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Algorithmic problems in groups with quadratic
Dehn function

Alexander Yu. Olshanskii and Mark V. Sapir

Abstract. We construct and study finitely presented groups with quadratic Dehn function (QD-
groups) and present the following applications of the method developed in our recent papers. (1) The
isomorphism problem is undecidable in the class of QD-groups. (2) For every recursive function f',
there is a QD-group G containing a finitely presented subgroup H whose Dehn function grows
faster than f. (3) There exists a group with undecidable conjugacy problem but decidable power
conjugacy problem; this group is QD.
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1. Introduction

Every group given by a presentation G = (X | R) is a factor group F/N of the free group
F = F(X) with the set of free generators X over the normal closure N = ((R))" of the set
of relators R. Therefore every word w over the alphabet X *! vanishing in G represents
an element of N, and so in F, w is a product vy ... vy, of factors v; = u; ril 1 which
are conjugates of the relators r; € R or their inverses.

The minimal number of factors m = m(w) is called the area of the word w with
respect to the presentation G = (X | R). M. Gromov [12, 13] introduced this concept in
geometric group theory, because m is equal to the minimal number of 2-cells (counting
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with multiplicities) used in a 0-homotopy of the path p labeled by w in the Cayley complex
of the presentation of G (or the 0-homotopy of a singular disk with boundary p).

In other words, given equality w = 1 in G, one can construct a van Kampen diagram,
that is, a finite, connected graph on the Euclidean plane with m bounded regions, where
every edge has label from X *!, the boundary path of every region (= 2-cell) is therefore
labeled. The label of it belongs in R*!, and the boundary of the whole map is labeled
by w. (See more details for this visual definition of area and van Kampen diagram in
Section 3.2.)

The Dehn function of a finitely presented group G = (X | R) is the smallest function
f(n) such that for every word w of length at most n in the alphabet X *!, which is equal
to 1 in G, the area of w is at most f(n).

It is well known (see [18]) that the Dehn functions of different finite presentations
of the same finitely presented group are equivalent, where we call two functions f, g
equivalent if f < g and g < f.Here f < g means that there is a constant ¢ > 0 such that
f(n) <cg(cn) 4+ cnforeveryn = 1,2, ...

The Dehn function is an important invariant of a group for the following reasons.

» It easily follows from the definition that if G is the fundamental group of a compact
Riemannian manifold M, then the Dehn function of G is equivalent to the smallest
isoperimetric function of the universal cover M .

* The Dehn function is closely related to the solvability of the word problem in the
group [9]. From the computer science point of view, the Dehn function of a group G
is equivalent to the time function of a non-deterministic Turing machine ‘solving’ the
word problem in G (see [30, Introduction] for details). Moreover, as was shown in [5]:

A (not necessarily finitely presented) finitely generated group has word problem in NP
if and only if it is a subgroup of a finitely presented group with at most polynomial
Dehn function (a similar result holds for other computational complexity classes [5]).

*  From the geometric point of view the Dehn function measures the ‘curvature’ of the
group: linear Dehn functions correspond to negative curvature, quadratic Dehn func-
tion correspond to non-positive curvature, etc.

More precisely, a finitely presented group is hyperbolic if and only if it has a sub-
quadratic (hence linear) Dehn function [7, 12,21]. In particular, the conjugacy problem in
such groups is decidable [12]. In contrast, we recently constructed a group with quadratic
Dehn function and undecidable conjugacy problem [27]. This result answers Rips’ ques-
tion of 1994. The present paper is based on the constructions of groups with small Denn
functions from [23,27] as well as on the application of S-machines introduced in [30].

The affirmative solution of the isomorphism problem was obtained in [31] for the class
of torsion free hyperbolic groups and in [11] for the class of all hyperbolic groups. This
means that there exists an algorithm recognizing whether two hyperbolic groups G and
G, are isomorphic or not, provided G; and G, are given by their finite presentations.
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We show that the linearity is the only possible restriction of Dehn functions providing a
positive solution of the isomorphism problem.

Theorem 1.1. In the class QD of finitely presented groups with quadratic Dehn function,
the isomorphism problem is undecidable. Moreover, one can select a QD-group G such
that there exists no algorithm deciding whether a Q D-group G and G are isomorphic or
not.

It is known that the Dehn function of a finitely presented subgroup can grow faster
than the Dehn function of the entire group. For example, the group SL(5, Z) has quadratic
Dehn function [32], but it contains subgroups with exponential Dehn function. Here we
prove the following result:

Theorem 1.2. For every recursive function f, there exists a pair of finitely presented
groups H < G, such that f < dg, where dy is the Dehn function of the subgroup H,
while the Dehn function of G is quadratic.

For a group with presentation G = (X | R), the power conjugacy problem is to deter-
mine, given words u, v € F(X) whether or not there exist non-zero integers k and / such
that u* is conjugate to v’ in G. The power-conjugacy problem has been the subject of
extensive research, see [1-4,6, 10, 15, 16,28]. However to the best of our knowledge, the
interconnection of this problem and the classical conjugacy problem has not been studied
yet.

Theorem 1.3. (1) There is a finitely presented group G with undecidable conjugacy
problem but decidable power conjugacy problem. Moreover, G has quadratic
Dehn function.

(2) There is a finitely presented group H with undecidable power conjugacy problem
but decidable conjugacy problem.

Notice that for the group G from Theorem 1.3 (1) and [27], there exists no algorithm
recognizing the conjugacy of some non-trivial powers of two elements (see Remark 4.6)
since elements of finite and infinite orders behave differently in G. Although G has unde-
cidable conjugacy problem, this problem is decidable in G for elements of infinite order.
The following property of G is used in the proof of Theorem 1.3 (1), and it is also inter-
esting in itself.

Theorem 1.4. For the group G from Theorem 1.3 (1), there is an algorithm that recog-
nizes whether two elements g and h are conjugate in G or not, provided the orders of g
and h are infinite. The order of every element of G can be also computed effectively.

Theorems 1.1, 1.2, 1.3, and 1.4 are proved in Sections 4, 5, 7, and 6, respectively. The
information needed for understanding the proofs, has been selected from earlier papers
and placed in Sections 2 and 3.
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2. Machine preliminaries

2.1. S-machine

Here we will use definitions which are equivalent to the definitions used in [26] and [22].
The ‘hardware’ of an S-machine S is a pair (¥, Q) of finite sets, where Q = | ['_, O;
and Y = U;’zl Y; for some n > 1. Here and below LI denotes the disjoint union of sets.
The elements from Q are called state letters, the elements from Y are fape letters. The
sets Q; (resp. Y;) are called parts of Q (resp. Y). To unify further definitions, we may add
the empty parts Yo and ¥, 4+ to Y.
The language of admissible words consists of reduced words in the free group of the
form

qiu1qz .. . Usqs+1, 2.1
where every ¢; is a state letter from some part Qﬁ}), u; are reduced group words in the
alphabet of tape letters of the part Yy (;), and for every i = 1,...,s one of the following
holds:

o If g; is from Qj(;), then g; 1 is either from Q)41 or is equal to ql-_l; moreover

k(@) =j@)+ 1.

e Ifg € Qj_(}), then g;41 is either from Q7 1) | oris equal to g '; moreover k(i) = j (i).
Every subword g;u;q; 1 of an admissible word (2.1) will be called a Qﬁ l.l) Qﬁ l.l +1)-Sector
of that word. An admissible word may contain many Qﬁ l.l) Qﬁ l.l 1) sectors.

We denote by || W || the length of word W . For every word W, if we delete all non-Y *!
letters from W, we get the Y -projection of the word W. The length of the Y -projection
of W is called the Y -length and is denoted by |W |y. Usually parts of the set Q of state
letters are denoted by capital letters. For example, a part P would consist of letters p with
various indices.

If an admissible word W has the form (2.1), W = qiu1qg2u> ...qs, and g; € Q;—?il),

i =1,...,s, u; are group words in tape letters, then we shall say that the base of W is
the word Qﬁ}) Qfé) . ﬁsl) Here Q; are just symbols which denote the corresponding

parts of the set of state letters. Note that, by the definition of admissible words, the base is
not necessarily a reduced word.

Instead of saying that the parts of the set of state letters of S are Qg, Q1,..., O, we
will write that the the standard base of the S-machine is Q¢ ... Q.

The software of an S-machine with the standard base Q¢ ... Q, is a finite set of
rules ©. Every 6 € O is a sequence [go — aoqqbo. . . ..qn — ang,b,] and a subset Y(6) =
L]Y; (), where g;,q; € Q;, a; is a reduced word in the alphabet Y;(6), b; is a reduced
word in Y; +1(0), Y;(0) C Y;,i =0,...,n. (Recall that Yy = Y, = @, and so the words
ap and by, are empty.)

Each component ¢; — a;q;b; is called a part of the rule. In most cases the sets Y; (6)
will be equal to either ¥; or @. By default Y;(0) = Y;.
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Every rule
0 = [go — aoqgbo. - -, qn = anq,bs)

has an inverse
-1 _ / —1 —1 / -1
07" =1[gy = ay qoby " .-...q, = a,; qnbx]

which is also a rule of S. It is always the case that Y; (™) = Y; () for every i. Thus the
set of rules ® of an S-machine is divided into two disjoint parts, ®* and ®~, such that
forevery # € ®T, 07! € ® and forevery § € ®, 7! € ©F (in particular @~ = O,
that is, any S-machine is symmetric).

The rules from @ (resp. ©7) are called positive (resp. negative).

To apply arule 6 = [go — aoqgbo. . . ..qn — anq,bs] as above to an admissible word
p1U1paus ... ps, where each p; € Qﬁl.l), means:

» check if u; is a word in the alphabet Y;(;)41(€) when p; € Qj(; or if it is a word in
Y;iy(0) when p; € Qj_(ll) (i =1,...,s — 1); and if this property holds, then:

» replace each p; = q}fil) by (a_/(i)q]’.(i)b_/(i))il,
* if the resulting word is not reduced or starts (ends) with Y -letters, then reduce the
word and trim the first and last Y -letters to obtain an admissible word again.

If arule 6 is applicable to an admissible word W (i.e., W belongs to the domain of 6),
then we say that W is a 6-admissible word and denote the result of application of 6 to
W by W - 6. Hence each rule defines an invertible partial map from the set of admissible
words to itself, and one can consider an S-machine as an inverse semigroup of partial
bijections of the set of admissible words.

We call an admissible word with the standard base a configuration of an S-machine.

We usually assume that every part Q; of the set of state letters contains a start state
letter and an end state letter. Then a configuration is called a start (end) configuration if
all state letters in it are start (end) letters. As Turing machines, some S-machines are rec-
ognizing a language. In that case we choose an input sector, usually the Q Q1-sector, of
every configuration. The Y -projection of that sector is called the input of the configuration.
In that case, the end configuration with empty Y -projection is called the accept configu-
ration. If the S-machine (viewed as a semigroup of transformations as above) can take an
input configuration with input u to the accept configuration, we say that u is accepted by
the S-machine. We define accepted configurations (not necessarily start configurations)
similarly.

A computation of lengtht > 0 is a sequence of admissible words

0 0
Wo —> - —> W,

such that for every i = 0,...,¢ — 1 the S-machine passes from W; to W, by applying
the rule 6; from ®. The word H = 0 ... 6; is called the history of the computation, and
the word W is called H -admissible. Since W; is determined by W, and the history H,
we use the notation W; = W, - H.
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A computation is called reduced if its history is a reduced word.

Note, though, that in [27] and in this paper, unlike the previous ones, we consider
non-reduced computations too because these may correspond to reduced van Kampen
diagrams (trapezia) under our present interpretation of S-machines in groups.

If for some rule 8 = [go — aoqgbo, - - .. qn — angq,bs] € O of an S-machine S the
set Y;4+1(0) is empty (hence in every admissible word in the domain of 6 every Q; Q; +1-
sector has no Y -letters), then we say that 6 locks the Q; Q;41-sector. In that case we
always assume that b;, a; 1 are empty and we denote by

¢ /
qi — aiq;
the i-th part (the (i + 1)-st part) of the rule. (We also have g;+1 — ¢;bi+1, where the
Qi+10;42-sector can be unlocked.)

. .. L
Remark 2.1. For the sake of brevity, the substitution [¢; — ag;,qi+1 —> ¢;,b] can be
written in the form [g;¢;+1 — aqjq;,b].

The above definition of S-machines resembles the definition of multi-tape Turing
machines (see [30]). The main differences are that every state letter of an S-machine
is blind: it does not ‘see’ tape letters next to it (two state letters can see each other if they
stay next to each other). Also S-machines are symmetric (every rule has an inverse), can
work with words containing negative letters, and words with ‘non-standard’ order of state
letters.

It is important that S-machines can simulate the work of Turing machines. This non-
trivial fact, especially if one tries to get a polynomial time simulation, was first proved in
[30]. But we do not need a restriction on time, and it would be more convenient for us to
use an easier S-machine from [26].

Let M be a deterministic Turing machine accepting a non-empty language &£ of words
in the one-letter alphabet {«}. In different sections we will use two versions of an equiva-
lent S-machine M;. For both of them there is a unique start rule, replacing the start state
letters that do not occur in other rules; similarly, there is a unique end rule, the only one
involving end state letters. The first version of M; is borrowed from [26], where [26, Lem-
mas 3.25 and 3.27] provide the following additional properties of M.

Lemma 2.2. The language of accepted input words of the recognizing S-machine M is
£L. In every input configuration of My, there is exactly one input sector, the first sector of
the word, and all other sectors are empty of Y -letters.

If a non-empty reduced computation Cy — --- — C; of My starts with an input
configuration containing a negative letter, then C; is neither an input nor the accept con-
figuration. [ ]

The following statement can be found in [22, Lemmas 4.15 and 4.16 (a)], although
below we denote the machine by M; instead of M, in [22].
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Lemma 2.3. The language of accepted input words of the recognizing S-machine M; is
&£. In every input configuration of My, there is exactly one input sector, the first sector of
the word, and all other sectors are empty of Y -letters.

For every reduced computation Wy — --- — W; of My with the standard base and a
non-empty history H, we have W; # Wj. ]

Lemma 2.4 is a modified formulation of [27, Lemma 2.8]. (In [27], it was formulated
for reduced computations, but the proof did not use that the history was reduced.)

Lemma 2.4. Suppose that a computation Wy — Wy — --- — W; of an S-machine S
has a 2-letter base and the history of the form H = H; Hf H3 (k > 0). Then for every
i =0,1,...,t, we have the inequality

IWill < IWoll + IWell + 2[1 Hyll + 31| Hzll + 2] H3. =

Recall that a word w is called a periodic word with period v if w is a subword of some
power of v.

Lemma 2.5. There is an exponential function [ with the following property. Suppose a
computation € : Wo — Wi — --- — W; of an S-machine S has a periodic history with
period H. Assume that € has no subcomputations W; — --- — W; with history H and
Wi =Wj. Thent < f(|Woll(IWoll + [IWell + 1 H ).

Proof. Since the history is H -periodic, there are words W;,, ..., W, where ix 1 — ix =
|H| (k=1,...,s— 1), the history of every subcomputation W;, — W;, 11 —---— W, |
is H,and s > t||H||7! — 1.

