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ABSTRACT
Saliency methods are a common class of machine learning inter-
pretability techniques that calculate how important each input
feature is to a model’s output. We �nd that, with the rapid pace of
development, users struggle to stay informed of the strengths and
limitations of new methods and, thus, choose methods for unprin-
cipled reasons (e.g., popularity). Moreover, despite a corresponding
rise in evaluation metrics, existing approaches assume universal
desiderata for saliency methods (e.g., faithfulness) that do not ac-
count for diverse user needs. In response, we introduce saliency
cards: structured documentation of how saliency methods oper-
ate and their performance across a battery of evaluative metrics.
Through a review of 25 saliency method papers and 33 method
evaluations, we identify 10 attributes that users should account for
when choosing a method. We group these attributes into three cate-
gories that span the process of computing and interpreting saliency:
methodology, or how the saliency is calculated; sensitivity, or the
relationship between the saliency and the underlying model and
data; and, perceptibility, or how an end user ultimately interprets
the result. By collating this information, saliency cards allow users
to more holistically assess and compare the implications of di�erent
methods. Through nine semi-structured interviews with users from
various backgrounds, including researchers, radiologists, and com-
putational biologists, we �nd that saliency cards provide a detailed
vocabulary for discussing individual methods and allow for a more
systematic selection of task-appropriate methods. Moreover, with
saliency cards, we are able to analyze the research landscape in a
more structured fashion to identify opportunities for new methods
and evaluation metrics for unmet user needs.

CCS CONCEPTS
• Computing methodologies ! Machine learning; • Software
and its engineering! Documentation; Software evolution;

∗Both authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution International
4.0 License.

FAccT ’23, June 12–15, 2023, Chicago, IL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0192-4/23/06.
https://doi.org/10.1145/3593013.3593997

• General and reference ! Evaluation; • Human-centered
computing ! User studies.

KEYWORDS
saliency cards, transparency, interpretability, documentation,
saliency

ACM Reference Format:
Angie Boggust, Harini Suresh, Hendrik Strobelt, John Guttag, and Arvind
Satyanarayan. 2023. Saliency Cards: A Framework to Characterize and Com-
pare Saliency Methods. In 2023 ACM Conference on Fairness, Accountability,
and Transparency (FAccT ’23), June 12–15, 2023, Chicago, IL, USA. ACM, New
York, NY, USA, 19 pages. https://doi.org/10.1145/3593013.3593997

1 INTRODUCTION
As machine learning (ML) systems are deployed in real-world con-
texts, stakeholder interviews [12, 76], design best practices [5], and
legal frameworks [25] have underscored the need for explainability.
Saliency methods— a class of explanation methods that identify
input features important to an ML model’s output— are frequently
used to provide explanations. Saliency methods have helped ML re-
searchers evaluate new models [13, 44], clinicians make AI-assisted
patient care decisions [59], and users deploy fair and generalizable
models [62]. As the popularity of saliency methods has grown, the
number and diversity of saliency methods have correspondingly
increased [24, 28, 39, 49, 57, 62, 66, 69–72]. However, since each
saliency method operates di�erently according to its algorithmic
goals, con�icts have arisen as multiple methods can produce vary-
ing explanations for the same model and input [43].

Researchers have proposed metrics to evaluate the e�ectiveness
of saliency methods [1, 23, 47, 75, 82]. While promising, these ap-
proaches assume universal desiderata all saliency methods must
achieve to be worth considering. Evaluations are often described
as “tests” [23], “sanity checks” [1], or “axioms” [72], suggesting the
existence of an ideal saliency method that passes every possible
evaluation. However, this framing overlooks that saliency methods
are abstractions of model behavior. They cannot o�er a complete or
wholly accurate re�ection of a model’s behavior (akin to a printout
of model weights), so saliency methods must decide what informa-
tion to preserve and sacri�ce. Critically, saliencymethod abstraction
decisions are motivated by downstream human-centric goals, such
as generalizability [15, 49, 62], algorithmic simplicity [15], or per-
ceptibility [39, 70]. Given the rich diversity in end-user expertise
and needs [43, 74], it is unlikely that one set of abstraction decisions
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will support all users, contexts, and tasks. How, then, should end
users characterize and compare saliency methods to choose the
most suitable one for their particular application?

The lack of standardized documentation for saliency methods
and evaluative metrics makes it challenging to determine the bene-
�ts and limitations of particular methods and identify di�erences
between them. Without resources equivalent to model cards [51]
or datasheets [29], users are left to reference a potential sequence
of research papers, including the original saliency method and
all subsequent evaluations. Given the in�ux of saliency method
research, this is a prohibitively time-consuming process and is es-
pecially out-of-reach for the broad class of users without a research
background in machine learning, like clinicians, lawmakers, and
engineers. Moreover, this piecemeal assembly of information con-
siders each evaluative result in isolation, making it challenging to
reason about whether desirable properties of a saliency method
(e.g., input sensitivity [80] and minimality [15]) may be in tension
with one another. As a result, and as we �nd through a series of
interviews, users currently select saliency methods in unprincipled
manners, such as choosing a method based on its popularity instead
of a thorough understanding of its strengths and limitations.

In response, we introduce saliency cards: a structured documen-
tation of how a saliency method is designed, operates, and performs
across evaluative metrics. Re�ecting the diversity of user needs, we
identify ten attributes of saliency methods that users may wish to
consider when choosing a particular approach. To facilitate compre-
hension, we group these attributes into three categories correspond-
ing to di�erent parts of the process of computing and interpreting
saliency: methodology, or how the saliency is calculated; sensitivity,
or relationships between the saliency and the model, input, or label;
and perceptibility, or how a user perceives the output saliency. By
collating this information, saliency cards help surface a method’s
strengths and weaknesses more holistically than individual paper
results. Moreover, by o�ering a standard structure and visual de-
sign, saliency cards allow users to more easily compare methods,
and more carefully reason about tradeo�s that might otherwise
have been unapparent in the method design.

To evaluate the usefulness of saliency cards, we conduct a semi-
structured interview study with nine saliency method users from
diverse backgrounds, including saliency method developers, ML
researchers, radiologists, computational biologists, and consul-
tants. We �nd that saliency cards help users systematically se-
lect a saliency method that meets their needs. While previously,
users chose saliency methods based on popularity or familiarity,
with saliency cards, users prioritized attributes based on their task
requirements. Using the visual format of saliency cards, users ef-
�ciently analyzed their prioritized attributes and weighed trade-
o�s between saliency methods to uncover the method best suited
to their task. Saliency card attributes also provided a shared vo-
cabulary to discuss saliency methods, enabling users to precisely
communicate their preferences, regardless of their prior experience
with machine learning. Standardized documentation enabled side-
by-side comparison, revealing ripe areas for future work, including
saliency methods designed for a speci�c set of priorities, additional
evaluation metrics for understudied attributes, and customized eval-
uations based on a user’s data and models.

Saliency card templates and examples are available at:
https://github.com/mitvis/saliency-cards.

