro-
cess. Since a process usually has multiple files open, the open
system-call returns an integer file-descriptor (or fd) that the
process can treat as a handle for the opened-file. For each new
opened file, the kernel assigns the lowest available integer file-
descriptor, starting with 0. For subsequent file-related system-
calls, such as read, write, mmap, and ioctl, the process
passes the integer file-descriptor as an argument to the kernel.
Internally, the kernel uses the fdget () API to look-up the
corresponding file-object in the process’ file-descriptor table,
which contains all of the information necessary to properly
handle the system-call.

The integer file-descriptors pose a challenge for fuzzers. A
typical process only has a handful of files open. As such, the
random mutations of a fuzzer are highly unlikely to generate



an integer system-call argument that is associated with a valid
(i.e., open) file. As previously discussed, the problem is exacer-
bated by the fact that the behavior of file-related system-calls is
highly dependent on the type of file. Even if the fuzzer guesses
a valid file-descriptor integer, it would simultaneously need to
pick a system-call(and arguments) that are valid for that type of
file. To address these problems, the grammars used by syscall
fuzzers, rely on special annotations for file-descriptors. For
example, in Figure 1 (line 1), the syzkaller description indi-
cates that the first argument to a VHOST_SET_VRING_ADDR
ioctl call must be a file-descriptor. The descrip-
tion also specifies that the descriptor must be of an
fd_vhost type. Elsewhere, Syzkaller features descriptions
for open ("/dev/vhost..") system-calls whose return
values are annotated with the £d_vhost type. With such
rich descriptions, Syzkaller ensures that it passes valid
file-descriptor numbers to the VHOST_SET_VRING_ADDR
ioctl call, and that the file-descriptors are associated with a
vhost file that was previously opened.

Thus, file-descriptor and pointer arguments are associated
with the large abstract input-spaces (user-space memory and
kernel-objects). While system-calls rely on other seemingly-
complex types of arguments, such as “magic integers” (where
only a few specific values are valid), and flags-fields (where
a single integer can represent multiple states/settings), fuzzers
have gained powerful mechanisms (e.g. redqueen/cmplog[5]
and value-profile[48]) to effectively identify magic-values and
fuzz flags passed through integers, as these challenges are
not unique to OS kernels. However, fuzzing pointers and
file-descriptors fundamentally requires consideration of the
corresponding larger input-spaces.

a) Managing File-Descriptors: Linux implements a set

of system-calls that are used to manage fds. As mentioned
above, system-calls such as open and socket create new fds.
The close system-call is used to destroy fds. Additionally,
the dup family of system-calls can be used to make copies of
file-descriptors. For example, the dup2 system-call, allows a
process to duplicate an existing reference to a file onto some
specific integer file-descriptor:
int dup2(int oldfd, int newfd);
After a dup2 call, the file associated with the oldfd file-
descriptor, is also associated with the newfd file-descriptor.
In this case, the kernel will associate the file with the user-
space-provided file-descriptor number, rather than following
the default “lowest-available” strategy, mentioned above.

B. Pointer APIs in Linux

On modern Linux-systems, kernel and user-space memory
is placed in separate “halves” of virtual memory. As mentioned
above, the kernel frequently interprets system-call arguments
as pointers. However, the kernel must treat these pointers
with care, as they could potentially originate from a malicious
process. A malicious pointer could point to a kernel-address,
rather than a user-address, or it could point to a location
being written to by another thread (potentially creating a data-
race). As accessing data in user-space memory is a common
pattern, the Linux kernel implements special APIs, such as
copy_{from, to}_user and get_user that must be used

to access data in user-space memory. User-space accesses are
treated with such care, that CPU architectures have imple-
mented dedicated facilities to ensure that accidental user-space
pointer dereferences are impossible: For Linux running on
modern Intel architectures with the Supervisor Mode Access
Prevention(SMAP) feature, a special bit in the CR4 register
must be cleared for user-space memory access to be possible.
This further ensures that access to user-space memory cannot
be accidental and should occur through centralized APIs.

C. Automatic Grammar Generation

Multiple works have tried to automatically, or semi-
automatically harvest system-call grammars. Grammars can be
harvested automatically leveraging static or dynamic-analysis
techniques. Often these approaches rely on seed-traces of
kernel-interactions, which are difficult to collect, due to a lack
of user-space applications that achieve complete coverage over
kernel-components. Whitebox static and dynamic analyses
focus on relatively-shallow heuristics, such as source-code
patterns used to define system-calls and specific ioctl parameter
types. Automatically-inferred grammars are disadvantaged by
the fact that a small lapse in the analysis can have severe
effects on the resulting grammar. For example, if an ioctl relies
on multiple nested structs (i.e., a struct pointing to another
struct, etc), but the analysis fails to associate a second-level
struct with a pointer field in the first-level struct, the grammar
will not be able to describe any of layers beyond the second.
We will demonstrate in the following sections that FUzzZNG
does not have the same limitation, since rather than attempting
to annotate individual arguments and struct-fields, FuzzZNG
reshapes and fuzzes the fundamental input-spaces exposed by
the kernel to user-space.

III. APPROACH

In this section, we present the features of FUZZNG that
enable effective, system-call fuzzing without detailed anno-
tations. FUZZNG reshapes the input-space by hooking into
strategic kernel APIs related to pointers and files and, on
demand, morphing the semi-random arguments obtained from
an off-the-shelf fuzzer into valid values for each system call.
In Section IV, we will explain how our solutions fit into the
overall design of FUZZNG.

A. Reshaping the input-space

At the core of FuzzNG’s approach lies the notion of
“reshaping” the system-call input-space. A fuzzer that pro-
vides random arguments to system-calls performs poorly, as
it operates over an incomplete model of the input-space (it
has no mechanism to meaningfully fuzz fd and pointer-based
arguments). However, simply extending the fuzzer-accessible
input space by e.g., allowing the fuzzer to write fuzzing data
to arbitrary locations in process-memory does not improve
performance, since the fuzzer is unlikely to guess the user-
space addresses that a system-call’s implementation will read
from. ! Without feedback, fuzzers that simply pass random

IStoring fuzzed data at predetermined locations and passing pointers to
these locations in system-call arguments as implemented by HyperCube’s [46]
handling of DMA accesses requires expert insight in the form of comparatively
low-fidelity grammars.



integer arguments to system-calls have no way of knowing
where to place data for pointer reads, or which file-descriptors
should be opened and passed to subsequent system-calls.
Reshaping denotes a mechanism, by which FUZZNG provides
a dynamic “view” of the engaged input-space to the fuzzer.
That is, at any moment, FUZZNG is aware of the memory and
fds that are actively accessed by the kernel. Using API hooks,
FUzzNG pauses execution of a fuzzer-input when the kernel
references a pointer or file-descriptor, and takes action to
populate the corresponding user-space region or file-descriptor
number, prior to resuming input execution. Thus the fuzzer has
no need for detailed descriptions of fd or pointer arguments - as
FUzzNG intercepts the associated kernel accesses on-demand.

One mechanism to realize input-space reshaping could
directly replace the return values of the memory-access and
file-descriptor APIs with fuzzed data. However, instead, FUz-
ZNG places fuzzed data at the locations referenced by the
memory-access and file-descriptor APIs. This technique has
the advantage of avoiding behaviors that would be impossible
in an off-the-shelf kernel without hooks. For example, this
approach prevents FUZZNG from providing fuzzed-data at
bad pointer-addresses (e.g., null-pointers, or kernel pointers).
A significant advantage of this design is that when FuzzNG
finds a bug, it is straightforward to generate a “reproducer” that
can be provided alongside a bug-report to trigger the bug in
an unmodified kernel (independent of FUZZNG). To this end,
after fuzzing, FUzZZNG converts crashing inputs into simple
sequences of system-calls (similar to Syzkaller), eliding the
hooks.