Assume that W;, = W;, for some / > k. Then we have V;, =V}, for arbitrary restric-
tion of € to a subbase B of length 2. Arbitrary computation with base B and history H
multiplies the Y -projection v from the left by a word a and from the right by a word b,
where the words a and b depend on B and H only. Therefore for the Y -projection v of
the equal words V;, and V;,, we obtain the equality v = a™vb™, wherem =1 —k > 1.
Hence we have (v~'a~!v)™ = b™, which implies in the free group that v-'a~'v = b,
i.e.,avb =v.Hence V; = Vig,, for every 2-letter subbase B. It follows that W;, = W;
contrary to the lemma assumption.

k+1°

Therefore we obtain s different admissible words in the computation €. Lemma 2.4
bounds their lengths by a linear function of ||[Wy||(||Woll + [|We]l + || H||) since every
word W; is covered by at most || Wy || admissible subwords with 2-letter bases. Hence the
number s and the number ¢ < (s + 1)||H | are bounded from above by an exponential
function. ]

2.2. Running state letters

For every alphabet Y we define a ‘running state letters’ S-machine LR(Y"). We will omit
Y if it is obvious or irrelevant. The standard base of LR(Y) is ™ PQ® where

oW =My P={p0i=12 09={"}
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The state letter p with indices runs from the state letter ¢ to the state letter ¢(*) and back.
The S-machine LR will be used to check the ‘structure’ of a configuration (whether the
state letters of a configuration are in the appropriate order), and to recognize a computation
by its history.

The alphabet of tape letters ¥ of LR(Y)is Y 1 Y @ where Y @ is a (disjoint) copy
of YU, The positive rules of LR are defined by (2.2)—(2.4):

tWD(a) =gV - ¢P, pV - a7 pWa' ¢@ — ¢, 2.2)

where « is any positive letter from ¥ = ¥ () and @’ is the corresponding letter in the copy
Y@ of YN, Comment. The state letter p(! moves left, replacing letters a from ¥ (V) by
their copies a’ from Y .

£02) = [, ;1,0 @ 2.3)

Comment. When p® meets ¢V, p turns into p®.
(D@ =g = ¢V p? — ap@ (@) 4? - ¢, (2.4)

Comment. The state letter p‘® moves right towards ¢, replacing letters a’ from ¥ @ by
their copies a from ¥V,
The start (resp. end) state letters of LR are {g", pM ¢@} (resp. {¢V, p@, ¢P}).

Remark 2.6. For some large integer m, we will also need the S-machine LR, from [27],
that repeats the work of LR m times. That is the S-machine LR, runs the state letter p
back and forth between ¢@ and ¢V m times. Every time p meets ¢ or ¢®, the upper
index of p increases by 1 after the application of the rule ¢@&i+D (i = 1,...,2m — 1), so
the highest upper index of p is (2m).

Remark 2.7. We will also use the right analog RL of LR. The base of RL is Q1 RQ5>.
The state letter r first moves right from ¢ to ¢® and then left. A lemma ‘left-right dual’
to Lemma 2.11 is true for RL as well.

Remark 2.8. The constant m defining the machine LR, is one of the big constants used
in [27]. In the present paper we will use just few of them. Here they are:

m,N < cq4 L L. 2.5

The constant N defined in Section 3 is the number of parts in the base of main machine M,
while L is the length of the hub-relation in the presentation of the group G.

The sign <« means ‘much smaller’ in (2.5), and it can be explained as follows. For an
arbitrary inequality from [27] involving several of these constants, let D be the highest
constant appearing there. The inequality always can then be rewritten in the form

D > some expression involving only lower constants.
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This highest parameter principle [20] makes the finite systems of all inequalities from
[23] or [27] consistent. One can effectively select the constants starting with the smallest
one, because after smaller constants are chosen, one can define D to be sufficiently large
to satisfy each of the inequalities, where D is the highest parameter.

2.3. Adding history sectors

We will add new (history) sectors to an S-machine M; provided by Lemma 2.2 or by
Lemma 2.3. The history sectors split the base letters of M. (See the definition below.)
If we ignore the new sectors, in essence, we get the hardware and the software of the
S-machine M;. The new S-machine M, will start with a configuration where in every
history sector a copy of the history H of a computation of M; is written. Then it will
execute H on the other (working) sectors simulating the work of M;, while in the history
sector, state letters scan the history, one symbol at a time. Thus if a computation of M,
with the standard base starts with a configuration W and ends with configuration W', then
the length of the computation does not exceed | W || + ||W/|.

Here is a precise definition of M. Let the S-machine M; have hardware (Q,Y),
where O = | |'_, O;, and the set of rules ©. The new S-machine M, has hardware

QO,r U Ql,(i u Ql,r U QZ,K u Q2,r - Qn,é,
Y=Y UX UYsU- U Xy UY,,

where Q; ¢ and Q; , are (left and right) copies of Q;, and X; is a disjoint union of two
copies of ®T, namely X; ¢ and X; ,. (The sets Qg ¢, Oy, are empty.) Every letter ¢ from
0Q; has two copies ¢® € Qi and g™ € Q;,,. The new sectors with tape letters from X;
(i =1,...,n) are called history sectors. By definition, the start (resp. end) state letters of
M, are copies of the corresponding start (end) state letters of M. The Qg O ¢-sector is
the input sector of configurations of M.

The positive rules 8, of M, are in one-to-one correspondence with the positive rules
6 of M;.If 0 = [go — aoqpbo. - . .. qn — anq, by is a positive rule of My, then each part
gi — a;qb; is replaced in 6} by two parts

_1 T
qix —> aiq; shg; and  qi, — heiq; . bi,

where /g ; (resp. ]’_19,1‘) is a copy of 0 in the alphabet X; ¢ (resp. in X; ,).

If 6 is the start (resp. end) rule of M, then for any word in the domain of 6y, (resp. 6, D)
all Y -letters in history sectors are from | |; X; ¢ (resp. |_|; Xi »).

Thus for every rule 6 of My, the rule 6, of M, acts in the Q; , Q41 ¢-sector in the
same way as 6 acts in the Q; Q; 4 1-sector. In particular, Y -letters which can appear in the
Qi.r Qi+1,¢-sector of an admissible word in the domain of ¢}, are the same as the Y -letters
that can appear in the Q; Q; +1-sector of an admissible word in the domain of 6. Hence if
6 locks Q; Q;1-sectors, then 0y, locks Q; , Q; 1 ¢-sectors.
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Remark 2.9. Every computation of the S-machine M, with history H and the standard
base coincides with the a computation of M; whose history is a copy of H if one observes
it only in sectors Q; Q41,1

Let 71 () be a start configuration of M; (an input configuration in the domain of
the start rule of M;) with ok written in the input sector (all other sectors do not con-
tain Y -letters), and H be a word in the alphabet of rules of M;. Then the corresponding
start configuration I5(a®, H) of M is obtained by first replacing each state letter ¢ by
the product of two corresponding letters ¢¥¢”, and then inserting a copy of H in the
left alphabet X; ¢ in every history Q; ¢ Q; r-sector. End configurations A,(H) of M, are
defined similarly, only the Y -letters in the history sectors must be from the right alphabet
Xir.

2.4. Adding running state letters

Our next S-machine will be a composition of M, with LR and RL. The running state
letters will control the work of M3.

First we replace every part Q; of the state letters in the standard base of M, by three
parts P; Q; R; where P;, R; contain the running state letters. Thus if Q¢ ... Qy is the
standard base of My, then the standard base of M, is

PoQoRoP1Q1R: ... PsQsRs, (2.6)

where P; contains copies of running P-letters of LR, and R; contains copies of running
R-lettersof RL, i = 0,...,s.
For every rule 6 of My, its i-th part [g; — a;q;b;] is replaced in M, with

[p(i)gir (i) — a;p(i)gir()bi], i=0.....s, 2.7)
where p(i) € P;,r(i) € R; donot depend on 0, and q;,¢q; € Q;.

Comment. Thus, the sectors P; Q; and Q; R; are always locked. Of course, such a mod-
ification is useless for solo work of M. But it will be helpful when one constructs a
composition of M with LR and RL which will be turned on after certain rules of M, are
applied.

If Q;—1Q; is an input sector of configurations of the machine M5, then R;_; P; is an
input sector of the configurations of M.

2.5. The machine M3

The next S-machine M3 is the composition of the .S-machine M, with LR and RL. The
S-machine M3 has the same base as My, although the parts of this base have more state
letters than the corresponding parts of M. It works as follows. Suppose that M starts
with a start configuration of My, a word «* in the input Ry P;-sector, copies of a history
word H in the alphabets X; ¢ in the history sectors, all other sectors empty of Y -letters.
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Then M3 first executes RL in all history sectors (moves the running state letter from R;
in the history sectors right and left), then it executes the history H of M,. After that the
Y -letters in the history sectors are in X; , and M3 executes copies of LR in the history
sectors (moves the running state letters left then right). After that M3 executes a copy of
H backwards, getting to a copy of the same start configuration of My, runs RL, executes
a copy of the history H of M, runs a copy of LR, etc. It stops after m times running RL,
Mz, LR, ﬁ;l and running RL one more time.

Thus the S-machine M3 is a concatenation of 4m 4 1 S-machines M3 1 to M3 441.
After one of these S-machines terminates, a transition rule changes its end state letters to
the start state letters of the next S-machine. All these S-machines have the same standard
bases as M.

The configuration /3(c*, H) of M3 is obtained from I5(¥, H) by adding the control
state letters rl.(l) and p-(l) according to (2.7) in Section 2.4.

1

Set (of the rules of machine) M3 ;. It is a copy of the set of rules of the S-machine RL,
with parallel work in all history sectors, i.e., every subword Q;_1 R;—1 P; of the standard
base, where Q;_1Q; is a history sector of My, is treated as the base of a copy of RL,
that is, R;_; contains the running state letters which run between state letters from Q;_1
and P;. Each rule of set M3 ; executes the corresponding rule of RL simultaneously in
each history sector of M. The partition of the set of state letters of these copies of RL in
each history sector is X; ¢ LI X; , for some i (that is, state letters from R;_ first run right,
replacing letters from X; ¢ by the corresponding letters of X; , and then run left, replacing
letters from X; , by the corresponding letters of X; ;).

The transition rule y(1,2) changes the state letters to the state letters of start config-
urations of M. The admissible words in the domain of x(1,2)%! have all Y -letters from
the left alphabets X; ;. The rule y(1,2) locks all sectors except the history sectors R; 1 P;
and the input sector. It does not apply to admissible words containing Y -letters from right
alphabets.

Set M3 5. Itis acopy of the set of rules of the S-machine M,.

The transition rule y(2,3) changes the state letters of the stop configuration of My to
their copies in a different alphabet. The admissible words in the domain of y(2,3)*! have
no Y -letters from the left alphabets X; ;. The rule y(2, 3) locks all sectors except for the
history sectors R;_; P;. It does not apply to admissible words containing Y -letters from
right alphabets.

Set (of the rules of machine) M3 3. It is a copy of the set of rules of the S-machine LR,
with parallel work in all history sectors, i.e., every subword R;_; P; Q; of the standard
base, where Q;_1 Q; is a history sector of My, is treated as the base of a copy of LR,
that is, P; contains the running state letters which run between state letters from R;_; and
Q;. Each rule of set M3 3 executes the corresponding rule of LR simultaneously in each
history sector of M.
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The transition rule (3, 4) changes the state letters of the stop configuration of My to
their copies in a different alphabet. The admissible words in the domain of y(3,4)*! have
no Y -letters from the left alphabets X; ;. The rule (3, 4) locks all non-history sectors.

Set M3 4. The positive rules of set M3 4 are the copies of the negative rules of the S-
machine Mz.

The transition rule y(4,5) changes the state letters of the start configuration of M,
to their copies in a different alphabet. The admissible words in the domain of y(4,5)*!
have no Y -letters from the right alphabets X; ,. The rule y(4, 5) locks all non-history and
non-input sectors.

Sets M3 5,...,M3 g. They consist of rules that are copies of the rules of the sets M3 1, .. .,
M3 4, respectively.

Sets M3 4m—3,...,M3 4m,m. They consist of copies of the sets M3 1, ..., M3 4, respectively.

Set M3, 4m+1. Itis a copy of set M3 ;. The end configuration for set M3 441, A3(H), is
obtained from a copy of A,(H) by inserting the control letters according to (2.6).
The transition rules y(i,i + 1) are called y-rules.

Lemma 2.10 ([27, Lemma 3.15]). Let €: Wy — --- — W, be a reduced computation of
M3 with the standard base. Then for every i, there is at most one occurrence of the rules
x(,i + )% in the history H of €. |

Lemma 2.11 ([27, Lemma 3.14 (b)]). Let €: Wy — --- — W; be a reduced computation
of M3 consisting of rules of one of the copies of LR or RL with standard base. Then
1= [[Woll + Wil — 2. u

2.6. M4 and M5

Let B3 be the standard base of M3 and B} be its disjoint copy. By M4 we denote the
S-machine with standard base B3(B3%)~! and rules 6(M4) = [0, 6], where 6 € © and O is
the set of rules of M3. So the rules of ®(M4) are the same for the M3-part of My and for
the mirror copy of M3. Therefore we will denote ®(M4) by © as well, although My has
two mirror input sectors. The sector between the last state letter of B3 and the first state
letter of (Bg)_1 is locked by any rule from ©®. (The ‘mirror’ symmetry of the base is used
in [27] for the upper estimate of the Dehn function.)

The S-machine M5 is a circular analog of My defined as follows. We add one more
base letter 7 to the hardware of My. So the standard base B of the ordinary version of Ms is
{7} B3(B}) {7}, where the part {7} has only one letter 7; but the first part {7} is identified
with the last part in the circular machine M. It follows that the base of an admissible word
can be arbitrary long for a circular machine. For example, {7} B3(B5)~'{7}B3(B})~! can
be a base of an admissible word for Ms. The work of M5 is well-defined since the sectors
involving 7*! are locked by every rule from ®. For Ms, we have the start and stop words
Is(a*, H) and As(H) similar to the configurations I3(«*, H) and A3(H).
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Since the machines M4 and M5 have the sets of rules @, as M3, they are built from
machines My, 1 to My 4m+1 and Ms 1 to Ms 45,41, respectively.

2.7. The main machine M

We use the S-machine M5 from Section 2.6, LR,, from Section 2.2 and three more easy
S-machines to compose the main circular S-machine M needed for this paper. The stan-
dard base of M is the same as the standard base of Ms, i.e., {f} B3(B})~!, where B3 has
the form (2.6). We will use QO instead of Qy, R1 instead of R; and so on to denote parts
of the set of state letters since M has more state letters in every part of its hardware.

The rules of M will be partitioned into five sets (S-machines) ®; (i = 1,...,5) with
transition rules 6(i,i 4 1) connecting the i-th and the (i + 1)-st set. The state letters are
also disjoint for different sets @;. It will be clear that Qo is the disjoint union of five
disjoint sets including Qy, Ry is the disjoint union of five disjoint sets including R;, etc.

By default, every transition rule 6(i,i + 1) of M locks a sector if this sector is locked
by all rules from @; or if it is locked by all rules from ©; 4. It also changes the end state
letters of ®; to the start state letters of @; 1, that is, the j-th part of the rule 8(i,i + 1)
has the form ¢; — q;. (or gj — qj. if the j-th sector is locked by this rule), where g; is
the state letter of the end rule of ®;, and q} is the state letter of the start rule of @; . In
particular, this means that the set of start state letters of ®;4; is a copy of the set of end
state letters of @; in a disjoint alphabet.

To start working, let us introduce auxiliary start state letters for M, namely, one letter
for every base letter from Bz and Bj. The start configuration Wy of © is 7b3(b5) ™", where
bz and b} consist of these new start state letters, i.e., the configuration W, just copies the
standard base tB3B of M. The start rule 6; of M changes the state letters from b3 and
b’3 to their copies in the single rule of @, defined below, and starts @ -computations.

Set ©1. Itinserts input words in the input sectors. The set contains only one positive rule
inserting the letter « in the input sector next to the left of a letter p from P;. It also inserts a
copy a~! next to the right of the corresponding letter (p’)~! (the similar mirror symmetry

is assumed in the definition of all other rules.) So the positive rule of ®; has the form

¢ ¢ ¢ _ o ¢ _
[t = t.q0— qo.11 =11, pr = api,.... (P = (PP a7 )T = (DT

The rules of ®; do not change state letters, so it has one state letter in each part of its
hardware.