2 RELATEDWORK
Saliency methods (often referred to as feature attribution methods)
are popular techniques for explaining a machine learning model’s
decision. Given an input, model, and target label, saliency methods
compute a feature-wise importance score describing each feature’s
in�uence on the model’s output for the target label. However, each
saliency method computes these feature importances di�erently.
Gradient-based methods, such as guided backpropagation [71] and
Grad-CAM [66], compute importance using the model’s gradients.
Perturbation-based methods, such as SHAP [49] and RISE [57],
measure importance by modifying input features and measuring
the model’s response. And path-based methods, such as integrated
gradients [72] and XRAI [39], compute feature importances by com-
paring model outputs for the actual input to a meaningless input.
While these granular categorizations [52] sort saliency methods
based on algorithmic di�erences, they do not capture the complete
set of considerations. Two gradient-based methods can operate
di�erently, apply to separate tasks, and have distinct usage con-
siderations. Saliency cards expand upon existing categorization
criteria by documenting the saliency method’s algorithm as well as
other usage considerations, such as its hyperparameters and how
to set them, dependence on model architectures, computational
constraints, and sources of non-determinism.

As the popularity of saliencymethods has grown, a related line of
research has begun evaluating saliency methods’ faithfulness— i.e.,
their ability to accurately represent the model’s decision-making
process. These evaluations are varied and include measuring the
impact of adversarial perturbations [30], model randomization [1],
dataset shifts [40], and input dropout [63] on the saliency output.
However, its common for saliency methods to pass some faithful-
ness tests while failing others [75]. These discrepancies re�ect the
fact that faithfulness is too broad of a goal for evaluating saliency
methods. As abstractions of model behavior, saliency methods
necessarily preserve and sacri�ce information in service of other
human-centered goals such as simplicity or perceptibility. Depend-
ing on the use case, a user may accept a method that performs
poorly on an evaluation that is low-priority for their task. Saliency
cards lend a structure to these existing evaluating methods by split-
ting the concept of faithfulness into granular attributes that can
inform tradeo�s and usage decisions for speci�c tasks. Saliency
cards group evaluation methods that test similar concepts, such as
a saliency method’s response to label perturbations [1, 79], while
drawing distinctions between those that test other factors, such as
consistency across models [23] or saliency localization [83].

Saliency cards are complementary to documentation standards
for machine learning datasets [8, 11, 22, 29, 33, 35, 50, 60] and mod-
els [2, 19, 50, 51, 65, 67]. These transparency artifact have been
widely adopted by the ML community and led to increased trust
and dissemination [26, 27, 50]. However, there is no standardized
procedure for releasing saliency methods. Consequently, when se-
lecting an appropriate saliency method, users must reference the
original paper and subsequent evaluations to understand the algo-
rithm, its advantages and limitations, and how to use it e�ectively.

https://github.com/mitvis/saliency-cards
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This process is time-consuming for all users, but it is particularly
prohibitive for users with little academic ML training, such as clini-
cians, lawmakers, and engineers. Saliency cards address this gap
by providing a documentation structure and surfacing useful con-
siderations about saliency methods to a range of stakeholders.

3 THE STRUCTURE OF SALIENCY CARDS
Saliency cards summarize information about a saliency method,
including its developers, design goals, input/model/user assump-
tions, dependencies, usage considerations, bene�ts and limitations,
and performance across various evaluations. The cards are struc-
tured as a series of attributes, grouped into three categories. We
derived these attributes and categories through reviewing literature
on saliency method algorithms, evaluation metrics used to assess
them, and commonly-cited desiderata for model explanations. Our
approach entailed iteratively 1) �nding commonalities across meth-
ods, stated desiderata, and evaluative metrics, 2) distilling attributes
that captured these commonalities, and 3) applying these attributes
to compare and understand a broad set of saliency methods. This
process yielded ten attributes grouped into three higher-level cat-
egories: methodology, or how the method operates; sensitivity, or
how the method responds to changes in the model or data; and
perceptibility, or how a human interprets the result of the method
(Fig. 1). For each attribute, we provide a visual example (Fig. 3) and
real-world application from our user study (Sec. 4).

3.1 Methodology
The methodology section of a saliency card summarizes the
method’s algorithm, including references to demos, papers, and/or
implementations. In addition, this section includes information
about �ve attributes related to how the saliency method operates:
determinism, hyperparameter dependence, model agnosticism, com-
putational e�ciency, and semantic directness. By documenting
these details, the methodology section provides an informative
summary that helps users understand if a saliency method applies
to their task.

3.1.1 Determinism. Determinism measures if a saliency method
will always produce the same saliency map given a particular input,
label, and model. Some saliency techniques, like LIME [62] and
SHAP [49], are non-deterministic, so running them multiple times
can produce signi�cantly di�erent results. Non-determinism can be
introduced in the algorithm’s de�nition; for instance, by computing
the many random masks used by RISE [57]. It can also result from
stochastic hyperparameters, like using random noise as a baseline
value for integrated gradients [72].

Understanding how deterministic a saliency method is can im-
pact if and how users apply the method. For example, in a clinical
diagnosis task, a non-deterministic method could result in saliency
maps highlighting slightly di�erent portions of the radiograph. The
radiologist we interviewed (U9) worried that these variations may
have signi�cant consequences given that small areas of the image
can be integral to the diagnosis. Looking only at a single saliency
map could skew a radiologist’s judgment, while interpreting multi-
ple maps together may be too time-consuming for the task. Thus, a
user might choose to prioritize a deterministic saliency method in

this setting. On the other hand, non-determinism can provide help-
ful additional context by surfacing multiple reasons for a model’s
decision. Just as humans can provide multiple correct justi�cations
for their decisions, models likely have multiple feature sets su�-
cient to make correct and con�dent decisions. For example, in an
image classi�cation task, a model may correctly identify the ob-
ject in the image using independent subsets of the object. A model
developer we interviewed, U5, uses saliency to uncover spurious
correlations between uninformative inputs and correct model out-
puts, so they were interested in leveraging non-determinism to
surface all possible model justi�cations.

3.1.2 Hyperparameter Dependence. Hyperparameter dependence
measures a saliency method’s sensitivity to user-speci�ed param-
eters. Some methods, like vanilla gradients [24, 69], do not have
hyperparameter settings or require user intervention. However,
other methods, like integrated gradients [72], require users to set
consequential hyperparameters whose ideal values vary drastically
depending on the task.

