Algorithmica (2023) 85:965-975
https://doi.org/10.1007/500453-022-01059-y

®

Check for
updates

Few Cuts Meet Many Point Sets

Sariel Har-Peled'® - Mitchell Jones'

Received: 19 May 2020 / Accepted: 2 November 2022 / Published online: 14 November 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract

We study the problem of how to split many point sets in R into smaller parts using
a few (shared) splitting hyperplanes. This problem is related to the classical Ham-
Sandwich Theorem. We provide a logarithmic approximation to the optimal solution
using the greedy algorithm for submodular optimization.

Keywords Ham-Sandwich Theorem - Submodular optimization - Approximation
algorithms

1 Introduction
1.1 Motivation and the Problem

A basic problem in algorithms is partitioning the data effectively, so that one can
apply divide and conquer algorithms. Recently, there was significant progress [1-3]
on using polynomials to perform such partitions (e.g., polynomial Ham-Sandwich
Theorem) to derive better combinatorial bounds (and in some cases, algorithms).
Thus, polynomials provide a “universal” solution to this problem—however, there are
some technical difficulties in handling polynomials efficiently. This work deals with
alternative efficient partitioning geometric schemes using lines or hyperplanes.

Example: Separating points by a polynomial As a concrete example, consider the
problem of splitting a point set P C R? into singletons. This requires computing a
non-zero polynomial p(x, y), with a zero set Z = {(x, y) € R? ‘ px,y) = O}, such
that for every point of P\ Z lies in its own connected component of R? \ Z.

B Sariel Har-Peled
sariel @illinois.edu

Mitchell Jones
mitchell.jones1994 @ gmail.com

Department of Computer Science, University of Illinois Urbana-Champaign, 201 N. Goodwin
Avenue, Urbana, IL 61801, USA

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-022-01059-y&domain=pdf
http://orcid.org/0000-0003-2638-9635

966 Algorithmica (2023) 85:965-975

Such a polynomial can be computed using the polynomial Ham-Sandwich theo-
rem. At the ith stage, the point set is partitioned into 2' sets Py, ..., Pz’,. of similar

cardinality. The idea is now to lift the points of P into 2 dimensions. To this end,
let F (i) be the set of the first i monomials over x and y ordered lexicographically
by their degrees (i.e., F(i) = {x, y, xy, x2, y2, Xy, x3, .. .}). One then map a point
(x,y) € R2, to the corresponding point (x, y, xy, x2, y2, x3, .. .) in 2! dimensions,
where each coordinate is a monomial from the set F (7). In the lifted space, one can
now halve all 2/ sets by a single hyperplane, as guaranteed by the Ham-Sandwich
Theorem, which in the original plane corresponds to a polynomial. This breaks P into
2i*1 sets, and one continues to the next iteration. If f; is the polynomial computed
in the ith iteration, for i = 1,...,h = logn, then the zero set Z; of the product

polynomial f(x,y) =]_[f‘=1 fi(x, y) breaks the plane into the desired components,
as can be easily verified.

Why partitioning by polynomials is sometime not sufficient

The main issue is that the zero sets of polynomials are not easy to manipulate. If one
preserves the representation of f as a product polynomial, as described above, then
it is easy to decide if two points have the same sign pattern. Note that two points that
have the same sign pattern might not be in the same connected component of R?\ Z f-
In particular, deciding if two points are in the same connected component becomes
much harder if the polynomial is not provided in this product form. Furthermore, this
representation is not easy to modify and adapt (for example, modifying the represen-
tation if a few more points are inserted). As mentioned above, a natural alternative is
to separate points by lines (or hyperplanes in higher dimensions). Here, two points
p, q are separated by a given set of lines if there is at least one line in the set that
intersects the interior of the segment pq.

The specific problem: Halving point sets The input is m sets Py, ..., P, of points
in R9, not necessarily disjoint (with m > d). Our goal is to split these sets into
equal parts using a minimal number of hyperplanes. For m < d, the Ham-Sandwich
Theorem states that one can bisect all of the sets using a single hyperplane. However,
for m > d and non-degenerate inputs, this is no longer possible. In particular, the
number of point sets m might be significantly larger than d. As already demonstrated,
one way to get around this restriction is via the polynomial Ham-Sandwich Theorem
[4].