The connecting rule 6(12) changes the state letters of @ to their copies in a disjoint
alphabet. It locks all sectors except for the input sector Ry Py and the mirror copy of this
sector.

Set @,. It is a copy of the S-machine LR,, working in the input sector and its mirror
image in parallel, i.e., we identify the standard base of LR,, with Ry P; Q;. The connect-
ing rule 6(23) locks all sectors except for the input sector Ry P; and its mirror image.
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Set ©3. It inserts history in the history sectors. This set of rules is a copy of each of the
left alphabets X; ; of the S-machine M,. Every positive rule of @3 inserts a copy of the
corresponding positive letter in every history sector R; ﬁi+1 next to the right of a state
letter from ﬁ,-.

Again, ®3 does not change the state letters, so each part of its hardware contains one
letter.

The transition rule 8(34) changes the state letters to their copies in the set of rules of
machine M5 ; defined at the end of Section 2.6. It locks all sectors except for the input
sectors and the history sectors. The history sectors in admissible words from the domain
of 6(34) have Y -letters from the left alphabets X; ; of the S-machine Ms.

Set 4. It is a copy of the S-machine Ms. The transition rule 6(45) locks all sectors
except for history ones. The admissible words in the domain of 6(45) have no letters from
right alphabets.

Set @5. The positive rules from @5 simultaneously erase the letters of the history sectors
from the right of the state letter from R;. That is, parts of the rules are of the form r —
ra~! where r is a state letter from R;, and a is a letter from the left alphabet of the history
sector.

Finally, the accept rule 6y (regarded as a transition rule) from M can be applied when
all the sectors are empty, so it locks all the sectors and changes the end state letters of
M5 to the corresponding end state letters of M. Thus, the main .S-machine M has unique
accept (or stop) configuration which we will denote by W,.

Lemma 2.12 ([27, Lemma 4.4]). Let the history of a reduced computation €: Wy —
-+« — W; have a subword (i — 1,i)H' y(i,i + 1) (i.e., the S-machine M works as M3
with rules from @y) or a subword ¢~V H'¢Wi+D (e it works as LRy, with rules
from ©). Then the base of the computation € is a reduced word and all configurations
of € are uniquely defined by the history H and the base of €. ]

We say that the history H of a computation of M (and the computation itself) is
eligible if it has no neighboring mutually inverse letters except possibly for the subwords
6(23)0(23)~!. (The subword 6(23)~10(23) is not allowed.) Considering eligible compu-
tations instead of just reduced computations is necessary for our interpretation of M in a
group.

The history H of an eligible computation of M can be factorized so that every factor
is either a transition rule 6(i, i + 1)*! or a maximal non-empty product of rules of one
of the sets ® to @s. If, for example, H = H'H” H", where H' is a product of rules
from @5, H"” has only one rule 8(23) and H'"” is a product of rules from @3, then we say
that the step history of the computation is (2)(23)(3).

Thus the step history of a computation is a word in the alphabet

{1, (2).3). (4). (5). (12).(23). (34), (45), (21), (32). (43). (54) },
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where (21) is used for the rule §(12)~! an so on. For brevity, we can omit some transition
symbols, e.g. we may use (2)(3) instead of (2)(23)(3) since the only rule connecting
steps 2 and 3 is 6(23).

Lemma 2.13 ([27, Lemma 4.2 (1)]). There are no reduced computations € of M with
standard base and step history (34)(4)(43) or (54)(4)(45). [

If the step history of a computation consists of only one letter (i), i = 1,...,5, then
we call it a one-step computation. The computations with step histories (i)(i,i = 1), (i
1,i)(i) and (i £ 1,i)(i)(i,i £ 1) are also considered as one-step computations. Any
eligible one-step computation is always reduced by definition.

By definition, the rule 6(23) locks all history sectors of the standard base of M except
for the input sector Ro P, and its mirror copy. Hence every admissible word in the domain
of 6(23)~! has the form W(k, k') = wiakw,(a’) ™% w3, where («/)~! is the mirror copy
of &, k and k’ are integers, and w1, wy, w3 are fixed words in state letters; w; starts with t.
Recall that W, is the accept word of M.

Lemma 2.14 ([27, Lemma 4.6]). (1) If the word o* is accepted by the Turing machine
My, then there is a reduced computation W(k,k) — - - - — W, of M whose history
has no rules of ®1 and ©,.

(2) If the history of a computation €: W(k,k) — -+ — Wy of M has no rules of ©
and O, then the word o* is accepted by M. [ ]

A configuration W of M is called accessible if there is a W-accessible computation,
i.e., either an accepting computation starting with W or a computation Wy — --- — W,
where W, is the start configuration of M (i.e., the configuration where all state letters are
start state letters and the Y -projection is empty).

The base of a computation is called revolving if it starts and ends with the same letter
and has no proper subwords with this property. If this base xvx is a reduced word, then it
follows from the definition of admissible words that the cyclic order of letters in the word
xv is the same as in the standard base, i.e., xv is a cyclic permutation of the standard base.

Lemma 2.15 ([27, Lemmas 4.8 and 4.12]). Suppose the base xvXx of an eligible compu-
tation €: Wy — --- — W; is revolving. Then one of the following statements holds:

(D) Wil < camax(||Woll, |Wr||) for every j =0,....t, or

(2) the base xvx is reduced and if xv is the standard base, then the words Wy and

Wy without the last x-letters are accessible words; the step history of € contains
a subword (34)(4)(45) or a subword (12)(2)(23). |

Remark 2.16. By [27, Lemma 3.15], a computation with standard base and step history
(34)(4)(45) has a subword y(i — 1,i)H’ y(i,i + 1), as in Lemma 2.12. Analogously, by
[27, Remark 3.7], a computation with standard base and step history (12)(2)(23) has a
subword ¢U—1:0) /g G+,
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Lemma 2.17. Suppose €: Wy — --- — W; is an eligible computation, with a base xvx.
Then either (xv)£! is a power of a cyclic permutation of the standard base or

[Wily < camax(|Woly,|W:ly) foreveryj =0,...,t. (2.8)

Proof. Note that the base of € has a revolving subword yv'y. Let D: Vy — --- — V; be the
computation € restricted to this subbase. It has the same history H as €. By Lemma 2.15,
either the base of O is a reduced word and so yv’ is a cyclic permutation of the standard
base; or |Vj|y < csamax(|Voly,|V:i|y) forevery j =0,...,¢t.

In the latter case, let us remove the subwords with the base yv’, obtaining a com-
putation & : Uy — --- — U, with a shorter base. Arguing by induction, we have either
|Uily < camax(|Ugly, |Us|y) for every j =0, ..., ¢, which implies (2.8), or the base
of & is a power of a cyclic permutation of the standard base and by Lemma 2.15, the
step history of € contains a subword (34)(4)(45) or a subword (12)(2)(23). Then by
Remark 2.16, one can apply Lemma 2.12, and since the computation £ has the same his-
tory as &, the base yv’y must be reduced. Therefore yv’ is a cyclic permutation of the
standard base, and so xv is a power of a cyclic permutation of the standard base.

If |Ujly < camax(|Usly, |U;ly) for every j, but yv’ is a cyclic permutation of the
standard base, then the dual argument implies that the base of & and the base of € are
reduced words. Hence xv is a power of a cyclic permutation of the standard base. ]

3. Group and diagram preliminaries

3.1. The groups

Every S-machine can be simulated by a finitely presented group (see, e.g., [24, 26, 30]).
Here we present the construction from [27]. To simplify formulas, it is convenient to
change the notation. From now on we shall denote by N the length of the standard base
of M.

Thus the set of state letters is Q = vaz_ol Qi (weset Oy = Q¢ =1{1}),Y = |_]lN:1 Y,
and O is the set of rules of the S-machine M.

The finite set of generators of the group M consists of g-letters, Y -letters and 0-letters
defined as follows.

For every letter ¢ € Q the set of generators of M contains L copies ¢\) of it, i =
1,..., L, if the letter ¢ occurs in the rules of @; or @,. (The number L is one of the
parameters from (2.5).) Otherwise only the letter g is included in the generating set of M.

For every letter a € Y the set of generators of M contains a and L copies a‘¥) of it,
i=1,...,L.

For every § € ®1 we have N generators g, ..., 0y in M (here Oy = 0p) if 0 is a
rule of ®3 (excluding 0(23)) or B4, or O5. For 6 from ®; or O, (including 6(23)), we
introduce LN generators 9]@, where j =0,...,N,i =1,...,L and 91(\’}) = Qéiﬂ) (the
superscripts are taken modulo L).
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The relations of the group M correspond to the rules of the S-machine M as follows.

Foreveryrule § = [Uy — Vp, ..., Uy — Vy] € OF of sets @1 or ©,, we have
@) @) @y, @ @) G i) ) . .
Uue) =0vO 604D =D j =0, N i=1..L @I

forall a € Y;(0), where U j(i) and Vj(i) are obtained from U; and V; by adding the super-
script (i) to every letter.
For 6 = 6(23), we introduce relations

(OFI0)
Uj 0

0) Do) _ o) . ,
0 =0V, aV6” =6"a, j=0.... N i=1..L (3.2)

for all a € Y;(0), i.e., the superscripts are erased in the words Vj(i) and in the Y -letters
after an application of (3.2).
For every rule § = [Uy — Vp, ..., Uy — Vy] € OF from O3 or G4, or Os and
a € Y;(0), we define
Uj@j.:,_l = QjVj, aej = Oja. (3.3)

The first type of relations (3.1)—(3.3) will be called (8, g)-relations, the second type
(6, a)-relations.

Finally, the required group G is given by the generators and relations of the group M
and by two more additional relations, namely the hub-relations

WV wH =1 and (W)t =1, (3.4)

where the word WS?) is a copy with superscript (i) of the start word Wy (of length N') of
the S-machine M and W, is the accept word of M.

Note that, as usual, M is a multiple HNN extension of the free group generated by
all Y - and g-letters, because by Tietze transformations using (0, ¢)-relations, all 6-letters,
except for one for every rule 6, can be eliminated.

3.2. Van Kampen diagrams

Recall that a van Kampen diagram A over a presentation P = (A|R) (or just over the
group P) is a finite oriented connected and simply-connected planar 2-complex endowed
with a labeling function Lab: E(A) — AT, where E(A) denotes the set of oriented edges
of A, such that Lab(e™!) = Lab(e)~!. Given a cell (i.e., a 2-cell) T of A, we denote by
dI1 the boundary of IT; similarly, dA denotes the boundary of A. The labels of dIT and
dA are defined up to cyclic permutations. An additional requirement is that the label of
any cell IT of A is equal to (a cyclic permutation of) a word R*!, where R € R. The label
and the combinatorial length ||p|| of a path p are defined as for Cayley graphs.

The van Kampen lemma [17, 20, 29] states that a word W over the alphabet AE!
represents the identity in the group P if and only if there exists a diagram A over P such
that Lab(dA) = W, in particular, the combinatorial perimeter |0A| of A equals ||W ||
(see [17, Chapter 5, Theorem 1.1]; our formulation is closer to [20, Lemma 11.1], see also
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[29, Section 5.1]). A word W representing 1 in P is freely equal to a product of conjugates
of the words from R*!. The minimal number of factors in such products is called the area
of the word W. The area of a diagram A is the number of cells in it. The proof of the van
Kampen lemma [20,29] shows that Area(W) is equal to the area of a van Kampen diagram
having the smallest number of cells among all van Kampen diagrams with boundary label
Lab(dA) = W.

The definition of annular diagram A over a group G is similar to the definition of
van Kampen diagram, but the complement of A in the plane has two connected com-
ponents. So A has two boundary components. By the van Kampen—Schupp lemma (see
[17, Lemma 5.2] or [20, Lemma 11.2]) there is an annular diagram A whose boundary
components p; and p, have clockwise labels W and W’ if and only if the words W and
W' are conjugate in G.

We will study diagrams over the group presentations of M and G. The edges labeled
by state letters (= g-letters) will be called g-edges, the edges labeled by tape letters (= Y -
letters) will be called Y -edges, and the edges labeled by 0-letters are 6-edges.

We denote by |p|y (resp. |plg. |plg) the Y -length (resp. the 6-length, the g-length) of
a path p, i.e., the number of Y -edges (resp. 8-edges, g-edges) in p.

The cells corresponding to relations (3.4) are called hubs, the cells corresponding to
(0, q)-relations are called (8, g)-cells (in particular, there are (8, f)-cells), and the cells
are called (6, a)-cells if they correspond to (6, a)-relations. A 6-cell is either a (6, ¢)- or
(0, a)-cell.

A diagram is reduced, if it does not contain two cells (= closed 2-cells) that have a
common edge e such that the boundary labels of these two cells are equal if one reads
them starting with e (if such pairs of cells exist, they can be removed to obtain a diagram
of smaller area and with the same boundary label(s)).

To study diagrams over the group G we shall use their simpler subdiagrams such as
bands. Here we repeat one more necessary definition from [27].

Definition 3.1. Let Z be a subset of the set of letters in the set of generators of the
group M. A Z-band B is a sequence of cells 1,. . ., 7, in areduced van Kampen diagram
A (see Figure 1) such that:

* Every two consecutive cells 7; and ;47 in this sequence have a common boundary
edge e; labeled by a letter from Z*!.

* Each cell wj, i = 1,...,n has exactly two Z-edges el-__l1 and e; in the boundary
om; (i.e., edges labeled by a letter from Z*!) with the requirement that either both
Lab(e;—1) and Lab(e;) are positive letters or both are negative ones.

o Ifn =0, then B is just a Z-edge.

The counter-clockwise boundary of the subdiagram formed by the cells 7y, ..., 7, of
B has the factorization e q;fq, ! where e = e is a Z-edge of 71 and f = e, is a Z-edge
of m,,. We call q; the bottom of B and q; the top of B, denoted bot(8B) and top(B). If
the path e~!q;f or the path fq;le_1 is a subpath of the boundary dA, then 8 is called a
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rim band. Top/bottom paths and their inverses are also called the sides of the band. The
Z-edges e and f are called the start and end edges of the band. If n > 1 but e = f, then the
Z-band is called a Z-annulus.

We consider ¢-bands, where for some j, Z corresponds to a part Q; of state letters of
the S-machine M, i.e., it contains all letters g; and qj(.i) (i=1,...,L), where q; € O,
0-bands for every 6 € ©, and Y -bands, where Z = {a, a®, .., a(L)} C Y. The conven-
tion is that ¥ -bands do not contain (6, g)-cells, and so they consist of (8, a)-cells only.

Remark 3.2. To construct the top (or bottom) path of a band B, at the beginning one can
just form a product x; . .. X, of the top paths x; of the cells 7y, ..., 7, (where each r; isa
Z-band of length 1). No 8-letter is being canceled in the word W = Lab(x;)...Lab(x;)
if B is a g- or Y -band since otherwise two neighbor cells of the band would make the
diagram non-reduced. The trimmed top/bottom label of a 8-band B are the maximal sub-
words of the top/bottom labels starting and ending with g-letters.

However a few cancellations of Y -letters are possible in W. (This can happen if one
of 7;, 41 is a (6, g)-cell and another one is a (6, a)-cell.) We will always assume that
the top/bottom label of a 6-band is a reduced form of the word W. This property is easy
to achieve: by folding edges with the same labels having the same initial vertex, one can
make the boundary label of a subdiagram in a van Kampen diagram reduced (see, e.g.,
[20,30]).

Remark 3.3. Since 0 = 6¢*" we can replace 6% with 68" in (3.1) and (3.2). Thus,
the superscripts in the g-letters of the same (6, ¢)-relation are differentif 6 € @ U @, U
{6(23)*!} and this relation is a (6, 7)-relation. Therefore only the corresponding cells of
a 0-band have different superscripts of the labels of 9-edges, and this difference is +1
modulo L.