By documenting a method’s hyperparameter dependence,
saliency cards inform users of consequential parameters and how
to set them appropriately. Using default parameter values can be
misleading if users do not have su�cient resources or expertise
to devote to hyperparameter tuning. Similarly, confusing results
can arise if the hyperparameters were chosen based on a particu-
lar dataset but deployed in a setting with signi�cant distribution
shift. In situations like this, it makes sense for users to prioritize
methods with low hyperparameter dependence. The radiologist
(U9) prioritized hyperparameter dependence because they worried
an incorrectly set parameter could have life-or-death consequences.
Medical data often di�ers from the research datasets parameters
are tuned on, so they worried a software vendor might not set
consequential parameters appropriately. For example, integrated
gradients [72] computes feature importance by interpolating be-
tween a “baseline” parameter and the actual input. A common
practice is to use a baseline of all zeroes; however, using a zero
baseline in x-ray images can be misleading and potentially harm-
ful. In x-rays, black pixels convey meaning, such as indicating a
bone fracture. If a software vendor uses the default zero baseline
(black), integrated gradients will indicate that the fracture pixels
are unimportant. The saliency card for integrated gradients would
describe this hyperparameter dependence, alerting users to choose
an appropriate baseline value or select a saliency method with less
hyperparameter dependence. On the other hand, when researchers
have dedicated appropriate time and resources to hyperparameter
tuning, it could be preferable to use a method dependent on hy-
perparameters, like SmoothGrad [70], because it has other desired
attributes, like minimality (Sec. 3.3.1).

3.1.3 Model Agnosticism. Model agnosticism measures how much
access to the model a saliency method requires. Model agnostic
methods, such as SHAP [49], treat the underlying model as a black
box, relying only on its input and output. On the other hand, model-
dependent methods, like Grad-CAM [66], require access to model
internals. Model-dependent methods may have speci�c require-
ments, such as di�erentiability (e.g., gradient-based methods) or a
speci�c model architecture (e.g., Grad-CAM requires a CNN [66]).
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Figure 1: Saliency cards characterize saliencymethods via ten user-centric attributes grouped into three categories corresponding
to di�erent phases of the interpretation process. Methodology attributes describe how the saliency is computed, sensitivity
attributes express relationships between the saliency and its inputs, and perceptibility attributes measure human perception of
the saliency.

By documenting a saliencymethod’s model agnosticism, saliency
cards help users identify whether a particular method might be
incompatible with their use case. For instance, computational bi-
ologists, like U8, use proprietary machine learning models hosted
through web-based GUIs, where users upload their input data and
the model returns its predictions. In this setting, it is impossible to
use a saliency method that requires access to model internals. Users,
including U2, might also need a model agnostic saliency method
for use cases that involve comparing saliency maps across di�erent
kinds of models. On the other hand, model agnosticism is not prior-
ity for users, like U1, who only consider speci�c model architectures.
For these use cases, a user might choose a model-dependent method,
like Grad-CAM [66], to prioritize other attributes essential to their
task, like increased model sensitivity (Sec. 3.2.3).

3.1.4 Computational E�iciency. Computational e�ciency mea-
sures how computationally intensive it is to produce the saliency
map. Di�erent methods vary widely in their computational e�-
ciency. For example, perturbation-based methods, like meaningful
perturbations [28], are often more computationally intensive than
simple gradient-based methods, like guided backpropagation [71].

By documenting computational e�ciency, saliency cards help
users determine whether running a particular saliency method is
feasible in their setting. Several details about the task— including
the number of saliency maps to compute, the number of models
to compare, the amount of available computational resources, the
size of the input data— all play a role in whether or not to priori-
tize computational e�ciency. For example, some users, like Pfau
et al. [58] and U1, use saliency maps to compute aggregate statistics
about their model’s behavior across an entire dataset. Given the size
of existing machine learning datasets, this task could require com-
puting hundreds of thousands of saliency maps to analyze a single

model. In this setting, users may need to prioritize computational
e�ciency over other attributes.

3.1.5 Semantic Directness. Saliency methods abstract di�erent as-
pects of model behavior, and semantic directness represents the
complexity of this abstraction. For example, the saliency map com-
puted by SIS represents a minimal set of pixels necessary for a
con�dent and correct prediction [15]. Meanwhile, LIME’s saliency
map represents the learned coe�cients of a local surrogate model
trained to mimic the original model’s decision boundary [62].

Semantically direct saliency methods do not require understand-
ing complex algorithmic mechanisms such as surrogate models (e.g.,
as in LIME [62]) or accumulated gradients (e.g., as in integrated
gradients [72]). As a result, their outputs might be more intuitive
to users without formal ML expertise. Documenting semantic di-
rectness in a saliency card can help users prioritize it for tasks
where the saliency maps will be interpreted by people with varying
backgrounds. For example, in our interviews, users who worked
in mixed-experience teams, like U8’s biologist coworkers and U7’s
business clients, prioritized semantic directness to help them e�-
ciently and e�ectively communicate their results. However, in cases
where the interpreter can understand the saliency method or is
comfortable not understanding the algorithm, semantic directness
may not be a priority. We might choose a saliency method that
is not semantically direct, like SHAP [49] (which de�nes feature
importances as game theoretic Shapley values), because it improves
other attributes, like perceptual correspondence (Sec. 3.3.2).

Semantic directness is a methodological attribute because it de-
scribes the complexity of the saliencymethod’s algorithm. However,
it is also related to perceptibility (Sec. 3.3) because it informs what
types of users will use a saliency method and how they will in-
terpret its results. We choose to delineate the methodology and



Saliency Cards: A Framework to Characterize and Compare Saliency Methods FAccT ’23, June 12–15, 2023, Chicago, IL, USA

Figure 2: Saliency cards begin with a summary of the saliency method’s algorithm, an example output, and references.
Next, the card describes the saliency method’s methodology, including its determinism, hyperparameter dependence, model
agnosticism, computational e�ciency, and semantic directness. Finally, the saliency card summarizes themethod’s performance
on sensitivity (input, label, and model sensitivity) and perceptibility (minimality and perceptual correspondence) tests.

perceptibility attributes based on their testability— i.e., which at-
tributes have been quanti�ed in the literature. Currently, semantic
directness is purely descriptive, and no saliency evaluations test
for it. As evaluations are developed (Sec. 4.3), we may discover that
semantic directness is testable and part of perceptibility or con�rm
it is part of methodology because it is unique to each user.

3.2 Sensitivity Testing
The sensitivity section of a saliency card details whether a saliency
method changes in proportion to meaningful changes in the model
and data. While prior work has treated sensitivity as an overarching
goal of all saliency methods, saliency cards break sensitivity down
into three independent attributes: input sensitivity, label sensitivity,
and model sensitivity. Saliency methods often perform di�erently
across each of these attributes. By disentangling them, saliency
cards let users prioritize and make trade o�s based on their needs.

Unlike the methodology section, which contains descriptive in-
formation about each attribute, the sensitivity section enumerates
experimental evaluations for each attribute, documenting the re-
sults and linking to the original evaluation. As a result, saliency
cards provide a glanceable representation of complex evaluations,
helping users of all backgrounds evaluate a method’s sensitivity.

3.2.1 Input Sensitivity. Input sensitivity measures if a saliency
method accurately re�ects the model’s sensitivity to transforma-
tions in the input space. If an input transformation meaningfully
a�ects the model’s output (e.g., an adversarial attack), the saliency
method should assign importance to the transformed features. Oth-
erwise, if an input transformation does not change the model’s
output (e.g., a noise-based perturbation), then the saliency method
should not assign additional importance to the modi�ed features.

