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Algorithmic problems in groups with quadratic

Dehn function

Alexander Yu. Olshanskii and Mark V. Sapir

Abstract. We construct and study finitely presented groups with quadratic Dehn function (QD-

groups) and present the following applications of the method developed in our recent papers. (1) The

isomorphism problem is undecidable in the class of QD-groups. (2) For every recursive function f ,

there is a QD-group G containing a finitely presented subgroup H whose Dehn function grows

faster than f . (3) There exists a group with undecidable conjugacy problem but decidable power

conjugacy problem; this group is QD.
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1. Introduction

Every group given by a presentation G D hX jRi is a factor group F=N of the free group

F D F.X/ with the set of free generators X over the normal closure N D hhRiiF of the set

of relators R. Therefore every word w over the alphabet X˙1 vanishing in G represents

an element of N , and so in F , w is a product v1 : : : vm of factors vi D ui r
˙1
i u�1

i which

are conjugates of the relators ri 2 R or their inverses.

The minimal number of factors m D m.w/ is called the area of the word w with

respect to the presentation G D hX jRi. M. Gromov [12, 13] introduced this concept in

geometric group theory, because m is equal to the minimal number of 2-cells (counting
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with multiplicities) used in a 0-homotopy of the path p labeled by w in the Cayley complex

of the presentation of G (or the 0-homotopy of a singular disk with boundary p).

In other words, given equality w D 1 in G, one can construct a van Kampen diagram,

that is, a finite, connected graph on the Euclidean plane with m bounded regions, where

every edge has label from X˙1, the boundary path of every region (D 2-cell) is therefore

labeled. The label of it belongs in R˙1, and the boundary of the whole map is labeled

by w. (See more details for this visual definition of area and van Kampen diagram in

Section 3.2.)

The Dehn function of a finitely presented group G D hX jRi is the smallest function

f .n/ such that for every word w of length at most n in the alphabet X˙1, which is equal

to 1 in G, the area of w is at most f .n/.

It is well known (see [18]) that the Dehn functions of different finite presentations

of the same finitely presented group are equivalent, where we call two functions f; g

equivalent if f � g and g � f . Here f � g means that there is a constant c > 0 such that

f .n/ � cg.cn/ C cn for every n D 1; 2; : : :

The Dehn function is an important invariant of a group for the following reasons.

• It easily follows from the definition that if G is the fundamental group of a compact

Riemannian manifold M , then the Dehn function of G is equivalent to the smallest

isoperimetric function of the universal cover zM .

• The Dehn function is closely related to the solvability of the word problem in the

group [9]. From the computer science point of view, the Dehn function of a group G

is equivalent to the time function of a non-deterministic Turing machine ‘solving’ the

word problem in G (see [30, Introduction] for details). Moreover, as was shown in [5]:

A (not necessarily finitely presented) finitely generated group has word problem in NP

if and only if it is a subgroup of a finitely presented group with at most polynomial

Dehn function (a similar result holds for other computational complexity classes [5]).

• From the geometric point of view the Dehn function measures the ‘curvature’ of the

group: linear Dehn functions correspond to negative curvature, quadratic Dehn func-

tion correspond to non-positive curvature, etc.

More precisely, a finitely presented group is hyperbolic if and only if it has a sub-

quadratic (hence linear) Dehn function [7, 12, 21]. In particular, the conjugacy problem in

such groups is decidable [12]. In contrast, we recently constructed a group with quadratic

Dehn function and undecidable conjugacy problem [27]. This result answers Rips’ ques-

tion of 1994. The present paper is based on the constructions of groups with small Denn

functions from [23, 27] as well as on the application of S -machines introduced in [30].

The affirmative solution of the isomorphism problem was obtained in [31] for the class

of torsion free hyperbolic groups and in [11] for the class of all hyperbolic groups. This

means that there exists an algorithm recognizing whether two hyperbolic groups G1 and

G2 are isomorphic or not, provided G1 and G2 are given by their finite presentations.
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We show that the linearity is the only possible restriction of Dehn functions providing a

positive solution of the isomorphism problem.

Theorem 1.1. In the class QD of finitely presented groups with quadratic Dehn function,

the isomorphism problem is undecidable. Moreover, one can select a QD-group xG such

that there exists no algorithm deciding whether a QD-group G and xG are isomorphic or

not.

It is known that the Dehn function of a finitely presented subgroup can grow faster

than the Dehn function of the entire group. For example, the group SL.5;Z/ has quadratic

Dehn function [32], but it contains subgroups with exponential Dehn function. Here we

prove the following result:

Theorem 1.2. For every recursive function f , there exists a pair of finitely presented

groups H � G, such that f � dH , where dH is the Dehn function of the subgroup H ,

while the Dehn function of G is quadratic.

For a group with presentation G D hX jRi, the power conjugacy problem is to deter-

mine, given words u; v 2 F.X/ whether or not there exist non-zero integers k and l such

that uk is conjugate to vl in G. The power-conjugacy problem has been the subject of

extensive research, see [1–4, 6, 10, 15, 16, 28]. However to the best of our knowledge, the

interconnection of this problem and the classical conjugacy problem has not been studied

yet.

Theorem 1.3. (1) There is a finitely presented group G with undecidable conjugacy

problem but decidable power conjugacy problem. Moreover, G has quadratic

Dehn function.

(2) There is a finitely presented group H with undecidable power conjugacy problem

but decidable conjugacy problem.

Notice that for the group G from Theorem 1.3 (1) and [27], there exists no algorithm

recognizing the conjugacy of some non-trivial powers of two elements (see Remark 4.6)

since elements of finite and infinite orders behave differently in G. Although G has unde-

cidable conjugacy problem, this problem is decidable in G for elements of infinite order.

The following property of G is used in the proof of Theorem 1.3 (1), and it is also inter-

esting in itself.

Theorem 1.4. For the group G from Theorem 1.3 (1), there is an algorithm that recog-

nizes whether two elements g and h are conjugate in G or not, provided the orders of g

and h are infinite. The order of every element of G can be also computed effectively.

Theorems 1.1, 1.2, 1.3, and 1.4 are proved in Sections 4, 5, 7, and 6, respectively. The

information needed for understanding the proofs, has been selected from earlier papers

and placed in Sections 2 and 3.



A. Yu. Olshanskii and M. V. Sapir 1292

2. Machine preliminaries

2.1. S -machine

Here we will use definitions which are equivalent to the definitions used in [26] and [22].

The ‘hardware’ of an S -machine S is a pair .Y; Q/ of finite sets, where Q D
Fn

iD0 Qi

and Y D
Fn

iD1 Yi for some n � 1. Here and below t denotes the disjoint union of sets.

The elements from Q are called state letters, the elements from Y are tape letters. The

sets Qi (resp. Yi ) are called parts of Q (resp. Y ). To unify further definitions, we may add

the empty parts Y0 and YnC1 to Y .

The language of admissible words consists of reduced words in the free group of the

form

q1u1q2 : : : usqsC1; (2.1)

where every qi is a state letter from some part Q˙1
j.i/

, ui are reduced group words in the

alphabet of tape letters of the part Yk.i/, and for every i D 1; : : : ; s one of the following

holds:

• If qi is from Qj.i/, then qiC1 is either from Qj.i/C1 or is equal to q�1
i ; moreover

k.i/ D j.i/ C 1.

• If qi 2 Q�1
j.i/

, then qiC1 is either from Q�1
j.i/�1

or is equal to q�1
i ; moreover k.i/ D j.i/.

Every subword qi ui qiC1 of an admissible word (2.1) will be called a Q˙1
j.i/

Q˙1
j.iC1/

-sector

of that word. An admissible word may contain many Q˙1
j.i/

Q˙1
j.iC1/

-sectors.

We denote by kW k the length of word W . For every word W , if we delete all non-Y ˙1

letters from W , we get the Y -projection of the word W . The length of the Y -projection

of W is called the Y -length and is denoted by jW jY . Usually parts of the set Q of state

letters are denoted by capital letters. For example, a part P would consist of letters p with

various indices.

If an admissible word W has the form (2.1), W D q1u1q2u2 : : : qs , and qi 2 Q˙1
j.i/

,

i D 1; : : : ; s, ui are group words in tape letters, then we shall say that the base of W is

the word Q˙1
j.1/

Q˙1
j.2/

: : : Q˙1
j.s/

. Here Qi are just symbols which denote the corresponding

parts of the set of state letters. Note that, by the definition of admissible words, the base is

not necessarily a reduced word.

Instead of saying that the parts of the set of state letters of S are Q0; Q1; : : : ; Qn we

will write that the the standard base of the S -machine is Q0 : : : Qn.

The software of an S -machine with the standard base Q0 : : : Qn is a finite set of

rules ‚. Every � 2 ‚ is a sequence Œq0 ! a0q0
0b0; : : : ; qn ! anq0

nbn� and a subset Y.�/ D
F

Yj .�/, where qi ; q0
i 2 Qi , ai is a reduced word in the alphabet Yi .�/, bi is a reduced

word in YiC1.�/, Yi .�/ � Yi , i D 0; : : : ; n. (Recall that Y0 D Yn D ;, and so the words

a0 and bn are empty.)

Each component qi ! ai q
0
i bi is called a part of the rule. In most cases the sets Yj .�/

will be equal to either Yj or ;. By default Yj .�/ D Yj .
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Every rule

� D Œq0 ! a0q0
0b0; : : : ; qn ! anq0

nbn�

has an inverse

��1 D Œq0
0 ! a�1

0 q0b�1
0 ; : : : ; q0

n ! a�1
n qnbn�

which is also a rule of S. It is always the case that Yi .�
�1/ D Yi .�/ for every i . Thus the

set of rules ‚ of an S -machine is divided into two disjoint parts, ‚C and ‚�, such that

for every � 2 ‚C, ��1 2 ‚� and for every � 2 ‚�, ��1 2 ‚C (in particular ‚�1 D ‚,

that is, any S -machine is symmetric).

The rules from ‚C (resp. ‚�) are called positive (resp. negative).

To apply a rule � D Œq0 ! a0q0
0b0; : : : ; qn ! anq0

nbn� as above to an admissible word

p1u1p2u2 : : : ps , where each pi 2 Q˙1
j.i/

, means:

• check if ui is a word in the alphabet Yj.i/C1.�/ when pi 2 Qj.i/ or if it is a word in

Yj.i/.�/ when pi 2 Q�1
j.i/

(i D 1; : : : ; s � 1); and if this property holds, then:

• replace each pi D q˙1
j.i/

by .aj.i/q
0

j.i/
bj.i//

˙1,

• if the resulting word is not reduced or starts (ends) with Y -letters, then reduce the

word and trim the first and last Y -letters to obtain an admissible word again.

If a rule � is applicable to an admissible word W (i.e., W belongs to the domain of � ),

then we say that W is a � -admissible word and denote the result of application of � to

W by W � � . Hence each rule defines an invertible partial map from the set of admissible

words to itself, and one can consider an S -machine as an inverse semigroup of partial

bijections of the set of admissible words.

We call an admissible word with the standard base a configuration of an S -machine.

We usually assume that every part Qi of the set of state letters contains a start state

letter and an end state letter. Then a configuration is called a start (end) configuration if

all state letters in it are start (end) letters. As Turing machines, some S -machines are rec-

ognizing a language. In that case we choose an input sector, usually the Q0Q1-sector, of

every configuration. The Y -projection of that sector is called the input of the configuration.

In that case, the end configuration with empty Y -projection is called the accept configu-

ration. If the S -machine (viewed as a semigroup of transformations as above) can take an

input configuration with input u to the accept configuration, we say that u is accepted by

the S -machine. We define accepted configurations (not necessarily start configurations)

similarly.

A computation of length t � 0 is a sequence of admissible words

W0

�1
�! � � �

�t
�! Wt

such that for every i D 0; : : : ; t � 1 the S -machine passes from Wi to WiC1 by applying

the rule �i from ‚. The word H D �1 : : : �t is called the history of the computation, and

the word W0 is called H -admissible. Since Wt is determined by W0 and the history H ,

we use the notation Wt D W0 � H .
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A computation is called reduced if its history is a reduced word.

Note, though, that in [27] and in this paper, unlike the previous ones, we consider

non-reduced computations too because these may correspond to reduced van Kampen

diagrams (trapezia) under our present interpretation of S -machines in groups.