We shall call a Z-band maximal if it is not contained in any other Z-band. Counting
the number of maximal Z-bands in a diagram, we will not distinguish the bands with
boundaries e~1q;fq, ! and fq;'e"!q;, and so every Z-edge belongs to a unique maximal
Z-band.

A Z-band and a Z,-band cross if they have a common cell and Z; N Z, = @.

Sometimes we specify the types of bands as follows. A g-band corresponding to one
letter Q of the base is called a Q-band. For example, we will consider 7-bands corre-
sponding to the part {7}.

Lemma 3.4 ([27, Lemma 5.6]). A reduced van Kampen diagram A over M has no q-
annuli, no 0-annuli, and no Y -annuli. Every 6-band of A shares at most one cell with any
q-band and with any Y -band. ]

If W = x;1...x, is a word in an alphabet X, X’ is another alphabet, and ¢: X —
X’ U {1} (where 1 is the empty word) is a map, then ¢ (W) = ¢(x1)...¢(x,) is called
a projection of W onto X'. We shall consider the projections of words in the generators
of M onto ® (all f-letters map to the corresponding element of ©®, all other letters map
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to 1), and the projection onto the alphabet {Q¢ Ll --- U Q y—1} (every g-letter maps to the
corresponding Q;, all other letters map to 1).

Definition 3.5. The projection of the label of a side of a g-band onto the alphabet © is
called the history of the band. The step history of this projection is the step history of the g-
band. The projection of the label of a side of a §-band onto the alphabet {Qy, ..., On—_1}
is called the base of the band, i.e., the base of a #-band is equal to the base of the label of
its top or bottom.

As in the case of words, we will use representatives of the Q;-s in base words.

If W is a word in the generators of M, then we denote by W the projection of this
word onto the alphabet of the S-machine M; we obtain this projection after deleting all
superscripts in the letters of W. In particular, W? = W, if there are no superscripts in the
letters of W.

We call a word W in g-generators and Y -generators permissible if the word W7 is
admissible, and the letters of any 2-letter subword of W have equal superscripts (if any),
except for the subwords (¢7)*!, where the letter ¢ has some superscript (i) and ¢?
O N—1; in this case the superscript of the letter 7 must be (i + 1) (modulo L).

Remark 3.6. It follows from the definition that if V' is 6-admissible for a rule 6 of
{6(23)"1} U O3 U {(34)} U O4 U {#(45)} U Os, then there is exactly one permissi-
ble word W such that W? = V, namely, W = V.If 6 is arule of @, U {#(12)} U @, U
{6(23)}, then a permissible word W with property W% = V exists and it is uniquely
defined if one chooses an arbitrary superscript for the first letter (or for any particular
letter) of W.

Lemma 3.7 ([27, Lemma 5.9]). (1) The trimmed bottom and top labels Wy and W,
of any reduced 0-band T containing at least one (0, q)-cell are permissible and
wl=wp.o.

(2) If W is a 6-admissible word, then for a permissible word Wy such that ng =
W (given by Remark 3.6) one can construct a reduced 0-band with the trimmed
bottom label Wy and the trimmed top label W5, where WZ‘a = Wlﬂ - 6. [

Definition 3.8. Let A be a reduced van Kampen diagram over M having a boundary path
of the form pl_lqlpzqz_ 1. where p; and p, are sides of g-bands, and q1, q, are maximal
parts of the sides of 8-bands such that Lab(q;), Lab(q) start and end with g-letters.

Then A is called a trapezium (see Figure 1). The path q; is called the bottom, the
path q is called the fop of the trapezium, the paths p; and p, are called the left and right
sides of the trapezium. The history (resp. step history) of the g-band whose side is p, is
called the history (resp. step history) of the trapezium; the length of the history is called
the height of the trapezium. The base of Lab(q;) is called the base of the trapezium.
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q2

i

5 P2

Trapezium q1

Figure 1. Band and trapezium.

Remark 3.9. Notice that the top (resp. bottom) side of a 6-band T does not necessarily
coincide with the top (resp. bottom) side q; (resp. q;) of the corresponding trapezium of
height 1, and q (resp. q;) is obtained from top(7") (resp. bot(77)) by trimming the first
and the last Y -edges if these paths start and/or end with Y -edges.

By Lemma 3.4, any trapezium A of height 7 > 1 can be decomposed into 6-bands
71, ..., Ty connecting the left and the right sides of the trapezium.

Lemma 3.10 ([27, Lemma 5.12]). (1) Let A be a trapezium with history H =
0(1)...6(d), d = 1. Assume that A has consecutive maximal 0-bands Ty, ... Ty,
and the words U; and V; are the trimmed bottom and the trimmed top labels of
T, j=1,...,d. Then H is an eligible word, U;, V; are permissible words,

vi=ul-00), Uy=w, ..., Us=Vyy, V2=U? 0(d).

Furthermore, if the first and the last q-letters of the word U; or of the word V;
have some superscripts (i) and (i), then i’ — i (modulo L) does not depend on
the choice of U or V.

(2) For every eligible computationU — --- —> U -H =V of Mwith |H|| =d > 1
there exists a trapezium A with bottom label Uy (given by Remark 3.6) such that
UP = U, top label V; such that Vd'Zj = V, and with history H. [

Using Lemma 3.10, one can immediately derive properties of trapezia from the prop-
erties of computations obtained earlier.

If H = 6(i)...6()) is a subword of the history H from Lemma 3.10 (1), then the
bands 7, ..., 7; form a subtrapezium A’ of the trapezium A with the same base. A sub-
word of the base of A also defines a subtrapezium with the same history.

Definition 3.11. We say that a trapezium A is standard if the base of A is the standard
base B, and the history of A (or the inverse one) contains one of the words

e y(G—1,0))H x(i,i + 1) (i.e., the S-machine works as @), or

o ITLIHEHFL (e, it works as ©5).
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Definition 3.12. A permissible word V is called a disk word if V? = W for some acces-
sible word W. (In particular, hub words are disk words.)

Lemma 3.13 ([27, Lemma 7.2]). Every disk word V is equal to 1 in the group G. [

Lemma 3.14 ([27, Remark 7.3]). For a disk word V, there is a reduced disk diagram A
over the presentation (3.1)—(3.4) with boundary label V built of one hub and L trapezia
corresponding to an accessible computation for the word W, where V% = WL. ]

We will increase the set of relations of G by adding the (infinite) set of disk relations
V =1, one for every disk word V. So we will consider diagrams over G with disks, where
every disk cell (or just disk) is labeled by such a word V. (In particular, a hub is a disk.)

Definition 3.15. We will call a reduced van Kampen or annular diagram A over G mini-
mal if

(1) the number of disks is minimal for all diagrams with the same boundary label(s)
as A, and

(2) A has minimal number of (6, 7)-cells among the diagrams with the same boundary
label(s) and with minimal number of disks.

Clearly, a subdiagram of a minimal diagram is minimal itself.
The following is explained in [27, Section 7.1.2].

Lemma 3.16. If two disks of a van Kampen diagram A over G are connected by at least
two t-bands, then there is a diagram N’ with the same boundary label and fewer disks in
it. In particular, two disks cannot be connected by two t-bands in a minimal van Kampen
diagram or by three f-bands in a minimal annular diagram. ]

Lemma 3.16 implies the following properties. (Part (1) is [27, Lemma 7.5], the proof
of part (2) is similar.)

Lemma 3.17. (1) If a van Kampen diagram contains at least one disk and has no
pairs of disks connected by at least two t-bands, then there is a disk T1 in A such
that L — 3 consecutive maximal t-bands B, . .., Br_» start on 011, end on the

boundary A, and for any i € [1, L — 4], there are no disks in the subdiagram T;
bounded by 8B;, Bi+1, 0I1, and dA. See Figure 2.

(2) If an annular diagram contains a least one disk and has no van Kampen subdi-
agrams with two disks connected by at least two t-bands, then there is a disk D
in A and two non-negative integers L', L"” with L’ + L"” > L — 3, such that L’
(resp. L") consecutive maximal f-bands By, . .., Br: (resp. €1, ..., CLn) start on
0D, end on the inner (resp. outer) boundary component p' (resp. p”’) of A, and
foranyi € [1,L" — 1] (resp. i € [1,L"” — 1]) there are no disks in the van Kampen
subdiagram T; bounded by B;, Bi+1, 011, and p’ (resp. €;, €; 11, 1, and p”).
See Figure 3. ]
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B
B>
A
Br-3
Br—4
Figure 2. Lemma 3.17 (1). Figure 3. Lemma 3.17 (2).

A maximal g-band starting on a disk of a diagram is called a spoke. By induction on
the number of disks, Lemma 3.17 implies the following.

Lemma 3.18 ([22, Lemma 5.19]). If a minimal van Kampen diagram A has r > 1 disks,
then the number of t-spokes of A ending on the boundary A, and therefore the number
of t-edges in the boundary path of A, is greater than rL /2. ]

Lemma 3.19 ([27, Lemma 7.7]). Let A be a minimal van Kampen diagram.

(1) Assume that a 0-band Ty crosses k t-spokes By, . . ., By starting on a disk I1, and
there are no disks in the subdiagram Ay bounded by 81, By, To, and T1. Then
k<L/2

(2) A contains no 6-annuli. ]

The proof of the following lemma is given in [27, Section 7.1.3].

Lemma 3.20. (1) Let E be a van Kampen diagram with the boundary X1y1X2y2 built
of a disk T1 with boundary y>z~' and a rim 0-band T with boundary X1y1X»Z,
where y1 and z are the sides of T . Assume that the first and the last cells of T are
different (0,1)-cells. Then there is a diagram E' with boundary X}y X,Y5, built of
a disk T with boundary y), (')~ and a rim 6-band T', with boundary X} Z'x,Y),
where ' and y), are the sides of T' and Lab(x}) = Lab(x;), Lab(x},) = Lab(x»),
Lab(y}) = Lab(y;), Lab(y,) = Lab(y>). See Figure 4.

(2) Let A be a van Kampen diagram with boundary pq and A a union of a minimal
diagram T with r > 0 disks and a rim 0-band T with side p. Assume that there are
two t-spokes in A starting on a disk D and ending on p. Then there exists a van
Kampen diagram N with boundary p'q’, and A’ is a union of a minimal diagram
I with v’ < r disks and a rim 0-band T’ having side p’, where Lab(p’) = Lab(p)
in the group G, and Lab(q") = Lab(q). See Figure 5. |

Lemma 3.21 ([27, Lemma 8.2]). The group G has quadratic Dehn function. ]
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Figure 4. Lemma 3.20 (1).
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Figure 5. Lemma 3.20 (2).

4. Isomorphism problem for groups with quadratic Dehn function

In this section, we assume that the construction of the machine M is based on the S-
machine M; provided by Lemma 2.3.

Lemma 4.1. Let a reduced computation €©: W — - -+ — W' of M with standard base have
no rules of sets ©1 and ©,. If W' = W, then the computation € is empty.

Proof. Proving by contradiction, one may assume that the history H of € is a non-empty
cyclically reduced word, because otherwise one could replace € with a shorter computa-
tion where the first and the last configuration are equal.

Assume first that € is a one-step computation. This step cannot be ®3 or ®s, since the
computations with rules from these sets multiply the words in history sectors by a copy of
H*!. S0 € is of type ©4. This assumption reformulates our problem as the same problem
for the S-machine Ms. If € has a y-rule of M5, then one may consider the computation
W — ... — W with history H 2 where this rule occurs at least twice, which contradicts
Lemma 2.10. Therefore there are no y-rules in H, and so € is just a computation of either
RL or LR, or M,. The first and second cases contradict Lemma 2.11, because the length
of powers H are unbounded. In the later case we restrict the computation of M, to a
history sector: V' — --- — V, where a computation with any history H’ multiplies the
tape word from the left and from the right by copies of H*! in disjoint alphabets. Clearly
one cannot obtain a repetition, provided the word H is non-empty.

If H has at least two steps, then its step history (or a cyclic permutation of it) is
a power of (3)(4)(5)(4) by Lemma 2.13. So H*?2 has to contain a subword H; H, H3,
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where H, has step history (43)(3)(34), Hs and H;! are of type (4)(45)(5)(54). Since
H, does change history sectors but does not change the input ones, the computations with
histories H3 and H| 1 start working with configurations having equal input sectors but
different history sectors. Considering the subcomputations in (34)(4)(45) corresponding
to the work of M5, M3, and M, (as we did in the beginning of this proof), we see that the
S-machine M, can connect both I, (¥, H') and I, (a*, H") with A,(H’) and A,(H"),
respectively, where H' # H”. It follows that there are two different reduced computations
of M accepting the same input word o¥, contrary to Lemma 2.3. ]

Recall that the rule 6(23) locks all sectors of the standard base of M except for the
input sector Ry Py and its mirror copy Hence every 6(23)~!-admissible configuration has
the form W(k, k') = wia¥w, (')~ w3, where k and k' are integers and wj, wp, w3 are
fixed words in state letters; w; starts with 7.

Lemma 4.2 ([27, Lemma 8.3]). A word W(k, k) is a conjugate of the word W)y in the
group G (and in the group M) if and only if the subword o* is accepted by the Turing
machine M. [

Lemma 4.3. For arbitrary integer k, the word W(k, k) has order L in G.

Proof. Starting with the word W, a computation of set ®; can insert the words ok
and (a’)7* in the input sectors. So, after the application of the connecting rule 6(12),
the rules of set ®, can successfully check the content of the input sectors, and the rule
6(23) gives us the word W(k, k), the last configuration of this computation. Therefore the
word W (k, k) is accessible. Thus, the power W(k, k)~ is a disk word equal to 1 in G by
Lemma 3.13.

Assume that W(k, k)! = 1 for a positive / < L /2. Then on the one hand, the minimal
diagram A for this equality has / < L/2 f-edges in the boundary, and so it has no disks
by Lemma 3.18. On the other hand, since all -letters of the boundary label occur with the
same sign, a maximal 7-band of A cannot start and end on the boundary, and therefore the
word W(k, k) has no 7-letters, a contradiction. |

Lemma 4.4. Every element of finite order in G is a conjugate of a power of some word
Wk, k).

Proof. Consider a minimal diagram A for an equality U® = 1, s > 0, assuming that U
has minimal number of 6-letters in the conjugacy class and, under this assumption, U has
minimal number of g-letters. If A has no disk, then it has a rim #-band 7. The exterior
side y of 7 cannot have length > ||U ||, since then the whole boundary of A has to have
no O-letters, contrary to the existence of the rim 8-band. If ||y|| = |U|| — 1, then the ends
of 7 must have the same label, since the boundary label of A has period U, but this is
not possible since one of these 6-letters is positive and the other one is negative for the
boundary label of a band. If |y|| < ||U| — 2, then one can replace the common boundary
path of 7 and dA with a path separating 7 from A. Hence a cyclic permutation of U can
be replaced with a word, equal in G, having less 6-letters, a contradiction.
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Therefore A contains disks. If it has #-edges in the boundary, then there is a maximal
f-band T such that the van Kampen diagram bounded by 7 and a subpath y of dA has no
0-cells. Therefore y has no 6-edges, and one comes to a contradiction, as in the previous
paragraph. Hence d A has no 8-edges and therefore A has no 6-edges by Lemma 3.19 (2).

Let us consider a disk IT provided by Lemma 3.17. Since A has no 6-cells, there is
a common subpath p of 91T and dA containing L — 3 f-letters. The word U has at most
L /2 i-letters since otherwise there is a cyclic permutation of U containing a subword of
Lab(p) with > L/2 f-letters. So the disk relation makes U conjugate in G to a word U’
with |U’|g = |U|p = 0 and with |U’|, < |Ul4, a contradiction.