Documenting a saliency method’s input sensitivity is essen-
tial for tasks that use saliency to understand the impact of input
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changes, such as studying a model’s robustness to adversarial at-
tacks [37], or its reliance on sensitive input features (e.g., race or
age) [10]. For instance, U3, a fairness researcher, tests models for
counterfactual fairness [45] by con�rming the model’s decision on
an input is the same even if its sensitive attributes are inverted.
Without input sensitivity, a saliency method might indicate that
a sensitive feature is unimportant even if the model’s decision is
counterfactually unfair. As a result, the method could mislead a
user to trust and deploy a discriminatory model. However, in other
cases, users might choose to trade o� input sensitivity for higher
priority attributes. For example, we interviewed ML researchers
(U5, U6) who only work in controlled settings that are less depen-
dent on input changes, including analysis of in-distribution data or
comparison of di�erent models on the same data.

Saliency cards contain the results of numerous existing input
sensitivity tests [3, 4, 6, 15, 17, 23, 31, 34, 38, 40, 57, 63, 72, 80]. Sev-
eral of these tests measure whether the model’s output changes
signi�cantly in response to perturbations of salient features and
little in response to changes in non-salient features. Extensions of
them evaluate if the salient input features are su�cient to train a
new, equally performant model [15, 34]. Other metrics test input
sensitivity by measuring the saliency map’s response to uninfor-
mative transformations of the input dataset [40] or adding small
amounts of noise to the inputs [3, 80]. Saliency cards should re-
port the results of various input sensitivity tests to communicate a
comprehesive overview of a saliency method’s input sensitivity.

3.2.2 Label Sensitivity. Saliency maps are computed with respect
to a particular target label. Label sensitivity measures the saliency
method’s response to changes to that target label.

Documenting label sensitivity is important for tasks that evalu-
ate model behavior by changing the target label. For example, in
computational immunology, users like U8 train multi-task models
that take in an antibody and predict how well it binds to several
di�erent target molecules [48]. In this setting, U8 wants to compare
which antibody features are important to the model’s prediction
and how they di�er across multiple targets. To do so, they com-
pare saliency maps on the same antibody with respect to di�erent
target labels. Without label sensitivity, the saliency maps may in-
accurately re�ect the di�erence in model reasoning for di�erent
target molecules. Since antibody binding is not fully understood,
label insensitive saliency methods could mislead users about which
features are biologically important.

Saliency cards include the results of label sensitivity tests. Exist-
ing label sensitivity evaluations swap labels in controlled ways and
measure changes in the saliency map. Tests include measuring how
the saliency maps change in response to label randomization [1]
and when switching from �ne-grained to coarse-grained labels [79].

3.2.3 Model Sensitivity. Model sensitivity measures if the output
of a saliency method is sensitive to meaningful changes to the
model parameters. If we modify the model signi�cantly (e.g., by
randomizing its weights), then the output of a model sensitive
saliency method will re�ect that change.

Model sensitivity is crucial for tasks that compare models. For
example, we interviewed an ML researcher (U2) who evaluates
their training procedure by comparing saliency maps across models
from di�erent epochs. They prioritized model sensitive methods to

accurately re�ect meaningful model changes. However, users may
trade o� model sensitivity for other desirable attributes in tasks
where the model is not changing. For instance, if a user is focused
on the impact of modifying input features, they might trade o�
model sensitivity to get a highly input sensitive method.

Saliency cards document a method’s model sensitivity using ex-
isting model sensitivity tests. Testing for model sensitivity involves
evaluating how the output of a saliency method changes in re-
sponse to known similarities or di�erences between models. Some
methods test the consistency of saliency maps between similar mod-
els [9, 23, 72], while others con�rm that saliency maps su�ciently
change due to model randomization [1] or combination [72].

3.3 Perceptibility Testing
The perceptibility section of a saliency card describes attributes of
a saliency method related to human perception of the saliency map.
Perceptibility is split into two attributes: minimality and perceptual
correspondence. Minimality captures the idea that a saliency map
should highlight a minimal set of features, which can be an impor-
tant consideration for users who visually analyze saliency maps.
Perceptual correspondence measures if the interpreted signal in the
saliency map re�ects the features’ importance and does not intro-
duce misleading visual artifacts. As with the sensitivity attributes,
saliency cards summarize the results of perceptibility tests.

3.3.1 Minimality. Minimality measures how many unnecessary
features are given a signi�cant value in the saliency map. Methods,
such as vanilla gradients [69], that attribute importance to many
input features can produce noisy results that are di�cult to interpret.
On the other hand, methods like XRAI [39] incorporate minimality
into their algorithms by attributing importance to higher-level
feature regions instead of many individual features.

Documenting a method’s minimality can alert users to the
amount of noise they can expect in the saliency map. For example,
minimality is particularly important when interpreting complex
high-dimensional data, such as the long amino acid sequences our
computational biologist interviewee (U8) uses. In this case, it might
be prohibitively di�cult or time-consuming to interpret hundreds
of important features, and a noisy saliencymap could risk obscuring
underlying signal. However, some users may prefer a less minimal
saliency method depending on their task. For instance, some bioin-
formatics tasks operate on input sequences containing only nine
amino acids [7]. In this setting, users might actually prefer a less
minimal method that reveals every amino acid that in�uences the
model’s prediction, since it provides a complete picture of important
features and is relatively easy to analyze.

Saliency cards report a saliency method’s performance on mini-
mality metrics. Some minimality metrics compare the maximum
and mean saliency values [31]. The higher the ratio, the more min-
imal the saliency map is, since it is focused on only a few input
features. Minimality can also be evaluated by testing if any salient
feature can be removed without the model’s con�dence dropping
below a chosen threshold [15]. For methods that are not inherently
minimal, applying SmoothGrad [70] can increase minimality by
reducing the noise present in the saliency map; however, it may
also impact other attributes of the original method.



Saliency Cards: A Framework to Characterize and Compare Saliency Methods FAccT ’23, June 12–15, 2023, Chicago, IL, USA

(f) Label Sensitivity
SmoothGrad Towards Different Target Classes

Image cowboy bootblenheim spaniel

(i) Semantic Directness
English Explanations of Saliency Maps

The minimum set of 
features necessary for 
the model to make its 
original decision with 
85% confidence.

LIME

The important features 
of a surrogate model 
trained to mimic the 
model’s decision 
boundary on this input.

(d) Computational Efficiency
Computation Time on a 3x224x224 Image

(a) Determinism
LIME with Different Random Seeds

Image First Output Second Output

(b) Hyperparameter Dependence
Integrated Gradients with Different Baselines

Image Black Baseline White Baseline

(c) Model Agnosticism
RISE Applied to Different Model Architectures

Image Random Forest CNN

(e) Input Sensitivity
GradCAM on Adversarial Attack (from Jia et al. 2020)

GradCAM
Original

GradCAM
Attacked

(g) Model Sensitivity
SmoothGrad Over Model Layer Randomization

Fully Trained Fully Random

(g) Minimality
SIS Minimality Constraint

(h) Perceptual Correspondence
Randomly Initialized Model

Mammogram Vanilla Gradients Integrated Grad.

