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ABSTRACT

Saliency methods are a common class of machine learning inter-
pretability techniques that calculate how important each input
feature is to a model’s output. We find that, with the rapid pace of
development, users struggle to stay informed of the strengths and
limitations of new methods and, thus, choose methods for unprin-
cipled reasons (e.g., popularity). Moreover, despite a corresponding
rise in evaluation metrics, existing approaches assume universal
desiderata for saliency methods (e.g., faithfulness) that do not ac-
count for diverse user needs. In response, we introduce saliency
cards: structured documentation of how saliency methods oper-
ate and their performance across a battery of evaluative metrics.
Through a review of 25 saliency method papers and 33 method
evaluations, we identify 10 attributes that users should account for
when choosing a method. We group these attributes into three cate-
gories that span the process of computing and interpreting saliency:
methodology, or how the saliency is calculated; sensitivity, or the
relationship between the saliency and the underlying model and
data; and, perceptibility, or how an end user ultimately interprets
the result. By collating this information, saliency cards allow users
to more holistically assess and compare the implications of different
methods. Through nine semi-structured interviews with users from
various backgrounds, including researchers, radiologists, and com-
putational biologists, we find that saliency cards provide a detailed
vocabulary for discussing individual methods and allow for a more
systematic selection of task-appropriate methods. Moreover, with
saliency cards, we are able to analyze the research landscape in a
more structured fashion to identify opportunities for new methods
and evaluation metrics for unmet user needs.
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1 INTRODUCTION

As machine learning (ML) systems are deployed in real-world con-
texts, stakeholder interviews [12, 76], design best practices [5], and
legal frameworks [25] have underscored the need for explainability.
Saliency methods — a class of explanation methods that identify
input features important to an ML model’s output — are frequently
used to provide explanations. Saliency methods have helped ML re-
searchers evaluate new models [13, 44], clinicians make Al-assisted
patient care decisions [59], and users deploy fair and generalizable
models [62]. As the popularity of saliency methods has grown, the
number and diversity of saliency methods have correspondingly
increased [24, 28, 39, 49, 57, 62, 66, 69—-72]. However, since each
saliency method operates differently according to its algorithmic
goals, conflicts have arisen as multiple methods can produce vary-
ing explanations for the same model and input [43].

Researchers have proposed metrics to evaluate the effectiveness
of saliency methods [1, 23, 47, 75, 82]. While promising, these ap-
proaches assume universal desiderata all saliency methods must
achieve to be worth considering. Evaluations are often described
as “tests” [23], “sanity checks” [1], or “axioms” [72], suggesting the
existence of an ideal saliency method that passes every possible
evaluation. However, this framing overlooks that saliency methods
are abstractions of model behavior. They cannot offer a complete or
wholly accurate reflection of a model’s behavior (akin to a printout
of model weights), so saliency methods must decide what informa-
tion to preserve and sacrifice. Critically, saliency method abstraction
decisions are motivated by downstream human-centric goals, such
as generalizability [15, 49, 62], algorithmic simplicity [15], or per-
ceptibility [39, 70]. Given the rich diversity in end-user expertise
and needs [43, 74], it is unlikely that one set of abstraction decisions
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will support all users, contexts, and tasks. How, then, should end
users characterize and compare saliency methods to choose the
most suitable one for their particular application?

The lack of standardized documentation for saliency methods
and evaluative metrics makes it challenging to determine the bene-
fits and limitations of particular methods and identify differences
between them. Without resources equivalent to model cards [51]
or datasheets [29], users are left to reference a potential sequence
of research papers, including the original saliency method and
all subsequent evaluations. Given the influx of saliency method
research, this is a prohibitively time-consuming process and is es-
pecially out-of-reach for the broad class of users without a research
background in machine learning, like clinicians, lawmakers, and
engineers. Moreover, this piecemeal assembly of information con-
siders each evaluative result in isolation, making it challenging to
reason about whether desirable properties of a saliency method
(e.g., input sensitivity [80] and minimality [15]) may be in tension
with one another. As a result, and as we find through a series of
interviews, users currently select saliency methods in unprincipled
manners, such as choosing a method based on its popularity instead
of a thorough understanding of its strengths and limitations.

In response, we introduce saliency cards: a structured documen-
tation of how a saliency method is designed, operates, and performs
across evaluative metrics. Reflecting the diversity of user needs, we
identify ten attributes of saliency methods that users may wish to
consider when choosing a particular approach. To facilitate compre-
hension, we group these attributes into three categories correspond-
ing to different parts of the process of computing and interpreting
saliency: methodology, or how the saliency is calculated; sensitivity,
or relationships between the saliency and the model, input, or label;
and perceptibility, or how a user perceives the output saliency. By
collating this information, saliency cards help surface a method’s
strengths and weaknesses more holistically than individual paper
results. Moreover, by offering a standard structure and visual de-
sign, saliency cards allow users to more easily compare methods,
and more carefully reason about tradeoffs that might otherwise
have been unapparent in the method design.

To evaluate the usefulness of saliency cards, we conduct a semi-
structured interview study with nine saliency method users from
diverse backgrounds, including saliency method developers, ML
researchers, radiologists, computational biologists, and consul-
tants. We find that saliency cards help users systematically se-
lect a saliency method that meets their needs. While previously,
users chose saliency methods based on popularity or familiarity,
with saliency cards, users prioritized attributes based on their task
requirements. Using the visual format of saliency cards, users ef-
ficiently analyzed their prioritized attributes and weighed trade-
offs between saliency methods to uncover the method best suited
to their task. Saliency card attributes also provided a shared vo-
cabulary to discuss saliency methods, enabling users to precisely
communicate their preferences, regardless of their prior experience
with machine learning. Standardized documentation enabled side-
by-side comparison, revealing ripe areas for future work, including
saliency methods designed for a specific set of priorities, additional
evaluation metrics for understudied attributes, and customized eval-
uations based on a user’s data and models.
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Saliency card templates and examples are available at:
https://github.com/mitvis/saliency-cards.

2 RELATED WORK

Saliency methods (often referred to as feature attribution methods)
are popular techniques for explaining a machine learning model’s
decision. Given an input, model, and target label, saliency methods
compute a feature-wise importance score describing each feature’s
influence on the model’s output for the target label. However, each
saliency method computes these feature importances differently.
Gradient-based methods, such as guided backpropagation [71] and
Grad-CAM [66], compute importance using the model’s gradients.
Perturbation-based methods, such as SHAP [49] and RISE [57],
measure importance by modifying input features and measuring
the model’s response. And path-based methods, such as integrated
gradients [72] and XRAI [39], compute feature importances by com-
paring model outputs for the actual input to a meaningless input.
While these granular categorizations [52] sort saliency methods
based on algorithmic differences, they do not capture the complete
set of considerations. Two gradient-based methods can operate
differently, apply to separate tasks, and have distinct usage con-
siderations. Saliency cards expand upon existing categorization
criteria by documenting the saliency method’s algorithm as well as
other usage considerations, such as its hyperparameters and how
to set them, dependence on model architectures, computational
constraints, and sources of non-determinism.

As the popularity of saliency methods has grown, a related line of
research has begun evaluating saliency methods’ faithfulness —i.e.,
their ability to accurately represent the model’s decision-making
process. These evaluations are varied and include measuring the
impact of adversarial perturbations [30], model randomization [1],
dataset shifts [40], and input dropout [63] on the saliency output.
However, its common for saliency methods to pass some faithful-
ness tests while failing others [75]. These discrepancies reflect the
fact that faithfulness is too broad of a goal for evaluating saliency
methods. As abstractions of model behavior, saliency methods
necessarily preserve and sacrifice information in service of other
human-centered goals such as simplicity or perceptibility. Depend-
ing on the use case, a user may accept a method that performs
poorly on an evaluation that is low-priority for their task. Saliency
cards lend a structure to these existing evaluating methods by split-
ting the concept of faithfulness into granular attributes that can
inform tradeoffs and usage decisions for specific tasks. Saliency
cards group evaluation methods that test similar concepts, such as
a saliency method’s response to label perturbations [1, 79], while
drawing distinctions between those that test other factors, such as
consistency across models [23] or saliency localization [83].

Saliency cards are complementary to documentation standards
for machine learning datasets [8, 11, 22, 29, 33, 35, 50, 60] and mod-
els [2, 19, 50, 51, 65, 67]. These transparency artifact have been
widely adopted by the ML community and led to increased trust
and dissemination [26, 27, 50]. However, there is no standardized
procedure for releasing saliency methods. Consequently, when se-
lecting an appropriate saliency method, users must reference the
original paper and subsequent evaluations to understand the algo-
rithm, its advantages and limitations, and how to use it effectively.
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This process is time-consuming for all users, but it is particularly
prohibitive for users with little academic ML training, such as clini-
cians, lawmakers, and engineers. Saliency cards address this gap
by providing a documentation structure and surfacing useful con-
siderations about saliency methods to a range of stakeholders.