Since L/2 < L — 3 and Lab(p) is a subword of a power of U, there is a -letter
occurring in Lab(p) at least twice. Therefore the disk word on dIT has no letters with
superscripts. Hence it is a power VL, where the letters of V have no superscripts and a
cyclic permutation of U is a power V!, where |I| < L. It remains to show that the word V
is a conjugate of some W(k, k).

By Definition 3.12, the word V' is accessible. Hence it can be connected by a com-
putation € either with Wy, or with W,.. In the former case € has a rule #(23)~! since
the letters of 1 have no superscripts. The maximal prefix £ of € containing no rules
6(23)~! connects V with some 6(23)~!-admissible word W(k, k), and the configurations
of O have no letters with superscripts. Hence the trapezium corresponding to D (see
Lemma 3.10 (2)) has equal side labels, and so V is conjugate of W(k, k), as required.

In the latter case, we may assume that the computation € connecting V' and W, has no
rules 6(23)~! (otherwise one could argue as above), and so it has no rules of sets @; and
©,. Therefore the word V is a conjugate of W, by Lemma 3.10 (2), since the side labels
of the corresponding trapezium have no superscripts and therefore are equal. In turn, by
Lemma 4.2, the word W, is a conjugate of any W (ko, ko) if the word ¥ is accepted by
the machine M. This completes the proof of the lemma. ]

Lemma 4.5. (1) For every k, the cyclic subgroup (W(k,k)) is malnormal in G, that
is, | = (Wk, k)N ZWk,k\NYZ7' ={1}if Z ¢ (W(k,k)). The centralizer of
an element g € G of order L is equal to the cyclic subgroup (g).

(2) The subgroup (W(k,k)) has trivial intersection with every conjugate subgroup of
(Wae) provided the word ok is not accepted by the machine M.

Proof. (1) To prove the statement about the centralizers, one may assume by Lemmas 4.3
and 4.4, that the element g of order L is represented by some word W = W (k, k). There-
fore it suffices to prove the first claim of the lemma.

Assuming that the intersection / is non-trivial, we can find two exponents s and r such
that W8 = ZW7"Z 'and0 < s < L/3,|r| < L/2ifthe order of I isodd,ors =r = L/2
otherwise.

We should prove that the word Z is equal to a power of W in G. For this goal, we con-
sider a minimal van Kampen diagram A for this equality W = ZW" Z~! and identifying
the subpaths of the boundary labeled by Z, we obtain an annular diagram I" whose two
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(clockwise) boundary labels read from some vertices o0 and o’ are W* and W, and there
is a simple path z connecting o with o’ and labeled by Z. (To obtain I" homeomorphic to
a topological annulus and to make the path z simple, one can use 0-cells corresponding to
trivial relations as in [20, Section 11].)

One can cancel out the pairs of mirror cells if I" is not reduced. Also if I" contains a pair
of disks IT,, IT, connected by two f-bands, and these disks and the bands do not surround
the hole of I, one can replace a van Kampen subdiagram having two disks with a diagram
without disks by Lemma 3.16. The obtained reduced diagram I'” has a simple path z’
connecting o and o', whose label is equal in G to Lab(z) = Z (see [20, Section 13.6]).

The reduced diagram T'" has no disks. Indeed, the two boundary components of T’
have at most L/3 + L/2 i-edges if s < L /3, but by Lemma 3.17 (2), an annular diagram
with disks has to have at least L — 3 > %L + 1 f-edges on the boundary. If s = r = L/2
we have a contradiction again since all the 7-letters of W* and W' are positive, but the
disk has to have spokes ending on both boundaries of I'” since L — 3 > L /2. Hence there
are no disks in T,

If T’ has no cells, then it is a diagram over the free group, and so s = r and the word
Lab(z’) commuting with W* in the free group is equal to a power of W, as required.
Arguing by contradiction, assume that T'” has 6-cells. Then all maximal #-bands of T are
f-annuli surrounding the hole of I'” by Lemma 3.4. Cutting along a side of a maximal
f-band T, we obtain a reduced van Kampen diagram I'” over M, which is a trapezium
of height & > 1 with equal side labels. Therefore the maximal 8-bands of I/ have no
superscripts in the labels of their cells, because it follows from Lemma 3.10 (1) that the
label of the right side of a trapezium with s maximal 7-bands must be the 4-s-shift of the
label of the left side of it, but s < L.

By Lemma 3.10 (1), a subtrapezium of I with the same history gives us a non-empty
computation W — - -- — W without rules of sets ®; and ®,. This contradicts Lemma 4.1.

(2) We have the same proof as in item (1) considering now a hypothetical conjugation
of W(k, k)* and W_. Clearly these cyclically reduced words are not conjugate in the
free group since they involve different g-letters. Then as above, one obtain a computation
W(k,k) — --- — W, without rules from sets ®; and ®,, contrary to Lemma 2.14. =

Remark 4.6. If the machine My is chosen with non-recursive language of input words
o, then by Lemmas 4.2 and 4.5 (2), there exists no algorithm deciding whether some
non-trivial powers of the words W(k, k) and W, are conjugate in G or not.

Basing on Lemmas 4.2 and 4.3, we can introduce the HNN-extension Gy of the group
G for k = 1,2, ... by adding a stable letter x to the set of generators and the relation
xW(k,k)x~! = W, to the set of defining relations of G.

We need a property of HNN-extensions similar to the property of amalgamated prod-
ucts obtained in [8]. Both the formulation and the proof of the first part of the following
lemma were left to the reader in [8].
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Lemma 4.7. Let a function | bound from above the Dehn function of a finitely presented
group A and suppose f is super-additive, i.e., f(n1) + f(nz) < f(ny + ny) for all inte-
gersni,ny >0, and f(1) > 1. Let B be an HNN-extension of A with finite associated
subgroups xCx~' = D. Then the Dehn function g(n) of B is bounded from above by a
function equivalent to f (n). In particular, every group Gy has quadratic Dehn function.

Proof. We have a finite presentation of B with one extra letter x and finitely many extra
relations xU;x~! = V;, where all elements of the subgroups C and D are presented by
some words U; and V;. Let ¢ — 1 be the maximum of the lengths of all U;-s and V;-s.

Assume that a word W = WixE1Woxt! | is equal to 1 in B, where the words W;
have no x-letters. We will induct on s = s(W) = |W||g + cr, where r is the number
of x-letters in W, with trivial base s = 0, to show that the area Area(W) in B does not
exceed f(s).If W has no x-letters, then W = 1 in G, and therefore Area(W) < f(s).

If the word W has x-letters, then the word W has a pinch subword by Britton’s lemma
(see [17, Section IV.2)]), i.e., a subword xW_/x_1 (resp. x_Iij ), where W; is equal in
A to some word U; (resp. to some V). Therefore one can replace W; with U; using an
auxiliary diagram of area < f(|W;| + ||U;||) < f(nj + ¢ — 1), where n; = ||W;||. Then
the application of one conjugacy by x replaces the subword xU; x~! with V;. We obtain
aword W’ with s(W’) < s(W) —n; — ¢ since the number of x-letters is decreased by 2.
Therefore

Area(W) < f(s —nj—c)+ f(nj+c—1) +1
< fls—nj—c)+ f(n; +c)
= f@s) = fle + D[W]D,

and so g(n) < f((c + 1)n) for every n > 0, which proves the first statement of the lemma.
It implies the second one by Lemmas 3.21 and 4.3. ]

Remark 4.8. It is unknown if there is a finitely presented group whose Dehn function is
not equivalent to a super-additive function. This problem was raised by V.S. Guba and
M. V. Sapir in [14].

Lemma 4.9. Let B be an HNN-extension of a group A with associated malnormal sub-
groups C and D: xCx~' = D. Assume also that gCg~' N D = {1} for every element
g € A. Then the centralizer of any non-trivial element h € A in B is equal to the centralizer
of hin A.

Proof. Let an element z commute with /2 in B. Assume first that it has only one stable
letter x in the normal form: z = g1xg», where g1, g2 € A. Then the equality

glxgzhgz_lx_lgl_1 =zhz'=heC

implies that the subword x(g2hg, ')x~! is a pinch, and so we have gohg;! € C\{1}.
Then xgohgs'x~! = d € D\{1}, but the conjugate in A element g;'dg; = h belongs
to C, contrary to the assumption of the lemma.
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Now assume that the normal form of z (without pinches) has at least two x-letters:
z = g1x°g>x"g3 ..., where &, 7 € {1, —1}. Then the only pinch in the product z 1Az is
x"¢gy hgxt.

If g7 'hgy € C,thene = —1 and d = xg'hg1x~! € D\{1}. Then we have the pinch
x gy Ydg,x", where the product g5 'dg, cannot belong to C by the assumption of the
lemma. Thus, it is in D, n = 1, and since D is a malnormal subgroup of A, we should
have g, € D. But this gives the pinch x~!g,x in the normal form of z, a contradiction.

If we had g7 hg) € D, then the same argument would give a pinch xg,x~! in the
normal form of z. Therefore z € A, and the lemma is proved. [

Lemma 4.10. (1) The group Gy has an element of order L with infinite centralizer
if the word o is accepted by the Turing machine My. For all accepted of the
groups Gy are isomorphic with the HNN extension G of G with stable letter y
and the additional relation yW,. y_1 = W

(2) If the word o* is not accepted by My, then the centralizers of elements with order
L in Gy have order L.

Proof. (1) By Lemma 4.2, there is an element g € G such that gW(k,k)g™! = W,.in G.
So in Gy, we obtain the relation

xgWik k)g™ x = Wik, k),

ie., z 'W(k,k)z = W(k,k) for z = g7'x and yW,.y~! = W, for y = xg~!. Here
W(k, k) has order L by Lemma 4.3 and y, z have infinite order. Furthermore, one can
replace the generator x by y in the presentation of G and obtain the presentation of G.
(2) Let the element g have order L in Gg, then it is a conjugate of an element of order
L from G (see [17, Theorem 1V.2.4]). Therefore one may assume that g € G, and its
centralizer Cg(g) has order L by Lemma 4.5 (1). Then the centralizer of g has the same
order in G(k) by Lemma 4.9, because the assumptions of that lemma are guaranteed by
Lemma 4.5 (1), (2). [

Proof of Theorem 1.1. 1t follows from Lemma 4.10 that the group G is isomorphic to the
group G (which is isomorphic to every G; with &' accepted by the machine My) if and
only if the word o is accepted by the Turing machine M. So the isomorphism problem
is not decidable in the set of finitely presented groups {Gy }7= , if the language of accepted
words of My is not recursive. Hence by Lemmas 3.21 and 4.7, the isomorphism problem is
algorithmically undecidable in the class of finitely presented groups with quadratic Dehn
function. ]

5. Dehn functions of subgroups

In this section, we assume that the language of accepted words of the Turing machine My
consists of all non-negative powers a* in the one-letter alphabet {a}, but we select Mg so
that the time function Ty, () of My grows fast. Given a recursive function f(n), we can
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define a symmetric Turing machine My with time function satisfying the inequalities
Tvm,(n) > f(n) forn > 0. 6D

Here T, () is the time of the shortest Mp-computation accepting the word .

The next S-machine M}L depends on My only, and we will assume that it coincides
with the machine M; provided by Lemma 2.2 from Section 2.1, and so it coincides with
machine M; borrowed from [26].

The language of accepted words for Mi" is {ak }z"zo by Lemma 2.2, and we have the
inequality

Ty (1) < Tygt (1)
for the time functions by [26, Lemma 4.1]. (This lemma says that every computation of
Ml+ accepting an input configuration has to simulate an accepting computation of M.

By definition, the machine M7 is a copy of MT, but the language of the accepted
words of M7 is {ak};i%. We will assume that these two machines have disjoint sets of
rules, and the common state letters of them are only the letters of the start and the accept
configurations. The machine M; is defined now as the union of M;" and My, where
every admissible word is admissible either for M or for M. So an input configuration
(resp. the accept configuration) of M is an input configuration (resp. the accept configu-
ration) of MT and of M .

Lemma 5.1. The language of accepted words of My is {ak}]‘zo:_oo, and for every n > 0,
we have the inequality Ty, (n) > f(n) — C(0), where C(0) = T, (0).

Proof. The first statement is obvious since M is the union of Mf‘ and M .

Let € : Cy — --- — C; be a shortest accepting computation of M; starting with
an input configuration Cy with a non-empty input word «”*. The computation € has an
alternating factorization € = €; ... €,, where every factor belongs to either Mf‘ or M7 .
Without loss of generality we assume that €; : Cy — --- — C; is a computation of Mi"

If n < 0, then the computation €; cannot accept or end with an input configuration by
Lemma 2.2. Therefore it cannot be followed by a computation €, of M7, a contradiction.

If n > 0and s = 1, then €, is an accepting computation of M7, and so

t > TM‘I"(n) > TMo(n) > f(n)

If s > 1, then € does not accept, and so C, is a start configuration for both MT and
Mj . Let o be the input word in C,. Then k > 0 by Lemma 2.2 applied to el Ifk >0,
then €, could not end working by the dual lemma applied to €;; hence k = 0.

Note that since k = 0, one can construct a computation & as computation €; followed
by the Mf—computation of length C(0) accepting the empty word, and O accepts a”.
Hence Tv, (n) < Twm, (n) < r + C(0), and so by (5.1), we have

t>r > Tyy(n) —C(0) > f(n)—C(0),

which proves the lemma. ]
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The group G is defined by M in Section 3.2. In this section, we also consider a
‘trimmed’ version of the machine M. The set of rules of this machine Mis @3 U ®4 U @,
i.e., we now remove the sets @, and @,, as well as the transition rule #(23), from the def-
inition of M. The state letters occurring in the removed rules only are removed too. The
words of the form W(k, k’) for arbitrary integers k and k’ become the start configurations
of the machine M.

The definitions of the machines M, to M5 and M depend on M; only, and according
to [27, Lemmas 3.10, 3.17, 3.18], M accepts the same language £ (which is equal to
{ak } = _oo NOW). Furthermore, every computation of each of these machines accepting a
word ¥ must simulate the work of the previous machine accepting the same word, and so
by Lemma 5.1, for every non-negative n, we have the following inequalities for the time
functions:

S(n) = C0) = T, (n) = Ty (n) =< Tz (n).

By the definition of the set @4, an accepting computation for a word W(k, k) is longer
than the computation of M3 accepting the input «”. It follows that for every n > 0, we
have

£(n) = C(0) < Tyz(n). (52)

Now we define the group M given by the generators and relations occurring in for-
mulas (3.3) only (which correspond to the rules from @3 U @4 U @5). The group G is
obtained from M by imposing only one hub relation Waf = 1 from (3.4). In particular,
the generators of the groups M and G have no superscripts (i),i = 1,..., L.

Lemma 5.2. The canonical homomorphisms M — M and G — G are injective. So one
may identify M and G with the subgroups of the groups M and G, respectively.

Proof. We should prove that if a word w in the generators of G is equal to 1 in the group
M (in G), then it represents 1 in M (resp. in G).

Let A be a minimal diagram over G with boundary label w. If A has no disks, then by
Lemma 3.4, every maximal 8-band of A ends on the boundary dA, and so the one-letter
history of it is a history of M since w is a word in the generators of M. It follows that A
is a diagram over M and w = 1 in M, as required. Thus, one may assume that A has at
least one disk and induct on the number of disks [ with base [ = 0.

If / > 0, then Lemma 3.17 provides us with a disk IT and a 7-band B connecting
this disk with the boundary dA. Since by Lemma 3.19 (2), A contains no 6-annuli, every
6-band crossing B ends on A and it is a diagram over M. It follows that the 7-letter
labelling the common edge of B and dI1 has no superscripts. Hence no letter of the acces-
sible boundary label of IT has a superscript; this label has the form WL .