Integrated 
Gradients

LIME

SIS

Prediction
salt shaker

Original Attacked
Prediction
water jug

SIS~1e-2 sec

Guided BP 
~1e-1 sec

Int. Grad. 
~1e0 sec

SmoothGrad
~1e1 sec

LIME
< < <

Figure 3: The ten saliency card attributes represent saliencymethod characteristics that can help users choose a task-appropriate
saliency method. Each attribute is shown above alongside a descriptive example that communicates the principle.

3.3.2 Perceptual Correspondence. Perceptual correspondence mea-
sures if the perceived signal in the saliency map accurately re�ects
the feature importance. For example, saliency maps with high per-
ceptual correspondence should not contain visual artifacts that lead
users to incorrectly infer signal.

Saliency cards document perceptual correspondence because it
is crucial for high-risk settings where a misleading signal could
provide an unwarranted justi�cation for decisions or lead users
down incorrect paths. However, perceptual correspondence may be
less critical if the saliency method is used for large-scale analyses of
model behavior that will aggregate one-o� artifacts (i.e., when such
artifacts occur arbitrarily and are washed out by averaging). For
instance, users, like U1, who aggregate metrics on saliency maps
across an entire dataset may be willing to prioritize computational
e�ciency over perceptual correspondence.

Saliency cards report the results of perceptual correspondence
tests. The most direct perceptual correspondence metric measures if
a feature’s visualized luminosity is calibrated to its importance [31].

Other perceptual correspondence evaluations compare salient fea-
tures to human-de�ned ground truth features [9, 23, 83]. However,
these metrics should only be used to evaluate saliency methods in
test settings where the model is known to rely on ground truth
features. Even high-performing models have been shown to rely on
spurious features [14, 78]. In those cases, a perceptually correspon-
dent saliency method would correctly highlight features outside of
the ground truth but get low perceptual correspondence scores.

4 EVALUATIVE USER STUDIES
Through nine semi-structured user interviews, we evaluate saliency
cards to understand how they can help users understand, compare,
and select methods appropriate for their tasks. We recruited par-
ticipants from within our professional network (4/9) and through
an open call in our organizations and on Twitter (5/9). Participants
came from diverse backgrounds (including research, radiology, com-
putational biology, and consultancy) and had varying levels of
machine learning expertise and familiarity with saliency methods.
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Fig. 4 illustrates user demographics, describes their saliency method
use cases, and summarizes the results of our interview studies.

Eight participants (U1–U8) had used saliency methods in some
capacity. With these participants, we began by asking open-ended
questions about their experience with saliency methods, such as
“What tasks do you use saliency methods for?”, “How do you decide
which saliency method to use?”, and “What do you do if saliency
methods disagree?”. Next, we discussed each saliency method at-
tribute. We asked participants to describe if and how each attribute
was important to their task and rank the attributes by importance.
Finally, we walked users through example saliency cards (Fig. 2)
and had users give us feedback on the design and usefulness.

The radiologist (U9) did not have experience using saliency meth-
ods but was interested in their application to medical decision-
making. Since they were less familiar with ML, we structured this
conversation slightly di�erently. We discussed �ve attributes—
determinism, hyperparameter dependence, semantic directness,
minimality, and perceptual correspondence. For each, we provided
a de�nition, showed radiology examples demonstrating its implica-
tions (e.g., saliency with and without minimality), and discussed if
and when it would be important to them in a clinical setting.

We conducted 30–60min interviews via video chat and compen-
sated users with $30 Amazon gift cards. Our study received an IRB
exemption from our organization. We obtained informed consent
from participants, stored user data securely, and anonymized user
details in the paper. See Sec. A.3 for additional study details.

4.1 Saliency Cards Help Users Select
Task-Appropriate Saliency Methods

Despite experience with a broad range of saliency methods, includ-
ing LIME [62] (U3–U7), vanilla gradients [24, 69] (U5, U6, U8), inte-
grated gradients [72] (U4–U6), Grad-CAM [66] (U1, U2), SHAP [49]
(U3–U5), and SmoothGrad [70] (U5), users chose saliency methods
based on their popularity in prior work (U1–U8) and ease of imple-
mentation (U2, U7). Users rarely considered algorithmic di�erences
or evaluated the suitability of a particular method for their task. As
a result, users were often unsure if their chosen saliency method
was indeed appropriate for their task and worried that a di�erent
method could produce more accurate results. Consequently, users
wanted a more principled selection strategy based on formal evalu-
ations but found extracting insight from existing documentation
tedious. As U6 described, given that “new methods come out every
day” and “reading all the papers is a di�cult task that takes a lot of
time,” even researchers �nd it challenging to acquire the knowledge
needed to select saliency methods well-suited to their tasks.

In contrast, we found that the attribute-based structure of
saliency cards allowed users to more systematically select saliency
methods based on properties important to their task. Users priori-
tized each attribute based on their task requirements, experiences
and preferences, and the expectations of their teammates. For exam-
ple, U1 prioritized computational e�ciency because their research
requires them to compute saliency maps for every input in their
dataset. An ine�cient saliency method would be incompatible with
their model evaluation process and prevent them from quickly iter-
ating on model design choices. U9 prioritized determinism based on
their personal experience. They were uncomfortable interpreting

non-deterministic saliency maps because they do not encounter
non-determinism in other medical technologies. When prioritizing
attributes, users in applied domains also needed to consider their
teammates’ expertise. For instance, U7 prioritized semantic direct-
ness to help them communicate results to business clients without
ML experience. After prioritizing attributes, users utilized the visual
saliency card documentation to juxtapose attribute summaries and
pick a well-suited saliency method in just a few minutes.

Our user study also revealed that user priorities often di�er or
con�ict — a surprising �nding given that existing evaluations are
often framed as “tests” every saliency method should pass [1, 23, 72].
While one user would prioritize an attribute, another would de-
prioritize or explicitly not desire that attribute. For example, U8
prioritized minimality because they train machine learning models
on long amino acid sequences, and their biochemist coworkers
interpret the saliency method results. Without minimality, con-
�rming the models have learned biologically meaningful features
could require the biochemists to analyze the interactions between
potentially hundreds of amino acids. However, U4 explicitly pre-
ferred a less minimal method. They worried that a minimal saliency
method might only highlight the features necessary for the model’s
prediction. Since they use saliency methods to manually analyze a
few inputs, they want to view every feature relevant to the model’s
prediction to ensure their models do not learn spurious correlations.
Even users in similar roles had di�erent priorities. For instance,
despite both being researchers who use saliency methods to an-
alyze model behavior, U2 and U6 viewed the importance of input
sensitivity di�erently. U2 regularly tests models by perturbing back-
ground features, so without input sensitivity, a saliency method
could incorrectly assign importance to changes the model considers
unimportant. On the other hand, U6 did not care about input sensi-
tivity because they only use in-distribution data and do not worry
about noise or perturbations impacting the inputs. The frequency of
con�icting priorities suggests there is not an ideal saliency method
for every user and task. Thus, documentation is crucial to help
users �nd a saliency method appropriate for their use case.