By reshaping the input-space, through kernel API hooks,
FUzzNG makes the system-call interface tractable for fuzzing,
without detailed system-call descriptions, or seed-inputs. Due
to the dynamic feedback provided through the API hooks,
FUzzZNG automatically gains detailed awareness of pointer
and file-descriptor arguments that other fuzzers encode in
system-call descriptions, offline. Because FUZZNG reshapes’
the kernel’s fundamental fd and memory input-spaces, its
methods work even for complex interfaces, such as KVM and
io_uring, where automated techniques such as static analysis of
ioctl argument types produce grammars at insufficient detail.

Figure 2 demonstrates that FUZZNG reshapes the input-
space, so that the kernel does not reject the majority of inputs
due to invalid pointers and fds. Throughout the rest of this
section, we will describe FUZZNG’s approach for both of these
featues of the system-call input-space.

B. Pointers

As mentioned previously, system-calls often rely on point-
ers provided by user-space applications. The kernel initiates
pointer accesses after a system-call has been submitted, and the
size of the access depends on the type of and arguments to the
system-call. As developers of regular user-space applications
have prior expert knowledge about which arguments system-
calls treat as pointers (e.g., from documentation and man
pages), they write code that populates pointers with corre-
sponding data, prior to invoking the system-call. However,
FuzzZNG has no knowledge about how the kernel treats
individual system-call arguments. Instead, FUzZZNG leverages
the fact that, in general, accesses from kernel-code to user-
space memory must occur through centralized APIs, due to

security-measures such as SMAP. For example, the kernel pro-
vides a copy_from_user function, with similar semantics
to memcpy, but tailored to allow copying data from user-
space memory to kernel-memory. FUZZNG applies lightweight
hooks to the copy_from_user and get_user APIs to gain on-
demand insight into user-space memory accesses. When a
kernel component performs an access using one of these
APIs, FuzzNG pauses the access, and fills the corresponding
range of user-space memory with fuzzer-provided data. Thus,
once FUZZNG resumes the access, the kernel component
naturally accesses fuzzer-controlled data. By populating user-
memory accesses on-demand, FUZZNG avoids the guess-work
associated with identifying locations in process memory that
should contain fuzzer-generated data.

User-space access safety net: The vast majority of kernel
accesses to user-space memory occur through centralized ker-
nel APIs. However, in rare cases, kernel components may im-
plement their own versions of the APIs, or disable protections.
For example, the Kernel Virtual Machine (KVM) subsystem
expects VM memory to be mapped in user-space. When a
KVM virtual CPU is started (using the KVM_RUN ioctl),
the kernel directly instructs the CPU to execute instructions
from the VM’s memory in user-space. In this case, the VM
instructions are executed in non-root mode, and the user-space
memory assigned to the VM is accessed without SMAP protec-
tions. Such behavior would circumvent FUZZNG’s reshaping
efforts and must thus be handled appropriately. To catch
user-space accesses that side-step centralized APIs, FuzzZNG
employs an additional mechanism to hook user-space memory
accesses. To this end, FUzZZNG “inflates” the fuzzing process’
address space by mapping as many pages as possible (Note that
these pages do not consume physical memory, since the OS
only allocates physical-pages, when the page is first accessed).
By mapping as many virtual-pages as possible, we ensure that
accesses to user-space memory are highly likely to correspond
to a valid virtual page-mapping. However, these user-space
pages are marked as “not present”, triggering a page-fault upon
any access. Then, using userfaultfd (a facility through which
page-faults can be handled in userspace), FUZZNG fills each
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Fig. 2: By default, randomly-generated system-calls cannot reach deep kernel-
code paths, as the arguments quickly trigger error conditions. FUZZNG’s
hooks effectively “reshape” the input-space, transforming nonsensical pointer
and file-descriptor arguments into valid ones, without introducing impossible
behaviors. Through FUZZNG’s kernel hooks, system-calls that would normally
result in trivial error conditions, produce interesting behaviors. In this figure
and Figure 3, the “warp-hole” symbol represents the parts of FUZZNG that
reshape the input-space.



accessed page with fuzzed data, prior to continuing execution
of the kernel component. Unlike the API-hooking approach,
the userfaultfd-based hooking does not rely on any kernel-code
patterns, such as the use of copy_from_user. It thus catches all
situations where the kernel tries to access user-space memory
without going through the centralized APIs. By default this
hook is triggered only once for each page as, for subsequent
accesses, the page is marked present, and will not trigger
another page-fault. However, as FUZZNG fills the entire page,
further reads from the same page will continue to return fuzzed
data.

C. File-Descriptors

As discussed in Section II, the kernel often expects system-
call arguments to contain file-descriptor numbers. However,
a generic fuzzer will provide random numbers for the corre-
sponding arguments, which are highly unlikely to refer to valid
file-objects in the kernel. To overcome this fuzzing road-block,
FuzzNG associates fuzzer-provided file-descriptor numbers
with existing file-objects opened by the process. FuzzNG
hooks into the file-descriptor API to ensure that fuzzer-
generated fd numbers are reshaped to valid file objects. In-
ternally, FUzZzZNG leverages the fact that the kernel asso-
ciates file-descriptors with underlying struct file objects,
which contain information about the file permissions, offset,
supported operations, etc. To resolve file-descriptor numbers
to the underlying struct file object, kernel developers
must use the, fdget () APIL As such, FUzZzZNG can hook
every attempt to resolve a file-descriptor (valid or invalid).
Then, using the dup?2 system-call, FUZZNG can associate the
fuzzer-provided (likely invalid) integers with valid files. This
ensures that any fuzzer-provided value that is interpreted as a
fd by the kernel, is mapped to a valid open file.

IV. FuzzNG

At its core, FUZZNG hooks the fundamental kernel APIs
related to system-calls. In this section we describe how these
hooks fit into the components comprising the FUzZNG system.
First, we describe FUzZNG’s fuzzing engine, @ QOEMU-Fuzz.
QEMU-Fuzz is primarily responsible for generating inputs,
interpreting coverage data to identify “interesting” inputs,
and resetting state in between input executions, via VM-
snapshotting. Then, we detail @ mod-NG, the modifications
made to the Linux kernel to assist with fuzzing. mod-NG hooks
the fd and user-memory-access APIs, and error-reporting func-
tions that are used to detect kernel-crashes. Finally, we describe
@ NG-Agent, the user-space agent used to invoke the fuzzed
system-calls. NG-Agent is responsible for providing the input
to the kernel-under-test, configuring kcov, to collect coverage
data over the kernel, and outputting a “canonical” version of
each executed input (explained in Section IV-C3c). Figure 3
provides an overview of FUzZzZNG.

A. QEMU-Fuzz

FuzzNG features QEMU-Fuzz, our VM-snapshot-based
fuzzer (@ in Fig. 3) built on modified versions of the QEMU-
KVM hypervisor, and the libFuzzer input mutator. System-
calls often lead to modified registers/memory in user-space.
They can also establish state within the kernel, which per-
sists across system-calls (e.g. file-descriptor offsets, modified

by read/write/seek system-calls). This raises a challenge for
fuzzers, which perform best when inputs are executed from an
identical starting state. Furthermore, fuzzer-inputs can timeout,
or corrupt and crash the NG-Agent process. To address this,
FUzZzZNG executes system-calls against a kernel-under-test
running in a VM, and restores the entire VM’s state from
a snapshot, after each fuzz-input. Similar to Syzkaller, each
FUzzZNG fuzz-input represents a sequence of system-calls.
FuzzZNG’s snapshot fuzzer ensures that the agent-process
and kernel state is completely reset to a consistent snapshot
after each input. This approach differs from fuzzers, such
as Syzkaller which fuzz the kernel using a “fork-server” to
execute inputs. That is, each input is executed in a separate
process. Unlike Syzkaller, FUzZNG has no system-call de-
scriptions that it can use to ensure that inputs are well-behaved,
and do not create performance problems in the VM.

