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Abstract

The amplitude of a pulse that propagates in a homogeneous material whose properties are instan-
taneously changed periodically in time will undergo an exponential increase, due to the interference
between the reflected and transmitted pulses generated at each sudden switch. Here we resolve the issue
by designing suitable reciprocal PT-symmetric space-time microstructures both in the one-dimensional
and two-dimensional case, so that the interference between the scattered waves is such that the over-
all amplitude of the wave will be constant in time in each constituent material. Remarkably, for the
geometries here proposed, a pulse will propagate with constant amplitude regardless of the impedance
between the constituent materials, and for some, regardless of the wave speed mismatch. Given that
the energy associated with the wave will increase exponentially in time, this creates the possibility to
exploit the stable propagation of the pulse to accumulate energy for harvesting.

Although the potential of time-modulated materials was first realized in the late Fifties (see [7, 30, 24,
13, 11], just to name a few), they have experienced a widespread interest only in recent years, due to the
associated extreme wave phenomena. Some examples are antireflection temporal coatings [27], temporal
pumping in electromechanical waves [32|, nonreciprocal wave phenomena 28|, temporal and spatiotemporal
crystals [33, 29], spatiotemporal cloaking [21], Bloch symmetry breaking [9], and inverse prisms [1]. See
also the review articles [5, 6] and the comprehensive book [17].

Here, for the sake of generality, we will not specify the type of wave phenomenon: we will consider any
physics in which wave propagation can be described by a linear second-order wave equation of the form
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where o and [ are material parameters, defining the wave speed ¢ = y/a/f and the wave impedance
~v = v/af of the material.

We are interested in the propagation of a pulse through a sequence of time interfaces, moments of
time at which the material properties are instantaneously changed due to a sudden change in the applied
field. The first experimental observation of a time interface occurred in the context of water waves by
instantaneously changing the effective gravity [3]. For mechanical waves, time interfaces are attained by
using, for instance, piezoelectric patches [18]. In electromagnetics, for which the realization of a time
interface is more challenging, a photonic time interface was recently observed in a microwave transmission
line [25].

Each time the wave encounters a time interface, it will split into two waves traveling in opposite direc-
tions. Given that the amplitude of the wave as well as the momentum are conserved (see, e.g., [22, 17]),



the amplitudes of the two outgoing waves will be determined by the amplitude of the incoming wave, u;,
traveling from material 1 to material 2, by
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u_ being the wave traveling in the opposite direction and w4 the one traveling in the same direction as
the incoming wave. As a result of time modulation, both the energy and the amplitude of the wave will
increase exponentially in time (see, e.g., [15, 16, 31]). For instance, the amplitude of the wavefront of a
pulse traveling through a time laminate will be given by
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where u; is the amplitude of the incoming pulse, n the number of switches from material 1 to material 2
and m the ones from material 2 to material 1. The goal of this letter is to introduce suitably designed
space geometries to counteract the growth of the overall amplitude of the wave, due to time modulation.
Indeed, if the spatial geometry is properly tailored, the scattering of the wave due to space interfaces can
interfere with the scattering of the wave due to time interfaces to maintain the overall amplitude of the
wave constant. We recall that, at a space interface, the amplitude and the flux of the wave are conserved,
so that the amplitude of the reflected u, and transmitted u; waves as functions of the amplitude u; of the
incoming wave will be
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when the incoming wave travels from material 1 to material 2.

Here, we will work with composites that are reciprocal and PT-symmetric, where P-symmetry refers to
reflection invariance of the microstructure under the parity operation of spatial reflection, and T-symmetry
stands for time reversal symmetry (note that for space-time composites, the two symmetries do not hold
separately). Given that the materials considered here are reciprocal, we will not encounter any of the exotic
wave phenomena, such as Fresnel drag (e.g., [12]), associated with the breaking of reciprocity.