3 THE STRUCTURE OF SALIENCY CARDS

Saliency cards summarize information about a saliency method,
including its developers, design goals, input/model/user assump-
tions, dependencies, usage considerations, benefits and limitations,
and performance across various evaluations. The cards are struc-
tured as a series of attributes, grouped into three categories. We
derived these attributes and categories through reviewing literature
on saliency method algorithms, evaluation metrics used to assess
them, and commonly-cited desiderata for model explanations. Our
approach entailed iteratively 1) finding commonalities across meth-
ods, stated desiderata, and evaluative metrics, 2) distilling attributes
that captured these commonalities, and 3) applying these attributes
to compare and understand a broad set of saliency methods. This
process yielded ten attributes grouped into three higher-level cat-
egories: methodology, or how the method operates; sensitivity, or
how the method responds to changes in the model or data; and
perceptibility, or how a human interprets the result of the method
(Fig. 1). For each attribute, we provide a visual example (Fig. 3) and
real-world application from our user study (Sec. 4).

3.1 Methodology

The methodology section of a saliency card summarizes the
method’s algorithm, including references to demos, papers, and/or
implementations. In addition, this section includes information
about five attributes related to how the saliency method operates:
determinism, hyperparameter dependence, model agnosticism, com-
putational efficiency, and semantic directness. By documenting
these details, the methodology section provides an informative
summary that helps users understand if a saliency method applies
to their task.

3.1.1 Determinism. Determinism measures if a saliency method
will always produce the same saliency map given a particular input,
label, and model. Some saliency techniques, like LIME [62] and
SHAP [49], are non-deterministic, so running them multiple times
can produce significantly different results. Non-determinism can be
introduced in the algorithm’s definition; for instance, by computing
the many random masks used by RISE [57]. It can also result from
stochastic hyperparameters, like using random noise as a baseline
value for integrated gradients [72].

Understanding how deterministic a saliency method is can im-
pact if and how users apply the method. For example, in a clinical
diagnosis task, a non-deterministic method could result in saliency
maps highlighting slightly different portions of the radiograph. The
radiologist we interviewed (U9) worried that these variations may
have significant consequences given that small areas of the image
can be integral to the diagnosis. Looking only at a single saliency
map could skew a radiologist’s judgment, while interpreting multi-
ple maps together may be too time-consuming for the task. Thus, a
user might choose to prioritize a deterministic saliency method in
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this setting. On the other hand, non-determinism can provide help-
ful additional context by surfacing multiple reasons for a model’s
decision. Just as humans can provide multiple correct justifications
for their decisions, models likely have multiple feature sets suffi-
cient to make correct and confident decisions. For example, in an
image classification task, a model may correctly identify the ob-
ject in the image using independent subsets of the object. A model
developer we interviewed, U5, uses saliency to uncover spurious
correlations between uninformative inputs and correct model out-
puts, so they were interested in leveraging non-determinism to
surface all possible model justifications.

3.1.2  Hyperparameter Dependence. Hyperparameter dependence
measures a saliency method’s sensitivity to user-specified param-
eters. Some methods, like vanilla gradients [24, 69], do not have
hyperparameter settings or require user intervention. However,
other methods, like integrated gradients [72], require users to set
consequential hyperparameters whose ideal values vary drastically
depending on the task.

By documenting a method’s hyperparameter dependence,
saliency cards inform users of consequential parameters and how
to set them appropriately. Using default parameter values can be
misleading if users do not have sufficient resources or expertise
to devote to hyperparameter tuning. Similarly, confusing results
can arise if the hyperparameters were chosen based on a particu-
lar dataset but deployed in a setting with significant distribution
shift. In situations like this, it makes sense for users to prioritize
methods with low hyperparameter dependence. The radiologist
(U9) prioritized hyperparameter dependence because they worried
an incorrectly set parameter could have life-or-death consequences.
Medical data often differs from the research datasets parameters
are tuned on, so they worried a software vendor might not set
consequential parameters appropriately. For example, integrated
gradients [72] computes feature importance by interpolating be-
tween a “baseline” parameter and the actual input. A common
practice is to use a baseline of all zeroes; however, using a zero
baseline in x-ray images can be misleading and potentially harm-
ful. In x-rays, black pixels convey meaning, such as indicating a
bone fracture. If a software vendor uses the default zero baseline
(black), integrated gradients will indicate that the fracture pixels
are unimportant. The saliency card for integrated gradients would
describe this hyperparameter dependence, alerting users to choose
an appropriate baseline value or select a saliency method with less
hyperparameter dependence. On the other hand, when researchers
have dedicated appropriate time and resources to hyperparameter
tuning, it could be preferable to use a method dependent on hy-
perparameters, like SmoothGrad [70], because it has other desired
attributes, like minimality (Sec. 3.3.1).

3.1.3  Model Agnosticism. Model agnosticism measures how much
access to the model a saliency method requires. Model agnostic
methods, such as SHAP [49], treat the underlying model as a black
box, relying only on its input and output. On the other hand, model-
dependent methods, like Grad-CAM [66], require access to model
internals. Model-dependent methods may have specific require-
ments, such as differentiability (e.g., gradient-based methods) or a
specific model architecture (e.g., Grad-CAM requires a CNN [66]).
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Computational Efficiency
Semantic Directness
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Figure 1: Saliency cards characterize saliency methods via ten user-centric attributes grouped into three categories corresponding
to different phases of the interpretation process. Methodology attributes describe how the saliency is computed, sensitivity
attributes express relationships between the saliency and its inputs, and perceptibility attributes measure human perception of

the saliency.

By documenting a saliency method’s model agnosticism, saliency
cards help users identify whether a particular method might be
incompatible with their use case. For instance, computational bi-
ologists, like U8, use proprietary machine learning models hosted
through web-based GUISs, where users upload their input data and
the model returns its predictions. In this setting, it is impossible to
use a saliency method that requires access to model internals. Users,
including U2, might also need a model agnostic saliency method
for use cases that involve comparing saliency maps across different
kinds of models. On the other hand, model agnosticism is not prior-
ity for users, like U1, who only consider specific model architectures.
For these use cases, a user might choose a model-dependent method,
like Grad-CAM [66], to prioritize other attributes essential to their
task, like increased model sensitivity (Sec. 3.2.3).

3.1.4 Computational Efficiency. Computational efficiency mea-
sures how computationally intensive it is to produce the saliency
map. Different methods vary widely in their computational effi-
ciency. For example, perturbation-based methods, like meaningful
perturbations [28], are often more computationally intensive than
simple gradient-based methods, like guided backpropagation [71].

By documenting computational efficiency, saliency cards help
users determine whether running a particular saliency method is
feasible in their setting. Several details about the task — including
the number of saliency maps to compute, the number of models
to compare, the amount of available computational resources, the
size of the input data — all play a role in whether or not to priori-
tize computational efficiency. For example, some users, like Pfau
et al. [58] and U1, use saliency maps to compute aggregate statistics
about their model’s behavior across an entire dataset. Given the size
of existing machine learning datasets, this task could require com-
puting hundreds of thousands of saliency maps to analyze a single

model. In this setting, users may need to prioritize computational
efficiency over other attributes.

3.1.5 Semantic Directness. Saliency methods abstract different as-
pects of model behavior, and semantic directness represents the
complexity of this abstraction. For example, the saliency map com-
puted by SIS represents a minimal set of pixels necessary for a
confident and correct prediction [15]. Meanwhile, LIME’s saliency
map represents the learned coefficients of a local surrogate model
trained to mimic the original model’s decision boundary [62].
Semantically direct saliency methods do not require understand-
ing complex algorithmic mechanisms such as surrogate models (e.g.,
as in LIME [62]) or accumulated gradients (e.g., as in integrated
gradients [72]). As a result, their outputs might be more intuitive
to users without formal ML expertise. Documenting semantic di-
rectness in a saliency card can help users prioritize it for tasks
where the saliency maps will be interpreted by people with varying
backgrounds. For example, in our interviews, users who worked
in mixed-experience teams, like U8’s biologist coworkers and U7’s
business clients, prioritized semantic directness to help them effi-
ciently and effectively communicate their results. However, in cases
where the interpreter can understand the saliency method or is
comfortable not understanding the algorithm, semantic directness
may not be a priority. We might choose a saliency method that
is not semantically direct, like SHAP [49] (which defines feature
importances as game theoretic Shapley values), because it improves
other attributes, like perceptual correspondence (Sec. 3.3.2).
Semantic directness is a methodological attribute because it de-
scribes the complexity of the saliency method’s algorithm. However,
it is also related to perceptibility (Sec. 3.3) because it informs what
types of users will use a saliency method and how they will in-
terpret its results. We choose to delineate the methodology and
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Grad-CAM Saliency Card

Grad-CAM is a model-dependent, gradient-based saliency method for convolutional neural networks (CNNs).
Methodology

Grad-CAM identifies continuous input regions that are important to the model's output towards the target class. It computes feature
importance by extracting the feature maps from an intermediate convolutional layer (typically the last convolutional layer) and weighting
them by the gradient of the target output with respect to that layer. The weighted feature maps are summed to obtain a single map, passed
through a ReLU function to remove negatively contributing values, and upsampled to the original input dimensions.

Developed by: Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra at
Georgia Institute of Technology.

References:
« Original Paper: Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Implementations and Tutorials:

« Original GitHub Repository: ramprs/grad-cam
« PyTorch Integration via Captum: Captum Grad-CAM
« Keras Integration: Keras Grad-CAM Tutorial

Example: The Grad-CAM saliency map (right) on an ImageNet image for the class boxer (left) using a VGG-16. This example is from Grad-
CAM: Visual Explanations from Deep Networks via Gradient-based Localization.