Here, we are interested in what can be done with restricted entities, such as (several)
hyperplanes. To keep the problem feasible, we somewhat relax the problem—the
requirement is no longer that each piece of P; is exactly half the size of the original
set, but rather that it is sufficiently small, as formally specified next.

Problem 1 Let Py, ..., P, be m > d point sets in RY, not necessarily disjoint, with
n= Zi |P;|. Let iy, ..., i, be integers with 0 < u; < | P;|. The goal is to compute
the smallest set of hyperplanes H, such that for every cell ¢ in the arrangement A (H)
of hyperplanes, |P; N | < u; for all i. See Fig. 1 for an example.

@ Springer

Algorithmica (2023) 85:965-975 967

Fig.1 Given three point sets,
suppose the goal is to break the
green (cross) point set into sets
with at most three points, the
blue (dot) point set into sets with
at most four points, and the red
(square) point set into sets with
at most two points. This can be
achieved using two separating
lines (Color figure online)

This problem is interesting even ford = 2,m = 1, and 1 = 1 —this is the problem
of breaking a set of points in the plane into singletons using lines. Currently, only a
logarithmic approximation is known [5].

Applications

One natural application of this problem comes from machine learning. Given a
(single) point set P of size n in R? and a collection of features fi, ..., f,,, where
fi i RY — R, f; distinguishes between two points p and ¢ if f;(p) and f;(g) have
different signs. Given a collection of features S € {fi, ..., fin} one can assign each
point p a vector,! vs(p) € {—1, 1}!S!, where each entry of vg(p) is the sign of a
feature in S evaluated at p. The point vs(p) is the signature of p with respect to S.
Consider the task of choosing a subset of features S € {f1, ..., fin}, where |S| is as
small as possible, such that forany u € {—1, 1}‘5 | the number of points with the same
signature as u is at most n/2, formally |{p € P | u = vs(p)}| < n/c, with ¢ = 2.
The choice ¢ = 2 in the last statement is arbitrary—but there is a tradeoff between the
value of ¢ and the size of S. For example, if we fix the size of S, then ¢ = 2151 is not
feasible for | S| > d, when using hyperplanes, as an arrangement of | S| hyperplanes
in R has only T = O(|S|?) « 2!5! different cells (of various dimensions). The later
implies that one cell of the arrangement must be assigned at leastn/t > n/215 = n/c

points of P.

Furthermore, one would like to apply this to several point sets Py, ..., Py, so one
can select the smallest number of features (i.e., |S|) such that for all u € {—1, 1}I5],
Hp e P lu=vs(p)} <|P]|/2,foralli =1,...,£. A natural scenario for such an

application is in the realm of big data. Given a collection of (large) data sets, it needs
to be divided among different computers. The fewer the features needed to get a split
as described above, the faster one can decide where to send each input point. Here,
the required guarantee is that each set gets reduced to at most half its size.

Thus, once one decides which features to use, one can scan the data and compute for
each input point its signature, which determines where it is being stored. This naturally
can be done in a distributed fashion, so that each computer/node has to compute the
signature only for a small portion of the data.

! For the sake simplicity of exposition, we ignore here the case that the sign is zero.

@ Springer

968 Algorithmica (2023) 85:965-975

For the case where all the points have to be singletons in the induced partition
of features, this can be interpreted as a non-linear dimension reduction of the input
set into a hypercube, where the dimension of the hypercube is as small as possible.
Indeed, once we picked a set of s hyperplanes, Ay, ..., ks, each one of them has an
associated sign function f;(p) € {—1, 1}, where a point p (not lying on any of the
planes) has f;(x) = 1 if p is on one side of /;, and —1 if p is on the other size. This
naturally defines an embedding of P to the hypercube {—1, 1}*, as for all p € P, we

have F(p) = (f1(p). ..., fs(p)) € {0, 1}*.

1.2 Background

Ham sandwich theorem The Ham-Sandwich Theorem is a well studied problem in both
mathematics and computer science. Since its inception, there have been many results
related to computing such cuts in higher dimensions [6], as well as generalizations of
the theorem [4, 7-10]. For example, one such generalization is the following: Given

well separated convex bodies Cp,...,Cy in R4 and constants wi € [0, 1], there
exists a unique hyperplane % that contains at least a p; fraction of the volume on
the positive side h* fori = 1, ..., d [7]. This result was then extended to discrete

point sets under certain conditions [11]. Notably, in this paper we consider the case
when the number of point sets can be much larger than the ambient dimension d. The
problem of simultaneously bisecting more than d convex bodies in R? using multiple
hyperplanes has been studied combinatorially [8, 10], whereas our focus is on the
algorithmic aspects.