If for some rule � D Œq0 ! a0q0
0b0; : : : ; qn ! anq0

nbn� 2 ‚ of an S -machine S the

set YiC1.�/ is empty (hence in every admissible word in the domain of � every Qi QiC1-

sector has no Y -letters), then we say that � locks the Qi QiC1-sector. In that case we

always assume that bi ; aiC1 are empty and we denote by

qi
`
�! ai q

0
i

the i -th part (the .i C 1/-st part) of the rule. (We also have qiC1 ! q0
iC1biC1, where the

QiC1QiC2-sector can be unlocked.)

Remark 2.1. For the sake of brevity, the substitution Œqi
`
�! aq0

i ; qiC1 ! q0
iC1b� can be

written in the form Œqi qiC1 ! aq0
i q

0
iC1b�.

The above definition of S -machines resembles the definition of multi-tape Turing

machines (see [30]). The main differences are that every state letter of an S -machine

is blind: it does not ‘see’ tape letters next to it (two state letters can see each other if they

stay next to each other). Also S -machines are symmetric (every rule has an inverse), can

work with words containing negative letters, and words with ‘non-standard’ order of state

letters.

It is important that S -machines can simulate the work of Turing machines. This non-

trivial fact, especially if one tries to get a polynomial time simulation, was first proved in

[30]. But we do not need a restriction on time, and it would be more convenient for us to

use an easier S -machine from [26].

Let M0 be a deterministic Turing machine accepting a non-empty language L of words

in the one-letter alphabet ¹˛º. In different sections we will use two versions of an equiva-

lent S -machine M1. For both of them there is a unique start rule, replacing the start state

letters that do not occur in other rules; similarly, there is a unique end rule, the only one

involving end state letters. The first version of M1 is borrowed from [26], where [26, Lem-

mas 3.25 and 3.27] provide the following additional properties of M1.

Lemma 2.2. The language of accepted input words of the recognizing S -machine M1 is

L. In every input configuration of M1, there is exactly one input sector, the first sector of

the word, and all other sectors are empty of Y -letters.

If a non-empty reduced computation C0 ! � � � ! Ct of M1 starts with an input

configuration containing a negative letter, then Ct is neither an input nor the accept con-

figuration.

The following statement can be found in [22, Lemmas 4.15 and 4.16 (a)], although

below we denote the machine by M1 instead of M2 in [22].



Algorithmic problems in groups with quadratic Dehn function 1295

Lemma 2.3. The language of accepted input words of the recognizing S -machine M1 is

L. In every input configuration of M1, there is exactly one input sector, the first sector of

the word, and all other sectors are empty of Y -letters.

For every reduced computation W0 ! � � � ! Wt of M1 with the standard base and a

non-empty history H , we have Wt ¤ W0.

Lemma 2.4 is a modified formulation of [27, Lemma 2.8]. (In [27], it was formulated

for reduced computations, but the proof did not use that the history was reduced.)

Lemma 2.4. Suppose that a computation W0 ! W1 ! � � � ! Wt of an S -machine S

has a 2-letter base and the history of the form H � H1H k
2 H3 (k � 0). Then for every

i D 0; 1; : : : ; t , we have the inequality

kWi k � kW0k C kWt k C 2kH1k C 3kH2k C 2kH3k:

Recall that a word w is called a periodic word with period v if w is a subword of some

power of v.

Lemma 2.5. There is an exponential function f with the following property. Suppose a

computation C W W0 ! W1 ! � � � ! Wt of an S -machine S has a periodic history with

period H . Assume that C has no subcomputations Wi ! � � � ! Wj with history H and

Wi � Wj . Then t � f .kW0k.kW0k C kWt k C kHk//.

Proof. Since the history is H -periodic, there are words Wi1 ; : : : ; Wis , where ikC1 � ik D

kHk (k D 1; : : : ; s � 1), the history of every subcomputation Wik ! WikC1 ! � � � ! WikC1

is H , and s � tkHk�1 � 1.

Assume that Wik � Wil for some l > k. Then we have Vik � Vil for arbitrary restric-

tion of C to a subbase B of length 2. Arbitrary computation with base B and history H

multiplies the Y -projection v from the left by a word a and from the right by a word b,

where the words a and b depend on B and H only. Therefore for the Y -projection v of

the equal words Vik and Vil , we obtain the equality v D amvbm, where m D l � k � 1.

Hence we have .v�1a�1v/m D bm, which implies in the free group that v�1a�1v D b,

i.e., avb D v. Hence Vik � VikC1
for every 2-letter subbase B . It follows that Wik � WikC1

,

contrary to the lemma assumption.

Therefore we obtain s different admissible words in the computation C . Lemma 2.4

bounds their lengths by a linear function of kW0k.kW0k C kWt k C kHk/ since every

word Wi is covered by at most kW0k admissible subwords with 2-letter bases. Hence the

number s and the number t � .s C 1/kHk are bounded from above by an exponential

function.

2.2. Running state letters

For every alphabet Y we define a ‘running state letters’ S -machine LR.Y /. We will omit

Y if it is obvious or irrelevant. The standard base of LR.Y / is Q.1/PQ.2/ where

Q.1/ D ¹q.1/º; P D ¹p.i/; i D 1; 2º; Q.2/ D ¹q.2/º:
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The state letter p with indices runs from the state letter q.2/ to the state letter q.1/ and back.

The S -machine LR will be used to check the ‘structure’ of a configuration (whether the

state letters of a configuration are in the appropriate order), and to recognize a computation

by its history.

The alphabet of tape letters Y of LR.Y / is Y .1/ t Y .2/, where Y .2/ is a (disjoint) copy

of Y .1/. The positive rules of LR are defined by (2.2)–(2.4):

�.1/.a/ D Œq.1/ ! q.1/; p.1/ ! a�1p.1/a0; q.2/ ! q.2/�; (2.2)

where a is any positive letter from Y D Y .1/ and a0 is the corresponding letter in the copy

Y .2/ of Y .1/. Comment. The state letter p.1/ moves left, replacing letters a from Y .1/ by

their copies a0 from Y .2/.

�.12/ D Œq.1/p.1/ ! q.1/p.2/; q.2/ ! q.2/�: (2.3)

Comment. When p.1/ meets q.1/, p.1/ turns into p.2/.

�.2/.a/ D Œq.1/ ! q.1/; p.2/ ! ap.2/.a0/�1; q.2/ ! q.2/�: (2.4)

Comment. The state letter p.2/ moves right towards q.2/, replacing letters a0 from Y .2/ by

their copies a from Y .1/.

The start (resp. end) state letters of LR are ¹q.1/; p.1/; q.2/º (resp. ¹q.1/; p.2/; q.2/º).

Remark 2.6. For some large integer m, we will also need the S -machine LRm from [27],

that repeats the work of LR m times. That is the S -machine LRm runs the state letter p

back and forth between q.2/ and q.1/ m times. Every time p meets q.1/ or q.2/, the upper

index of p increases by 1 after the application of the rule �.i;iC1/ (i D 1; : : : ; 2m � 1), so

the highest upper index of p is .2m/.

Remark 2.7. We will also use the right analog RL of LR. The base of RL is Q1RQ2.

The state letter r first moves right from q.1/ to q.2/ and then left. A lemma ‘left-right dual’

to Lemma 2.11 is true for RL as well.

Remark 2.8. The constant m defining the machine LRm is one of the big constants used

in [27]. In the present paper we will use just few of them. Here they are:

m; N � c4 � L: (2.5)

The constant N defined in Section 3 is the number of parts in the base of main machine M,

while L is the length of the hub-relation in the presentation of the group G.

The sign � means ‘much smaller’ in (2.5), and it can be explained as follows. For an

arbitrary inequality from [27] involving several of these constants, let D be the highest

constant appearing there. The inequality always can then be rewritten in the form

D � some expression involving only lower constants:
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This highest parameter principle [20] makes the finite systems of all inequalities from

[23] or [27] consistent. One can effectively select the constants starting with the smallest

one, because after smaller constants are chosen, one can define D to be sufficiently large

to satisfy each of the inequalities, where D is the highest parameter.

2.3. Adding history sectors

We will add new (history) sectors to an S -machine M1 provided by Lemma 2.2 or by

Lemma 2.3. The history sectors split the base letters of M1. (See the definition below.)

If we ignore the new sectors, in essence, we get the hardware and the software of the

S -machine M1. The new S -machine M2 will start with a configuration where in every

history sector a copy of the history H of a computation of M1 is written. Then it will

execute H on the other (working) sectors simulating the work of M1, while in the history

sector, state letters scan the history, one symbol at a time. Thus if a computation of M2

with the standard base starts with a configuration W and ends with configuration W 0, then

the length of the computation does not exceed kW k C kW 0k.

Here is a precise definition of M2. Let the S -machine M1 have hardware .Q; Y /,

where Q D
Fn

iD0 Qi , and the set of rules ‚. The new S -machine M2 has hardware

Q0;r t Q1;` t Q1;r t Q2;` t Q2;r t � � � t Qn;`;

Yh D Y1 t X1 t Y2 t � � � t Xn�1 t Yn;

where Qi;` and Qi;r are (left and right) copies of Qi , and Xi is a disjoint union of two

copies of ‚C, namely Xi;` and Xi;r . (The sets Q0;`, Qn;r are empty.) Every letter q from

Qi has two copies q.`/ 2 Qi;` and q.r/ 2 Qi;r . The new sectors with tape letters from Xi

(i D 1; : : : ; n) are called history sectors. By definition, the start (resp. end) state letters of

M2 are copies of the corresponding start (end) state letters of M1. The Q0;rQ1;`-sector is

the input sector of configurations of M2.

The positive rules �h of M2 are in one-to-one correspondence with the positive rules

� of M1. If � D Œq0 ! a0q0
0b0; : : : ; qn ! anq0

nbn� is a positive rule of M1, then each part

qi ! ai q
0
i bi is replaced in �h by two parts

qi;` ! ai q
0

i;`h�1
�;i and qi;r ! Nh�;i q

0
i;rbi ;

where h�;i (resp. Nh�;i ) is a copy of � in the alphabet Xi;` (resp. in Xi;r ).

If � is the start (resp. end) rule of M1, then for any word in the domain of �h (resp. ��1
h

)

all Y -letters in history sectors are from
F

i Xi;` (resp.
F

i Xi;r ).

Thus for every rule � of M1, the rule �h of M2 acts in the Qi;rQiC1;`-sector in the

same way as � acts in the Qi QiC1-sector. In particular, Y -letters which can appear in the

Qi;rQiC1;`-sector of an admissible word in the domain of �h are the same as the Y -letters

that can appear in the Qi QiC1-sector of an admissible word in the domain of � . Hence if

� locks Qi QiC1-sectors, then �h locks Qi;rQiC1;`-sectors.
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Remark 2.9. Every computation of the S -machine M2 with history H and the standard

base coincides with the a computation of M1 whose history is a copy of H if one observes

it only in sectors Qi;rQiC1;l .

Let I1.˛k/ be a start configuration of M1 (an input configuration in the domain of

the start rule of M1) with ˛k written in the input sector (all other sectors do not con-

tain Y -letters), and H be a word in the alphabet of rules of M1. Then the corresponding

start configuration I2.˛k ; H/ of M2 is obtained by first replacing each state letter q by

the product of two corresponding letters q.`/q.r/, and then inserting a copy of H in the

left alphabet Xi;` in every history Qi;`Qi;r -sector. End configurations A2.H/ of M2 are

defined similarly, only the Y -letters in the history sectors must be from the right alphabet

Xi;r .

2.4. Adding running state letters

Our next S -machine will be a composition of M2 with LR and RL. The running state

letters will control the work of M3.

First we replace every part Qi of the state letters in the standard base of M2 by three

parts Pi Qi Ri where Pi ; Ri contain the running state letters. Thus if Q0 : : : Qs is the

standard base of M2, then the standard base of M2 is

P0Q0R0P1Q1R1 : : : PsQsRs; (2.6)

where Pi contains copies of running P -letters of LR, and Ri contains copies of running

R-letters of RL, i D 0; : : : ; s.

For every rule � of M2, its i -th part Œqi ! ai q
0
i bi � is replaced in M2 with

Œp.i/qi r.i/ ! ai p.i/q0
i r.i/bi �; i D 0; : : : ; s; (2.7)

where p.i/ 2 Pi ; r.i/ 2 Ri do not depend on � , and qi ; q0
i 2 Qi .

Comment. Thus, the sectors Pi Qi and Qi Ri are always locked. Of course, such a mod-

ification is useless for solo work of M2. But it will be helpful when one constructs a

composition of M2 with LR and RL which will be turned on after certain rules of M2 are

applied.