Determinism

Grad-CAM is deterministic.
Hyperparameter Dependence

Grad-CAM relies on two hyperparameters: the interpolation method and the convolutional layer .

+ The interpolation method upsamples the feature map into the input feature dimensions.
« The convolutional layer determines which feature maps to use. Typically, the last convolutional layer is used, but any convolutional
layer can be used.

Model Agnosticism
Grad-CAM requires a differentiable model with convolutional layers and access to the gradients.
Computational Efficiency

Computing Grad-CAM takes on the order of 1e-2 seconds using the Captum implementation on a 224x224x3 dimensional ImageNet image,
ResNet50 model, and one NVidia G100 GPU.

Semantic Directness

Grad-CAM outputs the positive attributions of the gradient-weighted feature maps from an internal convolutional layer. Interpreting it
requires an understanding of convolutional models and model gradients.

Sensitivity Testing

Input Sensitivity
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Deletion: Grad-CAM's deletion performance is inconclusive. When evaluated on ResNet50 and VGG16 ImageNet models, Grad-CAM
performs better than sliding window saliency but worse than RISE and LIME. In subsequent evaluations on ResNet50 and CUB-200-2011,
Grad-CAM performs similarly to RISE and worse than Ablation CAM, Grad-CAM++, and Score-CAM.

Insertion: Grad-CAM's insertion performance is inconclusive. When evaluated on ResNet50 and VGG16 ImageNet models, Grad-CAM
performs better than sliding window saliency but worse than RISE. It performs worse than LIME using a ResNet50 model and on par with
LIME using a VGG16. In subsequent evaluations on ResNet50 and CUB-200-2011, Grad-CAM performs worse than RISE, Ablation CAM,
Grad-CAM++, and Score-CAM.

Label Sensitivity

@ Data Randomization: Grad-CAM saliency changes appropriately when the model is trained on perturbed data labels. Evaluated on
MNIST and Fashion MNIST using CNN and MLP models.

@ Model Contrast Score: Grad-CAM acheives the highest model contrast score compared to vanilla gradients, SmoothGrad, integrated
gradients, integrated gradients with SmoothGrad, guided backpropagation, and guided Grad-CAM. Evaluated on the BAM image dataset.

Model Sensitivity

as the model is

@ Cascading Model Parameter Randomization: Grad-CAM saliency changes
Evaluated on an ImageNet Inception V3.

@ Independent Model Parameter Randomization: Grad-CAM saliency changes appropriately as the mode! layers are independently
randomized. Evaluated on an ImageNet Inception V3.

@ Model Weight Randomization: Grad-CAM saliency differs appropriately between a fully trained and fully randomized model. Evaluated
on SIIM-ACR Pneumothorax and RSNA Pneumonia medical images.

Repeatability: Grad-CAM's repeatability is similar to/slightly better than a random baseline. Evaluated on SIIM-ACR Pneumothorax and
RSNA Pneumonia medical images.

Grad-CAM's ity is i its saliency is somewhat consistent between two models with different
architectures trained on the same data but performs worse than a segmentation model. Evaluated on SIIM-ACR Pneumothorax and RSNA
Peumonia medical images.

Perceptibility Testing

Minimality

Sparsity: Grad-CAM's sparsity ratio is 5.28. It has lower sparsity than Ablation-CAM, Grad-CAM++, RISE, and Score-CAM. Evaluated on
a ResNet50 model and CUB-200-2011 dataset.
Perceptual Correspondence

Il Localization Utility: Grad-CAM fails localization utilty. Its saliency values overlap less with the ground truth than a random model.
Evaluated on SIIM-ACR Pneumothorax and RSNA Pneumonia medical images.

M Luminosity Calibration: Grad-CAM saliency values reflect the impact on the target score as much as random saliency. Evaluated on a
ResNet50 model and CUB-200-2011 dataset.

Mean loU: Grad-CAM saliency has a higher mean loU than other saliency methods (integrated gradients, Grad-CAM++, Eigen-CAM,
DeepLift, LRP, and Occlusion) but a lower mean loU than human localization. Evaluated using CNNs on CheXpert chest x-ray images.

The Pointing Game: Grad-CAM's most salient feature was in the ground truth region as many times as other saliency methods, but less
than human localization. Evaluated using CNNs on CheXpert chest x-ray images by Benchmarking saliency methods for chest X-ray
interpretation.

Citation
@inproceedings{grad-cam, @
author = {Ramprasaath R. Selvaraju and Michael Cogswell and Abhishek Das and Ramakrishna Vedantam and Devi Paril
title = {Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization},

booktitle = {International Conference on Computer Vision ({ICCV})},
publisher = {{IEEE} Computer Society},
year = {2017},

Figure 2: Saliency cards begin with a summary of the saliency method’s algorithm, an example output, and references.
Next, the card describes the saliency method’s methodology, including its determinism, hyperparameter dependence, model
agnosticism, computational efficiency, and semantic directness. Finally, the saliency card summarizes the method’s performance
on sensitivity (input, label, and model sensitivity) and perceptibility (minimality and perceptual correspondence) tests.

perceptibility attributes based on their testability — i.e., which at-
tributes have been quantified in the literature. Currently, semantic
directness is purely descriptive, and no saliency evaluations test
for it. As evaluations are developed (Sec. 4.3), we may discover that
semantic directness is testable and part of perceptibility or confirm
it is part of methodology because it is unique to each user.

3.2 Sensitivity Testing

The sensitivity section of a saliency card details whether a saliency
method changes in proportion to meaningful changes in the model
and data. While prior work has treated sensitivity as an overarching
goal of all saliency methods, saliency cards break sensitivity down
into three independent attributes: input sensitivity, label sensitivity,
and model sensitivity. Saliency methods often perform differently
across each of these attributes. By disentangling them, saliency
cards let users prioritize and make trade offs based on their needs.

Unlike the methodology section, which contains descriptive in-
formation about each attribute, the sensitivity section enumerates
experimental evaluations for each attribute, documenting the re-
sults and linking to the original evaluation. As a result, saliency
cards provide a glanceable representation of complex evaluations,
helping users of all backgrounds evaluate a method’s sensitivity.

3.2.1 Input Sensitivity. Input sensitivity measures if a saliency
method accurately reflects the model’s sensitivity to transforma-
tions in the input space. If an input transformation meaningfully
affects the model’s output (e.g., an adversarial attack), the saliency
method should assign importance to the transformed features. Oth-
erwise, if an input transformation does not change the model’s
output (e.g., a noise-based perturbation), then the saliency method
should not assign additional importance to the modified features.
Documenting a saliency method’s input sensitivity is essen-
tial for tasks that use saliency to understand the impact of input
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changes, such as studying a model’s robustness to adversarial at-
tacks [37], or its reliance on sensitive input features (e.g., race or
age) [10]. For instance, U3, a fairness researcher, tests models for
counterfactual fairness [45] by confirming the model’s decision on
an input is the same even if its sensitive attributes are inverted.
Without input sensitivity, a saliency method might indicate that
a sensitive feature is unimportant even if the model’s decision is
counterfactually unfair. As a result, the method could mislead a
user to trust and deploy a discriminatory model. However, in other
cases, users might choose to trade off input sensitivity for higher
priority attributes. For example, we interviewed ML researchers
(U5, U6) who only work in controlled settings that are less depen-
dent on input changes, including analysis of in-distribution data or
comparison of different models on the same data.

Saliency cards contain the results of numerous existing input
sensitivity tests [3, 4, 6, 15, 17, 23, 31, 34, 38, 40, 57, 63, 72, 80]. Sev-
eral of these tests measure whether the model’s output changes
significantly in response to perturbations of salient features and
little in response to changes in non-salient features. Extensions of
them evaluate if the salient input features are sufficient to train a
new, equally performant model [15, 34]. Other metrics test input
sensitivity by measuring the saliency map’s response to uninfor-
mative transformations of the input dataset [40] or adding small
amounts of noise to the inputs [3, 80]. Saliency cards should re-
port the results of various input sensitivity tests to communicate a
comprehesive overview of a saliency method’s input sensitivity.

3.2.2  Label Sensitivity. Saliency maps are computed with respect
to a particular target label. Label sensitivity measures the saliency
method’s response to changes to that target label.

Documenting label sensitivity is important for tasks that evalu-
ate model behavior by changing the target label. For example, in
computational immunology, users like U8 train multi-task models
that take in an antibody and predict how well it binds to several
different target molecules [48]. In this setting, U8 wants to compare
which antibody features are important to the model’s prediction
and how they differ across multiple targets. To do so, they com-
pare saliency maps on the same antibody with respect to different
target labels. Without label sensitivity, the saliency maps may in-
accurately reflect the difference in model reasoning for different
target molecules. Since antibody binding is not fully understood,
label insensitive saliency methods could mislead users about which
features are biologically important.

Saliency cards include the results of label sensitivity tests. Exist-
ing label sensitivity evaluations swap labels in controlled ways and
measure changes in the saliency map. Tests include measuring how
the saliency maps change in response to label randomization [1]
and when switching from fine-grained to coarse-grained labels [79].

3.2.3 Model Sensitivity. Model sensitivity measures if the output
of a saliency method is sensitive to meaningful changes to the
model parameters. If we modify the model significantly (e.g., by
randomizing its weights), then the output of a model sensitive
saliency method will reflect that change.