Other generalizations include the polynomial Ham-Sandwich Theorem, in which
one is interested in partitioning a point set using polynomials rather than hyperplanes
[4, 12]. This generalization, and the original Ham-Sandwich Theorem has a variety of
applications in geometric range searching [13, 14].

Fartial set cover

An instance of the set cover problem is a pair (G, IT), where G is the ground set,
and IT C 2C is set of (hyper)edges. The problem is to compute edges fi, ..., f; € II,
such that U; f; = G. Usually, one wants to minimize t—the number of edges used.

In the partial set cover problem, one is interested in covering at least a certain number
of the elements in a set system (this number is the demand of this instance), using
as few sets as possible. Specifically, an instance of this problem is a tuple (G, IT, d)
(first two parameters are as in the set cover problem, and d > 0), and the problem is
to compute edges fi, ..., f; € II, such that |U§=] fi| = d (again, the target is usually
to minimize ¢). For our purposes, we need a parallel version of this problem. This
variant is formally defined in Problem 5 below. In this parallel version, there are many
set systems sharing sets, each with its own demand, where the demand is the minimal
number of elements that have to be covered in each instance.

For the standard partial set cover problem, an O (logn)-approximation is well
known, and follows from the greedy algorithm (see below for details). In geometric
settings, Inamdar and Varadarajan [15] showed that partial set cover can be approx-
imated to within O (), where § is the approximation ratio for the set cover version
of the problem. Because many geometric problems admit much better than O (logn)-

@ Springer

Algorithmica (2023) 85:965-975 969

approximations, this results in an improvement to the partial set cover version of the
problem. However, it is not clear how to apply their algorithm in the parallel setting.

1.3 Our Results

We reduce Problem 1 to a generalized instance of partial set cover, where we allow
multiple ground sets, with different demands, and show that the standard greedy algo-
rithm for submodular optimization can be applied to this problem.

Sketch of the greedy algorithm To solve Problem 1, let U = U; P; and let H be the
collection of all combinatorially different hyperplanes with respect to U. Consider the
arrangement 4 = A(H) of H. We introduce an edge between a pair of points of P if
they lie in the same cell of 4. If we consider the process of adding the hyperplanes from
H as anincremental process, then initially every point is in the same cell as all the other
points. Modeling this as a graph, we start with a clique, and every hyperplane /4 added
disconnects the edges which correspond to segments that 4 intersects. In particular, a
point is in a cell with at most m points if it has degree m — 1 in the remaining graph.
As such, this can be interpreted as a parallel version of set cover, where every vertex
induces its own instance, which requires a certain number of edges adjacent to it to
be covered (i.e., cut). Naturally, parallel versions of set cover can be solved using a
greedy algorithm that picks the hyperplane that cuts the largest number of edges that
still need cutting (being somewhat informal). However, it is somewhat more natural
to describe the greedy algorithm using the framework of submodular optimization.

Paper organization In Sect.2 we provide the necessary background on minimization
under submodular constraint needed for our main result. We then show how to solve the
multiple partial set cover problem in Sect. 3.1. Next, in Sect. 3.2, we study the problem
of partitioning a set into smaller sets, such that each element in each of the smaller sets
meet a given demand requirement. The final result, stated in Theorem 15, provides
a logarithmic approximation for our problem by reducing it to the aforementioned
problems.

2 Preliminaries

For a set X, and an element x, let X +x = X U {x},and X —x = X \ {x}. A set
system is a pair (G, IT), with IT C 26 . The set system (G, IT) can also be viewed as
a hypergraph with the vertex set G, and the sets in IT as (hyper) edges .

2.1 Submodular Minimization

For the sake of completeness, we describe the greedy algorithm for finding a minimal
solution satisfying an integer valued submodular constraint. In this case, the task is to
compute the smallest set of edges that provides the same utility as using all the edges
available.

@ Springer

970 Algorithmica (2023) 85:965-975

Let (G, IT) be a given set system, and assume we have a monotone (non-negative)
function f : 2 _, 7. Here a function is monotone if Z C Y C II implies that
f(Z2) < f(Y) < f(I0). Intuitively, the function f(Z) measures the benefit of a set
Z — the higher the value of f is, the higher the benefit. In particular, fiax = f(IT) is
the maximum benefit possible.