If Qi�1Qi is an input sector of configurations of the machine M2, then Ri�1Pi is an

input sector of the configurations of M2.

2.5. The machine M3

The next S -machine M3 is the composition of the S -machine M2 with LR and RL. The

S -machine M3 has the same base as M2, although the parts of this base have more state

letters than the corresponding parts of M2. It works as follows. Suppose that M3 starts

with a start configuration of M2, a word ˛k in the input R0P1-sector, copies of a history

word H in the alphabets Xi;` in the history sectors, all other sectors empty of Y -letters.



Algorithmic problems in groups with quadratic Dehn function 1299

Then M3 first executes RL in all history sectors (moves the running state letter from Ri

in the history sectors right and left), then it executes the history H of M2. After that the

Y -letters in the history sectors are in Xi;r and M3 executes copies of LR in the history

sectors (moves the running state letters left then right). After that M3 executes a copy of

H backwards, getting to a copy of the same start configuration of M2, runs RL, executes

a copy of the history H of M2, runs a copy of LR, etc. It stops after m times running RL,

M2, LR, M
�1

2 and running RL one more time.

Thus the S -machine M3 is a concatenation of 4m C 1 S -machines M3;1 to M3;4mC1.

After one of these S -machines terminates, a transition rule changes its end state letters to

the start state letters of the next S -machine. All these S -machines have the same standard

bases as M2.

The configuration I3.˛k ; H/ of M3 is obtained from I2.˛k ; H/ by adding the control

state letters r
.1/
i and p

.1/
i according to (2.7) in Section 2.4.

Set (of the rules of machine) M3;1. It is a copy of the set of rules of the S -machine RL,

with parallel work in all history sectors, i.e., every subword Qi�1Ri�1Pi of the standard

base, where Qi�1Qi is a history sector of M2, is treated as the base of a copy of RL,

that is, Ri�1 contains the running state letters which run between state letters from Qi�1

and Pi . Each rule of set M3;1 executes the corresponding rule of RL simultaneously in

each history sector of M2. The partition of the set of state letters of these copies of RL in

each history sector is Xi;` t Xi;r for some i (that is, state letters from Ri�1 first run right,

replacing letters from Xi;` by the corresponding letters of Xi;r and then run left, replacing

letters from Xi;r by the corresponding letters of Xi;`).

The transition rule �.1; 2/ changes the state letters to the state letters of start config-

urations of M2. The admissible words in the domain of �.1; 2/˙1 have all Y -letters from

the left alphabets Xi;`. The rule �.1; 2/ locks all sectors except the history sectors Ri�1Pi

and the input sector. It does not apply to admissible words containing Y -letters from right

alphabets.

Set M3;2. It is a copy of the set of rules of the S -machine M2.

The transition rule �.2; 3/ changes the state letters of the stop configuration of M2 to

their copies in a different alphabet. The admissible words in the domain of �.2; 3/˙1 have

no Y -letters from the left alphabets Xi;`. The rule �.2; 3/ locks all sectors except for the

history sectors Ri�1Pi . It does not apply to admissible words containing Y -letters from

right alphabets.

Set (of the rules of machine) M3;3. It is a copy of the set of rules of the S -machine LR,

with parallel work in all history sectors, i.e., every subword Ri�1Pi Qi of the standard

base, where Qi�1Qi is a history sector of M2, is treated as the base of a copy of LR,

that is, Pi contains the running state letters which run between state letters from Ri�1 and

Qi . Each rule of set M3;3 executes the corresponding rule of LR simultaneously in each

history sector of M2.
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The transition rule �.3; 4/ changes the state letters of the stop configuration of M2 to

their copies in a different alphabet. The admissible words in the domain of �.3; 4/˙1 have

no Y -letters from the left alphabets Xi;l . The rule �.3; 4/ locks all non-history sectors.

Set M3;4. The positive rules of set M3;4 are the copies of the negative rules of the S -

machine M2.

The transition rule �.4; 5/ changes the state letters of the start configuration of M2

to their copies in a different alphabet. The admissible words in the domain of �.4; 5/˙1

have no Y -letters from the right alphabets Xi;r . The rule �.4; 5/ locks all non-history and

non-input sectors.

Sets M3;5; : : : ;M3;8. They consist of rules that are copies of the rules of the sets M3;1; : : : ;

M3;4, respectively.

Sets M3;4m�3; : : : ;M3;4m. They consist of copies of the sets M3;1; : : : ;M3;4, respectively.

Set M3;4mC1. It is a copy of set M3;1. The end configuration for set M3;4mC1, A3.H/, is

obtained from a copy of A2.H/ by inserting the control letters according to (2.6).

The transition rules �.i; i C 1/ are called �-rules.

Lemma 2.10 ([27, Lemma 3.15]). Let C W W0 ! � � � ! Wt be a reduced computation of

M3 with the standard base. Then for every i , there is at most one occurrence of the rules

�.i; i C 1/˙1 in the history H of C .

Lemma 2.11 ([27, Lemma 3.14 (b)]). Let C W W0 ! � � � ! Wt be a reduced computation

of M3 consisting of rules of one of the copies of LR or RL with standard base. Then

t � kW0k C kWt k � 2.

2.6. M4 and M5

Let B3 be the standard base of M3 and B 0
3 be its disjoint copy. By M4 we denote the

S -machine with standard base B3.B 0
3/�1 and rules �.M4/ D Œ�; ��, where � 2 ‚ and ‚ is

the set of rules of M3. So the rules of ‚.M4/ are the same for the M3-part of M4 and for

the mirror copy of M3. Therefore we will denote ‚.M4/ by ‚ as well, although M4 has

two mirror input sectors. The sector between the last state letter of B3 and the first state

letter of .B 0
3/�1 is locked by any rule from ‚. (The ‘mirror’ symmetry of the base is used

in [27] for the upper estimate of the Dehn function.)

The S -machine M5 is a circular analog of M4 defined as follows. We add one more

base letter Qt to the hardware of M4. So the standard base B of the ordinary version of M5 is

¹QtºB3.B 0
3/�1¹Qtº, where the part ¹Qtº has only one letter Qt ; but the first part ¹Qtº is identified

with the last part in the circular machine M5. It follows that the base of an admissible word

can be arbitrary long for a circular machine. For example, ¹QtºB3.B 0
3/�1¹QtºB3.B 0

3/�1 can

be a base of an admissible word for M5. The work of M5 is well-defined since the sectors

involving Qt˙1 are locked by every rule from ‚. For M5, we have the start and stop words

I5.˛k ; H/ and A5.H/ similar to the configurations I3.˛k ; H/ and A3.H/.
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Since the machines M4 and M5 have the sets of rules ‚, as M3, they are built from

machines M4;1 to M4;4mC1 and M5;1 to M5;4mC1, respectively.

2.7. The main machine M

We use the S -machine M5 from Section 2.6, LRm from Section 2.2 and three more easy

S -machines to compose the main circular S -machine M needed for this paper. The stan-

dard base of M is the same as the standard base of M5, i.e., ¹QtºB3.B 0
3/�1, where B3 has

the form (2.6). We will use zQ0 instead of Q0, zR1 instead of R1 and so on to denote parts

of the set of state letters since M has more state letters in every part of its hardware.

The rules of M will be partitioned into five sets (S -machines) ‚i (i D 1; : : : ; 5) with

transition rules �.i; i C 1/ connecting the i -th and the .i C 1/-st set. The state letters are

also disjoint for different sets ‚i . It will be clear that zQ0 is the disjoint union of five

disjoint sets including Q0, zR1 is the disjoint union of five disjoint sets including R1, etc.

By default, every transition rule �.i; i C 1/ of M locks a sector if this sector is locked

by all rules from ‚i or if it is locked by all rules from ‚iC1. It also changes the end state

letters of ‚i to the start state letters of ‚iC1, that is, the j -th part of the rule �.i; i C 1/

has the form qj ! q0
j (or qj

`
�! q0

j if the j -th sector is locked by this rule), where qj is

the state letter of the end rule of ‚i , and q0
j is the state letter of the start rule of ‚iC1. In

particular, this means that the set of start state letters of ‚iC1 is a copy of the set of end

state letters of ‚i in a disjoint alphabet.

To start working, let us introduce auxiliary start state letters for M, namely, one letter

for every base letter from B3 and B 0
3. The start configuration Wst of ‚ is Qtb3.b0

3/�1, where

b3 and b0
3 consist of these new start state letters, i.e., the configuration Wst just copies the

standard base QtB3B�1
3 of M. The start rule �1 of M changes the state letters from b3 and

b0
3 to their copies in the single rule of ‚1 defined below, and starts ‚1-computations.

Set ‚1. It inserts input words in the input sectors. The set contains only one positive rule

inserting the letter ˛ in the input sector next to the left of a letter p from zP1. It also inserts a

copy ˛�1 next to the right of the corresponding letter .p0/�1 (the similar mirror symmetry

is assumed in the definition of all other rules.) So the positive rule of ‚1 has the form

Œt
`
�! t; q0

`
�! q0; r1 ! r1; p1

`
�! ˛p1; : : : ; .p0

1/�1 ! .p0
1/�1˛�1; .r 0

1/�1 `
�! .r 0

1/�1�:

The rules of ‚1 do not change state letters, so it has one state letter in each part of its

hardware.

The connecting rule �.12/ changes the state letters of ‚1 to their copies in a disjoint

alphabet. It locks all sectors except for the input sector zR0
zP1 and the mirror copy of this

sector.

Set ‚2. It is a copy of the S -machine LRm working in the input sector and its mirror

image in parallel, i.e., we identify the standard base of LRm with zR0
zP1

zQ1. The connect-

ing rule �.23/ locks all sectors except for the input sector zR0
zP1 and its mirror image.
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Set ‚3. It inserts history in the history sectors. This set of rules is a copy of each of the

left alphabets Xi;l of the S -machine M2. Every positive rule of ‚3 inserts a copy of the

corresponding positive letter in every history sector zRi
zPiC1 next to the right of a state

letter from zRi .

Again, ‚3 does not change the state letters, so each part of its hardware contains one

letter.

The transition rule �.34/ changes the state letters to their copies in the set of rules of

machine M5;1 defined at the end of Section 2.6. It locks all sectors except for the input

sectors and the history sectors. The history sectors in admissible words from the domain

of �.34/ have Y -letters from the left alphabets Xi;l of the S -machine M5.

Set ‚4. It is a copy of the S -machine M5. The transition rule �.45/ locks all sectors

except for history ones. The admissible words in the domain of �.45/ have no letters from

right alphabets.

Set ‚5. The positive rules from ‚5 simultaneously erase the letters of the history sectors

from the right of the state letter from zRi . That is, parts of the rules are of the form r !

ra�1 where r is a state letter from zRi , and a is a letter from the left alphabet of the history

sector.

Finally, the accept rule �0 (regarded as a transition rule) from M can be applied when

all the sectors are empty, so it locks all the sectors and changes the end state letters of

M5 to the corresponding end state letters of M. Thus, the main S -machine M has unique

accept (or stop) configuration which we will denote by Wac.

Lemma 2.12 ([27, Lemma 4.4]). Let the history of a reduced computation C W W0 !

� � � ! Wt have a subword �.i � 1; i/H 0�.i; i C 1/ (i.e., the S -machine M works as M3

with rules from ‚4) or a subword �.i�1;i/H 0�.i;iC1/ (i.e., it works as LRm with rules

from ‚2). Then the base of the computation C is a reduced word and all configurations

of C are uniquely defined by the history H and the base of C .

We say that the history H of a computation of M (and the computation itself) is

eligible if it has no neighboring mutually inverse letters except possibly for the subwords

�.23/�.23/�1. (The subword �.23/�1�.23/ is not allowed.) Considering eligible compu-

tations instead of just reduced computations is necessary for our interpretation of M in a

group.

The history H of an eligible computation of M can be factorized so that every factor

is either a transition rule �.i; i C 1/˙1 or a maximal non-empty product of rules of one

of the sets ‚1 to ‚5. If, for example, H D H 0H 00H 000, where H 0 is a product of rules

from ‚2, H 00 has only one rule �.23/ and H 000 is a product of rules from ‚3, then we say

that the step history of the computation is .2/.23/.3/.

Thus the step history of a computation is a word in the alphabet

®

.1/; .2/; .3/; .4/; .5/; .12/; .23/; .34/; .45/; .21/; .32/; .43/; .54/
¯

;
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where .21/ is used for the rule �.12/�1 an so on. For brevity, we can omit some transition

symbols, e.g. we may use .2/.3/ instead of .2/.23/.3/ since the only rule connecting

steps 2 and 3 is �.23/.