Model sensitivity is crucial for tasks that compare models. For
example, we interviewed an ML researcher (U2) who evaluates
their training procedure by comparing saliency maps across models
from different epochs. They prioritized model sensitive methods to

Boggust and Suresh, et al.

accurately reflect meaningful model changes. However, users may
trade off model sensitivity for other desirable attributes in tasks
where the model is not changing. For instance, if a user is focused
on the impact of modifying input features, they might trade off
model sensitivity to get a highly input sensitive method.

Saliency cards document a method’s model sensitivity using ex-
isting model sensitivity tests. Testing for model sensitivity involves
evaluating how the output of a saliency method changes in re-
sponse to known similarities or differences between models. Some
methods test the consistency of saliency maps between similar mod-
els [9, 23, 72], while others confirm that saliency maps sufficiently
change due to model randomization [1] or combination [72].

3.3 Perceptibility Testing

The perceptibility section of a saliency card describes attributes of
a saliency method related to human perception of the saliency map.
Perceptibility is split into two attributes: minimality and perceptual
correspondence. Minimality captures the idea that a saliency map
should highlight a minimal set of features, which can be an impor-
tant consideration for users who visually analyze saliency maps.
Perceptual correspondence measures if the interpreted signal in the
saliency map reflects the features’ importance and does not intro-
duce misleading visual artifacts. As with the sensitivity attributes,
saliency cards summarize the results of perceptibility tests.

3.3.1 Minimality. Minimality measures how many unnecessary
features are given a significant value in the saliency map. Methods,
such as vanilla gradients [69], that attribute importance to many
input features can produce noisy results that are difficult to interpret.
On the other hand, methods like XRAI [39] incorporate minimality
into their algorithms by attributing importance to higher-level
feature regions instead of many individual features.

Documenting a method’s minimality can alert users to the
amount of noise they can expect in the saliency map. For example,
minimality is particularly important when interpreting complex
high-dimensional data, such as the long amino acid sequences our
computational biologist interviewee (U8) uses. In this case, it might
be prohibitively difficult or time-consuming to interpret hundreds
of important features, and a noisy saliency map could risk obscuring
underlying signal. However, some users may prefer a less minimal
saliency method depending on their task. For instance, some bioin-
formatics tasks operate on input sequences containing only nine
amino acids [7]. In this setting, users might actually prefer a less
minimal method that reveals every amino acid that influences the
model’s prediction, since it provides a complete picture of important
features and is relatively easy to analyze.

Saliency cards report a saliency method’s performance on mini-
mality metrics. Some minimality metrics compare the maximum
and mean saliency values [31]. The higher the ratio, the more min-
imal the saliency map is, since it is focused on only a few input
features. Minimality can also be evaluated by testing if any salient
feature can be removed without the model’s confidence dropping
below a chosen threshold [15]. For methods that are not inherently
minimal, applying SmoothGrad [70] can increase minimality by
reducing the noise present in the saliency map; however, it may
also impact other attributes of the original method.
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Figure 3: The ten saliency card attributes represent saliency method characteristics that can help users choose a task-appropriate
saliency method. Each attribute is shown above alongside a descriptive example that communicates the principle.

3.3.2  Perceptual Correspondence. Perceptual correspondence mea-
sures if the perceived signal in the saliency map accurately reflects
the feature importance. For example, saliency maps with high per-
ceptual correspondence should not contain visual artifacts that lead
users to incorrectly infer signal.

Saliency cards document perceptual correspondence because it
is crucial for high-risk settings where a misleading signal could
provide an unwarranted justification for decisions or lead users
down incorrect paths. However, perceptual correspondence may be
less critical if the saliency method is used for large-scale analyses of
model behavior that will aggregate one-off artifacts (i.e., when such
artifacts occur arbitrarily and are washed out by averaging). For
instance, users, like U1, who aggregate metrics on saliency maps
across an entire dataset may be willing to prioritize computational
efficiency over perceptual correspondence.

Saliency cards report the results of perceptual correspondence
tests. The most direct perceptual correspondence metric measures if
a feature’s visualized luminosity is calibrated to its importance [31].

Other perceptual correspondence evaluations compare salient fea-
tures to human-defined ground truth features [9, 23, 83]. However,
these metrics should only be used to evaluate saliency methods in
test settings where the model is known to rely on ground truth
features. Even high-performing models have been shown to rely on
spurious features [14, 78]. In those cases, a perceptually correspon-
dent saliency method would correctly highlight features outside of
the ground truth but get low perceptual correspondence scores.

4 EVALUATIVE USER STUDIES

Through nine semi-structured user interviews, we evaluate saliency
cards to understand how they can help users understand, compare,
and select methods appropriate for their tasks. We recruited par-
ticipants from within our professional network (4/9) and through
an open call in our organizations and on Twitter (5/9). Participants
came from diverse backgrounds (including research, radiology, com-
putational biology, and consultancy) and had varying levels of
machine learning expertise and familiarity with saliency methods.
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Fig. 4 illustrates user demographics, describes their saliency method
use cases, and summarizes the results of our interview studies.

Eight participants (U1-U8) had used saliency methods in some
capacity. With these participants, we began by asking open-ended
questions about their experience with saliency methods, such as
“What tasks do you use saliency methods for?”, “How do you decide
which saliency method to use?”, and “What do you do if saliency
methods disagree?”. Next, we discussed each saliency method at-
tribute. We asked participants to describe if and how each attribute
was important to their task and rank the attributes by importance.
Finally, we walked users through example saliency cards (Fig. 2)
and had users give us feedback on the design and usefulness.

The radiologist (U9) did not have experience using saliency meth-
ods but was interested in their application to medical decision-
making. Since they were less familiar with ML, we structured this
conversation slightly differently. We discussed five attributes —
determinism, hyperparameter dependence, semantic directness,
minimality, and perceptual correspondence. For each, we provided
a definition, showed radiology examples demonstrating its implica-
tions (e.g., saliency with and without minimality), and discussed if
and when it would be important to them in a clinical setting.

We conducted 30-60min interviews via video chat and compen-
sated users with $30 Amazon gift cards. Our study received an IRB
exemption from our organization. We obtained informed consent
from participants, stored user data securely, and anonymized user
details in the paper. See Sec. A.3 for additional study details.

4.1 Saliency Cards Help Users Select
Task-Appropriate Saliency Methods

Despite experience with a broad range of saliency methods, includ-
ing LIME [62] (U3-U7), vanilla gradients [24, 69] (U5, U6, U8), inte-
grated gradients [72] (U4-U6), Grad-CAM [66] (U1, U2), SHAP [49]
(U3-U5), and SmoothGrad [70] (U5), users chose saliency methods
based on their popularity in prior work (U1-U8) and ease of imple-
mentation (U2, U7). Users rarely considered algorithmic differences
or evaluated the suitability of a particular method for their task. As
a result, users were often unsure if their chosen saliency method
was indeed appropriate for their task and worried that a different
method could produce more accurate results. Consequently, users
wanted a more principled selection strategy based on formal evalu-
ations but found extracting insight from existing documentation
tedious. As U6 described, given that “new methods come out every
day” and “reading all the papers is a difficult task that takes a lot of
time,” even researchers find it challenging to acquire the knowledge
needed to select saliency methods well-suited to their tasks.

In contrast, we found that the attribute-based structure of
saliency cards allowed users to more systematically select saliency
methods based on properties important to their task. Users priori-
tized each attribute based on their task requirements, experiences
and preferences, and the expectations of their teammates. For exam-
ple, U1 prioritized computational efficiency because their research
requires them to compute saliency maps for every input in their
dataset. An inefficient saliency method would be incompatible with
their model evaluation process and prevent them from quickly iter-
ating on model design choices. U9 prioritized determinism based on
their personal experience. They were uncomfortable interpreting
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non-deterministic saliency maps because they do not encounter
non-determinism in other medical technologies. When prioritizing
attributes, users in applied domains also needed to consider their
teammates’ expertise. For instance, U7 prioritized semantic direct-
ness to help them communicate results to business clients without
ML experience. After prioritizing attributes, users utilized the visual
saliency card documentation to juxtapose attribute summaries and
pick a well-suited saliency method in just a few minutes.

Our user study also revealed that user priorities often differ or
conflict — a surprising finding given that existing evaluations are
often framed as “tests” every saliency method should pass [1, 23, 72].
While one user would prioritize an attribute, another would de-
prioritize or explicitly not desire that attribute. For example, U8
prioritized minimality because they train machine learning models
on long amino acid sequences, and their biochemist coworkers
interpret the saliency method results. Without minimality, con-
firming the models have learned biologically meaningful features
could require the biochemists to analyze the interactions between
potentially hundreds of amino acids. However, U4 explicitly pre-
ferred a less minimal method. They worried that a minimal saliency
method might only highlight the features necessary for the model’s
prediction. Since they use saliency methods to manually analyze a
few inputs, they want to view every feature relevant to the model’s
prediction to ensure their models do not learn spurious correlations.
Even users in similar roles had different priorities. For instance,
despite both being researchers who use saliency methods to an-
alyze model behavior, U2 and U6 viewed the importance of input
sensitivity differently. U2 regularly tests models by perturbing back-
ground features, so without input sensitivity, a saliency method
could incorrectly assign importance to changes the model considers
unimportant. On the other hand, U6 did not care about input sensi-
tivity because they only use in-distribution data and do not worry
about noise or perturbations impacting the inputs. The frequency of
conflicting priorities suggests there is not an ideal saliency method
for every user and task. Thus, documentation is crucial to help
users find a saliency method appropriate for their use case.