QEMU-Fuzz implements a fuzzing-specific virtual-device
that the VM can use to initialize snapshots and request resets.
Additionally the interfaces provided by the virtual-device are
used to establish the memory regions where NG-Agent (see
§ IV-C) running in the VM expects to receive new fuzzer
inputs, and the pages where the VM stores kernel-coverage
data. QEMU-Fuzz places each new input into the agreed-
upon location in the guest’s physical memory. When the agent
has executed the input, it uses the virtual-device interface to
request a reset from QEMU-Fuzz. QEMU-Fuzz provides the
coverage data in the VM’s memory to [ibFuzzer for input
mutation. To facilitate this, we modified libFuzzer to support
the two kcov coverage data formats (program-counter traces
and comparison traces). Then, QEMU-Fuzz resets the guest’s
memory, register and device state, to a previously-initialized
snapshot. QEMU’s built-in VM snapshot/reload functionality
is optimized for long-term snapshot storage, or live-migration,
rather than fuzzing. To tailor to fuzzing-specific snapshot
workloads, QEMU-Fuzz implements custom VM resets which
store all snapshots in-memory, and use KVM’s dirty-page
tracking to reset only the pages that were written to, since the
last snapshot, reducing overhead. Finally QEMU-Fuzz uses a
timer to force the VM to reset if an input’s execution exceeds
the configured timeout.

B. mod-NG

In Section III we explain that FUzzZNG hooks kernel-code
related to user-memory accesses and file-descriptors. To do
this, we added a kernel-module, mod-NG(@ in Fig. 3), which
contains the code that we use to intercept access through
copy_from_user-type APIs, and file-descriptor operations.

1) copy_from_user APIs: When mod-NG intercepts a user-
memory read API call, it wakes-up a userspace “copy-from-
user” handler thread ( in Figure 3) and provides the

thread with details about the read location and size. The
thread is tasked with filling the corresponding location in
userspace-memory with fuzzed data. Once the thread
notifies the kernel that it has handled the request, mod-NG
resumes the copy_from_user call. Note that we use a
combination of the m thread and mod-NG, rather than
simply modifying copy_from_user to directly copy fuzzer-
input bytes into kernel-memory, for multiple reasons.

1) By filling the read in userspace, we ensure that the process
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Fig. 3: Overview of our FUZZNG implementation, showcasing the three major components that make up FUZZNG: @ QEMU-Fuzz is the snapshot fuzzer that
is responsible for generating inputs and resetting VM state after each run. @ mod-NG is our collection of kernel-modifications that hook into the user-memory-
access and file-descriptor subsystems. @ NG-Agent is the user-space process used to initiate fuzzing system-calls and populate process memory that the process

accesses.

can actually write to the region. Thus, we avoid providing
data at impossible locations (e.g., if the read targets
unmapped memory).

2) mod-NG does not need to be aware of the fuzzer input.
The only component in the VM that directly interacts with
the fuzzer input is NG-Agent.

3) The userfaultfd safety net mechanism ( in Fig. 3)
for hooking user-memory accesses (see Section III-B) is
also based on a user-space thread. Handling both
and userfaultfd hooks in similar userspace threads ensures
design-consistency: only user-space components read di-
rectly from the fuzz-input. Similar to an unmodified
system, system-call inputs (including memory buffers) are
populated in the context of the user-space process.

2) File-Descriptor APIs: mod-NG reshapes the input-space
introduced by numerical file-descriptors. That is mod-NG en-
sures that arbitrary fuzzer-provided fd numbers are associated
with actual underlying file objects in the kernel. Otherwise,
the kernel would reject the majority of system-calls, as they
would contain references to unallocated fd-numbers.

To reshape the fd space, mod-NG hooks the alloc_fd
API which is used by the kernel to allocate new file-
descriptors, to handle system-calls, such as open. By hooking
alloc_fd, mod-NG keeps track of all of the fd numbers
allocated by the agent process on an “FD stack”.

When the kernel uses the fdget API to obtain the
underlying file object associated with an fd number, mod-NG
checks the stack to determine whether the fd number is already
allocated. If the fd is allocated, mod-NG simply resumes the
API’s execution, returning the existing file-object, associated
with the fd. However, if the fd is not allocated, mod-NG in-
vokes dup?2 in order to duplicate an existing fd (taken from the
fd stack) onto the fd number that was passed as the argument
to fdget. By default, mod-NG duplicates the most-recently
allocated fd (at the top of the stack). However mod-NG also
exposes a special system-call, fuzz-set-fd-offset, to
NG-Agent, which is used to select the index from the top of
the fd stack that is passed to the subsequent dup2 operation.
We describe how this system-call is invoked in further detail
in Section IV-C3b.

3) Crash  Hooking: ~mod-NG hooks the kernel’s
dump_stack API, which is invoked when a kernel error
occurs. In this case, mod-NG uses Port-IO to notify QEMU-
Fuzz that the input should be saved as a potential crash,

for analysis. mod-NG also tracks NG-Agent process crashes
(SEGFAULTs) and uses Port-IO to request an immediate
VM restore from QEMU-Fuzz. The agent process can crash,
as there is no defense preventing the fuzzed system-calls
from overwriting sensitive code, heap, etc. regions in the
user-space process. Agent crashes do not indicate problems
in the kernel, but they slow down the fuzzing process, as
the Agent is not able to notify QEMU-Fuzz that the input
finished executing (leading to timeouts). To avoid timeouts
in cases where NG-Agent crashes, the SEGFAULT tracking
allows FUzzNG, to improve fuzzing performance.

C. NG-Agent

As FUuzzNG is a system-call fuzzer, and system-calls are
initiated by user-space applications, we rely on an agent (
in Fig. 3) process to invoke sequences of fuzzed system-calls.
NG-Agent is the component responsible for converting bi-
nary fuzz-inputs, received from QEMU-Fuzz into data passed
through system-calls, including system-call IDs, system-call
arguments, and user-space memory-contents accessed by the
kernel. At startup, the agent reads a config that identifies the
component that should be fuzzed, and establishes commu-
nication with QEMU-Fuzz. As QEMU-Fuzz generates raw-
binary inputs, NG-Agent features an interpreter that converts
the raw bytes into a sequence of system-calls. The agent also
launches the \CFU\ and \UFFD \ threads that are responsible
for handling user-space memory access hooks. As the agent
consumes bytes from the input, it assembles a “canonical”
version of the input (explained in Section IV-C3c). After the
input has been executed, the agent requests a VM reset and a
new input from the fuzzing engine.

1) Agent Initialization: At startup, NG-Agent initializes
coverage collection, inflates the process’ memory, and sets up
the user-memory and snapshot interfaces.

a) Configuring kcov: NG-Agent configures kcov to
collect coverage over the kernel [26]. kcov is a Linux kernel
code-coverage mechanism, tailored to and used by fuzzers
such as Syzkaller. By enabling kcov, the NG-Agent process
can access a kcov memory region which contains kernel
coverage-data. kcov has two modes: it can be configured to
report either the covered kernel program-counters(PCs), or
covered comparison instructions along with the corresponding
operands(CMP tracing). These modes are mutually exclusive
(each fuzzer process can either trace PCs or comparison
instructions). The information from the CMP tracing mode is



useful for helping the fuzzer automatically solve constraints in
the code (such as ioctl request number checks). As such,
existing fuzzers such as Syzkaller use both modes during
fuzzing. NG-Agent implements support for both coverage
modes. Furthermore, FUZZNG extends kcov’s CMP mode
to report comparisons performed in the kernel using APIs
such as strncmp and memcmp. This change is inspired
by modern user-space fuzzers that can automatically identify
strings that the target expects to be in the input, by e.g.,
hooking functions related to string and memory comparisons.
In Section V-B, we show that this feature proves useful for
populating fuzzing inputs with strings that the kernel expects to
receive through system-call arguments. Prior to fuzzing, each
NG-Agent instance (running in its own VM) queries QEMU-
Fuzz to determine whether to use the PC or CMP mode.

b) Inflating Process Memory: Hooking user-space
memory accesses allows FUZZNG to fuzz complex interfaces
without knowledge about pointer arguments and struct layouts
encoded in grammars (see Section II-A). However, normal
processes in Linux map a tiny fraction of the available virtual
memory space (128 TB on x86-64). As such, by default, a
random fuzzer-provided address in user-memory is unlikely to
be backed by any physical-memory mapping, and FUzzZzNG
would not be able to populate those virtual-addresses with
fuzzer-provided data.