Lemma 2.13 ([27, Lemma 4.2 (1)]). There are no reduced computations C of M with

standard base and step history .34/.4/.43/ or .54/.4/.45/.

If the step history of a computation consists of only one letter .i/, i D 1; : : : ; 5, then

we call it a one-step computation. The computations with step histories .i/.i; i ˙ 1/, .i ˙

1; i/.i/ and .i ˙ 1; i/.i/.i; i ˙ 1/ are also considered as one-step computations. Any

eligible one-step computation is always reduced by definition.

By definition, the rule �.23/ locks all history sectors of the standard base of M except

for the input sector zR0
zP1 and its mirror copy. Hence every admissible word in the domain

of �.23/�1 has the form W.k; k0/ � w1˛kw2.˛0/�k0

w3, where .˛0/�1 is the mirror copy

of ˛, k and k0 are integers, and w1;w2;w3 are fixed words in state letters; w1 starts with Qt .

Recall that Wac is the accept word of M.

Lemma 2.14 ([27, Lemma 4.6]). (1) If the word ˛k is accepted by the Turing machine

M0, then there is a reduced computation W.k;k/ ! � � � ! Wac of M whose history

has no rules of ‚1 and ‚2.

(2) If the history of a computation C W W.k; k/ ! � � � ! Wac of M has no rules of ‚1

and ‚2, then the word ˛k is accepted by M0.

A configuration W of M is called accessible if there is a W -accessible computation,

i.e., either an accepting computation starting with W or a computation Wst ! � � � ! W ,

where Wst is the start configuration of M (i.e., the configuration where all state letters are

start state letters and the Y -projection is empty).

The base of a computation is called revolving if it starts and ends with the same letter

and has no proper subwords with this property. If this base xvx is a reduced word, then it

follows from the definition of admissible words that the cyclic order of letters in the word

xv is the same as in the standard base, i.e., xv is a cyclic permutation of the standard base.

Lemma 2.15 ([27, Lemmas 4.8 and 4.12]). Suppose the base xvx of an eligible compu-

tation C W W0 ! � � � ! Wt is revolving. Then one of the following statements holds:

(1) kWj k � c4 max.kW0k; kWt k/ for every j D 0; : : : ; t , or

(2) the base xvx is reduced and if xv is the standard base, then the words W0 and

Wt without the last x-letters are accessible words; the step history of C contains

a subword .34/.4/.45/ or a subword .12/.2/.23/.

Remark 2.16. By [27, Lemma 3.15], a computation with standard base and step history

.34/.4/.45/ has a subword �.i � 1; i/H 0�.i; i C 1/, as in Lemma 2.12. Analogously, by

[27, Remark 3.7], a computation with standard base and step history .12/.2/.23/ has a

subword �.i�1;i/H 0�.i;iC1/.
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Lemma 2.17. Suppose C W W0 ! � � � ! Wt is an eligible computation, with a base xvx.

Then either .xv/˙1 is a power of a cyclic permutation of the standard base or

jWj jY � c4 max.jW0jY ; jWt jY / for every j D 0; : : : ; t: (2.8)

Proof. Note that the base of C has a revolving subword yv0y. Let D WV0 ! � � � ! Vt be the

computation C restricted to this subbase. It has the same history H as C . By Lemma 2.15,

either the base of D is a reduced word and so yv0 is a cyclic permutation of the standard

base; or jVj jY � c4 max.jV0jY ; jVt jY / for every j D 0; : : : ; t .

In the latter case, let us remove the subwords with the base yv0, obtaining a com-

putation E W U0 ! � � � ! Ut with a shorter base. Arguing by induction, we have either

jUj jY � c4 max.jU0jY ; jUt jY / for every j D 0; : : : ; t , which implies (2.8), or the base

of E is a power of a cyclic permutation of the standard base and by Lemma 2.15, the

step history of C contains a subword .34/.4/.45/ or a subword .12/.2/.23/. Then by

Remark 2.16, one can apply Lemma 2.12, and since the computation D has the same his-

tory as E , the base yv0y must be reduced. Therefore yv0 is a cyclic permutation of the

standard base, and so xv is a power of a cyclic permutation of the standard base.

If jUj jY � c4 max.jU0jY ; jUt jY / for every j , but yv0 is a cyclic permutation of the

standard base, then the dual argument implies that the base of E and the base of C are

reduced words. Hence xv is a power of a cyclic permutation of the standard base.

3. Group and diagram preliminaries

3.1. The groups

Every S -machine can be simulated by a finitely presented group (see, e.g., [24, 26, 30]).

Here we present the construction from [27]. To simplify formulas, it is convenient to

change the notation. From now on we shall denote by N the length of the standard base

of M.

Thus the set of state letters is Q D
FN �1

iD0 Qi (we set QN D Q0 D ¹Qtº), Y D
FN

iD1 Yi ,

and ‚ is the set of rules of the S -machine M.

The finite set of generators of the group M consists of q-letters, Y -letters and � -letters

defined as follows.

For every letter q 2 Q the set of generators of M contains L copies q.i/ of it, i D

1; : : : ; L, if the letter q occurs in the rules of ‚1 or ‚2. (The number L is one of the

parameters from (2.5).) Otherwise only the letter q is included in the generating set of M .

For every letter a 2 Y the set of generators of M contains a and L copies a.i/ of it,

i D 1; : : : ; L.

For every � 2 ‚C we have N generators �0; : : : ; �N in M (here �N � �0) if � is a

rule of ‚3 (excluding �.23/) or ‚4, or ‚5. For � from ‚1 or ‚2 (including �.23/), we

introduce LN generators �
.i/
j , where j D 0; : : : ; N , i D 1; : : : ; L and �

.i/
N D �

.iC1/
0 (the

superscripts are taken modulo L).
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The relations of the group M correspond to the rules of the S -machine M as follows.

For every rule � D ŒU0 ! V0; : : : ; UN ! VN � 2 ‚C of sets ‚1 or ‚2, we have

U
.i/

j �
.i/
j C1 D �

.i/
j V

.i/
j ; �

.i/
j a.i/ D a.i/�

.i/
j ; j D 0; : : : ; N; i D 1; : : : ; L (3.1)

for all a 2 Yj .�/, where U
.i/

j and V
.i/

j are obtained from Uj and Vj by adding the super-

script .i/ to every letter.

For � D �.23/, we introduce relations

U
.i/

j �
.i/
j C1 D �

.i/
j Vj ; a.i/�

.i/
j D �

.i/
j a; j D 0; : : : ; N; i D 1; : : : ; L (3.2)

for all a 2 Yj .�/, i.e., the superscripts are erased in the words V
.i/

j and in the Y -letters

after an application of (3.2).

For every rule � D ŒU0 ! V0; : : : ; UN ! VN � 2 ‚C from ‚3 or ‚4, or ‚5 and

a 2 Yj .�/, we define

Uj �j C1 D �j Vj ; a�j D �j a: (3.3)

The first type of relations (3.1)–(3.3) will be called .�; q/-relations, the second type

.�; a/-relations.

Finally, the required group G is given by the generators and relations of the group M

and by two more additional relations, namely the hub-relations

W
.1/

st : : : W
.L/

st D 1 and .Wac/
L D 1; (3.4)

where the word W
.i/

st is a copy with superscript .i/ of the start word Wst (of length N ) of

the S -machine M and Wac is the accept word of M.

Note that, as usual, M is a multiple HNN extension of the free group generated by

all Y - and q-letters, because by Tietze transformations using .�; q/-relations, all � -letters,

except for one for every rule � , can be eliminated.

3.2. Van Kampen diagrams

Recall that a van Kampen diagram � over a presentation P D hA jRi (or just over the

group P ) is a finite oriented connected and simply-connected planar 2-complex endowed

with a labeling function LabWE.�/ ! A˙1, where E.�/ denotes the set of oriented edges

of �, such that Lab.e�1/ � Lab.e/�1. Given a cell (i.e., a 2-cell) … of �, we denote by

@… the boundary of …; similarly, @� denotes the boundary of �. The labels of @… and

@� are defined up to cyclic permutations. An additional requirement is that the label of

any cell … of � is equal to (a cyclic permutation of) a word R˙1, where R 2 R. The label

and the combinatorial length kpk of a path p are defined as for Cayley graphs.

The van Kampen lemma [17, 20, 29] states that a word W over the alphabet A˙1

represents the identity in the group P if and only if there exists a diagram � over P such

that Lab.@�/ � W , in particular, the combinatorial perimeter k@�k of � equals kW k

(see [17, Chapter 5, Theorem 1.1]; our formulation is closer to [20, Lemma 11.1], see also
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[29, Section 5.1]). A word W representing 1 in P is freely equal to a product of conjugates

of the words from R˙1. The minimal number of factors in such products is called the area

of the word W . The area of a diagram � is the number of cells in it. The proof of the van

Kampen lemma [20,29] shows that Area.W / is equal to the area of a van Kampen diagram

having the smallest number of cells among all van Kampen diagrams with boundary label

Lab.@�/ � W .

The definition of annular diagram � over a group G is similar to the definition of

van Kampen diagram, but the complement of � in the plane has two connected com-

ponents. So � has two boundary components. By the van Kampen–Schupp lemma (see

[17, Lemma 5.2] or [20, Lemma 11.2]) there is an annular diagram � whose boundary

components p1 and p2 have clockwise labels W and W 0 if and only if the words W and

W 0 are conjugate in G.

We will study diagrams over the group presentations of M and G. The edges labeled

by state letters (D q-letters) will be called q-edges, the edges labeled by tape letters (D Y -

letters) will be called Y -edges, and the edges labeled by � -letters are � -edges.

We denote by jpjY (resp. jpj� , jpjq) the Y -length (resp. the � -length, the q-length) of

a path p, i.e., the number of Y -edges (resp. � -edges, q-edges) in p.

The cells corresponding to relations (3.4) are called hubs, the cells corresponding to

.�; q/-relations are called .�; q/-cells (in particular, there are .�; Qt /-cells), and the cells

are called .�; a/-cells if they correspond to .�; a/-relations. A � -cell is either a .�; q/- or

.�; a/-cell.

A diagram is reduced, if it does not contain two cells (D closed 2-cells) that have a

common edge e such that the boundary labels of these two cells are equal if one reads

them starting with e (if such pairs of cells exist, they can be removed to obtain a diagram

of smaller area and with the same boundary label(s)).

To study diagrams over the group G we shall use their simpler subdiagrams such as

bands. Here we repeat one more necessary definition from [27].

Definition 3.1. Let Z be a subset of the set of letters in the set of generators of the

group M . A Z-band B is a sequence of cells �1; : : : ;�n in a reduced van Kampen diagram

� (see Figure 1) such that:

• Every two consecutive cells �i and �iC1 in this sequence have a common boundary

edge ei labeled by a letter from Z
˙1.

• Each cell �i , i D 1; : : : ; n has exactly two Z-edges e�1
i�1 and ei in the boundary

@�i (i.e., edges labeled by a letter from Z
˙1) with the requirement that either both

Lab.ei�1/ and Lab.ei / are positive letters or both are negative ones.

• If n D 0, then B is just a Z-edge.

The counter-clockwise boundary of the subdiagram formed by the cells �1; : : : ; �n of

B has the factorization e�1q1fq�1
2 where e D e0 is a Z-edge of �1 and f D en is a Z-edge

of �n. We call q1 the bottom of B and q2 the top of B, denoted bot.B/ and top.B/. If

the path e�1q1f or the path fq�1
2 e�1 is a subpath of the boundary @�, then B is called a
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rim band. Top/bottom paths and their inverses are also called the sides of the band. The

Z-edges e and f are called the start and end edges of the band. If n � 1 but e D f, then the

Z-band is called a Z-annulus.

We consider q-bands, where for some j , Z corresponds to a part Qj of state letters of

the S -machine M, i.e., it contains all letters qj and q
.i/
j (i D 1; : : : ; L), where qj 2 Qj ,

� -bands for every � 2 ‚, and Y -bands, where Z D ¹a; a.1/; : : : ; a.L/º � Y . The conven-

tion is that Y -bands do not contain .�; q/-cells, and so they consist of .�; a/-cells only.

Remark 3.2. To construct the top (or bottom) path of a band B, at the beginning one can

just form a product x1 : : : xn of the top paths xi of the cells �1; : : : ; �n (where each �i is a

Z-band of length 1). No � -letter is being canceled in the word W � Lab.x1/ : : : Lab.xn/

if B is a q- or Y -band since otherwise two neighbor cells of the band would make the

diagram non-reduced. The trimmed top/bottom label of a � -band B are the maximal sub-

words of the top/bottom labels starting and ending with q-letters.