By Lemma 3.14, we have a computation € of M, connecting the word W either with
Wy or with W,.. If the history of this computation has no rules 0(23)7L, then it is a
computation of M, and by Lemmas 2.14 (1) and 3.14, the disk IT can be filled in with
the cells corresponding to the relations of the group G (including the hub relation w.k.
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If € has a rule #(23)71, then this rule is applied to a configuration W(k, k’). Here
k = k’ since the word W, and so the word W(k, k'), is accessible. However for every
integer k, the configuration W(k, k) is accepted by the machine M since the language
of M-accepted input words is {a¥ e _oo- Therefore by Lemmas 2.14 (1) and 3.14, the
subdisk with boundary label W(k, k)~ can be filled in with cells corresponding to the
presentation of G. The same is true for the whole disk IT. Then IT can be removed from A
along with the 7-band 8, and the boundary of the remaining part A’ of A is again labeled
over G. Since the number of disks in A’ is / — 1, the lemma is proved by induction. ]

Since every word W(k, k) is accepted by the machine M, Lemma 3.14 gives us a disk
diagram A with boundary label W(k, k) built of one hub and L trapezia corresponding
to a reduced accepting computation for W (k, k). The boundary of the hub in A is labeled
by WL, since G has only one hub relation.

One can prove that the disk diagram with boundary label W(k, k)’ is minimal, but we
need an estimate from below for the area of the word W(k, k) with respect to the finite
presentation of G (which contains a hub, but no other disks). The following statement is
[23, Lemma 10.2]. (Although the machine is different in [23], the proof of Lemma 10.2

works for G without any changes.)

Lemma 5.3. The area of a disk diagram A with boundary label W (k, k)~ does not exceed
twice the area of the disk word W (k, k)L with respect to the finite presentation of G.  ®

Lemma 5.4. The area of the word W(k, k)™ with respect to the finite presentation of G
is at least L( f (k) — C(0)).

Proof. Let us consider the disk diagram A with boundary label W(k, k)% provided by
Lemma 3.14. A contains L trapezia corresponding to an accepting computation of the
machine M starting with the configuration W(k, k). By Lemma 3.10, the height of each
trapezium I is at least Tg;(k), which is greater than f(k) — C(0) by inequality (5.2).
Hence I' contains at least N(f(k) — C(0)) (6, g)-cells, and therefore A has at least
NL(f(k) — C(0)) cells. By Lemma 5.3, the area of the word W(k, k)L is at least
NL(f(k) — C(0))/2 which proves the lemma. |

Proof of Theorem 1.2. Note that the length of the word W (k, k) is a linear function of k.
Therefore to bound the Dehn function of the subgroup G from below by f(n) (up to
equivalence), it suffices to obtain the inequalities Areag(W(k, k)) > f(k) — C(0) for
every k > 1. Indeed, these inequalities follow from Lemma 5.4.

Since the group H = G embeds in G by Lemma 5.2, Theorem 1.2 is proved, because
by Lemma 3.21, the group G defined by M in Section 3.2 has quadratic Dehn function. m

Remark 5.5. Since the word W(k, k) is accepted by the machine M for every integer k,
it follows from Lemmas 4.2, 4.3, 4.4, 7.1, and 6.4 that the conjugacy problem is decidable
for both groups G and G = H constructed in this section.
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6. Conjugacy in the group G

In this section and in the next one, the construction of the machine M can be based on the
machine M provided by either Lemma 2.2 or Lemma 2.3.

Lemma 6.1. Let I" be a reduced diagram over M with boundary Xy. Suppose there are
neither 0-bands nor q-bands starting and ending on'y. Then:

(1) lyle =< Ixlg and |ylg < [xlg.
2) If T is a subdiagram of a diagram A over G andy = y1y2y3, where y; and yz are
sides of q-bands, y, is a side of a 6-band or a subpath of the boundary of a disk

I, then |y2| is bounded by a quadratic function of ||X||. The perimeter ||0T1| is
also bounded by a quadratic function of ||X|| if y2 contains at least two -letters.

Proof. (1) Since every maximal - or g-band of I' starting on y has to end on x, the
inequalities follow.

(2) It follows from (1) that the numbers of maximal 8- and g-bands of T" are bounded
by a linear function of ||x||. Therefore the number of (6, ¢)-cells of T" is bounded by a
quadratic function by Lemma 3.4. Note that the Y -lengths of the sides y;, y» of g-bands
are linearly bounded by their 8-lengths. Since every maximal Y -band starting on y, has
to end on a (6, g)-cell or on yq, or on y3, or on X, we have |y,|y and ||y2| bounded by
a quadratic function of ||x||. If y, is a subpath of TI having at least two 7-edges, we have
|0TT|| < L|ly2||, and the statement (2) follows. |

Lemma 6.2. There is an algorithm replacing a given word W with a word W' conjugate
in G to W and having the following property. If T is a minimal van Kampen diagram T’
with boundary pq, where Lab(p) is a subword of a cyclic permutation of the word W',
then none of (a), (b), and (c) below holds.

(a) T issubdiagram of a diagram A over G, q = y1y2Y3, where y1 and y3 are sides
of t-spokes connecting the subpath y, of the boundary of a disk T1 with p, there
are no disks in T, and T1 is connected with p by s > L /2 f-bands. See Figure 6.

(b) qisaside of a rim q-band € of T starting and ending on p. See Figure 7.
(¢) qisaside of arim0-band T of T starting and ending on p. See Figure 7.

Proof. (a) Suppose that, for some word W diagrams I" and A satisfying the assumption
of Lemma 6.2 (a) exist. Assume that IT is connected with p in I" by r > L /2 consecutive
f-spokes €y, ..., €,. By Lemma 3.19 (1), T contains no #-bands connecting €; and €,.
Lemma 6.1 gives a linear bound (in terms of ||W||) for the lengths of the spokes and
a quadratic upper bound for the perimeter of the disk IT. So there is a subdiagram A’
containing IT and having the boundary pq’ with |q’|, < |q|, and bounded ||q|.

Replacing the subword Lab(p) with Lab(q) ™!, one obtains a conjugate in G word of
smaller g-length, where the length of the modified word is quadratically bounded in terms
of || W ||, and the search for it has effectively bounded time by Lemma 3.21. This gives an
algorithm providing property (a) from the lemma.



A. Yu. Olshanskii and M. V. Sapir 1322

Lab(p) = W’
T
y1 Y3
y2
Figure 6. Diagram I" in Lemma 6.2 (a). Figure 7. Diagram I" in Lemma 6.2 (b) and (c).

(b) Consider such a diagram I' if any exists. We may assume that I" contains no disks.
Indeed, the g-band € has no side g-edges, and so by Lemma 3.17 (1), the existence of
a disk should imply the existence of a subdiagram already eliminated in item (a), a con-
tradiction. Then by Lemma 3.4, every maximal 6-band starting from € in I" ends on p.
Hence the length of € is less than ||p||. The side label of € is equal in M to Lab(p) but has
g-length 0. Hence the subword Lab(p) can be replaced with a word Z, equal in M, having
smaller g-length and || Z|| is linearly bounded in terms of ||W||. Since the word problem
is decidable in G, one can efficiently execute such a replacement. Thus, the effective
procedures described in the items (a) and (b) provides us with an output satisfying both
properties (a) and (b) from the formulation of the lemma.

(c) Let I' be the diagram from the formulation of item (c). Now we may assume that
the word W has properties (a) and (b). We also may assume that I has no maximal 6-
bands except for T since otherwise I" should contain a proper subdiagram with the same
property. Assume that I" has a disk. Then let IT be a disk provided by Lemma 3.17 (1). By
item (a), at least two 7-spokes € and €’ start on IT and end on 7 since L — 5 > L/2 + 1.
The uniqueness of the maximal #-band 7 in I implies that € and €’ have length 0. Then
by Lemma 3.20 (2), one can decrease the number of disks in the diagram I, replacing it
with a diagram T satisfying the same assumptions and having Lab(p’) = Lab(p). The
induction on the number of disks allows us to assume that I' is a diskless diagram, and
so it coincides with 7. Replacing p with q~!, one decreases the #-length of the boundary
label preserving the g-length of it. Since the length of 7 does not exceed ||W ||, one can
find and remove T effectively.

The algorithm terminates, because each step in paragraphs (a)—(c) of it either reduces
the g-length or does not increase it but reduces the 8-length. ]

Remark 6.3. Let us call the word W’ from Lemma 6.2 an adapted word.

One can change the formulation of Lemma 6.2 by replacing the minimal diagram
I' over G with a reduced diagram over the group M and removing property (a). The
statement remains true (the proof is a simplified proof of Lemma 6.2). We will call the
words W’ obtained from W according to these weaker version of Lemma 6.2 a weakly
adapted word.

The following statement will be used in the next section.
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Lemma 6.4. There is an algorithm that decides whether two words U and V' representing
elements of infinite order in the group G are conjugate in G or not.

Proof. We divide the proof into several steps.

Step 0. Lemma 6.2 allows us to assume that the words U and V are adapted. By the
Schupp lemma, U and V are conjugate in G if and only if there is an annular diagram
A over G with boundary components p and q labeled by U and V, respectively. If there
is a recursive function f such that one always can choose A so that p and q can be
connected by a path x of length < f(||U|| + ||V |)), then the cut along x replaces A with a
van Kampen diagram of bounded perimeter, and so the conjugacy problem is reduced to
the word problem. Since the word problem is decidable in a group with quadratic Dehn
function (see Lemma 3.21), our goal is to find such a ‘short cut’ under the assumption that
U and V are conjugate in G.

Step 1. Let A be a minimal annular diagram whose boundary contours p and q are labeled
by U and V, respectively. The number r of disks in A cannot exceed s = |U |4 + |V |4 for
the following reason. Let IT be the disk provided by Lemma 3.17 (2). Since the words U
and V' are adapted, I is connected by spokes with both p and q. Cutting out the union of IT
and the diskless subdiagrams between IT and the boundary components (bounded by the
spokes at IT), we get a remaining van Kampen diagram A’ with at most s — (L —3) +3 <
f-edges on the boundary. Now Lemma 3.18 bounds the number of disks in A’.

Step 2. If A has a disk, then Lemma 3.17 (2) gives a disk IT connected with p (or with q)
by at least two f-spokes. Assuming that these two 7-bands € and €’ are consecutive, we
consider the subdiagram T" over the group M bounded by €, €’, 911 and p.

If T contains no 6-bands connecting € and €’, then Lemma 6.1 gives a quadratic
bound (in terms of || U ||) for the perimeter of the disk IT and a linear bound for the length
of €.

Making a cut along the boundary of € and around I, one can remove the disk IT and
obtain an annular diagram A’ with fewer disks, where the boundary label U is replaced
with a word U’, equal in the group G, whose length is quadratically bounded in terms of
IU]-

If T has a 6-band connecting € and €’, then such a 6-band closest to IT has to share
a side with dI1. This 0-band I and IT form a diagram E satisfying the assumption of
Lemma 3.20 (1). Therefore IT and the subdiagram E can be replaced in A with a disk
IT’ and a diagram E’. This surgery removes the 6-band 7 from I" and shortens the con-
necting 7-bands € and €’ in the obtained annular diagram A’. (We do not care about the
minimality of the entire A’.) Then we can continue moving the disk closer to p until we
obtain a subdiagram, where no 6-band connects € and €.

Thus, if A has a disk, then there is a minimal annular diagram A’ with fewer disks
and boundary labels U’ and V' equal to U and V in G, where ||U’|| + || V|| is effectively
bounded in terms of ||U || + ||V||. Since the number of disks in A does not exceed ||U || +
| V|, the iteration of this argument provides us with a diskless annular diagram A and
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with boundary labels U and V equal to U and V, respectively, in G. Hence an effective
exhaustive search gives a finite set S = S(U, V) of pairs (U;, V;) such that U and V
are conjugate in G if and only if for some i, the words U; and V; are conjugate in the
group M . Moreover, by Remark 6.3, the words U; and V; can be assumed weakly adapted.
So, keeping the same notation, we may assume that the annular diagram A contains no
disks.

Step 3. Since we may assume that the words U and V' are weakly adapted, it remains to
consider three options: (a) neither U nor V have 0-letters; borrowing the term from [24],
the corresponding annular diagram A will be called a ring; (b) there are no g-edges in
the boundary of A and every maximal 6-band connects p and q; such a diagram is a roll;
(c) there are g-letters and there are §-letters in both U and V, and every maximal ¢- or
f-band of A connects p and q; A is a spiral.

Step 4. Assume that A is a ring. Then, by Lemma 3.4, the annular diagram A is built
of f-annuli surrounding the hole of A. Different 6-annuli cannot copy each other, since
otherwise one could remove some 6-annuli from A.

If A has no (6, g)-cells, then by Lemma 3.4, every maximal Y -band connects p and q,
and so all the 8-annuli have the same length |U |4, and the number of different -annuli of
this length is effectively bounded. Therefore there is a path x of bounded length connecting
p and q, as desired. Therefore, we may assume that there are (6, ¢)-cells in A, and we have
s > 1 maximal g-bands €, ..., €, each of them has the same length & and connects p
and q. Let the #-annuli of A have boundary components with lengths /y and /1, /; and /5,
ooy lp_q and [,

If max;j—q_. 4 l; <cqamax(||U],||V]), then there is an effective upper bound for &

,,,,,

since the #-annuli cannot copy each other. So proving by contradiction, we assume that

‘_maxhlz- > camax([[U]], VD). (6.1)

i=0,...,

We consider the ‘power’ AL of A. This reduced annular diagram has boundary labels
U =ULand V' = VL, respectively, and maximal g-bands Dy, ..., Dsr . (AL covers A
with multiplicity L).

Cutting AL along a side of Dy, we obtain a diagram over M with boundary z,z,z324,
where z, and z4 have labels U’ and (V') ~!, and z3 is the side of the g-band Dy . Attaching
to this diagram a copy Dy of Dy, along z;, we get a trapezium I' of height /. The base
of I" has form xvixv2x...xv,x, where the letter x is the base of Dy, it does not occur
in the subwords vy, ..., v, and r is a multiple of L. So I is covered by r trapezia I'; with
bases xv; x.

By inequality (6.1) and Lemma 2.17, the base of I is a power of a cyclic permuta-
tion of the standard base. Replacing U with a cyclic permutation, we may assume that
the base of I'; is standard, it is equal to fv, where x = ¢t and v = v; = --- = v,. More-
over, by Lemmas 3.10 (1) and 2.15, for the top labels W; and the bottom labels Wl/ of
every I';, the words Wl.g and (Wi’ )‘Zj are accessible words. Furthermore, by Remark 2.16
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and Lemma 2.12, all the words W7, ..., W, are equal up to the superscripts. It follows that
the word U* is permissible, and it is a power of a disk word, because r is divisible by L.
So UL = 1 in the group G by Lemma 3.12, contrary to the assumption that U has infinite
order.

Step 5. Assume now that A is a roll having no (6, g)-cells. If it has a Y -annulus #4 sur-
rounding the hole of A, then it follows from the form of (6, @)-relations, that the inner and
the outer boundary components have the same boundary label. Then one can just remove
A from A identifying these two sides of #4. Therefore we may assume that there are no
such Y -annuli in A, and every maximal Y -band starts or ends on p or q by Lemma 3.4.
It follows that the number of maximal Y -bands cannot exceed the sum ||U|| + ||V]. To
obtain an upper bound for the length of a connected path x from Step 1, it suffices to bound
the number of (6, a)-cells in A, that is, to bound from above the length of every maximal
Y -band.