4.2 Saliency Card Attributes Provide a Detailed
Vocabulary for Discussing Saliency Methods

Saliency cards provide a more precise attribute-based vocabulary
that helps users communicate about saliency methods. At the start
of our interviews, participants often cited faithfulness as an ideal at-
tribute of saliency methods. Faithfulness broadly refers to a saliency
method’s ability to reflect model reasoning accurately and corre-
lates with the saliency card’s sensitivity attributes. However, after
discussing the ten saliency card attributes, users had a more detailed
language to describe saliency method characteristics. For example,
US initially expected all saliency methods to achieve faithfulness.
However, after working with saliency cards, U5 more precisely ar-
ticulated that they expected saliency methods to be label and model
sensitive. They did not care about a method’s input sensitivity, even
though it is typically considered part of faithfulness. As a saliency
method developer, U5 needs to be able to communicate their exact
design goals so users can understand the benefits, limitations, and
appropriate use cases of the saliency method. If they described their
saliency method as faithful, users could incorrectly assume it is
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Figure 4: We evaluate saliency cards through semi-structured interviews with researchers, scientists, and domain experts. Each
user prioritized saliency method attributes differently based on the needs of their tasks. Saliency cards helped users select
task-appropriate methods, communicate about saliency methods, and hypothesize new areas for future work.

input sensitive, deploy it in an inappropriate setting, and misinter-
pret the results. Using a shared attribute-based vocabulary, users
and developers can better communicate about a saliency method’s
specific attributes, evaluative results, and prescribed use cases.

The saliency card attributes also helped lay users discuss saliency
methods. Before our user study, U9 (a radiologist) had little expe-
rience with machine learning and was entirely unfamiliar with
saliency methods. However, by using the vocabulary of saliency
card attributes, our conversation revealed differences in their ex-
pressed needs and expectations in the literature about what lay
users want in a saliency method. For example, minimality is of-
ten considered an essential attribute because it makes the visual
saliency map easier to interpret [39, 70, 73]. However, U9 did not
expect a saliency method to be minimal because they were accus-
tomed to using noise in medical imaging to attenuate measurement
uncertainty. Using the saliency card attributes gave U9 terminol-
ogy they could use to communicate with ML experts and software
vendors in charge of developing and deploying saliency methods.
Without this language with which to communicate, radiologists
might not as deeply engage in the deployment process, leaving
ML experts to rely on incorrect assumptions about radiologists’
expectations. However, with direct channels of communication, ML
experts could work with radiologists to increase transparency in the
deployment process, ensure they interpret saliency method results
appropriately, and, even, develop new saliency methods explicitly
designed for clinical imaging settings.

4.3 Saliency Cards Inspire Areas for Future
Work and New Documentation Practices

The attribute summaries led users to ask new questions about
evaluating saliency methods and to hypothesize future research di-
rections. By documenting evaluation results for a saliency method,

saliency cards reveal that particular attributes and methods have
been more heavily evaluated than others. For instance, comparing
the saliency cards for integrated gradients [72] (Fig. A2) and Grad-
CAM [66] (Fig. 2) reveals that integrated gradients has been more
rigorously tested for input sensitivity. Whereas previously, users
would have had to extract evaluative results from multiple academic
papers, saliency cards surface these discrepancies directly, inspiring
users to hypothesize about Grad-CAM’s performance on missing
evaluations and express interest in completing the testing suite. Fur-
ther, by categorizing individual evaluations, saliency cards expose
that evaluations for the same attribute have varying testing strate-
gies, such as testing meaningful [4] vs. noisy perturbations [40]
or focusing on images [31] vs. natural language modalities [23].
Users were surprised to see the evaluation diversity, leading them
to hypothesize new evaluation measures. For instance, some users
were intrigued to run perceptibility tests on their data and models.
As U5 put it, “If I have a specific use case in mind, I want to see the
metrics on that specific use case.” They brainstormed ideas about
integrating saliency cards into a suite of evaluations that generate
customized saliency cards based on the user’s model and datasets.

Inspecting some attributes revealed limitations of saliency cards
and existing evaluations. Saliency cards group evaluations into
user-centric attributes, but some attributes are challenging to test
accurately. During our user study, U8 was skeptical that existing
evaluations appropriately assessed model sensitivity. Model sen-
sitivity evaluations test that a saliency method responds to mean-
ingful model changes, but U8 argued that it is almost impossible to
guarantee that a change to a black-box model is meaningful. For
instance, a standard model sensitivity test measures the saliency
method’s response to layer randomization, but layer randomization
might not be meaningful if that layer is redundant. In that case,
layer randomization tests could incorrectly punish a model for not
responding to an insignificant change. This issue might be solved
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as additional research invents new evaluations, including model
sensitivity tests. However, it could also be that some attributes, like
model sensitivity, are too broad. Perhaps breaking model sensitivity
down into more precise categorizations, like layer randomization
sensitivity, would provide more straightforward documentation.
Similarly, we expect the methodology attributes to evolve from
open-ended descriptions to more consistent reports. For instance,
the vocabulary used to describe computational efficiency may vary
across saliency developers and research areas based on typical com-
puting resources and dataset sizes. As more saliency methods are
documented and more evaluations are developed, we expect the
saliency card attributes and their descriptions will evolve to bet-
ter characterize saliency methods, facilitate cross-card comparison,
and communicate with users.

Saliency method developers were inspired to document their
methods with saliency cards and hoped consistent and thorough
documentation would increase method adoption. Good documenta-
tion can make saliency methods easier to understand and use, “If you
want people to use your method, your need to have them understand it.”
[U8]. Currently, saliency method developers have to generate doc-
umentation content that ranges from novel algorithmic decisions
and implications in the paper to implementation considerations
in the public code repository. This process can feel unprincipled,
so developers were excited to have a template that fully captured
critical considerations. For example, when developing their saliency
method, U8 documented their method’s computational efficiency
and hyperparameter dependence in their code repository, explain-
ing “We tried to make our documentation accessible to users. I tried to
do some of this, but in an ad hoc way, and I didn’t hit all of these [at-
tributes].” They looked forward to adding additional documentation
and making a saliency card for their method.

5 DISCUSSION AND LIMITATIONS

We present saliency cards, transparency documentation to describe,
communicate, and compare saliency methods. While documenta-
tion in other parts of the machine learning pipeline has led to in-
creased trust and appropriate use [26, 29, 50, 51], saliency methods
do not have documentation standards. As a result, users we inter-
viewed struggled to stay informed with the ever-increasing num-
ber of saliency methods, forcing them to choose saliency methods
based on popularity instead of a thorough understanding of their
benefits and limitations. In response, saliency cards characterize
saliency methods based on ten user-centric attributes that describe
important usage considerations. The saliency card attributes span
different phases of the interpretation workflow, such as the saliency
method’s algorithmic properties, relationship to the model and data,
and perceptibility by an end-user. We evaluate saliency cards in a
user study with nine participants, ranging from radiologists with
limited knowledge of machine learning to saliency method develop-
ers. With saliency cards, users prioritized attributes based on their
task requirements, personal experience, and the expectations of
their teammates, allowing them to select a saliency method appro-
priate for their needs and properly interpret its results. Further, the
saliency card attributes provided users with a shared vocabulary
to describe their needs and communicate about saliency methods
without requiring extensive machine learning expertise.
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Building saliency cards allowed us to analyze the research land-
scape, revealing areas for future work, such as task-specific saliency
methods and evaluation metrics for under-evaluated attributes. By
documenting and comparing the methodological attributes of vari-
ous saliency methods (Table A1), we identify the potential for new
saliency methods that meet specific user priorities and future stud-
ies on the latent relationships between attributes. Current saliency
methods cannot achieve specific combinations of attributes. For
example, none of the saliency methods we surveyed were model
agnostic and computationally efficient because model agnosticism
is commonly achieved through expensive repeated perturbations.
Model agnosticism and computational efficiency were priorities for
U6 and U7, but currently, they must sacrifice one when choosing a
saliency method. New research could explore this gap, and others,
by designing novel saliency methods that attain model agnosticism
without forfeiting computational efficiency or proving that they
are inexplicably inversely correlated.

Saliency cards also revealed gaps in evaluation research, includ-
ing under-evaluated attributes and saliency methods (Table A2).
For example, by compiling evaluative metrics for each attribute, we
uncovered that there is far less research into how to measure per-
ceptual correspondence, relative to other attributes such as input
or model sensitivity. By identifying this gap, saliency cards prompt
further research into how we might measure perceptual correspon-
dence. Better understanding how people perceive saliency maps
could then motivate the design of new saliency visualizations —e.g.,
that expand static heatmaps by dynamically overlaying multiple
attributions [55] to explicitly communicate limitations and preemp-
tively avoid implying unwarranted signal. Table A2 also reveals that
some saliency methods (e.g., SIS [15]) have been evaluated less than
others (e.g., integrated gradients [72]). While the sensitivity and
perceptibility attributes report results from existing evaluations,
evaluation papers typically only test a subset of existing saliency
methods. As a result, our users found it challenging to compare
saliency methods evaluated on different tests. Future work could
run missing evaluations or design test suites that report a saliency
method’s results on existing tests.