However a few cancellations of Y -letters are possible in W . (This can happen if one

of �i ; �iC1 is a .�; q/-cell and another one is a .�; a/-cell.) We will always assume that

the top/bottom label of a � -band is a reduced form of the word W . This property is easy

to achieve: by folding edges with the same labels having the same initial vertex, one can

make the boundary label of a subdiagram in a van Kampen diagram reduced (see, e.g.,

[20, 30]).

Remark 3.3. Since �
.i/
N D �

.iC1/
0 , we can replace �

.i/
N with �

.iC1/
0 in (3.1) and (3.2). Thus,

the superscripts in the q-letters of the same .�; q/-relation are different if � 2 ‚1 [ ‚2 [

¹�.23/˙1º and this relation is a .�; Qt /-relation. Therefore only the corresponding cells of

a � -band have different superscripts of the labels of � -edges, and this difference is ˙1

modulo L.

We shall call a Z-band maximal if it is not contained in any other Z-band. Counting

the number of maximal Z-bands in a diagram, we will not distinguish the bands with

boundaries e�1q1fq�1
2 and fq�1

2 e�1q1, and so every Z-edge belongs to a unique maximal

Z-band.

A Z1-band and a Z2-band cross if they have a common cell and Z1 \ Z2 D ;.

Sometimes we specify the types of bands as follows. A q-band corresponding to one

letter Q of the base is called a Q-band. For example, we will consider Qt -bands corre-

sponding to the part ¹Qtº.

Lemma 3.4 ([27, Lemma 5.6]). A reduced van Kampen diagram � over M has no q-

annuli, no � -annuli, and no Y -annuli. Every � -band of � shares at most one cell with any

q-band and with any Y -band.

If W � x1 : : : xn is a word in an alphabet X , X 0 is another alphabet, and �W X !

X 0 [ ¹1º (where 1 is the empty word) is a map, then �.W / � �.x1/ : : : �.xn/ is called

a projection of W onto X 0. We shall consider the projections of words in the generators

of M onto ‚ (all � -letters map to the corresponding element of ‚, all other letters map
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to 1), and the projection onto the alphabet ¹Q0 t � � � t QN �1º (every q-letter maps to the

corresponding Qi , all other letters map to 1).

Definition 3.5. The projection of the label of a side of a q-band onto the alphabet ‚ is

called the history of the band. The step history of this projection is the step history of the q-

band. The projection of the label of a side of a � -band onto the alphabet ¹Q0; : : : ; QN �1º

is called the base of the band, i.e., the base of a � -band is equal to the base of the label of

its top or bottom.

As in the case of words, we will use representatives of the Qj -s in base words.

If W is a word in the generators of M , then we denote by W ; the projection of this

word onto the alphabet of the S -machine M; we obtain this projection after deleting all

superscripts in the letters of W . In particular, W ; � W , if there are no superscripts in the

letters of W .

We call a word W in q-generators and Y -generators permissible if the word W ; is

admissible, and the letters of any 2-letter subword of W have equal superscripts (if any),

except for the subwords .q Qt /˙1, where the letter q has some superscript .i/ and q; 2

QN �1; in this case the superscript of the letter Qt must be .i C 1/ (modulo L).

Remark 3.6. It follows from the definition that if V is � -admissible for a rule � of

¹�.23/�1º [ ‚3 [ ¹�.34/º [ ‚4 [ ¹�.45/º [ ‚5, then there is exactly one permissi-

ble word W such that W ; � V , namely, W � V . If � is a rule of ‚1 [ ¹�.12/º [ ‚2 [

¹�.23/º, then a permissible word W with property W ; � V exists and it is uniquely

defined if one chooses an arbitrary superscript for the first letter (or for any particular

letter) of W .

Lemma 3.7 ([27, Lemma 5.9]). (1) The trimmed bottom and top labels W1 and W2

of any reduced � -band T containing at least one .�; q/-cell are permissible and

W ;
2 � W ;

1 � � .

(2) If W is a � -admissible word, then for a permissible word W1 such that W ;
1 �

W (given by Remark 3.6) one can construct a reduced � -band with the trimmed

bottom label W1 and the trimmed top label W2, where W ;
2 � W ;

1 � � .

Definition 3.8. Let � be a reduced van Kampen diagram over M having a boundary path

of the form p�1
1 q1p2q�1

2 , where p1 and p2 are sides of q-bands, and q1, q2 are maximal

parts of the sides of � -bands such that Lab.q1/, Lab.q2/ start and end with q-letters.

Then � is called a trapezium (see Figure 1). The path q1 is called the bottom, the

path q2 is called the top of the trapezium, the paths p1 and p2 are called the left and right

sides of the trapezium. The history (resp. step history) of the q-band whose side is p2 is

called the history (resp. step history) of the trapezium; the length of the history is called

the height of the trapezium. The base of Lab.q1/ is called the base of the trapezium.



Algorithmic problems in groups with quadratic Dehn function 1309

Figure 1. Band and trapezium.

Remark 3.9. Notice that the top (resp. bottom) side of a � -band T does not necessarily

coincide with the top (resp. bottom) side q2 (resp. q1) of the corresponding trapezium of

height 1, and q2 (resp. q1) is obtained from top.T / (resp. bot.T /) by trimming the first

and the last Y -edges if these paths start and/or end with Y -edges.

By Lemma 3.4, any trapezium � of height h � 1 can be decomposed into � -bands

T1; : : : ; Th connecting the left and the right sides of the trapezium.

Lemma 3.10 ([27, Lemma 5.12]). (1) Let � be a trapezium with history H �

�.1/ : : : �.d/, d � 1. Assume that � has consecutive maximal � -bands T1; : : : Td ,

and the words Uj and Vj are the trimmed bottom and the trimmed top labels of

Tj , j D 1; : : : ; d . Then H is an eligible word, Uj , Vj are permissible words,

V ;
1 � U ;

1 � �.1/; U2 � V1; : : : ; Ud � Vd�1; V ;

d � U ;

d � �.d/:

Furthermore, if the first and the last q-letters of the word Uj or of the word Vj

have some superscripts .i/ and .i 0/, then i 0 � i (modulo L) does not depend on

the choice of Uj or Vj .

(2) For every eligible computation U ! � � � ! U � H � V of M with kHk D d � 1

there exists a trapezium � with bottom label U1 (given by Remark 3.6) such that

U ;
1 � U , top label Vd such that V ;

d
� V , and with history H .

Using Lemma 3.10, one can immediately derive properties of trapezia from the prop-

erties of computations obtained earlier.

If H 0 � �.i/ : : : �.j / is a subword of the history H from Lemma 3.10 (1), then the

bands Ti ; : : : ; Tj form a subtrapezium �0 of the trapezium � with the same base. A sub-

word of the base of � also defines a subtrapezium with the same history.

Definition 3.11. We say that a trapezium � is standard if the base of � is the standard

base B, and the history of � (or the inverse one) contains one of the words

• �.i � 1; i/H 0�.i; i C 1/ (i.e., the S -machine works as ‚4), or

• �i�1;i H 0�i;iC1 (i.e., it works as ‚2).
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Definition 3.12. A permissible word V is called a disk word if V ; � W L for some acces-

sible word W . (In particular, hub words are disk words.)

Lemma 3.13 ([27, Lemma 7.2]). Every disk word V is equal to 1 in the group G.

Lemma 3.14 ([27, Remark 7.3]). For a disk word V , there is a reduced disk diagram �

over the presentation (3.1)–(3.4) with boundary label V built of one hub and L trapezia

corresponding to an accessible computation for the word W , where V ; D W L.

We will increase the set of relations of G by adding the (infinite) set of disk relations

V D 1, one for every disk word V . So we will consider diagrams over G with disks, where

every disk cell (or just disk) is labeled by such a word V . (In particular, a hub is a disk.)

Definition 3.15. We will call a reduced van Kampen or annular diagram � over G mini-

mal if

(1) the number of disks is minimal for all diagrams with the same boundary label(s)

as �, and

(2) � has minimal number of .�; Qt /-cells among the diagrams with the same boundary

label(s) and with minimal number of disks.

Clearly, a subdiagram of a minimal diagram is minimal itself.

The following is explained in [27, Section 7.1.2].

Lemma 3.16. If two disks of a van Kampen diagram � over G are connected by at least

two Qt -bands, then there is a diagram �0 with the same boundary label and fewer disks in

it. In particular, two disks cannot be connected by two Qt -bands in a minimal van Kampen

diagram or by three Qt -bands in a minimal annular diagram.

Lemma 3.16 implies the following properties. (Part (1) is [27, Lemma 7.5], the proof

of part (2) is similar.)

Lemma 3.17. (1) If a van Kampen diagram contains at least one disk and has no

pairs of disks connected by at least two Qt -bands, then there is a disk … in � such

that L � 3 consecutive maximal Qt -bands B1; : : : ; BL�3 start on @…, end on the

boundary @�, and for any i 2 Œ1; L � 4�, there are no disks in the subdiagram �i

bounded by Bi , BiC1, @…, and @�. See Figure 2.

(2) If an annular diagram contains a least one disk and has no van Kampen subdi-

agrams with two disks connected by at least two Qt -bands, then there is a disk D

in � and two non-negative integers L0; L00 with L0 C L00 � L � 3, such that L0

(resp. L00) consecutive maximal Qt -bands B1; : : : ; BL0 (resp. C1; : : : ; CL00 ) start on

@D, end on the inner (resp. outer) boundary component p0 (resp. p00) of �, and

for any i 2 Œ1; L0 � 1� (resp. i 2 Œ1; L00 � 1�) there are no disks in the van Kampen

subdiagram �i bounded by Bi , BiC1, @…, and p0 (resp. Ci , CiC1, @…, and p00).

See Figure 3.
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Figure 2. Lemma 3.17 (1).
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Figure 3. Lemma 3.17 (2).

A maximal q-band starting on a disk of a diagram is called a spoke. By induction on

the number of disks, Lemma 3.17 implies the following.

Lemma 3.18 ([22, Lemma 5.19]). If a minimal van Kampen diagram � has r � 1 disks,

then the number of Qt -spokes of � ending on the boundary @�, and therefore the number

of Qt -edges in the boundary path of �, is greater than rL=2.

Lemma 3.19 ([27, Lemma 7.7]). Let � be a minimal van Kampen diagram.

(1) Assume that a � -band T0 crosses k Qt -spokes B1; : : : ;Bk starting on a disk …, and

there are no disks in the subdiagram �0 bounded by B1, Bk , T0, and …. Then

k � L=2.

(2) � contains no � -annuli.

The proof of the following lemma is given in [27, Section 7.1.3].

Lemma 3.20. (1) Let E be a van Kampen diagram with the boundary x1y1x2y2 built

of a disk … with boundary y2z�1 and a rim � -band T with boundary x1y1x2z,

where y1 and z are the sides of T . Assume that the first and the last cells of T are

different .�; Qt /-cells. Then there is a diagram E 0 with boundary x0
1y0

1x0
2y0

2, built of

a disk …0 with boundary y0
1.z0/�1 and a rim � -band T

0, with boundary x0
1z0x0

2y0
2,

where z0 and y0
2 are the sides of T

0 and Lab.x0
1/ � Lab.x1/, Lab.x0

2/ � Lab.x2/,

Lab.y0
1/ � Lab.y1/, Lab.y0

2/ � Lab.y2/. See Figure 4.

(2) Let � be a van Kampen diagram with boundary pq and � a union of a minimal

diagram � with r > 0 disks and a rim � -band T with side p. Assume that there are

two Qt -spokes in � starting on a disk D and ending on p. Then there exists a van

Kampen diagram �0 with boundary p0q0, and �0 is a union of a minimal diagram

� 0 with r 0 < r disks and a rim � -band T
0 having side p0, where Lab.p0/ D Lab.p/

in the group G, and Lab.q0/ � Lab.q/. See Figure 5.

Lemma 3.21 ([27, Lemma 8.2]). The group G has quadratic Dehn function.
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Figure 4. Lemma 3.20 (1).
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Figure 5. Lemma 3.20 (2).

4. Isomorphism problem for groups with quadratic Dehn function

In this section, we assume that the construction of the machine M is based on the S -

machine M1 provided by Lemma 2.3.