As a solution, NG-Agent “inflates” its address-space by
mapping as much memory as possible using the mmap system-
call. NG-Agent leaves a small fraction (16MB) of memory
unallocated so that it is possible for fuzzer-generated mmap
system-calls to succeed. Note that though the underlying
hardware cannot back the ~ 128 TB of mapped virtual ad-
dresses with actual physical memory, physical-memory is only
allocated when a virtual-page is first accessed. Throughout
the lifetime of individual fuzzing runs, only a tiny fraction
of the “inflated” memory is ever accessed and backed by
physical pages. After this inflation step, virtually all valid
user addresses (< 0x800000000000) are associated with a
mapping. As such, randomly generated addresses have a high
chance of hitting valid user-space memory mapped by the NG-
Agent, and FUZZNG’s hooks can populate memory accessed
by the kernel, in response to an issued system call.

c) User-Memory Hook Service Threads: As mentioned
in Section III-B, FUZZNG hooks kernel-memory accesses to
userspace. To do this FUzZzZNG relies on two mechanisms -
hooking of copy_from_user-type APIs, and userfaultfd.
For each of these mechanisms, NG-Agent initializes threads
(\ CFU\ and ’UFFD‘ in Figure 3) which is responsible for
filling memory referenced by hooked user-memory reads with
bytes taken from the fuzzing input. We describe the threads’
functionality in further detail in Section IV-C2.

d) Communicating with QEMU-Fuzz: NG-Agent com-
municates directly with QEMU-Fuzz by raising its privilege
level using Linux’ iopl and executing Port-IO instructions.
Each Port-IO instruction causes an exit into QEMU-Fuzz,
which handles the request. When NG-Agent has performed
coverage and memory-related initialization, it is ready to
execute fuzzer inputs. To start the fuzzing process, NG-
Agent uses Port-IO to provide QEMU-Fuzz with the ad-
dresses of memory allocated for the fuzzer-input and for
kcov coverage. As QEMU-Fuzz interacts with the VM’s

memory using physical addressing, the agent process uses
the /proc/self/pagemap interface to convert virtual ad-
dresses to physical addresses. Then NG-Agent asks QEMU-
Fuzz to create a VM snapshot and provide a new fuzzer-input.
Once NG-Agent has interpreted the input, it requests a VM
reset, and the fuzzing process repeats.

2) Agent Config: NG-Agent interprets inputs generated and
provided by QEMU-Fuzz as sequences of system-calls. FUZ-
ZNG relies on an agent-config to target specific components of
the kernel. We refer to logical groupings of kernel-features as
“components”. Examples include device drivers (console/ptmx,
rdma, vhost), interfaces (KVM, io_uring), and generic APIs
(bpf). The config consists of two sections:

1) Files: Here, we specify paths to component-specific files
(in /dev/) that the agent opens (if any) prior to fuzzing.

2) System-Calls: The list of system-calls that the fuzzer can
generate. For each system-call, we specify the number of
arguments, and an optional “mask” for each argument.

For example, the KVM config in Figure 1, the first line
specifies that the /dev/kvm file should be opened, as it is
the entry-point for all interactions with the KVM subsystem
[55]. The remaining six lines simply list the system-calls that
can interact with KVM. Each line represents a system-call that
the fuzzer can invoke along with the number of arguments
expected by that system-call. Optionally, we can provide a
mask for some arguments. The masks are not strictly necessary,
but help limit slow system-calls. For example, in Figure 1,
we specify masks for the read/write system-calls to restrict
the maximum size of the operation. Additionally we apply
masks to the mmap system-call to avoid potentially destructive
mappings that overwrite coverage/code regions of the agent.

The list of system-call IDs needed to interface with a
kernel-component can be easily collected by reading the Kernel
documentation, or by examining the file APIs supported by an
interface (e.g., examining the fields in file_operations
structs). Compared with Syzkaller, there are practically no
constraints on the system-call arguments (beyond the mask to
reduce patently invalid/wasteful arguments). Instead, we rely
on the input-space reshaping hooks and coverage-feedback to
identify inputs with valid/interesting arguments. Each argu-
ment (including file descriptor numbers and pointer addresses)
is simply taken directly from the binary fuzzer input.

3) The NG-Agent Interpreter: The input QEMU-Fuzz pro-
vides to NG-Agent is simply a byte-buffer. To convert these
bytes into a sequence of system-calls, FUzzZNG implements
an interpreter. The interpreter uses a 4-byte value (ASCII
“FUZZ”) to split the input into individual operations. Modern
fuzzers, such as libFuzzer, can automatically identify such
“magic” values and insert them into inputs. There are two
types of operations: System-calls and User-Memory Patterns.

a) System-Calls: For each operation, NG-Agent exam-
ines the first byte and uses it to select a system-call, by
indexing it into the table of available system-calls, as defined in
the NG-Agent config. Once NG-Agent selects the system-call,
it reads the number of arguments necessary for that system-
call (as specified in the agent config), applying an argument
mask to each one, where specified. Finally NG-Agent, uses
the syscall () libc API to invoke the system-call.



Internally, NG-Agent also adds the
fuzz-set-fd-offset system-call to the table, so
the fuzzer can specify which fd should be used to respond
to fdget calls for unallocated fd numbers. The fuzzer often
generates inputs that interact with multiple file-descriptors. For
example, for an input to run a KVM virtual-machine, it must
execute the KVM_CREATE_VM ioctl for the /dev/kvm
file, which creates an fd for the VM. Then, the input must run
the KVM_CREATE_VCPU ioctl for the newly created VM
fd, which creates a VCPU fd. Finally, the input must execute
the KVM_RUN ioctl for the VCPU fd. As mod-NG stores
newly created fds on a stack, system-calls that interact with
file-descriptors (such as ioctl), will target the last-created
file-descriptor. However, if after the KVM_RUN call, the
input tries to execute the KVM_SET_MEMORY_REGION
ioctl (which is specific to VM fds), the system-call will
fail, as the VCPU fd is at the top of mod-NG’s stack. As
such, we provide the input with the capability to call the
fuzz-set-fd-offset system-call, in order to choose
which file-descriptor on the stack to use. As the VM fd
is at the 2nd position of the stack (index 1), the fuzzer
call fuzz-set-fd-offset (1), prior to invoking the
KVM_SET_MEMORY_REGION ioctl. As it can take time
for the fuzzer to ”guess” fd offsets, for half of the fuzzer VMs
in our evaluation (see § V-A ) we configure the fuzzer to
automatically call fuzz-set-fd-offset when a system-
call fails (returning -1), cycling through all open fds. In this
mode, the fuzzer does not need to guess fd offsets on the
stack, as the agent interpreter automatically tries all possible
options. This maximizes the chance that the system-call will
be performed with a correct type of file-descriptor.