4.2 Saliency Card Attributes Provide a Detailed
Vocabulary for Discussing Saliency Methods

Saliency cards provide a more precise attribute-based vocabulary
that helps users communicate about saliency methods. At the start
of our interviews, participants often cited faithfulness as an ideal at-
tribute of saliency methods. Faithfulness broadly refers to a saliency
method’s ability to re�ect model reasoning accurately and corre-
lates with the saliency card’s sensitivity attributes. However, after
discussing the ten saliency card attributes, users had a more detailed
language to describe saliency method characteristics. For example,
U5 initially expected all saliency methods to achieve faithfulness.
However, after working with saliency cards, U5 more precisely ar-
ticulated that they expected saliency methods to be label and model
sensitive. They did not care about a method’s input sensitivity, even
though it is typically considered part of faithfulness. As a saliency
method developer, U5 needs to be able to communicate their exact
design goals so users can understand the bene�ts, limitations, and
appropriate use cases of the saliency method. If they described their
saliency method as faithful, users could incorrectly assume it is
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Figure 4: We evaluate saliency cards through semi-structured interviews with researchers, scientists, and domain experts. Each
user prioritized saliency method attributes di�erently based on the needs of their tasks. Saliency cards helped users select
task-appropriate methods, communicate about saliency methods, and hypothesize new areas for future work.

input sensitive, deploy it in an inappropriate setting, and misinter-
pret the results. Using a shared attribute-based vocabulary, users
and developers can better communicate about a saliency method’s
speci�c attributes, evaluative results, and prescribed use cases.

The saliency card attributes also helped lay users discuss saliency
methods. Before our user study, U9 (a radiologist) had little expe-
rience with machine learning and was entirely unfamiliar with
saliency methods. However, by using the vocabulary of saliency
card attributes, our conversation revealed di�erences in their ex-
pressed needs and expectations in the literature about what lay
users want in a saliency method. For example, minimality is of-
ten considered an essential attribute because it makes the visual
saliency map easier to interpret [39, 70, 73]. However, U9 did not
expect a saliency method to be minimal because they were accus-
tomed to using noise in medical imaging to attenuate measurement
uncertainty. Using the saliency card attributes gave U9 terminol-
ogy they could use to communicate with ML experts and software
vendors in charge of developing and deploying saliency methods.
Without this language with which to communicate, radiologists
might not as deeply engage in the deployment process, leaving
ML experts to rely on incorrect assumptions about radiologists’
expectations. However, with direct channels of communication, ML
experts could work with radiologists to increase transparency in the
deployment process, ensure they interpret saliency method results
appropriately, and, even, develop new saliency methods explicitly
designed for clinical imaging settings.

4.3 Saliency Cards Inspire Areas for Future
Work and New Documentation Practices

The attribute summaries led users to ask new questions about
evaluating saliency methods and to hypothesize future research di-
rections. By documenting evaluation results for a saliency method,

saliency cards reveal that particular attributes and methods have
been more heavily evaluated than others. For instance, comparing
the saliency cards for integrated gradients [72] (Fig. A2) and Grad-
CAM [66] (Fig. 2) reveals that integrated gradients has been more
rigorously tested for input sensitivity. Whereas previously, users
would have had to extract evaluative results frommultiple academic
papers, saliency cards surface these discrepancies directly, inspiring
users to hypothesize about Grad-CAM’s performance on missing
evaluations and express interest in completing the testing suite. Fur-
ther, by categorizing individual evaluations, saliency cards expose
that evaluations for the same attribute have varying testing strate-
gies, such as testing meaningful [4] vs. noisy perturbations [40]
or focusing on images [31] vs. natural language modalities [23].
Users were surprised to see the evaluation diversity, leading them
to hypothesize new evaluation measures. For instance, some users
were intrigued to run perceptibility tests on their data and models.
As U5 put it, “If I have a speci�c use case in mind, I want to see the
metrics on that speci�c use case.” They brainstormed ideas about
integrating saliency cards into a suite of evaluations that generate
customized saliency cards based on the user’s model and datasets.

Inspecting some attributes revealed limitations of saliency cards
and existing evaluations. Saliency cards group evaluations into
user-centric attributes, but some attributes are challenging to test
accurately. During our user study, U8 was skeptical that existing
evaluations appropriately assessed model sensitivity. Model sen-
sitivity evaluations test that a saliency method responds to mean-
ingful model changes, but U8 argued that it is almost impossible to
guarantee that a change to a black-box model is meaningful. For
instance, a standard model sensitivity test measures the saliency
method’s response to layer randomization, but layer randomization
might not be meaningful if that layer is redundant. In that case,
layer randomization tests could incorrectly punish a model for not
responding to an insigni�cant change. This issue might be solved
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as additional research invents new evaluations, including model
sensitivity tests. However, it could also be that some attributes, like
model sensitivity, are too broad. Perhaps breaking model sensitivity
down into more precise categorizations, like layer randomization
sensitivity, would provide more straightforward documentation.
Similarly, we expect the methodology attributes to evolve from
open-ended descriptions to more consistent reports. For instance,
the vocabulary used to describe computational e�ciency may vary
across saliency developers and research areas based on typical com-
puting resources and dataset sizes. As more saliency methods are
documented and more evaluations are developed, we expect the
saliency card attributes and their descriptions will evolve to bet-
ter characterize saliency methods, facilitate cross-card comparison,
and communicate with users.

Saliency method developers were inspired to document their
methods with saliency cards and hoped consistent and thorough
documentation would increase method adoption. Good documenta-
tion canmake saliencymethods easier to understand and use, “If you
want people to use yourmethod, your need to have them understand it.”
[U8]. Currently, saliency method developers have to generate doc-
umentation content that ranges from novel algorithmic decisions
and implications in the paper to implementation considerations
in the public code repository. This process can feel unprincipled,
so developers were excited to have a template that fully captured
critical considerations. For example, when developing their saliency
method, U8 documented their method’s computational e�ciency
and hyperparameter dependence in their code repository, explain-
ing “We tried to make our documentation accessible to users. I tried to
do some of this, but in an ad hoc way, and I didn’t hit all of these [at-
tributes].” They looked forward to adding additional documentation
and making a saliency card for their method.

5 DISCUSSION AND LIMITATIONS
We present saliency cards, transparency documentation to describe,
communicate, and compare saliency methods. While documenta-
tion in other parts of the machine learning pipeline has led to in-
creased trust and appropriate use [26, 29, 50, 51], saliency methods
do not have documentation standards. As a result, users we inter-
viewed struggled to stay informed with the ever-increasing num-
ber of saliency methods, forcing them to choose saliency methods
based on popularity instead of a thorough understanding of their
bene�ts and limitations. In response, saliency cards characterize
saliency methods based on ten user-centric attributes that describe
important usage considerations. The saliency card attributes span
di�erent phases of the interpretation work�ow, such as the saliency
method’s algorithmic properties, relationship to the model and data,
and perceptibility by an end-user. We evaluate saliency cards in a
user study with nine participants, ranging from radiologists with
limited knowledge of machine learning to saliency method develop-
ers. With saliency cards, users prioritized attributes based on their
task requirements, personal experience, and the expectations of
their teammates, allowing them to select a saliency method appro-
priate for their needs and properly interpret its results. Further, the
saliency card attributes provided users with a shared vocabulary
to describe their needs and communicate about saliency methods
without requiring extensive machine learning expertise.