We also assume that f is submodular, that is for any € € I1, and forall Z € Y C
I\ {e}, we have that

Aze)=f(Z+e)— f(2) = fV+e) — fQ)=Ay(e).

Submodularity is known in economics as diminishing returns— the marginal benefit
(per unit) of allocating more resources to solve a problem decreases as more resources
are allocated.

Problem 2 Under the above settings, the problem at hand is to compute (or approxi-
mate) the smallest (cardinality) set O C I1, such that f(O) = fmax-

Example 3 Consider an instance of set cover (G, 1), with n = |G|. Given a family
Z C I of edges, its benefit is the number of elements in G the edges of Z cover. That
is, f(2) = |U% cz% | It is not hard to verify that f is monotone and submodular.
Solving Problem 2 here corresponds to computing a minimum set cover for G.

Consider the greedy algorithm that starts with an empty solution Cp. In the ith
iteration, the algorithm picks the edge €; € IT that maximizes the value f(Ci—1 +
€;) — f(Ci—1), and updates C; = C;_1 + €. The algorithm stops when f(C;) =
fmax = f(n)

Theorem 4 [Wolsey [16]] Given a set system (G, I1), and a non-negative monotone
submodular function f : 21" — 7, the greedy algorithm, described above, outputs a
solution with O (klog fmax) edges of T1, where k = |O| is the size of the smallest set
O C U such that f(O) = fmax = f(IT).

For the sake of completeness we include the proof in “Appendix A”.

3 Problems and Reductions
3.1 PCMS: Partial Cover for Multiple Sets

Problem5 [PCMS | The input is a set system (U, II), and a collection § =
{G; CU|i=1,...,m}of ground sets, where the universe U is of size n. In addition,
each ground set G; has a demand , denoted by d(G;), which is a non-negative integer.
A valid solution for such an instance, is a collection) C I, such that |_J Yy covers
at least d(G;) elements of G;, fori =1, ..., m.

yey

Remark 6 In the following, to simplify the exposition, we assume that the given
instances being solved are feasible. Otherwise, the approximation algorithm would
fail to generate a solution thus proving the unfeasibility of the given instance.

@ Springer

Algorithmica (2023) 85:965-975 971

Lemma7 Let (U, G, 1) be an instance of partial cover of multiple sets (PCMS), where
n = |U|, G is afamily of m ground sets, and T1 is a family of edges. Furthermore, each
ground set of G has an associated demand. Then, the greedy algorithm computes, in
polynomial time, an 0(10g(mn))-appr0ximati0n to the minimal size set O C I1 that
meets all the demands of the ground sets.

Proof Consider a partial solution C C TII. The service of C to G; is
£(©) =min(|G; N (UCO)|, d(Gy)),

where UC = U, _, €. That is, as long as the demand of d(G,) is not met, f;(C) is the
number of elements of G; the union of the edges of C covers. Once the demand is
met, f; is maxed out at d(G;). Observe that f;(J) = 0, f; is clearly monotone, and
its maximal value is d(G;) < n. As for submodularity, consider sets Z €) C II,
and an edge ¢ € T1, and note that £;(Z +¢) — fi(2) > fi(¥+¢) — fi(}), as ¢
potentially covers more new elements of G; when added to a smaller cover. For the
given PCMS instance and a solution Z C TII, the target function is

f&) =) fi(2).
i=1

The function f is a sum of submodular functions. As such, f is submodular itself.
Observe that f(IT) < mn. Now, using the algorithm of Theorem 4 implies the result.
O

Remark 8 One can obtain an O (log m)-approximation for Problem 5 via LP rounding
[17], which is useful when m is much smaller than n. However, for our main application
(see Lemma 12), this does not change our final result as the number of ground sets is
polynomial in n (i.e., m = ©(n?) in our case).

3.2 Cutting a Set into Smaller Pieces

We are given a set-system (G, IT), where n = |G|. A set Z C II of edges, induces
a natural partition of G, where two elements x, y € G are in the same set of the
partition <= x and y belong to the same set of edges in Z. Formally, x = y <
ZNx=ZNy,where ZNx ={f € Z|x € f}. The partition of G induced by Z
(i.e., the equivalence classes of =) is the arrangement of Z, denoted by A(Z2). A set
of A(Z) is a face of A(Z). For an element x € G, the face of A(Z) that contains x
is denoted by face(x, 2).