We intend saliency cards to be living artifacts that start a conver-
sation around saliency method documentation. To facilitate living
documentation, we provide a public repository’! containing saliency
card templates, summaries of evaluations, and saliency cards for
existing methods. The repository serves as a centralized location
for users to reference saliency methods. As new saliency methods
are developed to fulfill specific user needs, new saliency cards can
be added to the repository. Existing saliency cards can be contin-
ually updated with additional evaluative results stemming from
new evaluation metrics and the application of existing metrics to
unevaluated saliency methods. As the saliency card repertoire ex-
pands, saliency card documentation will simultaneously evolve
to support additional user needs. As signaled in our user studies,
new evaluations may reveal that some saliency card attributes are
too broad and need to be decomposed into constituent attributes
that more precisely articulate the evaluative takeaways. Likewise,
new attributes or categories may emerge as more users from vari-
ous backgrounds begin to use saliency methods and communicate
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their task-specific priorities. By documenting saliency methods, we
hope saliency cards support the continued rapid growth of saliency
method research and evolve as needed alongside new developments.
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A APPENDIX
A.1 Additional Saliency Cards

The saliency cards repository (https://github.com/mitvis/saliency-cards) contains a saliency card template (Fig. A1) and example saliency
cards, including Grad-CAM (Fig. 2) and integrated gradients (Fig. A2). As more saliency methods are documented, developed, and evaluated,
we expect the repository to serve as a centralized location for saliency documentation.

{Method Name} Sa“ency Card (@ /1 /Il Region Perturbation: Measures the change in the model's output as input regions are perturbed based on their saliency
ranking.

Provide a summary of the saliency method. (@ /1 / ) ROAR: Measures the difference in model behavior between a model trained on the original inputs and a model trained on the
original model's salient features.

Methodology : " .
(@ /1 / M) Robustness: Measures the change in saliency when meaningless perturbations are applied to the input features.

Describe how the saliency is computed, its intended use, and important considerations. (@ /1 /M Sensitivity: Measures the change in saliency when insignificant perturbations are added to the input.

* Developed by: {developers} (@1 /Il Stability: Measures the change in saliency when adversarial perturbations are added to the input.

« Shared by [optional]: {who is sharing it}
« References: {links to relevant papers, blog posts, and demos}
« Implementations and Tutorials [optional]: {links to source code, tutorials, and implementations}

(@ /1 /M Sufficiency: Tests if the set of salient features is sufficient for the model to make a confident and correct prediction.

Label Sensitivity
* Aliases [optional]: {other names the method is referred by}

« Example: {a visual example of the method} Provide the results of the saliency method on label sensitivity tests:

‘o (@ /1 /Il Data Randomization: Measures the change in saliency between a model trained on the original labels and a model trained with
Determinism 5

random label permutations.
Describe the saliency method's sources of non-determinism. (@ /1 / ) Model Contrast Score: Measures the change in saliency between two models trained on controlled variants of the dataset

where feature importances are known.
Hyperparameter Dependence

Describe the saliency method's hyperparameters and suggest how to set them. Model Sensitivity

- Provide the results of the saliency method on model sensitivity tests:
Model Agnosticism
) (@ /1 /M Cascading Model Parameter Randomization: Measures the change in saliency as model weights are successively
Describe the types of models the saliency method applies to.

randomized.

Computational Efficiency (@ /1 /) Implementation Invariance: Tests if the saliency is identical for two functionally equivalent models.

Describe the saliency method's computational efficiency and computing expectations. (@ /1 / M) Independent Model Parameter Randomization: Measures the change in saliency as layers of the model are randomized one
atatime.

Semantic Directness
(@ /1 / M Linearity: Tests that the saliency of two composed models is a weighted sum of the saliency for each model.

Describe what the saliency method's output represents and the knowledge required to interpret the results.
[@ /1 /M) Model Consistency: Measures the change in saliency between the original model and its compressed variant.
Sensitivity Testing (@ /1 /M) Model Weight Randomization: Measures the change in saliency between fully trained and fully randomized models.

Report results of the relevant sensitivity evaluations. Use @ to indicate the saliency method passed, il to indicate it failed, and [ to [@ /1 /M Repeatability: Measures the difference in saliency between two independently initialized models trained in the same way on
the same data.

(@ /1 / M) Reproducib

ty on the same data.

indicate the evaluation was inconclusive.

: Measures the difference in saliency between two models with different architectures trained in the same way

Input Sen:

Provide the results of the saliency method on input sensitivity tests:

Perceptibility Testing

(@ /1 /Il Completeness: Requires the sum of the saliency to equal the difference between the model's output on the original input and

the model's output on a meaningless input. Report results of the relevant perceptibility evaluations. Use @ to indicate the saliency method passed, [l to indicate it failed, and i to

@/ / M) Deletion: Measures the change in the model's output as input features are iteratively removed based on their saliency ranking. indicate the evaluation was inconclusive.

Additional evaluations in: Metrics for saliency map evaluation of deep learning explanation methods. oo
Minimality
(@ /11 / M Faithfulness: Measures the change in the model's output as input features are obscured or removed based on their saliency

Provide the results of the saliency method on minimality tests:

rank.

@/ /M Infidelity: Measures the mean squared error between the saliency weighted by an input perturbation and the difference in the @ /. /) Minimality: Tests if the salient features are the smallest set of features the model can use to make a confident and correct
model's output between the actual and perturbed inputs. prediction.

@/ /) Input Consistency: Measures the consistency of the sallency when the input features are swapped with synonymous features. (@ /1 / ) Sparsity: Measures the ratio between the maximum and minimum saliency values. High sparsity means the saliency's values

are narrow and focused.
(@ /1 /I Input Invariance: Measures the difference in saliency between a model trained on the original data and a model trained on the

data with a constant shift. (@ /1 /) Visual Sharpening: Human evaluation of the "sharpness" of the saliency.

(@ /1 /M Insertion: Measures the change in the model's output as input features are iteratively added based on their saliency ranking. Perceptual Correspondence
Additional evaluations in: Metrics for saliency map evaluation of deep learning explanation methods.
Provide the results of the saliency method on perceptual correspondence tests:
(@ /[ / ) Perturbation Testing (LeRF): Measures the change in the model's output as input features are iteratively set to zero, starting
with the least saliency features.

/Ml Localization Utility: Measures the intersection of the saliency and the ground truth features.

(@ /1. /Il Luminosity Calibration: Measures if the relative saliency for two features is equivalent to their relative impact on the model's
output.

@/ /Il Mean loU: Measures the intersection-over-union of the salient features and a set of ground truth features.

[@ /1 /M Plausibility: Measures if the saliency highlights features known to be important to humans.

[@/1 /M) The Pointing Game: Measures if the highest saliency value is in the set of ground truth features. Additional evaluations in:
Metrics for saliency map evaluation of deep learning explanation methods.

Citation [optional]

Provide a citation to the paper or blog post that introduces the method.

BibTeX:

Figure A1: The saliency card template provided at https://github.com/mitvis/saliency-cards. The template describes what to
include in each section of the saliency card and summarizes existing evaluations for sensitivity and perceptibility attributes.
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Integrated Gradients Saliency Card

Integrated gradients is a model-dependent, path-attribution saliency method.

Methodology

Integrated gradients computes saliency by comparing the saliency of the actual input to the saliency of a meaningless baseline input. It
does so by approximating the integral of the gradient of the target output with respect to the input features, linearly interpolating from the
baseline to the actual input.

Developed by: Mukund Sundararajan, Ankur Taly, and Qiqi Yan at Google.
References:

« Original Paper: Axiomatic Attribution for Deep Networks
« Paper on Integrated Gradients Hyperparameters: Visualizing the Impact of Feature Attribution Baselines

Implementations and Tutorials:

« Original GitHub Repository: ankurtaly/Integrated-Gradients
« PyTorch Integration via Captum: Captum Integrated Gradients
« TensorFlow Integration: TensorFlow Integrated Gradients Tutorial

Aliases: Path-Integrated Gradients

Example: The integrated gradients saliency map (right) on an ImageNet image of a cab (left) using a Pytorch pretrained ResNet50. This
example is computed in integrated_gradients_example. ipynb .

Determinism

Integrated gradients is deterministic unless the user chooses a non-deterministic baseline value.

Hyperparameter Dependence

Integrated gradients is sensitive to its baseline parameter. Since integrated gradients computes feature importance by integrating from a
meaningless baseline to the actual input, its saliency is zero for any features where the baseline and input values are the same.

The all-zero baseline is common; however, other options include random noise, a blurred input, the inverse of the input, the input with
added noise, or the average of multiple baselines. For more information on the baseline parameter and suggestions for how to set it see:
Visualizing the Impact of Feature Attribution Baselines

Model Agnosticism

Integrated gradients requires a differentiable model with access to the gradients.

Computational Efficiency

Computing integrated gradients takes on the order of 1e-1seconds using the Captum ona
ImageNet image, ResNet50 model, and one NVidia G100 GPU.

Semantic Directness

The output of integrated gradients is the accumulated gradient between the baseline input and the actual input. Interpreting its output
requires understanding model gradients and the impact of the baseline hyperparameter.

Sensitivity Testing
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Input Sensitivity

@ Completeness: Integrated gradients algorithmically guarantees completeness. The sum of the integrated gradients will equal the
difference in the model's output between the actual and baseline inputs.