Lemma 4.1. Let a reduced computation C WW ! � � � ! W 0 of M with standard base have

no rules of sets ‚1 and ‚2. If W 0 � W , then the computation C is empty.

Proof. Proving by contradiction, one may assume that the history H of C is a non-empty

cyclically reduced word, because otherwise one could replace C with a shorter computa-

tion where the first and the last configuration are equal.

Assume first that C is a one-step computation. This step cannot be ‚3 or ‚5, since the

computations with rules from these sets multiply the words in history sectors by a copy of

H ˙1. So C is of type ‚4. This assumption reformulates our problem as the same problem

for the S -machine M5. If C has a �-rule of M5, then one may consider the computation

W ! � � � ! W with history H 2, where this rule occurs at least twice, which contradicts

Lemma 2.10. Therefore there are no �-rules in H , and so C is just a computation of either

RL or LR, or M2. The first and second cases contradict Lemma 2.11, because the length

of powers H s are unbounded. In the later case we restrict the computation of M2 to a

history sector: V ! � � � ! V , where a computation with any history H 0 multiplies the

tape word from the left and from the right by copies of H ˙1 in disjoint alphabets. Clearly

one cannot obtain a repetition, provided the word H is non-empty.

If H has at least two steps, then its step history (or a cyclic permutation of it) is

a power of .3/.4/.5/.4/ by Lemma 2.13. So H ˙2 has to contain a subword H1H2H3,
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where H2 has step history .43/.3/.34/, H3 and H �1
1 are of type .4/.45/.5/.54/. Since

H2 does change history sectors but does not change the input ones, the computations with

histories H3 and H �1
1 start working with configurations having equal input sectors but

different history sectors. Considering the subcomputations in .34/.4/.45/ corresponding

to the work of M5, M3, and M2 (as we did in the beginning of this proof), we see that the

S -machine M2 can connect both I2.˛k ; H 0/ and I2.˛k ; H 00/ with A2.H 0/ and A2.H 00/,

respectively, where H 0 ¤ H 00. It follows that there are two different reduced computations

of M1 accepting the same input word ˛k , contrary to Lemma 2.3.

Recall that the rule �.23/ locks all sectors of the standard base of M except for the

input sector zR0
zP1 and its mirror copy. Hence every �.23/�1-admissible configuration has

the form W.k; k0/ � w1˛kw2.˛0/�k0

w3, where k and k0 are integers and w1; w2; w3 are

fixed words in state letters; w1 starts with Qt .

Lemma 4.2 ([27, Lemma 8.3]). A word W.k; k/ is a conjugate of the word Wac in the

group G (and in the group M ) if and only if the subword ˛k is accepted by the Turing

machine M0.

Lemma 4.3. For arbitrary integer k, the word W.k; k/ has order L in G.

Proof. Starting with the word Wst, a computation of set ‚1 can insert the words ˛k

and .˛0/�k in the input sectors. So, after the application of the connecting rule �.12/,

the rules of set ‚2 can successfully check the content of the input sectors, and the rule

�.23/ gives us the word W.k; k/, the last configuration of this computation. Therefore the

word W.k; k/ is accessible. Thus, the power W.k; k/L is a disk word equal to 1 in G by

Lemma 3.13.

Assume that W.k; k/l D 1 for a positive l � L=2. Then on the one hand, the minimal

diagram � for this equality has l � L=2 Qt -edges in the boundary, and so it has no disks

by Lemma 3.18. On the other hand, since all Qt -letters of the boundary label occur with the

same sign, a maximal Qt -band of � cannot start and end on the boundary, and therefore the

word W.k; k/ has no Qt -letters, a contradiction.

Lemma 4.4. Every element of finite order in G is a conjugate of a power of some word

W.k; k/.

Proof. Consider a minimal diagram � for an equality U s D 1, s > 0, assuming that U

has minimal number of � -letters in the conjugacy class and, under this assumption, U has

minimal number of q-letters. If � has no disk, then it has a rim � -band T . The exterior

side y of T cannot have length � kU k, since then the whole boundary of � has to have

no � -letters, contrary to the existence of the rim � -band. If kyk D kU k � 1, then the ends

of T must have the same label, since the boundary label of � has period U , but this is

not possible since one of these � -letters is positive and the other one is negative for the

boundary label of a band. If kyk � kU k � 2, then one can replace the common boundary

path of T and @� with a path separating T from �. Hence a cyclic permutation of U can

be replaced with a word, equal in G, having less � -letters, a contradiction.
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Therefore � contains disks. If it has � -edges in the boundary, then there is a maximal

� -band T such that the van Kampen diagram bounded by T and a subpath y of @� has no

� -cells. Therefore y has no � -edges, and one comes to a contradiction, as in the previous

paragraph. Hence @� has no � -edges and therefore � has no � -edges by Lemma 3.19 (2).

Let us consider a disk … provided by Lemma 3.17. Since � has no � -cells, there is

a common subpath p of @… and @� containing L � 3 Qt -letters. The word U has at most

L=2 Qt -letters since otherwise there is a cyclic permutation of U containing a subword of

Lab.p/ with > L=2 Qt -letters. So the disk relation makes U conjugate in G to a word U 0

with jU 0j� D jU j� D 0 and with jU 0jq < jU jq , a contradiction.

Since L=2 < L � 3 and Lab.p/ is a subword of a power of U , there is a Qt -letter

occurring in Lab.p/ at least twice. Therefore the disk word on @… has no letters with

superscripts. Hence it is a power V L, where the letters of V have no superscripts and a

cyclic permutation of U is a power V l , where jl j < L. It remains to show that the word V

is a conjugate of some W.k; k/.

By Definition 3.12, the word V is accessible. Hence it can be connected by a com-

putation C either with Wst or with Wac. In the former case C has a rule �.23/�1 since

the letters of V have no superscripts. The maximal prefix D of C containing no rules

�.23/�1 connects V with some �.23/�1-admissible word W.k; k/, and the configurations

of D have no letters with superscripts. Hence the trapezium corresponding to D (see

Lemma 3.10 (2)) has equal side labels, and so V is conjugate of W.k; k/, as required.

In the latter case, we may assume that the computation C connecting V and Wac has no

rules �.23/�1 (otherwise one could argue as above), and so it has no rules of sets ‚1 and

‚2. Therefore the word V is a conjugate of Wac by Lemma 3.10 (2), since the side labels

of the corresponding trapezium have no superscripts and therefore are equal. In turn, by

Lemma 4.2, the word Wac is a conjugate of any W.k0; k0/ if the word ˛k0 is accepted by

the machine M0. This completes the proof of the lemma.

Lemma 4.5. (1) For every k, the cyclic subgroup hW.k; k/i is malnormal in G, that

is, I D hW.k; k/i \ ZhW.k; k/iZ�1 D ¹1º if Z … hW.k; k/i. The centralizer of

an element g 2 G of order L is equal to the cyclic subgroup hgi.

(2) The subgroup hW.k; k/i has trivial intersection with every conjugate subgroup of

hWaci provided the word ˛k is not accepted by the machine M0.

Proof. (1) To prove the statement about the centralizers, one may assume by Lemmas 4.3

and 4.4, that the element g of order L is represented by some word W � W.k; k/. There-

fore it suffices to prove the first claim of the lemma.

Assuming that the intersection I is non-trivial, we can find two exponents s and r such

that W s D ZW rZ�1 and 0 < s � L=3, jr j � L=2 if the order of I is odd, or s D r D L=2

otherwise.

We should prove that the word Z is equal to a power of W in G. For this goal, we con-

sider a minimal van Kampen diagram � for this equality W s D ZW rZ�1 and identifying

the subpaths of the boundary labeled by Z, we obtain an annular diagram � whose two



Algorithmic problems in groups with quadratic Dehn function 1315

(clockwise) boundary labels read from some vertices o and o0 are W s and W r , and there

is a simple path z connecting o with o0 and labeled by Z. (To obtain � homeomorphic to

a topological annulus and to make the path z simple, one can use 0-cells corresponding to

trivial relations as in [20, Section 11].)

One can cancel out the pairs of mirror cells if � is not reduced. Also if � contains a pair

of disks …1, …2 connected by two Qt -bands, and these disks and the bands do not surround

the hole of � , one can replace a van Kampen subdiagram having two disks with a diagram

without disks by Lemma 3.16. The obtained reduced diagram � 0 has a simple path z0

connecting o and o0, whose label is equal in G to Lab.z/ � Z (see [20, Section 13.6]).

The reduced diagram � 0 has no disks. Indeed, the two boundary components of � 0

have at most L=3 C L=2 Qt -edges if s � L=3, but by Lemma 3.17 (2), an annular diagram

with disks has to have at least L � 3 > 5
6
L C 1 Qt -edges on the boundary. If s D r D L=2

we have a contradiction again since all the Qt -letters of W s and W r are positive, but the

disk has to have spokes ending on both boundaries of � 0 since L � 3 > L=2. Hence there

are no disks in � 0.

If � 0 has no cells, then it is a diagram over the free group, and so s D r and the word

Lab.z0/ commuting with W s in the free group is equal to a power of W , as required.

Arguing by contradiction, assume that � 0 has � -cells. Then all maximal � -bands of � 0 are

� -annuli surrounding the hole of � 0 by Lemma 3.4. Cutting along a side of a maximal

Qt -band T , we obtain a reduced van Kampen diagram � 00 over M , which is a trapezium

of height h � 1 with equal side labels. Therefore the maximal � -bands of � 0 have no

superscripts in the labels of their cells, because it follows from Lemma 3.10 (1) that the

label of the right side of a trapezium with s maximal Qt -bands must be the ˙s-shift of the

label of the left side of it, but s < L.

By Lemma 3.10 (1), a subtrapezium of � 00 with the same history gives us a non-empty

computation W ! � � � ! W without rules of sets ‚1 and ‚2. This contradicts Lemma 4.1.

(2) We have the same proof as in item (1) considering now a hypothetical conjugation

of W.k; k/s and W r
ac. Clearly these cyclically reduced words are not conjugate in the

free group since they involve different q-letters. Then as above, one obtain a computation

W.k; k/ ! � � � ! Wac without rules from sets ‚1 and ‚2, contrary to Lemma 2.14.

Remark 4.6. If the machine M0 is chosen with non-recursive language of input words

˛k , then by Lemmas 4.2 and 4.5 (2), there exists no algorithm deciding whether some

non-trivial powers of the words W.k; k/ and Wac are conjugate in G or not.

Basing on Lemmas 4.2 and 4.3, we can introduce the HNN-extension Gk of the group

G for k D 1; 2; : : : by adding a stable letter x to the set of generators and the relation

xW.k; k/x�1 D Wac to the set of defining relations of G.

We need a property of HNN-extensions similar to the property of amalgamated prod-

ucts obtained in [8]. Both the formulation and the proof of the first part of the following

lemma were left to the reader in [8].
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Lemma 4.7. Let a function f bound from above the Dehn function of a finitely presented

group A and suppose f is super-additive, i.e., f .n1/ C f .n2/ � f .n1 C n2/ for all inte-

gers n1; n2 � 0, and f .1/ � 1. Let B be an HNN-extension of A with finite associated

subgroups xCx�1 D D. Then the Dehn function g.n/ of B is bounded from above by a

function equivalent to f .n/. In particular, every group Gk has quadratic Dehn function.

Proof. We have a finite presentation of B with one extra letter x and finitely many extra

relations xUi x
�1 D Vi , where all elements of the subgroups C and D are presented by

some words Ui and Vi . Let c � 1 be the maximum of the lengths of all Ui -s and Vi -s.

Assume that a word W � W1x˙1W2x˙1 : : : is equal to 1 in B , where the words Wj

have no x-letters. We will induct on s D s.W / D kW kB C cr , where r is the number

of x-letters in W , with trivial base s D 0, to show that the area Area.W / in B does not

exceed f .s/. If W has no x-letters, then W D 1 in G, and therefore Area.W / � f .s/.

If the word W has x-letters, then the word W has a pinch subword by Britton’s lemma

(see [17, Section IV.2]), i.e., a subword xWj x�1 (resp. x�1Wj x ), where Wj is equal in

A to some word Ui (resp. to some Vj ). Therefore one can replace Wj with Ui using an

auxiliary diagram of area � f .kWj k C kUi k/ � f .nj C c � 1/, where nj D kWj k. Then

the application of one conjugacy by x replaces the subword xUi x
�1 with Vi . We obtain

a word W 0 with s.W 0/ < s.W / � nj � c since the number of x-letters is decreased by 2.