b) User-Memory-Accesses: Unlike system-call opera-
tions, user-memory-accesses are initiated by the kernel, rather
than NG-Agent. However, in the input they are still repre-
sented as operations. When a user-memory-access occurs, it
is handled either by the thread, or the thread
(depending on whether the copy_from_user-APIs were used).
To fill the corresponding location in memory with fuzzed data,
these threads interpret the next operation in the fuzzer-input as
a user-memory pattern. Depending on the size of the access,
and consequently the amount of fuzzer-provided data needed to
fill the access, NG-Agent uses different strategies. For smaller
accesses (fewer than 256 bytes), NG-Agent simply reads the
exact number of bytes needed from the fuzzer-input, and uses
them to fill the region accessed by the kernel. This amount of
data is sufficient for most structs passed into the kernel. For
larger accesses, NG-Agent reads the first byte of the operation
and interprets it as the length of a repeating-pattern (taken from
the subsequent bytes) used to fill the kernel-read. Once the
threads populate a memory region with bytes
from the input, they update a global input pointer, so that the
system-call interpreter running in the main thread knows to
advance past the user-memory-access operations.

c) Enforcing Input Structure: Unlike approaches such
as Syzkaller, whose inputs contain detailed information about
system-call types and struct fields that must be populated,
FuzzNG has no semantic information about fuzzing inputs
that allows it to predict the system-call sequence and user-
space accesses that correspond to an input. FUZZNG inputs
are simply bytes separated by “FUZZ”. However, as FUzZzZNG
executes an input, it dynamically gains valuable information

about the system-calls that it represents. For example, as
FuzzNG interprets the input, it learns about:

e Parts of the input that are ignored/unused. E.g. extraneous
system-call arguments, or masked-out parts of arguments.

e Parts of the input that are normalized to a different value.
E.g. the first byte of a system-call operation is normalized
relative to the size of the system-call table.

e The number of bytes needed to fill user-memory-access
operations.

To leverage this valuable information, we made mod-
ifications to libFuzzer to support modifying inputs during
fuzzing, so that inputs can be canonicalized during execution.
All of the interpreter operations we described have specific
length requirements. However, these requirements are often
not satisfied by inputs provided by libFuzzer: operations might
feature too many, or too few bytes. To address this, NG-Agent
dynamically “resizes” operations, as it is interpreting the fuzzer
input, so that each operation contains precisely the number
of bytes required. Thus, NG-Agent enforces input structure,
and ensures that inputs saved by [libFuzzer do not contain
wasted bytes (see Fig A2 for an example). As all bytes in
stored inputs are actually used for operations, input-mutations
are more likely to achieve new code coverage.

For system-calls, NG-Agent will delete operations that do
not have enough bytes for all of the system-call arguments
from the fuzzer-input. Conversely, if there is a surplus of
bytes after an operation, FUzZZNG removes the excess from
the input. Similarly, FUzZZNG ensures that the number of
bytes in a user-memory-access operation exactly matches the
amount needed to fill the access. If there are not enough
bytes, FUZZNG uses a prng (seeded from rdtsc) to insert
random data into the input until the operation’s size matches
the access. Thus the result input will contain a perfectly
sized user-memory-access operation (filled with random data,
if necessary), which can be mutated for future executions.
Additionally, NG-Agent applies system-call argument masks
directly to the input. For example, if the agent-config specifies
that an argument has a mask, 0xF000, and the fuzzer input
provides OxDEADBEEF as the argument, NG-Agent replaces
OxDEADBEEF with 0x0000B000 in the input. NG-Agent
also normalizes (confines to a range of values) the byte used
to select the type of system-call by the number of fuzzer-
accessible system-calls.

After NG-Agent has executed an input, it returns the
canonicalized version to QEMU-Fuzz. By default libFuzzer
does not support modifying the length or contents of fuzzer-
provided data, so we made slight modifications to allow this.
The result is that inputs stored in the corpus do not contain
any wasted bytes, and operation sizes are guaranteed to match
the number of bytes necessary. Note that since FUZZNG stores
“canonicalized” inputs, the use of a prng to resize operations
does not raise issues with non-determinism: any randomly-
generated bytes are stored within the inputs in the corpus.

In summary, our implementation of FUZZNG combines
a snapshot-fuzzing engine used to generate inputs and reset
state (QEMU-Fuzz), a user-space agent used to invoke system-
calls and populate relevant memory with fuzzed data (NG-
Agent), and a kernel-module(mod-NG) used to hook kernel



APIs related to system-calls and provide dynamic feedback
about the API invocations to the agent.

V. EVALUATION

We evaluate FUzzZNG’s fuzzing capabilities to answer the
following research questions.

RQ1 Does FuzzNG achieve competitive coverage when
compared with state of the art grammar-based system-
call fuzzers? (see § V-B)

RQ2 What is the average size of FUzzZNG configs, com-
pared to Syzkaller syzlang descriptions? (see Table I)

RQ3 Can FuzzNG discover new bugs in the Linux kernel?
(see § V-D)

RQ4 How does FuzzZNG’s snapshot-fuzzing performance
compare with Syzkaller’s fork-server? (see § V-E)

A. Experimental Setup

We performed all experiments on servers with Dual Socket
Intel Xeon E5-2600 v3 Series CPUs, ranging between 192
and 256 GB RAM. All of our fuzzing experiments were
performed against Linux Kernel 5.12. FUzzZNG uses multiple
QEMU-Fuzz VMs to fuzz kernel-targets on multicore systems.
FUzzZNG configures each VM with different fuzzing options:

1) Coverage Mode: As mentioned in Section IV-Cla, KCOV
supports two coverage modes: PC coverage and CMP
coverage. PC coverage enables FUZZNG to consistently
determine when new code was reached. CMP coverage al-
lows FUZZNG to solve input constraints, such as “magic”
ioctl request numbers. As such, FUzzZNG configures
half of the fuzzer VMs with PC coverage, and the other
half with CMP coverage. This achieves a balance between
fuzzer instances that simply store inputs that reached
new edges (PC coverage) and ones that are useful for
overcoming complex value comparisons (CMP coverage).

2) Errorless Inputs: FUzZZNG configures an eighth of all
VMs to discard inputs that result in system-calls that fail
(i.e. return —1). This incentivizes the fuzzer to find "high-
quality” system-call sequences that reach deep kernel
states, without any failed/wasted syscalls. As error code-
paths should certainly be targeted, this feature is only
enabled for every eighth VM.

3) File-Descriptor “Cascading”: As described in IV-C3a, in
this mode, when a system-call, involving an fd, fails (re-
turning -1) FUZZNG uses the fuzz-set-fd-offset
functionality to iterate through all available FDs, repeat-
ing the system-call for each one, until the system-call
succeeds, or all open FDs have been tried. This reduces
the need for the fuzzer to correctly guess which FD should
be used by each system-call. However as many system-
calls will return errors, this slows down input execution,
so we only configure this mode for half of the VMs.

Note that the options are not mutually exclusive (e.g., a VM
can fuzz with CMP Coverage and Cascading). All of the
parallel fuzzers store new interesting inputs in the same corpus
directory. As such, even if an input finds new coverage only
in a single mode, it is mutated by all of the fuzzer instances.
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FuzzNG
Edge Count | Config LoC
3572
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Edge Count
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Edge Count Syzlang LoC
3623 864
563
562
340
138
9213
218
2296
982
142

Max Cov
15359
1004
4014
2506
956
34924
415
12503
3413
332

Component
bpf
video4linux
rdma
binder
cdrom

kvm
vhost_net
drm
io_uring
vt_ioctl
Average
Geo. Mean
vs. Syzkaller

381 446
1474 *
272 56
351 120
891 8755
157 210
745 1978
343 986
381 138
76.52%
66.95%

567

591

344

144

9468

225

2138
1003

162
102.53%
102.41%

CANO AU LR —

1.67%
1.09%

TABLE I: Coverage comparison of FUZZNG, Syzkaller and Healer. Note that,
for consistency, the “Syzlang” LoC column excludes any additional harnesses
(written in C and Go), which Syzkaller relies on. Coverage is averaged over
5 runs

B. Coverage

FuzzNG’s main contribution is its ability to fuzz complex
kernel interfaces, with minimal setup-cost for each new in-
terface, when compared to current system-call fuzzers. Thus,
we compared FUzzNG’s coverage performance against the
de-facto Linux kernel fuzzer, Syzkaller, and Healer which
applies relation-learning techniques to Syzkaller’s grammars
to improve mutation efficiency.