Infidelity: Integrated gradients' infidelity is inconclusive. Integrated gradients outperforms vanilla gradients on MNIST and ImageNet,
performs equivalently to vanilla gradients on CIFAR-100, and performs worse than vanilla gradients with SmoothGrad, guided
guided ion with and integrated gradients with SmoothGrad across all three datasets.

Input Consistency: Integrated gradients' input consistency is inconclusive. It was more consistent than vanilla gradients and
SmoothGrad using the LSTM and QRNN models but less consistent than SmoothGrad using a transformer model. Evaluated using number
and gender agreement feature swaps with the Syneval and Winobias datasets.

Input Invariance: Integrated gradients can fail input invariance due toits baseline . A O-vector baseline is not input invariant, while
black baseline is input invariant. Regardless of the baseline, it is possible to selecting an input transformation that guarantees integrated
gradients fails input invariance. Evaluated using a CNN on MNIST.

[ Perturbation Testing (LeRF): Integrated gradients' LeRF perturbation tests were inconclusive. It passed for experiments using MNIST,
CIFAR-10, and IMDB datasets with MLP, CNN, and LSTM models. However, it had worse than random performance using ImageNet
Inception V3. This failure is due to incorrectly estimating the sign of the saliency, causing important features (with negative saliency) to be
removed first.

@ Perturbation Testing (MoRF): Integrated gradients passes all MoRF perturbation tests. Evaluated using MNIST, CIFAR-10, ImageNet, and
IMDB datasets with MLP, CNN, Inception V3, and LSTM models.

Il ROAR: Integrated gradients fails the ROAR test. It performs worse than random saliency when applied to an ImageNet ResNet50.

Robustness: Integrated gradients is somewhat sensitive to random noise, which causes slight changes to the saliency. However,
integrated gradients outperforms vanilla gradients, input x gradient, LRP, Occlusion, and LIME. Evaluated on MNIST CNNs.

Sensitivity: Integrated gradients' sensitivity tests are inconclusive. It is less sensitive to meaningless perturbations than vanilla gradients
and guided backpropagation but more sensitive than SmoothGrad applied to vanilla gradients, integrated gradients, and guided
backpropagation. Evaluated on MNIST, CIFAR-10, and ImageNet.

@ Stability: Integrated gradients is relatively stable, and its outputs change minimally in response to adversarial perturbations. It performs.
better than LIME and equivalently to vanilla gradients, input x gradients, LRP, and Occlusion. Evaluated on MNIST.

Label Sensitivity

Data Randomization: Integrated gradients changes appropriately when the model is trained on perturbed data labels. However, its
visualizations can misleadingly show input structure. Evaluated on MNIST and Fashion MNIST.

@ Model Contrast Score: Integrated gradients achieves a better-than-random model contrast score but performs worse than Grad-CAM
and SmoothGrad. Evaluated on the BAM image dataset.

Model Sensitivity

Cascading Model Parameter Randomization: Integrated gradients changes as the model is
However, its visualizations can misleadingly show input structure. Evaluated an ImageNet Inception V3.

] i { Integrated gradient:
saliency for functionally equivalent models.

invariance. It will produce equivalent

Independent Model Parameter Randomization: Integrated gradients changes appropriately as the model layers are independently
However, its visualizations can mi show input structure. Evaluated an ImageNet Inception V3.

@ Linearity: Integrated gradients algorithmically guarantees linearity. Its saliency on a model composed of two sub-models will equal the
weighted sum of its saliency on each sub-model.

Model Consistency: Integrated gradients' model consistency is inconclusive. In response to model compression, its saliency stayed
more consistent than vanilla gradients and SmoothGrad on LSTM and QRNN models but was less consistent than SmoothGrad on a
transformer model. Evaluated using DistillBert distillation and number and gender agreement tasks on the Syneval and Winobias datasets.

Model Weight Randomization: On a randomized model, integrated gradients saliency is near-random. Evaluated on SIIM-ACR
Pneumothorax and RSNA Pneumonia medical images.

[M Repeatability: Integrated gradients fails repeatability. Its saliency values for two models trained in the same way are more dissimilar than
similar. Evaluated on SIIM-ACR Pneumothorax and RSNA Pneumonia medical images.

M Reproducibility: Integrated gradients fails reproducibility. Its saliency values for two different architectures trained in the same way are
more dissimilar than similar. Evaluated using Inception V3 and DenseNet-121 on SIIM-ACR Pneumothorax and RSNA Pneumonia medical

images.
Perceptibility Testing

Minimality

Il Visual Sharpness: Integrated gradients are less visually coherent than SmoothGrad saliency methods. Evaluated on an ImageNet

Inception V3 and MNIST CNN.

Perceptual Correspondence

M Localization Utility: Integrated gradients fails localization utity. Its saliency values overlap less with the ground truth than a random
model. Evaluated on SIIM-ACR Pneumothorax and RSNA Pneumonia medical images.

M Mean loU: Integrated gradients saliency has lower mean loU with the ground truth features than CAM and occlusion-based saliency
method and human localization. Evaluated using CNNs on CheXpert chest x-ray images.

@ Plausibility: Integrated gradients highlights human-important features more often than vanilla gradients and equivalently to SmoothGrad
on LSTM, QRNN, and transformer models. Evaluated on number and gender agreement tasks sing the Syneval and Winobias datasets.

The Pointing Game: Integrated gradient's most salient feature in the ground truth region as many times as other saliency methods but
less than human localization. Evaluated using CNNs on CheXpert chest x-ray images by Benchmarking saliency methods for chest X-ray

interpretation.

Citation

@inproceedings{integratedgradients
author

booktitle = {International Conference on Machine Learning ({ICML})},
publisher = {{PHLR}},
year = {2017},

b

= {Mukund Sundararajan and Ankur Taly and Qigi Yan},
title = {Axiomatic Attribution for Deep Networks},

Figure A2: The saliency card for integrated gradients [72] provided at https://github.com/mitvis/saliency-cards.
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A.2 Saliency Card Attribute Comparison

Saliency cards expose differences in the methodology, sensitivity, and perceptibility of saliency methods. We have provided example saliency
cards for Grad-CAM [66] (Fig. 2) and integrated gradients [72] (Fig. A2) that describe their attributes. Here, we compare the saliency card
attributes for additional saliency methods, to analyze the research landscape and reveal gaps and opprotunities for future work.

A.2.1  Methodology Comparison. In Table A1, we compare the methodological attributes of 11 saliency methods. We extract each method’s
determinism, hyperparameter dependence, model agnosticism, and semantic directness from its original paper and we compute each
method’s computational efficiency.

We compute computational efficiency of each method on a 224x224x3 ImageNet [20] image and a pretrained PyTorch [56] ResNet50 [32]
using one Nvidia G100 GPU. For consistency, we use each method’s default parameters. To account for noise in our timing procedure, we
report the order of magnitude of the computation time as opposed to the raw value. The results of the computational efficiency tests can be
found at: https://github.com/mitvis/saliency-cards/blob/main/paper_results/computational_efficiency.ipynb.

For vanilla gradients [24, 69], guided backprop [71], Grad-CAM [66], integrated gradients [72], input x gradient, and SHAP [49], we use their
Captum [42] implementations. For SmoothGrad [70] and XRAI [39], we use the public implementation from Google PAIR?. For RISE 3 [57],
SIS [15] 4, and LIME > [62], we use the public implementations provided by their authors. To provide a consistent saliency method interface
across the different implementations, we provide a wrapper for each method and visualization code at: https://github.com/mitvis/saliency-
cards.

This is just one way to test the computational efficiency of each saliency method. We expect the relative computational efficiencies may
change depending on the implementation, model architecture, parameter settings, and data modality. Similarly, there may be theoretical
computational efficiency bounds that can be derived for each method. As additional experiments reveal new computational efficiency results,
saliency cards can evolve to contain a comprehensive overview of each method’s computational efficiency.

A.2.2  Sensitivity and Perceptibility Comparison. Table A2 summarizes the results of 33 saliency method evaluations that span the sensitivity
and perceptibility attributes. We categorize each test’s results for every saliency method it tested. Based on what each evaluation paper
reports, we group the results into “pass”, “fail”, and “inconclusive”.

While we try to directly report the paper’s claims about each saliency method, in some cases, these categorizations can be subjective.

Table A1: We compare the methodological attributes of 11 saliency methods to systematically analyze the research landscape

to understand gaps and opportunities for future work.

Determinism

Hyperparameter Dependence

Model Agnosticism

Computational Efficiency

Semantic Directness

Vanilla Gradients [24, 69]

Deterministic.

None.

Requires a differentiable model
with access to gradients.

On the order of 1e—2 seconds.

The magnitude of the change in the model’s
output given a small change to an input
feature.

SmoothGrad [70]

Non-deterministic noise per-

turbations.

Gaussian noise parameters; the number of sam-
ples to average over.

Applicable to any saliency method.

Adds a ~20x time increase.

The average saliency across noisy versions
of the input.

Guided BackProp [71]

Deterministic unless using
a non-deterministic saliency
method.

Saliency method (typically vanilla gradients).

Requires a differentiable model
with access to gradients.

On the order of le~2 seconds using
vanilla gradients.

The output of another gradient-based
saliency method only considering paths
through the model with positive gradients.

Grad-CAM [66]

Deterministic.

Interpolation method to upsample with; choice
of convolutional layer (typically the last convo-
lutional layer).