Some examples of geometries achieving such an objective were proposed for the one-dimensional case
in [20], within the theory of field patterns [23, 19, 26]: the space and time interfaces are placed in such
a way that the branching of the pulse due to the transmission and reflection at each interface will not
cause a cascade of disturbances but rather a periodic pattern. Except for two remarkable one-dimensional
examples of space-time checkerboards in which the materials have the same wave speed, all the examples
proposed in |23, 20, 19| are such that, for certain values of the wave impedances, the condition of PT
symmetry is unbroken [4] and for others it is broken. When the condition of PT symmetry is unbroken,
then the pulse propagates within the space-time material without any exponential growth in amplitude.
The associated energy, however, still grows exponentially in time. In order to conserve energy, indeed, one
needs, for instance, to introduce nonlinearity as showed in [8]. In this letter, we first extend the results in
[20] by providing one-dimensional field-pattern materials for which the condition of PT-symmetry is always
unbroken, regardless of the material properties.

If the constituent materials have the same wave impedance, then, there will be no reflected wave when
the pulse encounters either a space or a time interface (see equations (2) and (3)), and its amplitude will
not increase in time (see, e.g., [15, 14]). In the case of a space-time composite with the two constituent
materials having different impedances, a sufficient condition to ensure that a pulse will maintain a constant
amplitude as it propagates in the material, is the following: the pulse has to encounter a space interface
followed by a time interface between the same materials periodically. Geometrically, this means that any
characteristic line in a space-time diagram will need to cross a horizontal interface, after crossing a vertical



interface. In order for such a design principle to be satisfied by both the wavefront and the scattered waves,
one has to choose a field pattern material [23, 20, 19, 26|, for which the network of characteristic lines is
locally periodic so that the scattered waves interact according to a precise pattern.

The only two field-pattern materials proposed in the literature (see |23, 20, 19, 26]) for which a pulse
propagates at constant amplitude, regardless of the impedance mismatch, are space-time checkerboards in
which the constituent materials have the same wave speed. A generalization of such a geometry is the
one showed in figure 1, where § € [0,+00). The right-going and left-going wavefronts will always have
amplitude equal to the initial one when traveling through material 1 (gray), and will have amplitude equal
to 2v1/(71 + 72) when traveling through material 2 (white), regardless of the impedance mismatch: the
smaller the impedance mismatch, the smaller the difference in amplitude. The scattered waves will interfere
such that the oscillations in the wake of the wave will always have the same amplitude, which could be found
analytically, as also showed in figure 2 (the numerical simulations are performed by using the algorithm in
[10]). The associated energy is depicted in red in figure 3.
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Figure 1: A field pattern material where the two materials in white and gray have the same wave speed c.

Another example of a field-pattern material with the two components having the same speed and
satisfying our design principle is represented in figure 4.

A space-time geometry for which the wave propagates with constant amplitude regardless of both the
wave impedance mismatch and the wave speed mismatch is the one depicted in figure 5, with ¢ € [0, c0).
The wave speed of the gray and white materials, ¢; and co, respectively, is arbitrary and the one of the
dark gray material is given by c3 = c?/cp. If the initial amplitude of the right or left wavefront is w;,
then it will have amplitude equal to w; in material 1 (gray), 2viu;/(y1 + 72) in material 2 (white), and
7 (v2 + ¥3)ui/(y2(71 + 2)) in material 3 (dark gray).  This is the most general design that ensures
propagation of the wave at constant amplitude, regardless of the impedance mismatch.

In the two-dimensional case, if the pulse is a unidirectional Gaussian, u(z,y,0) = Aexp(—By?), then,
the results obtained in the one-dimensional case trivially hold, when the space-time geometries are the ones
in figures 8a and 8b. Propagation of a symmetrical Gaussian, u(z,y,0) = Aexp(—B(z? + 3?)), in either
one of the space-time geometries illustrated in figures 8a and 8b, will result in a wavefront with constant
amplitude in each material and a wake that increases amplitude in time, due to the spatial asymmetry
of the geometry, as showed in figure 9. However, the wake will have constant amplitude if one considers
a symmetric space-time geometry like the one illustrated in figures 10a and 10b, see figure 11. Figure 12
shows the associated energy.

These are the first two-dimensional field-pattern materials ever proposed. Given that the condition of
PT-symmetry is always unbroken, they are promising candidates to create energy harvesting devices: as
the wave travels without any instability in the material, the associated energy increases in time and can be
harvested.