We configured all three fuzzers to fuzz the same kernel
builds. For each Kernel component fuzzed, we provided a
separate coverage allowlist, which only applies the KCOV
coverage instrumentation to the source files used to implement
the component (e.g., KVM, bpf, etc.). As such, FUZZNG,
Syzkaller, and Healer only reported coverage (and stored
inputs) for system-calls that interacted with the relevant com-
ponent under test. We select components for fuzzing according
to the following criteria:

e Syzkaller (and, by proxy, Healer) must support the
component (i.e., the Syzkaller repo contains relevant
manually-written descriptions).

e The component must be available on x86-64 Linux.

e The component must be a system-call interface?.

e The descriptors for the component must be comprehen-
sive. To ensure fairness and generality of the comparison,
we sorted the components by syzlang description size, and
selected components based on the largest descriptor-files
that fuzz a clearly-defined interface.

We fuzzed every component on 20 cores, for 168 hours
(7 days). Our edge coverage results (averaged over 3 runs)
are presented in Table I. FuzzNG achieved more cover-
age than Syzkaller for seven components. For the remaining
three components, FUzZZNG’s edge coverage was within 7%
of Syzkaller’s. On average, FUzzZNG achieves 102.5% of
Syzkaller’s coverage.

Healer did not achieve any coverage over the RDMA code
as it relies on an older version of Syzkaller that does not
contain RDMA descriptions. We found that the open-source
version of Healer (2efbb44c7d) achieves a lower coverage
than Syzkaller, for the components we evaluated. Healer is
designed to efficiently identify relations between system-calls.
In our kernel-configurations, only the target component is in-
strumented for coverage. Thus only system-calls that increase

’E.g., Syzkaller supports fuzzing incoming Bluetooth packets. As these
packets originate from devices, rather than system-calls, we consider bluetooth
fuzzing outside of the scope for this paper.


https://github.com/SunHao-0/healer/tree/2efbb44c7d

coverage over the target component are added to the corpus.
As such, Healer’s improvement to Syzkaller is limitted since
the fuzzer naturally targets a specific component. Additionally,
the repo maintainers mention that the open-source version of
Healer has many limitations compared with the private version
of Healer used in the Healer paper, which likely accounts for
the coverage difference [52], [3].

We compared the coverage/edges only reached by
Syzkaller and Healer against FuzzNG. The results for each
component are presented in Figure 4. We manually inspected
the coverage and found several common causes for edges cov-
ered by Syzkaller/Healer that FuzzNG did not cover. Syzkaller
and Healer support fault-injection, allowing the fuzzer to force
failures in kernel-API calls (e.g., SLAB allocation, futex).
We did not implement this feature for FUZZNG. As such,
some error handling code in the kernel is not covered by
FuzzNG, but is covered by Syzkaller. Furthermore, Syzkaller
(and Healer which uses Syzkaller’s executor) can use multiple
threads to execute a testcase. Currently, FUZZNG runs all
system-calls from a single-thread. As such, parts of compo-
nents that are responsible for task reference-counting are only
covered by Syzkaller. Much of the code in KVM that only
Syzkaller covered is related to instruction emulation of VMs in
different x86 operating modes (real-mode, protected-mode, and
long-mode). Instructions are emulated differently by KVM,
depending on the CPU mode. However, as the setup for a
real-mode VM is considerably different from a long-mode VM,
there is no feedback to guide input-generation towards different
emulation contexts. Syzkaller uses virtual system-calls that
explicitly encode the operating mode, which do not require
complex mutations to reach the code. However, FUZZNG is
able to fully-cover some instruction emulation routines (in
all x86 modes), so it is possible that FUZZNG would cover
more of this code, given additional time. In BPF, we found
that FUzzZNG’s libfuzzer-based mutators was slow to generate
valid BPF programs. FUZZNG quickly found a way to generate
the smallest possible valid 16-byte BPF program, however as
generating a longer program requires simultaneously inserting
bytes into the BPF program, and increasing the length-field
describing the program size, FUZZNG was unable to generate
large BPF programs, hampering coverage. In the future this
can be addressed by making the mutations aware of length-
fields, which FUzzNG can identify by correlating byte-values
with user-space-access lengths.

However, as shown in Fig. 4, FUzzNG also covers parts of
the code, which Syzkaller+Healer do not for all components
but binder. Additionally, ensemble-fuzzing has been shown to
outperform individual fuzzers [11]. As such, it will be benefi-
cial to fuzz using an ensemble of FUZZNG and Syzkaller-
based techniques. Since FUZZNG and Syzkaller both have
their own representations of inputs, collaborative fuzzing will
require an adapter that can translate between the input formats.

Additionally, we monitored coverage achieved, as time pro-
gressed while fuzzing KVM for both Syzkaller and FUZZNG.
The results are presented in Figure A3. As expected Syzkaller
initially significantly outperforms FUzZZNG, due to its compre-
hensive grammar suite, however the coverage quickly plateaus.
Noticeably, FUzzZNG’s grammarless approach eventually over-
takes Syzkaller, by the 60th hour of fuzzing. The potential
benefits from running FUzZZNG are obvious, as coverage-gains
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Fig. 4: Edges uniquely covered by Syzkaller+Healer and FUZZNG

are not limited by manually-written grammars. FUZZNG’s
initial “lag” in coverage is expected. However, as FUZZNG
stores corpus-inputs, subsequent fuzzing runs will start at high
coverage, making the lag a nonissue after the initial run. On the
contrary, FUzZNG’s lack of dependence on grammars allows it
to continue discovering new code, without human intervention.

C. Config-Size

We compare the size of FUzZZNG’s configs and Syzkaller’s
syzlang descriptions in Table I. This comparison represents the
implementation cost of adding support for new components to
each fuzzer. Note that for Syzkaller we only include the sy-
zlang descriptions, and omit any component-specific harnesses,
as this code is interleaved with unrelated Syzkaller code. As
such, we underestimate the amount of lines needed to add sup-
port for new components to Syzkaller. On average, FUZZNG’s
configs are 98.3% smaller than Syzkaller’s descriptions.

D. Bug-finding

FuzzNG’s coverage evaluation primarily focuses on com-
ponents that have extensive Syzkaller descriptions, and have
been continuously fuzzed for years with Syzkaller. As such,
we do not expect to find many bugs in this code. Nonetheless,
FuzzNG found previously-unknown bugs in code fuzzed by
Syzkaller. Furthermore, we picked 3 drivers that are not fuzzed
by Syzkaller (mmcblk, megaraid, nvme) and created FUzZzZNG
configurations for them (17 lines of configuration, in total). In
total, FUZZNG found 9 previously-unknown bugs in the Linux
Kernel (see Appendix). Of these, 5 were in components that
had syzlang descriptions, and were well-covered by Syzkaller.
FuzzNG found bugs in all three components that do not have
Syzkaller descriptions. All bugs were found during the 120
hour measurement campaigns and are undergoing responsible
disclosure. Next we discuss three case studies.