Requires a differentiable model, ac-
cess to the gradients, and a convo-
lutional layer.

On the order of 1e—2 seconds.

The positive attributions of the gradient-
weighted feature maps from an internal
convolutional layer.

Integrated Gradients [72]

Deterministic unless using a
non-deterministic baseline.

Baseline value; integral approximation parame-
ters.

Requires a differentiable model
with access to gradients.

On the order of 1e—1 seconds.

The accumulated gradient between the
baseline input and the actual input.

Input X Gradient

Deterministic.

None.

Requires a differentiable model and
access to gradients.

On the order of 1e—2 seconds.

The input feature value weighted by the
gradient.

XRAI [39]

Deterministic unless using a
non-deterministic ~ saliency
method or segmentation
method.

Segmentation method; saliency method (typi-
cally integrated gradients).

Requires input features that can be
meaningfully clustered (e.g., image
pixels).

On the order of 1el seconds.

The input regions with the largest sum of
feature attribution.

RISE [57]

Non-deterministic mask gen-

eration.

Masking value; mask generation parameters.

No requirements on the model or
access to internals.

On the order of 1e—1 seconds.

The sum of input masks weighed by the
model’s confidence on the masked input.

SIS [15]

Deterministically produces a
set of explanations per input.

Feature replacement values; model confidence
threshold.

No requirements on the model or
access to internals.

SIS: prohibitively slow. Batched
Gradient SIS: On the order of lel
seconds.

The minimum set of pixels necessary for
the model to confidently produce the same
output.

LIME [62]

Non-deterministic perturba-

tions.

Linear surrogate model and parameters; input
perturbation parameters.

No requirements on the model or
access to internals.

On the order of 1el seconds.

The positively ~contributing features
learned by a surrogate model trained to
mimic the original model’s local decision
boundary for the input.

SHAP [49]

Non-deterministic ~ coalition
sampling.

Feature replacement values; linear model param-
eterization; regularization parameter.

No requirements on the model or
access to internals.

GradientSHAP: on the order of
le—1 seconds. KernelSHAP: on the
order of 1el seconds.

The impact of each input feature on the
output as defined by Shapley values.

Zhtps://github.com/PAIR-code/saliency
3https://github.com/eclique/RISE

“https://github.com/gifford-lab/overinterpretation/tree/master; https://github.com/google-research/google-research/blob/master/sufficient_input_subsets/sis.py
Shttps://github.com/marcotcr/lime
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For instance, if an evaluation compares two saliency methods and one outperforms the other, it can be hard to evaluate which methods
pass or fail the test. It could be just the top-performing one passes, both pass, or both fail. In evaluations that provide negative and positive
controls (e.g., random baselines), we categorize each method based on those controls.

These categorizations are helpful for analyzing the gaps in the design space (e.g., limited evaluations for particular models or attributes);
however, saliency cards must also provide a textual summary of the evaluation’s results. This description helps mitigate the subjectivity
of pass/fail/inconclusive categorizations and can provide helpful context to a user. For instance, seeing a lack of experimental controls
could inspire a user to run additional baseline evaluations for an existing test or design new metrics that better separate the behavior of the
saliency methods.

Table A2: We summarize the results of 33 saliency method evaluations that describe the saliency card sensitivity and percepti-
bility attributes. This summarization reveals the need for additional evaluation using existing metrics and new metrics to
further test under-evaluated attributes. We generalize the results of each test based on if they passed the evaluation (green V),
failed the evaluation (red X), performed inconclusively (yellow —), or were not tested (grey cell).

Vanilla Gradients (VG) [24, 69]
VG + SmoothGrad [70]
Guided BackProp (GBP) [71]
Grad-CAM [66]

Guided Grad-CAM [66]
Integrated Gradients (IG) [72]
IG + SmoothGrad [70, 72]
Gradient - Input

XRAI [39]

LRP [46]

Ablation CAM [61]
Score-CAM [77]

RISE [57]

Grad-CAM++ [16]

SIS [15]

Deconvnet [81]

CAM [84]

Occlusion [81]

Eigen-CAM [54]

LIME [62]

GBP + SmoothGrad [70, 71]
SHAP [49]

Deep Taylor Decomposition [53]
PatternNet [41]
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A.3 Additional Interview Details

In each interview, we explained saliency card attributes via a definition and example that demonstrated the attribute. We showed U1-U8
examples from ImageNet [20], melanoma classification [18], MNIST digit recognition [21], and CheXpert chest x-rays [36], shown in Fig. A4.
Since the radiologist participant (U9) was unfamiliar with machine learning, we only showed them examples using CheXpert chest x-rays [36],
shown in Fig. A3.

Determinism
Ability to produce the same results given the same inputs.

Chest X-Ray

Hyperparameter Dependence
Reliance on human specified parameters.

Integrated Gradients
Black Baseline White Baseline

LIME Sancy Maps Computed Twice Chest X-Ra;

Atelectasis (99.3%)

Lime is non-deterministic, so it can produce different saliency maps on the same input.

Semantic Directness
Ability to communicate meaning efficiently and effectively.
Chest X-Ray

Vanilla Gradients

Integrated Gradients

The accumulated importance of each pixel The amount changing the pixel
from a value of 0 (black) to its true value.  would change the model’s output.

Atelectasis (99.3%)

Some methods are simpler to explain than others. Vanilla gradients' explanation is easy for most lay users to understand, while
integrated gradients requires knowledge of gradient accumulation.

Perceptual Correspondence

Atelectasis (99.3%)
Integrated gradients relies on a meaningless baseline parameter. Depending on the setting, the saliency maps can vary
drastically.

Minimality
Identification of a minimal number of features.

Chest X-Ray LIME Vanilla Gradients

Atelectasis (99.3%)
Vanilla gradients operate on the pixel level and can appear noisy. Lime is more minimal because it operates on superpixels.

Visual alignment with numerical meaning.

Chest X-Ray

Vanilla

Randomly Initialized Model

One aspect of perceptual correspondence is communicating meaning (or lack of meaning) when there is no information present.
In this example, integrated gradients may cause a users to hallucinate meaning even though the model is untrained,

Figure A3: Examples of each saliency card attribute we discussed with the radiologist user (U8) in our user study. Given they
were unfamiliar with machine learning, we used medical imaging examples from CheXpert [36]. Each example defines the
attribute and shows an informative instance of the attribute exhibited.
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Determinism
Ability to produce the same results given the same inputs.

LIME with Different Random Seeds

Melanoma Image

Lime is non-deterministic, o it can produce different saliency maps on the same input.

Model Agnosticism
Applicability to different model types.

MNIST Image LIME can apply to drastically different model architectures

Random Forest CNN

LIME is model agnostic. It can be applied to various model architectures, ranging from random forests to CNNs.

Semantic Directness
Ability to communicate meaning efficiently and effectively.

LIME

The important features learned
by a surrogate model trained to
mimic the original model’s

decision boundary on this input.

Sufficient Input Subsets

The minimum set of pixels
necessary for the model to make
its original decision with 85%
confidence.

Some methods are simpler to explain than others. SIS's explanation is easy for most lay users to understand, while LIME requires
knowledge of surrogate models and decision boundaries.

Label Sensitivity
Sensitivity to data label changes.

SmoothGrad on a
trained model

SmoothGrad on a
model trained on permuted labels

(9 P

One way to test label sensitivity is to change the model’s labels. Under this test, SmoothGrad is label sensitive because its
saliency map looks appropriately random as a result of random label perturbations.

MNIST Image

Minimality
Identification of a minimal number of features.
Vanilla Gradients

ImageNet Image SmoothGrad

While vanilla gradients look noisy, SmoothGrad is more minimal and looks visually sharper.
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Hyperparameter Dependence
Reliance on human specified parameters.

ImageNet Image

Integrated gradients with different baselines

Black Baseline White Baseline

Integrated gradients relies on a meaningless baseline parameter. Depending on the seting, the saliency maps can vary
drastically.

Computational Efficiency
Computational time required to compute.

Run time for different saliency methods on an ImageNet image

Some methods, like LIME, can take orders of magnitude longer to compute than others, like vanilla gradients.

Input Sensitivity
Sensitivity to meaningful input changes.

Grad-CAM on
Original Image

| o

Grad-CAM on
Attacked Image

3

One way (o test input sensitiviy is to check if meaningful changes to the input result in meaningful changes to the saliency map.
Here, an Adv-watermark attack adds a watermark to the image and changes the model's prediction. Under this test, Grad-CAM is
input sensitive because the map changes from highlighting the image to highlighting the watermark.

Original Image Adversarial Attack

Prediction: Salt Shaker Prediction: Water Jug

Model Sensitivity
Sensitivity to meaningful model changes.

model

over

Fully Trained > Fully Randomized

One way to test model sensitivity is to progressively randomize the model’s weights and examine how the saliency map changes.
Under this test, SmoothGrad is model sensitive because its saliency map looks appropriately random as the model is randomized.

Perceptual Correspondence
Visual alignment with numerical meaning.

Vanilla

Chest X-Ray

Randomly Initialized Model
One aspect of perceptual correspondence is communicating meaning (or lack of meaning) when there is no information present.
In this example, integrated gradients may cause a users to hallucinate meaning even though the model is untrained,

Figure A4: Examples of each saliency card attribute we discussed with the U1-U7. Each example defines the attribute and shows
an informative instance of the attribute exhibited.
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