Example 9 For G = {1,2,3,4,5},and Z = {{1,2, 3}, {3, 4, 5}}, we have

A2) = {{1,2}, {3}, {4, 5}}.

Problem 10 [Reduce by half] Given a set system (G, I1), with n = |G|, find a mini-
mum sized set Z C TIT such that every face of A(Z) is of size at most n/2.

@ Springer

972 Algorithmica (2023) 85:965-975

Problem 11 [PTD: Partition to demand] Given a set system (G, IT), where n = |G|,
and an integral demand d(v) > 0, for each v € G, find a minimum sized set Z C II,
such that for every v € G, |face(v, Z)| < d(v).

Observe that Problem 10 can be reduced to Problem 11 by setting the demand of
every vertex in the ground set to n /2.

Lemma 12 Givenaninstance (G, IT) of PTD, withn = |G|, thereis a greedy algorithm
that computes, in polynomial time, an O (log n)-approximation to the optimal solution.

Proof Consider the complete graph K, = (G, E), where E = {xy | x, y € G}. For
every element x € G, consider the associated cut E, = {xy |y € G — x}. A set
e € I cuts xy if |€ N {x, y}| = 1. In particular, let cut(e) = {xy | x € €,y € G\¢}
be the set of edges of K, that € cuts.

Now, a set of edges YV < I meets the demand of v € G, if the edges of) cut at
least n — d(v) edges of E, (e.g., if d(v) = n — 1, then one needs to cut one edge
attached to v). Put differently, the partial cover | J,, ey cut(e) covers at least n — d(v)
edges of E,. Thus, let U’ = E be the universe set, and G’ = {E, | v € G} be the set
of ground sets. Here a ground set E,, € G’ has demand d(E,) = n — d(v). The family
of allowable sets to be used in the cover is 1" = {cut(e) | € € I1}.

The triple (U’, G’, TT') is an instance of PCMS, with n’ = |U/| = 0(n?) and
m = ‘Q’] = n. The greedy algorithm yields an O (log(n’m’))-approximation in this
case, by Lemma 7. As log(n'm’) = O(logn), the claim follows. O

3.3 Cutting a Ham-Sandwich into Small Pieces

Problem 13 [RMC: Reduce measures via cuts] The input is a triplet (U, G, IT) with
n=|U|.Here G ={G; CU |i=1,...,m}is a collection of ground sets that are
not necessarily disjoint, and IT € 2V is a collection of edges. For every ground set
G, there is an associated target size (t; < |G;|. The problem is to compute a minimal
set O C TII, such that, for all i, and any face ¥ of A(O), we have | N G;| < w;.

Lemma 14 Given a feasible instance (U, G, I1) of RMC with n = |U| and m = |G|,
one can compute, in polynomial time, an O (log(nm))-approximation to the smallest
set O C T that satisfies the given instance.

Proof For a set G; € G, and an element v € U, let d; (v) = u;, if v € G;, and oth-
erwise d; (v) = n. The pair (U, IT) with the demand function d; (-) form an instance
of PTD (Problem 11), and its approximation algorithm (see Lemma 12) has an associ-
ated submodular function f;(-), that is non-negative, monotone, submodular and has
maximum value at most n2.

Consider the submodular function f =)", f;, and let fyax = f(IT). Clearly, f is
submodular, monotone, and has maximum value at most mn?2. Furthermore, a subset
Y C I1 such that f())) = fmax is a valid solution to the given instance. As such, one
can plug this into the algorithm of Theorem 4 and get the desired approximation. 0O

With all of the ingredients assembled, we are ready to tackle Problem 1.

@ Springer

Algorithmica (2023) 85:965-975 973

Theorem 15 Let Py, ..., P, be m (not necessarily disjoint) point sets in RY, where
n= Zi | P;|. For each point set P;, we are given an integer parameter 0 < u; < | P;|.
The task at hand is to compute a minimal set of hyperplanes H such that for every face
V in the arrangement A(H), W contains at most ju; points of P, foralli =1, ..., m.
One can 0(log(mn))-appr0ximate, in 0(mnd+3) time, the optimal solution.