Null-ptr dereference in KVM Emulation Code: FUZ-
ZNG found a null-pointer dereference bug in KVM’s
emulate_int code, responsible for emulating interrupts. To
find this bug, FUZZNG had to use independent ioctl calls to
create a VM, create a VCPU, create a memory slot for the
VM and launch the VM. When the CPU accessed the VM’s
memory to run CPU instructions, FUzzZNG populated the
corresponding region with fuzzer data. The fuzzer-generated



instructions that trapped and caused a VMEXIT to KVM’s
emulation code, where a null-pointer dereference occurs due
to a malformed virtualization context. Although Syzkaller has
full coverage over the emulate_int code, Syzkaller did not
find this bug, as the VM setup is handled entirely by a hard-
coded harness, which sets up registers and page-tables, and
the instructions executed within the VM are generated by an
instruction generator designed to create well-formed sequences
of instructions. FUZZNG does not rely on any KVM-specific
harnessing. As such, though it takes FuzzNG longer to
achieve the same coverage as Syzkaller, FUZZNG’s mutator
has full control over the invoked system-calls, rather than
being fundamentally limited by descriptions and harnesses.
This allows FUzzZNG to find bugs in code that other fuzzers
could not thoroughly exercise, due to rigid grammars.

Null-ptr dereference in io_uring task exit code: FUZz-
ZNG found a null-pointer dereference bug in io_uring thread-
manager code. If the process, which invokes io_uring, raises
an abort signal while the io_uring thread-manager code is
executing, there is a potential race condition exposed, as
the thread-manager code updates the task’s IO-related bitmap
(triggering a null-pointer dereference). NG-Agent aborted the
process, while in the userfaultfd thread, triggering the bug.
Though Syzkaller fuzzes io_uring, it did not catch the bug.

Use-after-free in megaraid code: FUzzNG found a use-
after-free bug in driver code for the MegaRAID SAS RAID
controllers. The MegaRAID driver uses instance structs to
track state for individual MegaRAID devices. FUzZZNG created
an input that generated an ioctl that caused an instance
to be freed, prior to invoking a management command that
attempted to write a DMA-related physical-address into the
freed struct, triggering the error. Notably, Syzkaller does not
feature any descriptions for this device, and consequently, has
not found this bug.

E. Executions Per Second

FuzzNG implements VM-snapshot fuzzing, to facilitate
cleanup between test-cases. Unlike FUzzZNG, Syzkaller uses
a light-weight fork-server approach. We fuzzed bpf, a com-
plex, but mostly hardware-independent interface, with both
FuzzNG and Syzkaller for 24 hours on 4 cores. We found
that on average FUZZNG executes 154 test-cases per-second,
per core, while, Syzkaller executes 177 test-cases per-second,
per core. Inspecting total executions across all fuzzed compo-
nents, we found no significant deviations from this result. As
such FuzzNG’s comprehensive, VM-snapshotting approach
achieves comparable performance to Syzkaller. Furthermore,
this demonstrates that FUZZNG’s coverage, when compared
with Syzkaller, stems from its reshaping of the input space,
rather than some vast differences in execution rate.

VI. DISCUSSION

Despite FUzZzNG’s positive results, we briefly discuss
limitations and avenues of further improvement.

A. Other Kernel Fuzzers

Kernels have been a major target for fuzzing. Most ker-
nel fuzzers rely on fine-grained manually-written or inferred
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system-call grammar. FUZZNG proposes a runtime-hooking
technique to avoid the need for detailed grammars. However,
other fuzzers have examined different parts of the kernel-
fuzzing problem space. Here we discuss whether FuzzNG
is compatible with existing fuzzing approaches.

Moonshine collects and distills system-call traces (from
strace) and converts them into seeds that can be used with
Syzkaller. Future works can apply Moonshine to generate
seeds for FUzZNG (the Moonshine paper states that adding
support for non-Syzkaller fuzzers is straightforward) [38].

Healer uses relation-learning to improve the efficiency of
Syzkaller’s mutations [38]. Our experiments in Section V-B
showed that Healer’s benefit is limitted when fuzzing individ-
ual components. However, if future-works extend FUzZzZNG
to fuzz the entire kernel, Healer’s techniques could be used
to learn the relationships between system-calls generated and
executed by FUZZNG, improving fuzzing efficiency.

Other kernel fuzzers, such as Difuze and SyzGen aim
to automatically recover Syzlang descriptions for interfaces.
These approaches rely on separate stages to generate interface
grammars and fuzz using the grammars. Instead FuzzNG
operates in a single stage, reshaping the input-space to fuzz
in a single step - eliding the need for detailed grammars.

Difuze performs static-analysis over kernel code in order
to automatically infer descriptions for ioctl-based device-
interfaces [12]. In particular, Difuze places a special emphasis
on recovering, ioctl command values and argument types (by
performing inter-procedural type-propogation for operands to
copy_from_user arguments). FUZZNG performs runtime
hooking of copy_from_user operations and automatically
infers ioctl command values by collecting KCOV CMP cov-
erage. However future work could extend FUzZzZNG with a
static-stage inspired by Difuze that autoamtically generates
FuzzNG-config variations (e.g., by identifying all of the
system-calls that can interact with a subsystem).

SyzGen targets closed-source kernels (MacOS) and applies
symbolic execution to automatically recover grammars for in-
terfaces. SyzGen recovers argument types such as strings, byte-
arrays, pointers, and length fields. SyzGen outputs Syzkaller
descriptions for recovered interfaces. Since FUZZNG reshapes
the system-call input-space, it can fuzz pointers and ar-
rays, transparently, with runtime-hooking. SyzGen’s symbolic-
execution techniques can also automatically infer integer-
argument ranges, and integer arguments that represent flag-
fields, however we found that off-the-shelf fuzzing engines,
such as libfuzzer, perform well without annotations for these
fields. Nonetheless, SyzGen’s techniques could be used to
automatically provide feedback about types of arguments to
FuzzNG (without creating explit grammars), which could
potentially boost fuzzing efficiency.

B. Full-Kernel Fuzzing

A default deployment of Syzkaller fuzzes all system-
calls that have syzlang descriptions. This approach is able
to reach lines (and find bugs) that require interacting with
multiple kernel-components, simultaneously. Currently, FUZ-
ZNG cannot arbitrarily open named files, and we rely on
configs and coverage-filters to focus the fuzzer on individual



components. However, recent works show that it is possible
to apply “relation learning” to automatically infer supported
system-calls associated with each file and common sequences
of system-calls, by observing coverage [52]. By applying the
same techniques to FUZZNG, and tuning the mutator to detect
and generate meaningful input-sequences it may be possible
to fuzz the kernel without limiting the fuzzer to individual
components, or relying on configs.

VII.

Fuzzing has gained widespread attention in the academic
community. In this section, we provide a brief overview of
work related to kernel-fuzzing. A major catalyst reviving
interest in fuzzing, was the release of the American Fuzzy
Lop (AFL) [62] fuzzer, which popularized, coverage-guided,
fuzzing for a wide range of software. Researchers have focused
on improving fuzzing performance, with advancements in
input scheduling [25], [58], [43], mutation algorithms [35], [8],
[42], and input feedback [4], [63], [17]. Other systems focus
on applying concolic execution [61], [29], [28] to overcome
roadblocks, such as comparisons against “magic constants”,
and checksums [41]. Fuzzers such as AFL with laf-intel[30]
and libFuzzer[48] have applied source-code instrumentation to
identify comparisons against magic bytes and produce inputs
that can pass them. Other works have adapted fuzzers to
complex targets such as code-interpreters [60], [56], [22], [19],
compilers [31], [10], [34], network-protocols [6], [16], [13],
and virtual-devices [20], [37], [46], [45], [7]. V-Shuttle[39] has
demonstrated that complex hypervisors can be fuzzed without
grammars, by hooking key direct-memory-access APIs.