Building saliency cards allowed us to analyze the research land-
scape, revealing areas for future work, such as task-speci�c saliency
methods and evaluation metrics for under-evaluated attributes. By
documenting and comparing the methodological attributes of vari-
ous saliency methods (Table A1), we identify the potential for new
saliency methods that meet speci�c user priorities and future stud-
ies on the latent relationships between attributes. Current saliency
methods cannot achieve speci�c combinations of attributes. For
example, none of the saliency methods we surveyed were model
agnostic and computationally e�cient because model agnosticism
is commonly achieved through expensive repeated perturbations.
Model agnosticism and computational e�ciency were priorities for
U6 and U7, but currently, they must sacri�ce one when choosing a
saliency method. New research could explore this gap, and others,
by designing novel saliency methods that attain model agnosticism
without forfeiting computational e�ciency or proving that they
are inexplicably inversely correlated.

Saliency cards also revealed gaps in evaluation research, includ-
ing under-evaluated attributes and saliency methods (Table A2).
For example, by compiling evaluative metrics for each attribute, we
uncovered that there is far less research into how to measure per-
ceptual correspondence, relative to other attributes such as input
or model sensitivity. By identifying this gap, saliency cards prompt
further research into how we might measure perceptual correspon-
dence. Better understanding how people perceive saliency maps
could then motivate the design of new saliency visualizations— e.g.,
that expand static heatmaps by dynamically overlaying multiple
attributions [55] to explicitly communicate limitations and preemp-
tively avoid implying unwarranted signal. Table A2 also reveals that
some saliency methods (e.g., SIS [15]) have been evaluated less than
others (e.g., integrated gradients [72]). While the sensitivity and
perceptibility attributes report results from existing evaluations,
evaluation papers typically only test a subset of existing saliency
methods. As a result, our users found it challenging to compare
saliency methods evaluated on di�erent tests. Future work could
run missing evaluations or design test suites that report a saliency
method’s results on existing tests.

We intend saliency cards to be living artifacts that start a conver-
sation around saliency method documentation. To facilitate living
documentation, we provide a public repository1 containing saliency
card templates, summaries of evaluations, and saliency cards for
existing methods. The repository serves as a centralized location
for users to reference saliency methods. As new saliency methods
are developed to ful�ll speci�c user needs, new saliency cards can
be added to the repository. Existing saliency cards can be contin-
ually updated with additional evaluative results stemming from
new evaluation metrics and the application of existing metrics to
unevaluated saliency methods. As the saliency card repertoire ex-
pands, saliency card documentation will simultaneously evolve
to support additional user needs. As signaled in our user studies,
new evaluations may reveal that some saliency card attributes are
too broad and need to be decomposed into constituent attributes
that more precisely articulate the evaluative takeaways. Likewise,
new attributes or categories may emerge as more users from vari-
ous backgrounds begin to use saliency methods and communicate

1https://github.com/mitvis/saliency-cards

https://github.com/mitvis/saliency-cards
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their task-speci�c priorities. By documenting saliency methods, we
hope saliency cards support the continued rapid growth of saliency
method research and evolve as needed alongside new developments.
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A APPENDIX
A.1 Additional Saliency Cards
The saliency cards repository (https://github.com/mitvis/saliency-cards) contains a saliency card template (Fig. A1) and example saliency
cards, including Grad-CAM (Fig. 2) and integrated gradients (Fig. A2). As more saliency methods are documented, developed, and evaluated,
we expect the repository to serve as a centralized location for saliency documentation.

Figure A1: The saliency card template provided at https://github.com/mitvis/saliency-cards. The template describes what to
include in each section of the saliency card and summarizes existing evaluations for sensitivity and perceptibility attributes.

https://github.com/mitvis/saliency-cards
https://github.com/mitvis/saliency-cards
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Figure A2: The saliency card for integrated gradients [72] provided at https://github.com/mitvis/saliency-cards.

https://github.com/mitvis/saliency-cards
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A.2 Saliency Card Attribute Comparison
Saliency cards expose di�erences in the methodology, sensitivity, and perceptibility of saliency methods. We have provided example saliency
cards for Grad-CAM [66] (Fig. 2) and integrated gradients [72] (Fig. A2) that describe their attributes. Here, we compare the saliency card
attributes for additional saliency methods, to analyze the research landscape and reveal gaps and opprotunities for future work.

A.2.1 Methodology Comparison. In Table A1, we compare the methodological attributes of 11 saliency methods. We extract each method’s
determinism, hyperparameter dependence, model agnosticism, and semantic directness from its original paper and we compute each
method’s computational e�ciency.

We compute computational e�ciency of each method on a 224x224x3 ImageNet [20] image and a pretrained PyTorch [56] ResNet50 [32]
using one Nvidia G100 GPU. For consistency, we use each method’s default parameters. To account for noise in our timing procedure, we
report the order of magnitude of the computation time as opposed to the raw value. The results of the computational e�ciency tests can be
found at: https://github.com/mitvis/saliency-cards/blob/main/paper_results/computational_e�ciency.ipynb.

For vanilla gradients [24, 69], guided backprop [71], Grad-CAM [66], integrated gradients [72], input x gradient, and SHAP [49], we use their
Captum [42] implementations. For SmoothGrad [70] and XRAI [39], we use the public implementation from Google PAIR2. For RISE 3 [57],
SIS [15] 4, and LIME 5 [62], we use the public implementations provided by their authors. To provide a consistent saliency method interface
across the di�erent implementations, we provide a wrapper for each method and visualization code at: https://github.com/mitvis/saliency-
cards.

This is just one way to test the computational e�ciency of each saliency method. We expect the relative computational e�ciencies may
change depending on the implementation, model architecture, parameter settings, and data modality. Similarly, there may be theoretical
computational e�ciency bounds that can be derived for each method. As additional experiments reveal new computational e�ciency results,
saliency cards can evolve to contain a comprehensive overview of each method’s computational e�ciency.

A.2.2 Sensitivity and Perceptibility Comparison. Table A2 summarizes the results of 33 saliency method evaluations that span the sensitivity
and perceptibility attributes. We categorize each test’s results for every saliency method it tested. Based on what each evaluation paper
reports, we group the results into “pass”, “fail”, and “inconclusive”.

While we try to directly report the paper’s claims about each saliency method, in some cases, these categorizations can be subjective.

Table A1: We compare the methodological attributes of 11 saliency methods to systematically analyze the research landscape
to understand gaps and opportunities for future work.