Proof The reduction is straightforward and uses Lemma 14. Let the shared ground set
be U = U; P;. Let G be the family of ground sets {G; = P; | i = 1, ..., m}. Finally,
let H be the (finite) number of combinatorially different hyperplanes with respect to
U.Foreachh € H,let h* be one of the two halfspaces bounded by & (which halfspace
is not important — taking the other one corresponds to “flipping” the corresponding
coordinate of the signature induced the arrangement). Add the set { peU | p e h*} to
the collection of subsets I1. The values p; remain unchanged. This forms an instance
of Problem 13, and thus we can apply Lemma 14 to obtain the desired separating
hyperplanes.

As for the running time, computing the set system takes O (n?*2) time by brute
force. Indeed, unraveling the above reduction, the shared ground set is made of (’;)
pairs of points of U. Every point has up to m different sets of such pairs that needs to be
partially covered. Fortunately, there are only O (n?) edges in the resulting set system.
Evaluating the contribution of a new edge (in the set system) to the target function
takes O (n2m) time. As there are O (n?) edges in set system, it follows that evaluating
all edges takes O (n%*2m) time. Finally, it is easy to verify that the algorithm performs
at most n iterations. O

No effort was made to improve the running time of the algorithm of Theorem 15.

4 Open Problems

The most natural open problem is to improve the approximation quality of Theorem
15. The same applies to all the other problems here, which potentially might have better
approximation ratios because of the underlying geometry. On the other hand, it would
be interesting to prove (conditional) lower bounds on the hardness of approximation
of these problems.

Acknowledgements Sariel Har-Peled was partially supported by NSF AF awards CCF-1421231, CCF-
1217462, and CCF-1907400. Mitchell Jones was partially supported by NSF AF awards CCF-1421231 and
CCF-1907400. The authors also thank the anonymous referees for their detailed and useful feedback.

Declaration
Conflict of interest The authors declare that they have no conflict of interest.

Appendix A Proof of Theorem 4

Proof This result is by now classical, and we include the proof only for the sake of
completeness. Let O = {01, ..., 0} be the optimal solution. Consider a current

@ Springer

974 Algorithmica (2023) 85:965-975

solution C; C IT at iteration 7, and observe that by monotonicity, we have

fmax = f(o) = f(Cz U O) = fmax~

As such, we have f(C; U Q) = fiax- Let A; = f(O) — f(C;) be the deficiency of
Ci.For j =0,...,k, letSj =C U {01, - ,Oj} . Set(S./ = f(S/) — f(Sj_l). We
have that

k
Z(Sj = f(CUO) = f(Ci) = fmax — f(Ci) = A,

j=1
Hence, there is an index j, such that §; > A; /k. Now, by submodularity, we have that
FCi+oj)—f(C) = f(Sj-1+0))— f(Sj-1) =38 = Ai/k.

However, the greedy algorithm adds an element € that maximizes the value of A¢, (€),
which is at least A; /k. Put differently, the added element decreases the deficiency of
the current solution by a factor < 1 — 1/k. Therefore the deficiency in the end of the
ith iteration is at most A; < (1 — 1/k)!Ag = (1 — 1/k) f(O). This quantity is less
than one for i = O (k1og fmax)- O

References

1. Matousek, J., Patdkovd, Z.: Multilevel polynomial partitions and simplified range searching. Disc.
Comput. Geom. 54(1), 2241 (2015). https://doi.org/10.1007/s00454-015-9701-2
2. Agarwal, PX., Aronov, B., Ezra, E., Zahl, J.: Efficient algorithm for generalized polynomial partitioning
and its applications. SIAM J. Comput. 50(2), 760-787 (2021). https://doi.org/10.1137/19M 1268550
3. Sheffer, A.: Polynomial Methods and Incidence Theory. Cambridge University Press, Cambridge
(2022). https://doi.org/10.1017/9781108959988
4. Stone, A.H., Tukey, J.W.: Generalized “sandwich” theorems. Duke Math. J. 9(2), 356-359 (1942).
https://doi.org/10.1215/S0012-7094-42-00925-6
5. Har-Peled, S., Jones, M.: On separating points by lines. Disc. Comput. Geom. 63(3), 705-730 (2020).
https://doi.org/10.1007/s00454-019-00103-z
6. Lo, C.-Y., Matousek, J., Steiger, W.: Algorithms for ham-sandwich cuts. Disc. Comput. Geom. 11,
433-452 (1994). https://doi.org/10.1007/BF02574017
7. Bdrany, 1., Hubard, A., Jer6nimo, J.: Slicing convex sets and measures by a hyperplane. Disc. Comput.
Geom. 39(1-3), 67-75 (2008). https://doi.org/10.1007/s00454-007-9021-2
8. Blagojevié, P.V., Soberén, P.: Thieves can make sandwiches. Bull. Lond. Math. Soc. 50(1), 108-123
(2018). https://doi.org/10.1112/blms.12109
9. Ramos, E.A.: Equipartition of mass distributions by hyperplanes. Disc. Comput. Geom. 15(2), 147-167
(1996). https://doi.org/10.1007/BF02717729
10. Schnider, P.: Ham-sandwich cuts and center transversals in subspaces. In: Proc. 35th Int. Annu. Sympos.
Comput. Geom. (SoCG). LIPIcs, vol. 129, pp. 56— 15615 (2019). https://doi.org/10.4230/LIPIcs.
S0CG.2019.56
11. Steiger, W., Zhao, J.: Generalized ham-sandwich cuts. Disc. Comput. Geom. 44(3), 535-545 (2010).
https://doi.org/10.1007/s00454-009-9225-8
12. Kaplan, H., Matousek, J., Sharir, M.: Simple proofs of classical theorems in discrete geometry via the
Guth-Katz polynomial partitioning technique. Disc. Comput. Geom. 48(3), 499-517 (2012). https://
doi.org/10.1007/300454-012-9443-3