If a Y-band + starts and ends on p (or q), then its length does not exceed ||U || since by
Lemma 3.4, every maximal 6-band crosses «+ at most once and starts or ends on p. Let 4
connect p and q. To bound the length of +4 it suffices to bound the number of (6, a)-cells
belonging to the intersection of 4 with arbitrary maximal 8-band 7, because the number
of maximal 6-bands (connecting p and q) is at most ||[U || + ||V

By Lemma 3.4, a subband of «# cannot cross twice a subband of 7 in a van Kampen
subdiagram of A. Therefore after the Y -band «+ crosses 7 at some cell 7, it has to cross
every other maximal 6-band of A before 4 crosses 7 again at some cell 7’. So we have
a convolution, i.e., the subband of A of length at most |U|| + ||V || between 7 and 7’.
Hence it suffices to bound from above the number of such convolutions in .

The subband 7 of 7 between 7 and 7’ can be crossed by another maximal Y -band A’
at most once (and A’ has to connect p and q). Therefore the length of 7 is at most | U || +
[V]l. So a side of the convolution and a side of 7 form a loop z of length O(|[U || + |V |))
surrounding the hole of A.

If z surrounds another loop z’ of this type with Lab(z") = Lab(z), then one can remove
the diagram between z and z’ and identify these two loops decreasing the number of cells
in the annular diagram. Since the lengths of loops of this type are bounded, the number of
them is effectively bounded as well. It follows that we have an effective upper bound for
the lengths of Y -bands as desired.

Step 6. Assume now that A is a roll containing (60, g)-cells. Then by Lemma 3.4, every
maximal g-band of A is a g-annulus surrounding the hole of A since a roll has no g-edges
in the boundary. By the same lemma, every maximal 6-band crossing a g-annulus € ends
on p and q and cannot intersect € twice. Therefore the length of an arbitrary g-annulus
does not exceed min(|U |g, |V |g). This observation effectively bounds the number of g-
annuli in a minimal annular diagram A, because two different annuli cannot copy each
other. (One could remove the diagram between them and identify such annuli, contrary to
the minimality of A.)
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If p1,qi1, ..., Pk, qr are pairs of boundary components of all the g-annuli counting
from p to q, then the annular diagrams between qo = p and p;, q; and p2, ..., ¢ and
Pk+1 = q contain no (6, g)-cells. Therefore there is a roll having boundary labels U and
V if and only if there are at most k different g-annuli (where k and the lengths of the
g-annuli are effectively bounded) and < k + 1 rolls without (0, ¢)-cells between q; and
pi+1 (i =0,...,k, and the lengths of all p; and q; are effectively bounded). So the case
of rolls is effectively reduced to the special case considered in Step 5.

Step 7. It remains to assume that A is a spiral. It follows from Lemma 3.4 that every

g-edge of A belongs to one of the (clockwise) consecutive maximal g-bands €y, ..., €
connecting p and q. Clearly we have s < min(|U |4, |V|4). Similarly, all maximal 6-bands
71,...,7; connect p and q, and r < min(|U |g, |V |g).

Assume that going from p to q a §-band 7 = J; crosses a g-band € = €; clockwise.
Then Lemma 3.4 implies that if after this intersection, 7 crosses a g-band again, then this
next intersection is with €; 1 (the indices taken modulo s) and €; 1 is crossed clockwise
too. So if the number of intersections of 7~ with g-bands is greater than s, it has to cross
one of the bands at least twice. See Figure 8.

Figure 8. Spiral structure.

Our nearest goal is to bound from above the lengths of the g-bands. And so we will
assume that every maximal 6-band contains more than s different (6, g)-cells. (If there is
T crossing g-bands at most s times, then the same has to be true for every g-band.)

The spiral structure of A implies the dual property: If a maximal g-band € (directed
from p to q) crosses some J;, then the next intersection of € (if any) is the intersection
with 7;_ (the indices taken modulo 7). It follows that the history of any g-band is periodic
with a period H of length r.

Consider now a van Kampen subdiagram I" bounded by two g-bands € and €’ and
parts of p and q, such that I" has no other ¢g-bands between € and €’. Let E be the
maximal trapezium (possibly empty) of ", bounded by subbands O and £’ of € and €’,
and by 6-bands § and §’ connecting € and €’ in T'. Thus, the complement of E in T’
has no 6-bands connecting € and €’, and Lemma 6.1 (2) gives a quadratic bound for the
lengths of § and S’ in terms of ||U|| and ||V||. See Figure 9.
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Figure 9. To Step 7 of the proof of Lemma 6.4: the subdiagram I" (left) and the loop z (right).

By Lemma 3.10(1), the trapezium E corresponds to an eligible computation with
periodic history H. Therefore Lemma 2.4 gives a linear upper bound of the lengths of
arbitrary 6-bands of E in terms of the lengths of the top and the bottom of E, and the
length of the period H of the history. So the lengths of such #-bands are quadratically
bounded in terms of |[U|| + || V.

If 79 is a part of some 6-band T, such that Ty starts and ends on the same ¢-band €;
and crosses once every other maximal g-band, then the above argument provides us with
a cubic upper bound for the length of 7. The ends of the side of 7y are connected by a
part of length O(r) of the g-band €;. So this side and the connecting path form a loop z
of at most cubic length surrounding the hole of A. See Figure 9.

If z surrounds another loop z’ of this type with Lab(z") = Lab(z), then one can remove
the diagram between z and z’ and identify these two loops decreasing the number of cells
in the annular diagram. Since the lengths of loops of this type are bounded, the number
of them is effectively bounded as well. It follows that we have an effective upper bound
for the lengths of g-bands in A, and so, for the length of a path connecting p and q.
Lemma 6.4 is proved. ]

Lemmas 6.4 and 4.4 prove Theorem 1.4.

7. The power conjugacy problem

Lemma 7.1. (a) There is an algorithm such that given a word W in the generators
of the group G, it decides whether the order of W in G is finite or infinite.

(b) To obtain an algorithm solving the power conjugacy problem in G for arbitrary
pairs of words (U, V), it suffices to obtain such an algorithm under assumption
that the words U and V' have infinite order in G.
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Proof. (a) By Lemmas 4.3 and 4.4, W has a finite order in G if and only if WI = 1
in G. Since Lemma 3.21 implies that the word problem is decidable in G, statement (a) is
proved.

(b) This statement follows from (a) since some positive powers of elements having
finite orders are trivial, and so are conjugate. ]

The relations (3.1)—(3.4) defining the group G immediately imply that there exists a
homomorphism p from G to the additive group Z/LZ which sends all 7-generators to 1
and all other generators to 0. To solve the power conjugacy problem in G for a given pair
of words (U, V), one may replace this pair with the pair (UZ, V'1); thus, we may assume
further that

nwU)=0 and w(V)=0. 7.1

Let U and V be two words representing elements of infinite order from the group G.
Under the condition (7.1) and the assumption that the words U and V are adapted, we
will also assume that some powers U¥ and V! are conjugate in G for k, [ # 0. Without
loss of generality we assume that k,/ > 0, and there is no pair of positive exponents k', I’
such that U¥ is a conjugate of V! where k' <k, 1’ < I. Thus, we will study a minimal
annular diagram A, where the outer boundary component p has the clockwise label U*
and the inner boundary component q is labeled by V..

If two consecutive - -spokes € and €’ start on a disk IT of A, end both on p (or both
on q), and the van Kampen subdiagram I', bounded by a subpath of p (resp. q), a subpath
of dI1, €, and €’, contains no disks (but contains the spokes € and €’), then we shall call

I atp-bond at T1 (resp. tg-bond). See Figure 10.
! s 7 / W
0 £
)
I'(IT) q r(11’)

Figure 10. tp-bond I" at IT. Figure 11. Subdiagram E between I'(IT) and I'(IT").

€ €’

Lemma 7.2. For every disk I1 of A, the number of tp-bonds (tq-bonds) is greater than
L/2 —4> 0. No g- or 8-band of A starts and ends on p or starts and ends on q.

Proof. If a 6-band connects p with p, then a van Kampen subdiagram I" of A is bounded
by 7 and by a subpath p’ of the cyclic path p, and the word U must contain both positive
and negative occurrences of 8-letters. Proving by contradiction, we may assume that 7 is
a unique maximal 8-band of T" since every maximal f-band of T has to start and end on p’.
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Therefore the word W = Lab(p’) has no 6-letters except for the first and the last ones.
Hence W is a subword of a cyclic permutation of the word U. However such a diagram I"
is impossible since U is an adapted word.

Assume now that there is a g-band € starting and ending on p. Then there is a van
Kampen diagram I" bounded by € and a subpath p’ of p. To obtain a contradiction, we
assume that I" has no maximal g-bands starting and ending on p except for €. Suppose I"
has disks. Since the sides of € have no g-edges, the disk IT provided by Lemma 3.17 (2)
applied to T has at least L — 4 consecutive ¢p-bonds. Since there are no 7-letters between
the ends of the 7-spokes defining these bonds, there is subpath x of p containing exactly
L — 3 f-edges, namely, the ends of the 7-spokes defining the #p-bonds. However U has
at least L {-letters by the equalities (7.1). Hence Lab(x) is a subword of a cyclic permu-
tation of the adapted word U, and L — 3 of these f—spokes end on x, which contradicts
Lemma 6.2 (a) since L —3 > L/2 + 1. If T" contains no disks, the argument from the
previous paragraph leads to contradiction again.

Let us prove the first statement of the lemma. Under the assumption that A contains
disks, Lemma 3.17 (2) gives a disk IT with L’ + L” > L — 3 i-spokes ending on p and q.
If, say, L” < L /2 — 3, then L' > L /2. However U has at least L 7-letters by the equalities
(7.1). So by property (b) of Lemma 6.2 for an adapted word U, these -spokes end on a
subpath of p labeled by a subword of a cyclic permutation of U, a contradiction with
property (a) of adapted words in Lemma 6.2. Thus, we have L” > L/2 — 3 and similarly,
L'>L/2-3>0.

Now consider a maximal set D of disks IT with the following property. Every disk IT
from D has at least L — 5 7-spokes ending either on p or on q. Note that two neighbor 7-
spokes ending on p (or on q) define a ¢p-bond at II, i.e., the subdiagram I', bounded
by these spokes, a part of p, and a part of dII, contains no disks, because otherwise
Lemma 3.17 (1) applied to I' would give us another disk with at least L — 4 ¢p-bonds,
which is impossible again since L — 4 > L/2.

We claim that all disks of A belong to D. Indeed, let I'(IT) denote the subdiagram
formed by a disk IT from D and all the 7p- and ¢g-bonds at IT. Consider the maximal
van Kampen subdiagram E between neighboring I'(IT) and I'(I1'); see Figure 11. If E
contains a disk, then it has a disk & provided by Lemma 3.17 (1). It has at least L — 3
f-spokes in E. But the number of its spokes ending either on p or on q is less than L — 5
since 7 does not belong to D. It follows that a pair of 7-spokes connects 7 with IT or with
IT’ in a van Kampen subdiagram, which is impossible by Lemma 3.16. Thus, every disk
IT of A has to belong to the set D.

The number of 7 spokes at a disk IT from D is L, and at most two 7-spokes connect it
with neighboring disks from D. So there are at least (L —2) —2 = L — 4 ¢p- and tg-bonds
at I1. As above, the number of the #p-bonds at IT is less than L /2, whence the number of
tg-bonds of it is greater than L —4 — L /2 = L /2 — 4 > 0. Similarly, there are > L/2 — 4
tp-bonds at IT; and the lemma is proved. [
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Lemma 7.3. There is a recursive function f such that the integers k and | do not exceed
FAUUN + ||V |), provided the words U and V' have no q-letters.

Proof. By Lemma 3.17 (2) the annular diagram A contains no disks, and so it is a roll.
Assume first that A has no (0, ¢)-cells.

Step 1. 1f the words U, V have no 6-letters, then by Lemmas 7.2 and 3.4, every maximal
6-band 7 of A is an annulus surrounding the hole, and has side labels of the form (U’)¥,
where U’ is U or, due to a superscript, a copy of U. This obviously bounds the number of
such labels in terms of ||U ||, and since we may assume that different 6-annuli do not copy
each other, every vertex of p can be connected with a vertex of q by a path of bounded
length. If two such paths x; and x, define a van Kampen subdiagram with boundary
lelxglygl, where

Lab(x;) = Lab(x,), Lab(y;) = V¥, Lab(y,) = U¥

with |k’| < k and |I’| < [, then we obtain a contradiction with the choice of k and /. But the
absence of pairs of such cuts X1, X, bounds the exponents k and [ in terms of || U || + || V||
since the labels of such cuts belong to a bounded set.

The dual argument works if the words U, V' have no Y -letters.

We may also assume that A has no Y -bands starting and terminating on p (resp. q).
Indeed otherwise there is a rim a-band, and removing it, we replace U (resp. V') with a
conjugate word U, such that |U|, < |U|, and |U|g = |U |g; this replacement is effective.

Step 2. Asin Step 1, A has no (60, g)-cells, but now U contains 8-letters. By Lemma 7.2,
it remains to assume that every maximal -band of A connects the contours p and q. The
same is true for maximal Y -bands as we noticed in the previous paragraph. It follows that
k|Uly = |U*|ly = |V'|y =1|V|y and therefore
\Uly _ 1
Viy "k (7.2)
Since the numbers |U |y and |V |y are less than ||U | + || V|, it follows from (7.2) that k
and / have a common divisor d suchthatk = dk’and [ = dl’, where k',I’ < |U|| + || V|
Ifd =1,thenk,l <||U| + ||V],i.e., we get a desired upper bound. Proving by contradic-
tion, we assume now that d > 1. The words U’ = U* and V' = V* have equal Y -length
since their d-th powers U* and V! have equal Y -length.
Without loss of generality, we may assume that U starts with a Y -letter a. Let p’ be
a subpath of p labeled by U’a. Let us denote by 77 and 7, the maximal Y -bands starting
with the first and the last edges of p’. They end on q, and we get a van Kampen subdiagram
I' bounded by p’, by a subpath q’ of q and by the sides of 77 and 7. Since all maximal
Y -bands of " connect p’ with q’, we have |q'|y = |p’|y, and so Lab(q’) = V’a. (Here we
may replace the word V’ with a cyclic permutation of it.)
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The boundary label of '\ 75 is T, V' TZ_I(U )~1, where T; and T are side labels of
71 and 73, respectively, and so we obtain

T, =UHnv (7.3)
in G. Also, cutting A along the side of 77, we have in G:
U T = (V)? (7.4)

because the paths p and q are labeled by (U’)? and (V')?, respectively.

Both diagrams I" and A contain only (6, a)-cells, and they are diagrams over the group
Gy, generated by Y -letters and 6-letters only, which satisfy only (6, a)-relations from the
sets (3.1)—(3.3). The form of the (6, a)-relations implies the existence of a homomorphism
v of Gy, onto the free group F generated by 6-letters: v is identical on 8-letters and trivial
on Y -letters. On the one hand, equality (7.4) gives us

() @ (T)) ! = v (V).
which implies v(T7) "' v(U")v(T}) = v(V’) in the free group F, and so
v(Th) = v(U) " u(T)w(V).
On the other hand, we get
v(T2) = v(U) ' (T)v (V')

from (7.3). Therefore we have v(73) = v(T}) in F, whence T, = T; in G, because T and
T, contain only 6-letters. Now the equalities 7, = T; and (7.3) give us the conjugation of
the words U’ = U¥ and V' = V¥ in G, where k’ < k and I’ < [, which contradicts the
choice of the pair (k, ).

Step 3. If A contains (6, g)-cells, then by Lemma 3.4, every maximal g-band of A is a
g-annulus surrounding the hole of A since a roll has no g-edges in the boundary. By the
same lemma, every maximal 6-band crossing a g-annulus € connects p and q and cannot
intersect € twice. Therefore all g-annuli have length |U |¥, and the boundary label of each
of them is a k-th power with the length of base bounded from above by |U||. Since one
may assume that two different g-annuli do not copy each other, the number of g-annuli is
effectively bounded. Therefore the solution of power conjugation is reduced to the annular
diagrams between the annuli, where there are no (6, ¢)-cells. Since the number of such
annular diagrams is bounded, the problem is reduced to the case considered in Step 2,
because one can use the transitiveness: if U is a conjugate of V! and V" is a conjugate
of W*, then U¥” is a conjugate of W*!.