Determinism Hyperparameter Dependence Model Agnosticism Computational E�ciency Semantic Directness

Vanilla Gradients [24, 69] Deterministic. None. Requires a di�erentiable model
with access to gradients. On the order of 1e�2 seconds.

Themagnitude of the change in the model’s
output given a small change to an input
feature.

SmoothGrad [70] Non-deterministic noise per-
turbations.

Gaussian noise parameters; the number of sam-
ples to average over. Applicable to any saliency method. Adds a ⇠20x time increase. The average saliency across noisy versions

of the input.

Guided BackProp [71]
Deterministic unless using
a non-deterministic saliency
method.

Saliency method (typically vanilla gradients). Requires a di�erentiable model
with access to gradients.

On the order of 1e�2 seconds using
vanilla gradients.

The output of another gradient-based
saliency method only considering paths
through the model with positive gradients.

Grad-CAM [66] Deterministic.
Interpolation method to upsample with; choice
of convolutional layer (typically the last convo-
lutional layer).

Requires a di�erentiable model, ac-
cess to the gradients, and a convo-
lutional layer.

On the order of 1e�2 seconds.
The positive attributions of the gradient-
weighted feature maps from an internal
convolutional layer.

Integrated Gradients [72] Deterministic unless using a
non-deterministic baseline.

Baseline value; integral approximation parame-
ters.

Requires a di�erentiable model
with access to gradients. On the order of 1e�1 seconds. The accumulated gradient between the

baseline input and the actual input.

Input X Gradient Deterministic. None. Requires a di�erentiable model and
access to gradients. On the order of 1e�2 seconds. The input feature value weighted by the

gradient.

XRAI [39]

Deterministic unless using a
non-deterministic saliency
method or segmentation
method.

Segmentation method; saliency method (typi-
cally integrated gradients).

Requires input features that can be
meaningfully clustered (e.g., image
pixels).

On the order of 1e1 seconds. The input regions with the largest sum of
feature attribution.

RISE [57] Non-deterministic mask gen-
eration. Masking value; mask generation parameters. No requirements on the model or

access to internals. On the order of 1e�1 seconds. The sum of input masks weighed by the
model’s con�dence on the masked input.

SIS [15] Deterministically produces a
set of explanations per input.

Feature replacement values; model con�dence
threshold.

No requirements on the model or
access to internals.

SIS: prohibitively slow. Batched
Gradient SIS: On the order of 1e1
seconds.

The minimum set of pixels necessary for
the model to con�dently produce the same
output.

LIME [62] Non-deterministic perturba-
tions.

Linear surrogate model and parameters; input
perturbation parameters.

No requirements on the model or
access to internals. On the order of 1e1 seconds.

The positively contributing features
learned by a surrogate model trained to
mimic the original model’s local decision
boundary for the input.

SHAP [49] Non-deterministic coalition
sampling.

Feature replacement values; linear model param-
eterization; regularization parameter.

No requirements on the model or
access to internals.

GradientSHAP: on the order of
1e�1 seconds. KernelSHAP: on the
order of 1e1 seconds.

The impact of each input feature on the
output as de�ned by Shapley values.

2https://github.com/PAIR-code/saliency
3https://github.com/eclique/RISE
4https://github.com/gi�ord-lab/overinterpretation/tree/master; https://github.com/google-research/google-research/blob/master/su�cient_input_subsets/sis.py
5https://github.com/marcotcr/lime
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For instance, if an evaluation compares two saliency methods and one outperforms the other, it can be hard to evaluate which methods
pass or fail the test. It could be just the top-performing one passes, both pass, or both fail. In evaluations that provide negative and positive
controls (e.g., random baselines), we categorize each method based on those controls.

These categorizations are helpful for analyzing the gaps in the design space (e.g., limited evaluations for particular models or attributes);
however, saliency cards must also provide a textual summary of the evaluation’s results. This description helps mitigate the subjectivity
of pass/fail/inconclusive categorizations and can provide helpful context to a user. For instance, seeing a lack of experimental controls
could inspire a user to run additional baseline evaluations for an existing test or design new metrics that better separate the behavior of the
saliency methods.

Table A2: We summarize the results of 33 saliency method evaluations that describe the saliency card sensitivity and percepti-
bility attributes. This summarization reveals the need for additional evaluation using existing metrics and new metrics to
further test under-evaluated attributes. We generalize the results of each test based on if they passed the evaluation (green 3),
failed the evaluation (red 7), performed inconclusively (yellow —), or were not tested (grey cell).
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Input Sensitivity Completeness [72] 3 3 3
Deletion [57] — 3 —
Faithfulness [4] 3 3
In�delity [80] — 3 — — 3 3 3
Input Consistency [23] — — —
Input Invariance [40] 3 3 3 — 3 7 7 3 — 3
Insertion [57] — 3 —
Perturbation Testing (LeRF) [6] — — — — — —
Perturbation Testing (MoRF) [6] — 3 3 3 — 3
Region Perturbation [63] 3 3
ROAR [34] 7 — 7 7
Robustness [3] — — — — 7 7 7
Sensitivity [80] — 3 — — 3 3 3
Stability [4] 3 3 3 3 3 7 7
Su�ciency [15] 3

Label Sensitivity Data Randomization [1] 3 3 — 3 — — — —
Model Contrast Score [79] — — — 3 — 3 — —

Model Sensitivity Cascading Model Randomization [1] 3 3 7 3 7 — — —
Implementation Invariance [72] 3 3 7 7
Independent Model Randomization [1] 3 3 7 3 7 — — —
Linearity [72] 3
Model Consistency [23] — — —
Model Weight Randomization [9] 3 3 3 3 — — 3 7
Repeatability [9] 7 7 — — — 7 7 3
Reproducibility [9] 7 7 7 — — 7 7 3

Minimality Minimality [15] 3
Sparsity [31] — 3 — — —
Visual Sharpening [70] 7 3 — 7 3 3

Perceptual Localization Utility [9] 7 7 7 7 7 7 7 3
Correspondence Luminosity Calibration [31] 7 7 7 3 7

Mean IoU [64] — — 7 7 7 — —
Plausibility [23] — 3 3
The Pointing Game [83] / Hit Rate [64] 3 — — — — — 3 3 7 —
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A.3 Additional Interview Details
In each interview, we explained saliency card attributes via a de�nition and example that demonstrated the attribute. We showed U1–U8
examples from ImageNet [20], melanoma classi�cation [18], MNIST digit recognition [21], and CheXpert chest x-rays [36], shown in Fig. A4.
Since the radiologist participant (U9) was unfamiliar with machine learning, we only showed them examples using CheXpert chest x-rays [36],
shown in Fig. A3.

Figure A3: Examples of each saliency card attribute we discussed with the radiologist user (U8) in our user study. Given they
were unfamiliar with machine learning, we used medical imaging examples from CheXpert [36]. Each example de�nes the
attribute and shows an informative instance of the attribute exhibited.
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Figure A4: Examples of each saliency card attribute we discussed with the U1–U7. Each example de�nes the attribute and shows
an informative instance of the attribute exhibited.
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