Therefore

Area.W / < f .s � nj � c/ C f .nj C c � 1/ C 1

� f .s � nj � c/ C f .nj C c/

� f .s/ � f ..c C 1/kW k/;

and so g.n/ � f ..c C 1/n/ for every n � 0, which proves the first statement of the lemma.

It implies the second one by Lemmas 3.21 and 4.3.

Remark 4.8. It is unknown if there is a finitely presented group whose Dehn function is

not equivalent to a super-additive function. This problem was raised by V. S. Guba and

M. V. Sapir in [14].

Lemma 4.9. Let B be an HNN-extension of a group A with associated malnormal sub-

groups C and D: xCx�1 D D. Assume also that gCg�1 \ D D ¹1º for every element

g 2 A. Then the centralizer of any non-trivial element h 2 A in B is equal to the centralizer

of h in A.

Proof. Let an element z commute with h in B . Assume first that it has only one stable

letter x in the normal form: z D g1xg2, where g1; g2 2 A. Then the equality

g1xg2hg�1
2 x�1g�1

1 D zhz�1 D h 2 C

implies that the subword x.g2hg�1
2 /x�1 is a pinch, and so we have g2hg�1

2 2 C n¹1º.

Then xg2hg�1
2 x�1 D d 2 Dn¹1º, but the conjugate in A element g�1

1 dg1 D h belongs

to C , contrary to the assumption of the lemma.
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Now assume that the normal form of z (without pinches) has at least two x-letters:

z D g1x"g2x�g3 : : : , where "; � 2 ¹1; �1º. Then the only pinch in the product z�1hz is

x�"g�1
1 hg1x".

If g�1
1 hg1 2 C , then " D �1 and d D xg�1

1 hg1x�1 2 Dn¹1º. Then we have the pinch

x��g�1
2 dg2x� , where the product g�1

2 dg2 cannot belong to C by the assumption of the

lemma. Thus, it is in D, � D 1, and since D is a malnormal subgroup of A, we should

have g2 2 D. But this gives the pinch x�1g2x in the normal form of z, a contradiction.

If we had g�1
1 hg1 2 D, then the same argument would give a pinch xg2x�1 in the

normal form of z. Therefore z 2 A, and the lemma is proved.

Lemma 4.10. (1) The group Gk has an element of order L with infinite centralizer

if the word ˛k is accepted by the Turing machine M0. For all accepted ˛k the

groups Gk are isomorphic with the HNN extension xG of G with stable letter y

and the additional relation yWacy
�1 D Wac.

(2) If the word ˛k is not accepted by M0, then the centralizers of elements with order

L in Gk have order L.

Proof. (1) By Lemma 4.2, there is an element g 2 G such that gW.k; k/g�1 D Wac in G.

So in Gk , we obtain the relation

x�1gW.k; k/g�1x D W.k; k/;

i.e., z�1W.k; k/z D W.k; k/ for z D g�1x and yWacy
�1 D Wac for y D xg�1. Here

W.k; k/ has order L by Lemma 4.3 and y; z have infinite order. Furthermore, one can

replace the generator x by y in the presentation of Gk and obtain the presentation of xG.

(2) Let the element g have order L in Gk , then it is a conjugate of an element of order

L from G (see [17, Theorem IV.2.4]). Therefore one may assume that g 2 G, and its

centralizer CG.g/ has order L by Lemma 4.5 (1). Then the centralizer of g has the same

order in G.k/ by Lemma 4.9, because the assumptions of that lemma are guaranteed by

Lemma 4.5 (1), (2).

Proof of Theorem 1.1. It follows from Lemma 4.10 that the group Gk is isomorphic to the

group xG (which is isomorphic to every Gi with ˛i accepted by the machine M0) if and

only if the word ˛k is accepted by the Turing machine M0. So the isomorphism problem

is not decidable in the set of finitely presented groups ¹Gkº1

kD1
if the language of accepted

words of M0 is not recursive. Hence by Lemmas 3.21 and 4.7, the isomorphism problem is

algorithmically undecidable in the class of finitely presented groups with quadratic Dehn

function.

5. Dehn functions of subgroups

In this section, we assume that the language of accepted words of the Turing machine M0

consists of all non-negative powers ˛k in the one-letter alphabet ¹˛º, but we select M0 so

that the time function TM0.n/ of M0 grows fast. Given a recursive function f .n/, we can
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define a symmetric Turing machine M0 with time function satisfying the inequalities

TM0.n/ > f .n/ for n � 0: (5.1)

Here TM0.n/ is the time of the shortest M0-computation accepting the word ˛n.

The next S -machine MC
1 depends on M0 only, and we will assume that it coincides

with the machine M1 provided by Lemma 2.2 from Section 2.1, and so it coincides with

machine M1 borrowed from [26].

The language of accepted words for MC
1 is ¹˛kº1

kD0
by Lemma 2.2, and we have the

inequality

TM0.n/ � T
M

C
1

.n/

for the time functions by [26, Lemma 4.1]. (This lemma says that every computation of

MC
1 accepting an input configuration has to simulate an accepting computation of M0.

By definition, the machine M�
1 is a copy of MC

1 , but the language of the accepted

words of M�
1 is ¹˛kº�1

kD0
. We will assume that these two machines have disjoint sets of

rules, and the common state letters of them are only the letters of the start and the accept

configurations. The machine M1 is defined now as the union of MC
1 and M�

1 , where

every admissible word is admissible either for MC
1 or for M�

1 . So an input configuration

(resp. the accept configuration) of M1 is an input configuration (resp. the accept configu-

ration) of MC
1 and of M�

1 .

Lemma 5.1. The language of accepted words of M1 is ¹˛kº1

kD�1
, and for every n > 0,

we have the inequality TM1.n/ � f .n/ � C.0/, where C.0/ D TM1.0/.

Proof. The first statement is obvious since M1 is the union of MC
1 and M�

1 .

Let C W C0 ! � � � ! Ct be a shortest accepting computation of M1 starting with

an input configuration C0 with a non-empty input word ˛n. The computation C has an

alternating factorization C D C1 : : : Cs , where every factor belongs to either MC
1 or M�

1 .

Without loss of generality we assume that C1 W C0 ! � � � ! Cr is a computation of MC
1 .

If n < 0, then the computation C1 cannot accept or end with an input configuration by

Lemma 2.2. Therefore it cannot be followed by a computation C2 of M�
1 , a contradiction.

If n > 0 and s D 1, then C1 is an accepting computation of MC
1 , and so

t � T
M

C
1

.n/ � TM0.n/ � f .n/:

If s > 1, then C1 does not accept, and so Cr is a start configuration for both MC
1 and

M�
1 . Let ˛k be the input word in Cr . Then k � 0 by Lemma 2.2 applied to C

�1
1 . If k > 0,

then C2 could not end working by the dual lemma applied to C2; hence k D 0.

Note that since k D 0, one can construct a computation D as computation C1 followed

by the MC
1 -computation of length C.0/ accepting the empty word, and D accepts ˛n.

Hence TM0.n/ � TM1.n/ � r C C.0/, and so by (5.1), we have

t � r � TM0.n/ � C.0/ � f .n/ � C.0/;

which proves the lemma.
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The group G is defined by M in Section 3.2. In this section, we also consider a

‘trimmed’ version of the machine M. The set of rules of this machine M is ‚3 [ ‚4 [ ‚5,

i.e., we now remove the sets ‚1 and ‚2, as well as the transition rule �.23/, from the def-

inition of M. The state letters occurring in the removed rules only are removed too. The

words of the form W.k; k0/ for arbitrary integers k and k0 become the start configurations

of the machine M.

The definitions of the machines M2 to M5 and M depend on M1 only, and according

to [27, Lemmas 3.10, 3.17, 3.18], M accepts the same language L (which is equal to

¹˛kº1

kD�1
now). Furthermore, every computation of each of these machines accepting a

word ˛k must simulate the work of the previous machine accepting the same word, and so

by Lemma 5.1, for every non-negative n, we have the following inequalities for the time

functions:

f .n/ � C.0/ � TM1.n/ � TM2.n/ � TM3.n/:

By the definition of the set ‚4, an accepting computation for a word W.k;k/ is longer

than the computation of M3 accepting the input ˛n. It follows that for every n � 0, we

have

f .n/ � C.0/ � TM.n/: (5.2)

Now we define the group xM given by the generators and relations occurring in for-

mulas (3.3) only (which correspond to the rules from ‚3 [ ‚4 [ ‚5). The group xG is

obtained from xM by imposing only one hub relation W L
ac D 1 from (3.4). In particular,

the generators of the groups xM and xG have no superscripts .i/, i D 1; : : : ; L.

Lemma 5.2. The canonical homomorphisms xM ! M and xG ! G are injective. So one

may identify xM and xG with the subgroups of the groups M and G, respectively.

Proof. We should prove that if a word w in the generators of xG is equal to 1 in the group

M (in G), then it represents 1 in xM (resp. in xG).

Let � be a minimal diagram over G with boundary label w. If � has no disks, then by

Lemma 3.4, every maximal � -band of � ends on the boundary @�, and so the one-letter

history of it is a history of M since w is a word in the generators of xM . It follows that �

is a diagram over xM and w D 1 in xM , as required. Thus, one may assume that � has at

least one disk and induct on the number of disks l with base l D 0.

If l > 0, then Lemma 3.17 provides us with a disk … and a Qt -band B connecting

this disk with the boundary @�. Since by Lemma 3.19 (2), � contains no � -annuli, every

� -band crossing B ends on @� and it is a diagram over xM . It follows that the Qt -letter

labelling the common edge of B and @… has no superscripts. Hence no letter of the acces-

sible boundary label of … has a superscript; this label has the form W L.

By Lemma 3.14, we have a computation C of M, connecting the word W either with

Wst or with Wac. If the history of this computation has no rules �.23/�1, then it is a

computation of M, and by Lemmas 2.14 (1) and 3.14, the disk … can be filled in with

the cells corresponding to the relations of the group xG (including the hub relation W L
ac ).
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If C has a rule �.23/�1, then this rule is applied to a configuration W.k; k0/. Here

k D k0 since the word W , and so the word W.k; k0/, is accessible. However for every

integer k, the configuration W.k; k/ is accepted by the machine M since the language

of M-accepted input words is ¹˛kº1

kD�1
. Therefore by Lemmas 2.14 (1) and 3.14, the

subdisk with boundary label W.k; k/L can be filled in with cells corresponding to the

presentation of xG. The same is true for the whole disk …. Then … can be removed from �

along with the Qt -band B, and the boundary of the remaining part �0 of � is again labeled

over xG. Since the number of disks in �0 is l � 1, the lemma is proved by induction.

Since every word W.k; k/ is accepted by the machine M, Lemma 3.14 gives us a disk

diagram � with boundary label W.k; k/L built of one hub and L trapezia corresponding

to a reduced accepting computation for W.k; k/. The boundary of the hub in � is labeled

by W L
ac , since xG has only one hub relation.

One can prove that the disk diagram with boundary label W.k; k/L is minimal, but we

need an estimate from below for the area of the word W.k; k/L with respect to the finite

presentation of xG (which contains a hub, but no other disks). The following statement is

[23, Lemma 10.2]. (Although the machine is different in [23], the proof of Lemma 10.2

works for xG without any changes.)

Lemma 5.3. The area of a disk diagram � with boundary label W.k;k/L does not exceed

twice the area of the disk word W.k; k/L with respect to the finite presentation of xG.

Lemma 5.4. The area of the word W.k; k/L with respect to the finite presentation of xG

is at least L.f .k/ � C.0//.

Proof. Let us consider the disk diagram � with boundary label W.k; k/L provided by

Lemma 3.14. � contains L trapezia corresponding to an accepting computation of the

machine M starting with the configuration W.k; k/. By Lemma 3.10, the height of each

trapezium � is at least TM.k/, which is greater than f .k/ � C.0/ by inequality (5.2).

Hence � contains at least N.f .k/ � C.0// .�; q/-cells, and therefore � has at least

NL.f .k/ � C.0// cells. By Lemma 5.3, the area of the word W.k; k/L is at least

NL.f .k/ � C.0//=2 which proves the lemma.

Proof of Theorem 1.2. Note that the length of the word W.k; k/ is a linear function of k.

Therefore to bound the Dehn function of the subgroup xG from below by f .n/ (up to

equivalence), it suffices to obtain the inequalities Area xG.W.k; k// > f .k/ � C.0/ for

every k � 1. Indeed, these inequalities follow from Lemma 5.4.