Finally, given that the constant overall amplitude of the wave is guaranteed only if the time interfaces
are applied at specific moments of time, we study the effects of noise. Following [2], we consider the
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Figure 2: Snapshots of the amplitude of a Gaussian pulse of the form u(z,0) = exp(—10022), as it propagates
through a homogeneous material with o = 8 = 1 (orange), a time laminate with a1 = 1 = 1, ag = 52 = 0.5,
and period of modulation T'= 1 (blue), the space-time geometry in figure 1, with 6 =1, a3 = 1 = 1 and

o = Bg =0.5 (red).
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Figure 3: Energy associated with the wave propagation described in figure 2.

time interfaces occurring at random times 7,, = n + €,, with n integer and ¢, chosen independently and
uniformly in [—v/30,v/30], with ¢ being the noise standard deviation. As showed in figures 13 and 14 for
a time laminate, the bigger the disorder, the smaller the increase in the amplitude of the wave and energy,
which is in agreement with [2]. The opposite occurs when disorder is introduced in the space-time geometry



Figure 4: A field pattern material where the two materials in white and gray have the same wave speed c.
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Figure 5: A field pattern material where the gray material has wave speed c1, the white material co, and
the dark gray c3 = c2/co.

illustrated in figure 1, see figures 15 and 16, which suggests one has to reduce the noise to a minimum, in
order to maintain the overall amplitude of the wave constant and the growth of the energy slow.
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Figure 7: Energy associated with the wave propagation described in figure 6.
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Figure 8: (a) A field pattern material where the two materials in white and gray have the same wave speed
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This is the two-dimensional extension of the geometry of figure 1 when § = 0. (b) A field pattern

material where the gray material has wave speed cj, the white material cz, and the dark gray cs = c}/ca.
This is the two-dimensional extension of geometry of figure 5 when § = 0.
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through a homogeneous material with @« = = 1 (orange), and the space-time geometry in 8a, with
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Figure 11: Amplitude of a Gaussian pulse of the form u(z,y,0) = exp(—100(z? + y?)), as it propagates
through a homogeneous material with o = § = 1 (orange), a time laminate with a1 = 81 = 1, ag = 2 = 0.5,
and modulation period 7' = 1 (blue), and the space-time geometry in figure 10b, with ay = ;1 = 1 and
Qo = ,32 =0.5 (red).
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Figure 12: Energy associated with the wave propagation described in figure 11
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Figure 13: Snapshots of the amplitude of a Gaussian pulse of the form wu(x,0) = exp(—100z?), as it
propagates through a time laminate, with a3 = 81 = 1, as = B2 = 0.5, and the period of time modulation
T =1, with various degrees of disorder.
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Figure 14: The energy associated with the wave propagation described in figure 13.
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Figure 15: Snapshots of the amplitude of a Gaussian pulse of the form wu(x,0) = exp(—100z?), as it

propagates through the space-time geometry of figure 1, with oy = 51 = 1 and as = s = 0.5, with various
degrees of disorder.

12



[29]

[30]

[31]

[32]

[33]

STCB ]
1.44 —— Noisy STCB (0 =0.03)
—— Noisy STCB (0 =0.06)
1.2 4 —— Noisy STCB (0 =0.09) —
= 1.0
vt L[]
0.8 A
0.6 A
0.4
0 2 4 6 8 10
t

Figure 16: The energy associated with the wave propagation described in figure 15.

Y. Sharabi, A. Dikopoltsev, E. Lustig, Y. Lumer, and M. Segev. Spatiotemporal photonic crystals.
Optica, 9(6):585-592, Jun 2022.

P. K. Tien. Parametric amplification and frequency mixing in propagating circuits. Journal of Applied
Physics, 29(9):1347-1357, 1958.

D. Torrent, W. J. Parnell, and A. N. Norris. Loss compensation in time-dependent elastic metamate-
rials. Phys. Rev. B, 97:014105, Jan 2018.

Y. Xia, E. Riva, M. I. N. Rosa, G. Cazzulani, A. Erturk, F. Braghin, and M. Ruzzene. Experimental
observation of temporal pumping in electromechanical waveguides. Phys. Rev. Lett., 126:095501, Mar
2021.

J. Zhang, P. W. Hess, A. Kyprianidis, P. Becker, A. Lee, J. Smith, G. Pagano, I.-D. Potirniche, A. C.
Potter, A. Vishwanath, N. Y. Yao, and C. Monroe. Observation of a discrete time crystal. Nature,
543:217-220, 2017.

13