@ Springer

https://doi.org/10.1007/s00454-015-9701-2
https://doi.org/10.1137/19M1268550
https://doi.org/10.1017/9781108959988
https://doi.org/10.1215/S0012-7094-42-00925-6
https://doi.org/10.1007/s00454-019-00103-z
https://doi.org/10.1007/BF02574017
https://doi.org/10.1007/s00454-007-9021-2
https://doi.org/10.1112/blms.12109
https://doi.org/10.1007/BF02717729
https://doi.org/10.4230/LIPIcs.SoCG.2019.56
https://doi.org/10.4230/LIPIcs.SoCG.2019.56
https://doi.org/10.1007/s00454-009-9225-8
https://doi.org/10.1007/s00454-012-9443-3
https://doi.org/10.1007/s00454-012-9443-3

Algorithmica (2023) 85:965-975 975

13.

14.

15.

16.

17.

Agarwal, P.K., Matousek, J., Sharir, M.: On range searching with semialgebraic sets. II. SIAM J.
Comput. 42(6), 2039-2062 (2013). https://doi.org/10.1137/120890855

Matousek, J.: Geometric range searching. ACM Comput. Surv. 26(4), 421-461 (1994). https://doi.org/
10.1145/197405.197408

Inamdar, T., Varadarajan, K.R.: On partial covering for geometric set systems. In: Speckmann, B.,
Téth, C.D. (eds.) Proc. 34th Int. Annu. Sympos. Comput. Geom. (SoCG). LIPIcs, vol. 99, pp. 47—
14714. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Wadern, Germany (2018). https://doi.
org/10.4230/LIPIcs.SoCG.2018.47

Wolsey, L.A.: An analysis of the greedy algorithm for the submodular set covering problem. Combi-
natorica 2(4), 385-393 (1982). https://doi.org/10.1007/BF02579435

Kolliopoulos, S.G., Young, N.E.: Approximation algorithms for covering/packing integer programs.
J. Comput. Syst. Sci. 71(4), 495-505 (2005). https://doi.org/10.1016/].jcss.2005.05.002

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable

law.

@ Springer

https://doi.org/10.1137/120890855
https://doi.org/10.1145/197405.197408
https://doi.org/10.1145/197405.197408
https://doi.org/10.4230/LIPIcs.SoCG.2018.47
https://doi.org/10.4230/LIPIcs.SoCG.2018.47
https://doi.org/10.1007/BF02579435
https://doi.org/10.1016/j.jcss.2005.05.002

	Few Cuts Meet Many Point Sets
	Abstract
	1 Introduction
	1.1 Motivation and the Problem
	1.2 Background
	1.3 Our Results

	2 Preliminaries
	2.1 Submodular Minimization

	3 Problems and Reductions
	3.1 PCMS: Partial Cover for Multiple Sets
	3.2 Cutting a Set into Smaller Pieces
	3.3 Cutting a Ham-Sandwich into Small Pieces

	4 Open Problems
	Acknowledgements
	Appendix A Proof of Theorem 4
	References