Lemma 7.3 is proved. ]

For any disk IT of the diagram A, we have a tg-bond I" at IT by Lemma 7.2, because
L/2 —4 > 0. If there is a 6-band of I" connecting the two spokes bounding I, then there
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is such a f-band T closest to I1. Let E be the subdiagram of I' formed by IT and 7.
One may apply Lemma 3.20 and replace E with a diagram E’ formed by a new disk IT'
and a 0-band 7. This transformation replaces I with the tg-bond IV = T'\J at IT". The
iteration of such transformation replaces the 7g-bond I' with a #g-bond 'y at a disk ITo,
where there are no 6-bands connecting 7-spokes € and €’ at 1.

Lemma 7.4. The perimeter of Iy, the lengths of the -spokes €, €', and the length |r|| of
some path r of 8-length 0 connecting Iy and q in Ty are effectively bounded from above
in terms of ||V |-

Proof. The quadratic upper bounds for the lengths €, €’, and 911 in terms of the length
of the subpath x of q connecting € and €’ is given by Lemma 6.1. However we have
x|l < ||V since the equality (V) = 0 implies that the word V' contains at least L
f-letters, but x has only two 7-edges by Lemma 7.2. It remains to define the path r. This
path starts from [Ty, where the g-band € starts, but it is a side of a maximal #-band Ty
of I'y. Then Ty must end on q by the definition of I'g. The length of r is bounded by
Lemma 6.1 since the perimeter of I'y is bounded and the number of cells in I’y is also
effectively bounded by Lemma 3.21. ]

By Lemma 7.2, all disks of A can be moved toward q in the same way we have moved
IT. So we obtain an annular diagram A, where by Lemma 7.4, each disk IT has effectively
bounded perimeter and is connected with q by a path r = r(I1) having effectively bounded
length and |r|g = 0. The obtained annular diagram A has the same boundary labels as A,
but it is not necessarily minimal. Every disk IT can be removed from A if one makes the
cut along r~ !, around IT and back along r. After removal of all the disks, we obtain a
diskless annular diagram Ag. See Figure 12.

o o
.\ | \

A

Figure 12. Ay is obtained by cutting off all disks from A.

We may keep notation p and q for the boundary components of A, where p is also
the outer boundary component of Ag. If Ag is not reduced, we replace it with a reduced
annular diagram with the same boundary labels. So we will assume that Ay is a reduced
annular diagram and A is built of Ay and disks. The inner contour go of Ag is obtained
from q by inserting pathes z = z(I1) for every disk I1, where |z|g = 0 and the length |z||
is effectively bounded in terms of ||V].
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Lemma 7.5. There is no 0-band in Ay which starts and ends on qq or starts and ends
onp.

Proof. Every path z = z(IT) has no 6-edges. Therefore a 6-band T starting and ending
on (g has to start and end on q. So the word V has 0-letters, and there is van Kampen
subdiagram I' in A, where the boundary of I' has form uv, where u is a side of 7 and
Lab(v) has no 0-letters except for the first and the last letter; whence Lab(v) is a subword
of a cyclic permutation of V*!. The diagram I' can be replaced with a minimal diagram
with the same boundary label whose two 6-edges have to be connected by a 8-band. But
this is not possible for the adapted word V. The p-version of the lemma admits a similar
proof. ]

Lemma 7.6. There is a recursive function | such that the integers k and | do not exceed
FUUN + ||V |]) provided the path p has no 6-edges.

Proof. Tt follows from Lemmas 3.4 and 7.5 that every maximal €-band of A¢ is an annulus
crossing every maximal g-band starting on p exactly once. Therefore all maximal ¢g-bands
starting on p have equal histories. The history and the one-letter base determine side labels
of a g-band up to superscripts. If we have two maximal g-bands € and €’ starting with
two edges e and € of a subpath efe’ of p and the length ||ef || is a multiple of ||U |, then
the corresponding superscripts must be equal by Remark 3.3 since u(U) = 0in (7.1), that
is, € and €’ have equal side labels. So there is a set S of different sides with equal labels,
where #(S) > k.

An arbitrary path s from S either connects p and q or ends on a disk IT of A. In the
latter case the path s can be extended by a subpath x of the path z(IT). The extension s’
connects p and q. The lengths of all z(IT) and so the lengths of the extending paths x were
bounded in terms of || V||, i.e., by g(||V||) for a recursive function g, in Lemma 7.4. So the
number of possible labels Lab(x) is bounded by an exponential function of g(||V||), where
the base of the exponent depends on the number of generators of the group G. Hence there
is a set of paths S’ with equal labels, connecting p and q, where #(S') > ¢’k, where (¢’)™!
is effectively bounded from above.

An arbitrary path s’ € S’ starts with a vertex of p, which decomposes the period U of
Lab(p) as U = U, U,. Similarly, the end of s" gives a factorization V = V; V5. If two cuts
1,82 € S’ define the same factorizations of the words U and V, we say that these cuts
are compatible. Since the number of factorizations of the words U and V are bounded,
there is a set of pairwise compatible paths S” C S’ with #(S”) > ¢”k, where the positive
constant ¢” is effectively bounded from below. However two different compatible cuts
from S” together with parts of p and q bound a simply-connected diagram with the label
T(UN* T=1(V")~", where T is the label of these cuts, U’ and V" are cyclic permutations
of the words U and V, respectively, and k” < k, I’ < [. It follows that the powers U¥" and
V! are conjugate in the group G contrary to the choice of k and /. Hence ¢’k < 1, which
effectively bounds k from above. Lemma 7.2 linearly bounds the g-length of the path q in
terms of |p|,. Therefore the exponent / is also effectively bounded. ]
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Lemma 7.7. There is a recursive function f such that the integers k and | do not exceed
FUUN+ V), provided the path p has 0-edges and q-edges.

Proof. Step 1. Let € be a maximal g-band of Ay starting on p. As in Lemma 7.2, it ends
on qq since the word U is adapted. If a 6-band T starting from p crosses € from left to
right, then it follows from Lemma 3.4 that it cannot also cross € from right to left. Also
there is no other #-band 7 starting on p and crossing the g-band € from right to left since
both 7~ and T’ cannot cross each other but both should end on qg. Therefore, all maximal
f-bands consequently crossing € and starting from p cross € from left to right (or cross
it from right to left). It follows that these 6-bands start with consecutive 0-edges of p,
and so the history of € is a periodic word whose period is the 6-projection of U because
Lab(p) = U*. Moreover, the histories of all maximal g-bands starting on p are periodic
words with the same period H, where 0 < | H|| < ||U]|-

Furthermore, a side label of € is a periodic word with a period u, where |u|g = |U|g.
To prove this, one should show that the cell # number a in € (counting from p) is a
copy of the cell 7/ having number a + |U|g in €. Indeed, if a 0-band T (resp. T') starts
on p and crosses g-bands b times (resp. b’ times) before it crosses € at 7 (resp. at 7’),
then b — b’ = |U|g. Since T and T have the first f-edges labeled by the same letter, by
Remark 3.3, we have equal superscripts when 7 and T’ cross € at 7 and 7/, respectively,
because w(U) = 0in (7.1).

Step 2. As in Lemma 7.6, a side y of every maximal g-band admits a continuation X = yz
in A, where the length of z is bounded, and we have a set S of such compatible cutting
paths X1, X2, ..., X, (X; = ¥,Z;), starting with different vertices of p, and so, all the begin-
nings y1,y2, - - - , yr are the side labels of g-bands €y, . .., €, starting with the edges of p
with the same base letter go. We add the additional requirement that the prefixes of length
||H | of all words Lab(y;),...,Lab(y,) are equal (say, the histories of the correspond-
ing g-bands €; start with H), and still have r > ck, where the positive constant ¢! is
recursively bounded from above in terms of || U | + ||V ||.

Since the side label of the g-bands €; are compatible and (U ) = 0, we have Lab(x) =
u®v, for every x € S, where s = s(x) and the word v has bounded length. So changing the
constant ¢ effectively, one may assume that the suffixes v are the same for every x € S.
Then it follows that we have sufficiently many different pairs of different paths (x’, x”)
from S, the origins (x’)_ and (x”)_ of which are ‘close’ to each other; more precisely, the
number of disjoint pairs (x’, x”) € S2, where the subpath of p connecting (x")_ and (x")_
has length < 3¢~ is greater than /4. Let P be the set of such pairs.

Step 3. We want to bound from above the lengths ||x||, ||x” || for arbitrary pair (x',x”) € P.
Thereby the number of different labels of the paths from such pair will be effectively
bounded. However two compatible cutting paths from S cannot have equal labels, since as
in Lemma 7.6, this would lead to a contradiction with the minimality of the pair (k, /).
Let E be a van Kampen subdiagram of A with boundary path x'q/(x”)~!(p/) !, where
(x',x") € P, p’ and ¢’ are subpaths of p and q, respectively, and so ||p|| < 3¢~! and
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Ip’|lg < 3c™!. This implies that |q'|, < ¢! L since every maximal g-band starting on q
ends either on p or on a disk, which is also connected to p by g-bands.
Replacing the words U and V' with cyclic permutations, we may assume that

Lab(p') = U* and Lab(q) = V® forsomea,b > 0.

Step 4. Recall that X' = y'z/, where the length of z’ is bounded and y’ is a side of a
maximal ¢g-band €’ stating on p. Similarly, we have €” and x” = y”z”. If E has a 6-band
connecting €’ and €”, we have a trapezium I" of maximal height formed by such #-bands
and parts of €” and €”. Two components of E\I" (just one if T" is empty) have maximal
g-subbands of bounded lengths since maximal #-bands crossing them have at least one
end on p’ or q'. Thus, it remains to bound the height 4 of T".

By Lemma 3.10 (1), the top and the bottom labels Wy and W}, of I are the first and
the last permissible words of a computation ‘W : Woﬂ —> e Wh@ with periodic history
having period H . Therefore by Lemma 2.5 the height /% is recursively bounded in terms of
IWoll, [|Wall, and || H ||, provided there is no subcomputation W, — --- — W/ of W with
history H and with Wl.@ = Wj@. Then it follows that 4 is also effectively bounded in terms
of |U|| + ||V ||, as desired. Thus to complete the proof by contradiction, we assume now
that 'W contains a subcomputation W — .- — W with history H and with W = W/,

Step 5. Tt follows from Lemma 3.10 (2) that the trapezium I" contains a subtrapezium T'’/
corresponding to the subcomputation W' : W, — ... — W} Since W = W/, we have
W; = W;, because I is bounded by subbands of € and €', which are copies of each other,
and so the corresponding letters of W; and W; have equal superscripts by Remark 3.3.

Consider now the following auxiliary surgery. Since W; = W;, one can make a cut
along a side of a §-band of T labeled by W; and insert a trapezium I'") with history H”,
where n > 1. The obtained trapezium I, has the same top/bottom labels, has H -periodic
history, but &, — h = n|| H ||, where h,, is the height of T',. This surgery also replaces the
diagram E = E, with a diagram E,. See Figure 13.

Recall that by the definition of the set of cuts S, both words Lab(x’) and Lab(x") are
equal to u*v and u’v with bounded length of v, Lab(p’) = U?, Lab(q’) = V°. Since

ur+nv

Figure 13. Subdiagram E and diagram Ej.
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a <k and b < I, we have t # s, and without loss of generality, we may assume that
t > s. Thus, the boundary label of E gives us the equality u’v = U %u*vV? in G. For
n = (t — s), the diagram E, provides us with the equality u’*"v = U~%u*+t"vV?, ie.,
u$v = U™ %ystnyy?, Similarly, from E5,, E3y, ..., we obtain

u$v = U™ ustyrb,

wtny = U=ays 2yt

us-i—(l—l)nv — U—aus+nlvvb.
On the one hand, it follows that
uy = U—aus+anb — U—2aus+2an2b — .= U—laus+lanlb (7.5)

in G. On the other hand, cutting A along the path x’, we obtain a diagram whose boundary
label gives us uSv = U~k uSvV!in G, whence uSv = U~kbysyV!b which together with
(7.5) gives

ult = yla=kb, (7.6)

Step 6. To obtain the final contradiction, it remains to show that the equality (7.6) is
impossible in G.

The word u is a label of a side of a reduced g-band. Therefore its label is a word with
non-empty cyclically reduced v-projection onto the free group generated by 6-letters. If
kb —la = 0, then by Lemmas 3.18 and 3.4, the minimal diagram for the equality u’” = 1
has neither disks nor (8, ¢)-cells. So it is a diagram over a group generated by 8- and
Y -letters. Then the homomorphism v gives the equality v(u)"” = 1 in the free group, a
contradiction.

If kb — la # 0, then the van Kampen diagram A’ corresponding to (7.6) has no disks.
Indeed, otherwise by Lemma 3.17 (1), we have a disk with s > L — 3 consecutive 7-
spokes €y, ..., € ending on the boundary subpath labeled by UK?~14_because u has no
q-letters. If there are no other disks between neighbor €; and €;1; (i = 1,...,5 — 1),
then we have a contradiction with the property that U is an adapted word. If there is a disk
in a diagram I, between some €; and €; 1, then again Lemma 3.17 (1) provides us with
a disk 7 in T, contrary to the definition of adapted word. Every maximal g-band of A’
has to start and end on the boundary subpath labeled by the power of U, and so there is a
g-band starting and ending on a subpath labeled by a cyclic permutation of U*!, which
is impossible since the word U is adapted. Hence U cannot contain g-letters, contrary to
the assumption of the lemma. ]

Proof of Theorem 1.3. (1) To decide if some powers UX and V! with non-zero exponents
are conjugate in G, we may assume by Lemma 7.1 that the words U and V represent ele-
ments of infinite order. Also it can be assumed that equality (7.1) holds and that the words
U and V are adapted according to Lemma 6.2. If both U and V' have no g-letters, then the
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exponents k, [ can be effectively bounded in terms of ||U || + || V|| by Lemma 7.3. Other-
wise the recursive bounds for k and [ are given by Lemmas 7.6 and 7.7. This reduces the
power conjugacy to the conjugacy of words of bounded length. Since the conjugacy prob-
lem for pairs of words of infinite order is decidable by Theorem 1.4, the power conjugacy
problem is decidable in G. The group G has undecidable conjugacy problem and quadratic
Dehn function by Lemmas 4.2 and 3.21 if the machine My is chosen with non-recursive
language of accepted input words. Thus, Theorem 1.3 (1) is proved.
(2) Let us start with McCool’s group

I, = (yn,zn (n=12,...)| YnZn = ZnVn, Vo) = Zg(n) (n = 1,2,...)),

where ¢ is a recursive one-to-one function with a non-recursive range. This group has
decidable word problem [19], and so it has decidable conjugacy problem, being a free
product of abelian groups. It follows from the relations that some powers of y; and z; are
conjugate if and only if they are equal, and we can obtain such an equality if and only
if i belongs to the range of the function ¢. Since this range is not recursive, the power
conjugacy problem is undecidable in the group IT,.

By [25, Theorem 3], the countable group 1, with decidable conjugacy problem
embeds in a 2-generated group K with decidable conjugacy problem. Moreover, by [25,
Lemma 8 (6)], this embedding has the Frattini property, i.e., two elements from the sub-
group I, are conjugate in K if and only if they are conjugate in I1,. Hence the power
conjugation problem is undecidable in K too.

Finally, by [24, Theorem 1.1] the finitely generated group K having decidable conju-
gacy problem Frattini embeds in a finitely presented group with decidable conjugacy prob-
lem. Thus, the power conjugacy problem is undecidable in H too, and Theorem 1.3 (2) is
proved. ]
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