RELATED WORK

Recently, snapshot-based fuzzing has gained traction, espe-
cially for large, stateful, fuzzing-targets. Agamotto introduces
high-performance snapshots for fuzzing, based on QEMU [50].
Agamotto supports creating multiple snapshots at different
points within the target’s execution, to accelerate fuzzing. Nyx
builds upon QEMU/KVM to implement rapid register, mem-
ory and virtual-device snapshots for fuzzing [45]. Similarly,
FuzzNG implements a simple QEMU-based snapshot-fuzzer,
QEMU-Fuzz, tailored towards fuzzing the Linux kernel and
accepting KCOV-formatted coverage information.

Operating system kernels have received widespread atten-
tion within the academic community, with fuzzing systems
purpose-built for kernel race-conditions [24], file-systems [59],
and peripheral interfaces [49]. Similarly, VIA [21] fuzzes
OS-drivers to identify bugs that could compromise security-
guarantees in a confidential-computing environment, where
virtual-device code is not trusted. KAFL introduces hardware-
based coverage-collection mechanisms in order to perform
coverage-guided fuzzing of OS kernels, without source in-
strumentation [47]. Unlike these works, FUZZNG focuses on
reducing the need for descriptions and harnesses for generic
system-call fuzzing.

The system-call interface has received the most attention
within the OS fuzzing community. Starting in the 90s, there
have been multiple fuzzers created that operate simply by
generating random-arguments, such as tsys, iknowthis, sysfuzz,
xnufuzz, and kg_crashme [54]. System-call fuzzers such as
Trinity improved the naive system-call generation algorithms
by incorporating system-call descriptions[54]. As coverage-
guided fuzzers gained traction for userspace applications,
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Syzkaller was created to combine the strengths of description-
based fuzzers with coverage-guidance for fuzzing Linux. To-
day, Syzkaller is the most popular system-call fuzzer, has
been incorporated into the Linux Kernel development cycle
and has been ported to OSes, such as XNU, FreeBSD, and
Windows [14]. Syzkaller has reported thousands of bugs to
the Linux Kernel developers and has become a crucial part
of the kernel development lifecycle. Unlike past approaches,
FUzzZNG leverages kernel-hooks to achieve coverage that is
comparable to Syzkaller without the need for detailed system-
call descriptions.

Several works aim to automatically generate system-
call descriptions. Difuze performs static-analysis over ker-
nel code in order to automatically infer descriptions for
device-interfaces for fuzzing [12]. IMF relies on kernel API-
interaction logs collected with the help of application hooks,
to infer grammars for macOS system-calls[18]. SyzGen relies
on data-mining and symbolic-execution of manually-collected
log-traces to automatically create macOS system-call gram-
mars [9]. Notably, all of these systems focus on automatic
system-call description generation, however none of these
works performed comparisons with Syzkaller for interfaces
with well-defined, manual specifications. KSG uses symbolic-
execution to automatically generate syzlang descriptions that
achieve competitive coverage compared with Syzkaller, how-
ever the source-code has not been released [51]. Unlike
grammar-generation techniques, FUZZNG reshapes the ker-
nel’s input-space to make it conducive to fuzzing, rather than
requiring seed-traces and relying on extensive static/dynamic
analysis stages.

Other academic works have focused on improving
Syzkaller’s performance, without directly generating gram-
mars. Moonshine relies on seed traces of system-calls from
real-world programs to improve Syzkaller’s descriptions [38].
Healer applies relation-learning to improve Syzkaller’s system-
call sequence mutation algorithm. SyzVegas leverages machine
learning techniques to improve Syzkaller’s coverage [57].
Agamotto leverages dynamic VM snapshots to skip executing
system-calls that are common among Syzkaller inputs, increas-
ing fuzzing throughput. HFL extends Syzkaller with symbolic
execution [27]. Unlike these approaches, FUzzZNG does not
depend on manual or “learned” descriptions of system-call
behaviors. Instead, FUzZNG combines the techniques from
the older random-argument fuzzers with new coverage-guided
techniques and reshapes the system-call input-space to create
a fuzzing system that achieves competitive coverage, when
compared with description-based approaches.

VIII. CONCLUSION

FUzzNG is the first fuzzer capable of producing complex
system-call interactions without manually written system-call
descriptions or prior analysis over source-code/seed programs.
FuzzNG relies on fundamental properties of OS kernels
in order to “reshape” the system-call interface, removing
the fuzzing-roadblocks created by pointer and file-descriptor
arguments. At its core, FUZZNG simply interprets binary
inputs from a general-purpose fuzzing-engine (libFuzzer) into
sequences of system-calls. Hooks implemented in mod-NG
transparently allow FUzzNG to populate file-descriptors and
complex data-structures just in time for the kernel to access



them. The evaluation of our FUZZNG prototype shows that
it achieves 102.5% of Syzkaller’s coverage, with only 1.7%
as many lines of per-component configuration code. Further-
more, as FUzZZNG’s does not rely on any component-specific
harnesses, which can make bugs unreachable, FUzZzZNG found
bugs in functions that were covered by Syzkaller. Additionally,
even though our evaluation focused on well-tested components
of the Linux Kernel that have been fuzzed with high-coverage,
for years, we found 9 previously unknown bugs that we are
responsibly disclosing. We will open-source all FUzzZNG code
and work with upstream efforts to integrate FUZZNG so that
it can continue benefiting the Linux Kernel community.
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OXFFFF, -1]
close[-1]
fstat[-1, -1]

files = "/dev/kvm",
ioctl(-1, -1, -1]
mmap [0, O0xF000,

read[-1, -1, OXFFFF]
write[-1, -1, OXFFFF]

O_RDWR

PROT_READ | PROT_WRITE, MAP_SHARED|MAP_POPULATE,

Fig. Al: Top: Syzkaller’s 2013 lines of KVM-specific Descriptions and Harnesses. Botfom: FUZZNG config for fuzzing KVM

toctl(kvm_fd, KVM_CREATE_VM(i.e. 6xaeB1), 8)

01 [ J61 ae 00 o0o][ee 60 080 @8] 46

toctl(vm_fd, KVM_CREATE_VCPU(i.e. 6xae41), 8)

01 [ J[47 ae 00 o0o][ee 60 080 @8] 46

toctl(vcpu_fd, KVM_SET_MSRS (i.e. 6x46868ae89),
(struct *kvm_msrs)(8xf75afd26) = {6x1a, 8, ..})

01 [ J[89 ae 088 48][26 fd b5a f7] 46
la 00 00 00 06 00 00 08 B3 4d 56 4b 46 08

Fig. A2: A partial input found by FUzzZNG while fuzzing

55 ba ba
55 ba ba
55 ba ba
66 b5a ...

KVM. The

gray, italicized lines are comments that represent the system-call represented
in the subsequent line of bytes. In the input, the red bytes (ASCII for
"FUZZ”), are used to separate operations. The leftmost, blue bytes represent
the system-call index. The square brackets delimit the arguments passed to the
system-call. Yellow bytes are interpreted as file-descriptor numbers. Turquoise
bytes represent “magic” ioctl request numbers. The orange bytes represent
addresses that are accessed by the kernel. The purple bytes at the bottom are
used to fill the kernel-access. Note that we manually added these annotations
to the figure, purely for explanation purposes. FUZZNG has no inherent

knowledge about argument types, etc.

Type of bug Affected kernel function
Null-dereference io_sg_thread
Null-dereference scsi_queue_rqg
Null-dereference emulate_int
Null-dereference megasas_complete_cmd
Use—-after—-free fb_mode_is_equal
Use—-after—-free megasas_mgmt_fw_ioctl
Double-fault kvm_enter
Assertion failure sdhci_adma_table_pre
General protection fault nvme_submit_cmds

TABLE Al: New bugs found by FuzzNG
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Fig. A3: Coverage comparison between Syzkaller and FUzZNG, while fuzzing
KVM, over time. Syzkaller rapidly achieves high coverage over KVM, due to
its extensive descriptions. However, eventually FUZZNG overtakes Syzkaller.
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