Since the group H D xG embeds in G by Lemma 5.2, Theorem 1.2 is proved, because

by Lemma 3.21, the group G defined by M in Section 3.2 has quadratic Dehn function.

Remark 5.5. Since the word W.k; k/ is accepted by the machine M for every integer k,

it follows from Lemmas 4.2, 4.3, 4.4, 7.1, and 6.4 that the conjugacy problem is decidable

for both groups G and xG D H constructed in this section.
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6. Conjugacy in the group G

In this section and in the next one, the construction of the machine M can be based on the

machine M1 provided by either Lemma 2.2 or Lemma 2.3.

Lemma 6.1. Let � be a reduced diagram over M with boundary xy. Suppose there are

neither � -bands nor q-bands starting and ending on y. Then:

(1) jyj� � jxj� and jyjq � jxjq .

(2) If � is a subdiagram of a diagram � over G and y D y1y2y3, where y1 and y3 are

sides of q-bands, y2 is a side of a � -band or a subpath of the boundary of a disk

…, then ky2k is bounded by a quadratic function of kxk. The perimeter k@…k is

also bounded by a quadratic function of kxk if y2 contains at least two Qt -letters.

Proof. (1) Since every maximal � - or q-band of � starting on y has to end on x, the

inequalities follow.

(2) It follows from (1) that the numbers of maximal � - and q-bands of � are bounded

by a linear function of kxk. Therefore the number of .�; q/-cells of � is bounded by a

quadratic function by Lemma 3.4. Note that the Y -lengths of the sides y1, y2 of q-bands

are linearly bounded by their � -lengths. Since every maximal Y -band starting on y2 has

to end on a .�; q/-cell or on y1, or on y3, or on x, we have jy2jY and ky2k bounded by

a quadratic function of kxk. If y2 is a subpath of … having at least two Qt -edges, we have

k@…k < Lky2k, and the statement (2) follows.

Lemma 6.2. There is an algorithm replacing a given word W with a word W 0 conjugate

in G to W and having the following property. If � is a minimal van Kampen diagram �

with boundary pq, where Lab.p/ is a subword of a cyclic permutation of the word W 0,

then none of (a), (b), and (c) below holds.

(a) � is subdiagram of a diagram � over G, q D y1y2y3, where y1 and y3 are sides

of Qt -spokes connecting the subpath y2 of the boundary of a disk … with p, there

are no disks in � , and … is connected with p by s > L=2 Qt -bands. See Figure 6.

(b) q is a side of a rim q-band C of � starting and ending on p. See Figure 7.

(c) q is a side of a rim � -band T of � starting and ending on p. See Figure 7.

Proof. (a) Suppose that, for some word W diagrams � and � satisfying the assumption

of Lemma 6.2 (a) exist. Assume that … is connected with p in � by r > L=2 consecutive

Qt -spokes C1; : : : ; Cr . By Lemma 3.19 (1), � contains no � -bands connecting C1 and Cr .

Lemma 6.1 gives a linear bound (in terms of kW k) for the lengths of the spokes and

a quadratic upper bound for the perimeter of the disk …. So there is a subdiagram �0

containing … and having the boundary pq0 with jq0jq < jqjq and bounded kq0k.

Replacing the subword Lab.p/ with Lab.q0/�1, one obtains a conjugate in G word of

smaller q-length, where the length of the modified word is quadratically bounded in terms

of kW k, and the search for it has effectively bounded time by Lemma 3.21. This gives an

algorithm providing property (a) from the lemma.
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y1

Lab.p/ � W 0

�

y2

…

y3

Figure 6. Diagram � in Lemma 6.2 (a).

p

C or T

q

Figure 7. Diagram � in Lemma 6.2 (b) and (c).

(b) Consider such a diagram � if any exists. We may assume that � contains no disks.

Indeed, the q-band C has no side q-edges, and so by Lemma 3.17 (1), the existence of

a disk should imply the existence of a subdiagram already eliminated in item (a), a con-

tradiction. Then by Lemma 3.4, every maximal � -band starting from C in � ends on p.

Hence the length of C is less than kpk. The side label of C is equal in M to Lab.p/ but has

q-length 0. Hence the subword Lab.p/ can be replaced with a word Z, equal in M , having

smaller q-length and kZk is linearly bounded in terms of kW k. Since the word problem

is decidable in G, one can efficiently execute such a replacement. Thus, the effective

procedures described in the items (a) and (b) provides us with an output satisfying both

properties (a) and (b) from the formulation of the lemma.

(c) Let � be the diagram from the formulation of item (c). Now we may assume that

the word W has properties (a) and (b). We also may assume that � has no maximal � -

bands except for T since otherwise � should contain a proper subdiagram with the same

property. Assume that � has a disk. Then let … be a disk provided by Lemma 3.17 (1). By

item (a), at least two Qt -spokes C and C
0 start on … and end on T since L � 5 > L=2 C 1.

The uniqueness of the maximal � -band T in � implies that C and C
0 have length 0. Then

by Lemma 3.20 (2), one can decrease the number of disks in the diagram � , replacing it

with a diagram � 0 satisfying the same assumptions and having Lab.p0/ � Lab.p/. The

induction on the number of disks allows us to assume that � is a diskless diagram, and

so it coincides with T . Replacing p with q�1, one decreases the � -length of the boundary

label preserving the q-length of it. Since the length of T does not exceed kW k, one can

find and remove T effectively.

The algorithm terminates, because each step in paragraphs (a)–(c) of it either reduces

the q-length or does not increase it but reduces the � -length.

Remark 6.3. Let us call the word W 0 from Lemma 6.2 an adapted word.

One can change the formulation of Lemma 6.2 by replacing the minimal diagram

� over G with a reduced diagram over the group M and removing property (a). The

statement remains true (the proof is a simplified proof of Lemma 6.2). We will call the

words W 0 obtained from W according to these weaker version of Lemma 6.2 a weakly

adapted word.

The following statement will be used in the next section.
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Lemma 6.4. There is an algorithm that decides whether two words U and V representing

elements of infinite order in the group G are conjugate in G or not.

Proof. We divide the proof into several steps.

Step 0. Lemma 6.2 allows us to assume that the words U and V are adapted. By the

Schupp lemma, U and V are conjugate in G if and only if there is an annular diagram

� over G with boundary components p and q labeled by U and V , respectively. If there

is a recursive function f such that one always can choose � so that p and q can be

connected by a path x of length � f .kU k C kV k/, then the cut along x replaces � with a

van Kampen diagram of bounded perimeter, and so the conjugacy problem is reduced to

the word problem. Since the word problem is decidable in a group with quadratic Dehn

function (see Lemma 3.21), our goal is to find such a ‘short cut’ under the assumption that

U and V are conjugate in G.

Step 1. Let � be a minimal annular diagram whose boundary contours p and q are labeled

by U and V , respectively. The number r of disks in � cannot exceed s D jU jq C jV jq for

the following reason. Let … be the disk provided by Lemma 3.17 (2). Since the words U

and V are adapted, … is connected by spokes with both p and q. Cutting out the union of …

and the diskless subdiagrams between … and the boundary components (bounded by the

spokes at …), we get a remaining van Kampen diagram �0 with at most s � .L�3/C3 < s

Qt -edges on the boundary. Now Lemma 3.18 bounds the number of disks in �0.

Step 2. If � has a disk, then Lemma 3.17 (2) gives a disk … connected with p (or with q)

by at least two Qt -spokes. Assuming that these two Qt -bands C and C
0 are consecutive, we

consider the subdiagram � over the group M bounded by C , C
0, @… and p.

If � contains no � -bands connecting C and C
0, then Lemma 6.1 gives a quadratic

bound (in terms of kU k) for the perimeter of the disk … and a linear bound for the length

of C .

Making a cut along the boundary of C and around …, one can remove the disk … and

obtain an annular diagram �0 with fewer disks, where the boundary label U is replaced

with a word U 0, equal in the group G, whose length is quadratically bounded in terms of

kU k.

If � has a � -band connecting C and C
0, then such a � -band closest to … has to share

a side with @…. This � -band T and … form a diagram E satisfying the assumption of

Lemma 3.20 (1). Therefore … and the subdiagram E can be replaced in � with a disk

…0 and a diagram E 0. This surgery removes the � -band T from � and shortens the con-

necting Qt -bands C and C
0 in the obtained annular diagram �0. (We do not care about the

minimality of the entire �0.) Then we can continue moving the disk closer to p until we

obtain a subdiagram, where no � -band connects C and C
0.

Thus, if � has a disk, then there is a minimal annular diagram �0 with fewer disks

and boundary labels U 0 and V 0 equal to U and V in G, where kU 0k C kV 0k is effectively

bounded in terms of kU k C kV k. Since the number of disks in � does not exceed kU k C

kV k, the iteration of this argument provides us with a diskless annular diagram x� and
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with boundary labels xU and xV equal to U and V , respectively, in G. Hence an effective

exhaustive search gives a finite set S D S.U; V / of pairs .Ui ; Vi / such that U and V

are conjugate in G if and only if for some i , the words Ui and Vi are conjugate in the

group M . Moreover, by Remark 6.3, the words Ui and Vi can be assumed weakly adapted.

So, keeping the same notation, we may assume that the annular diagram � contains no

disks.

Step 3. Since we may assume that the words U and V are weakly adapted, it remains to

consider three options: (a) neither U nor V have � -letters; borrowing the term from [24],

the corresponding annular diagram � will be called a ring; (b) there are no q-edges in

the boundary of � and every maximal � -band connects p and q; such a diagram is a roll;

(c) there are q-letters and there are � -letters in both U and V , and every maximal q- or

� -band of � connects p and q; � is a spiral.

Step 4. Assume that � is a ring. Then, by Lemma 3.4, the annular diagram � is built

of � -annuli surrounding the hole of �. Different � -annuli cannot copy each other, since

otherwise one could remove some � -annuli from �.

If � has no .�; q/-cells, then by Lemma 3.4, every maximal Y -band connects p and q,

and so all the � -annuli have the same length jU ja, and the number of different � -annuli of

this length is effectively bounded. Therefore there is a path x of bounded length connecting

p and q, as desired. Therefore, we may assume that there are .�;q/-cells in �, and we have

s � 1 maximal q-bands C1; : : : ; Cs , each of them has the same length h and connects p

and q. Let the � -annuli of � have boundary components with lengths l0 and l1, l1 and l2,

. . . , lh�1 and lh.

If maxiD0;:::;h li � c4 max.kU k; kV k/, then there is an effective upper bound for h

since the � -annuli cannot copy each other. So proving by contradiction, we assume that

max
iD0;:::;h

li > c4 max.kU k; kV k/: (6.1)

We consider the ‘power’ �L of �. This reduced annular diagram has boundary labels

U 0 D U L and V 0 D V L, respectively, and maximal q-bands D1; : : : ; DsL. (�L covers �

with multiplicity L).

Cutting �L along a side of DsL, we obtain a diagram over M with boundary z1z2z3z4,

where z2 and z4 have labels U 0 and .V 0/�1, and z3 is the side of the q-band DsL. Attaching

to this diagram a copy D0 of DsL along z1, we get a trapezium � of height h. The base

of � has form xv1xv2x : : : xvrx, where the letter x is the base of DsL, it does not occur

in the subwords v1; : : : ; vr and r is a multiple of L. So � is covered by r trapezia �i with

bases xvi x.

By inequality (6.1) and Lemma 2.17, the base of � is a power of a cyclic permuta-

tion of the standard base. Replacing U with a cyclic permutation, we may assume that

the base of �i is standard, it is equal to tv, where x � t and v � v1 � � � � � vr . More-

over, by Lemmas 3.10 (1) and 2.15, for the top labels Wi and the bottom labels W 0
i of

every �i , the words W ;
i and .W 0

i /; are accessible words. Furthermore, by Remark 2.16
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and Lemma 2.12, all the words W1; : : : ; Wr are equal up to the superscripts. It follows that

the word U L is permissible, and it is a power of a disk word, because r is divisible by L.

So U L D 1 in the group G by Lemma 3.12, contrary to the assumption that U has infinite

order.

Step 5. Assume now that � is a roll having no .�; q/-cells. If it has a Y -annulus A sur-

rounding the hole of �, then it follows from the form of .�; a/-relations, that the inner and

the outer boundary components have the same boundary label. Then one can just remove

A from � identifying these two sides of A. Therefore we may assume that there are no

such Y -annuli in �, and every maximal Y -band starts or ends on p or q by Lemma 3.4.

It follows that the number of maximal Y -bands cannot exceed the sum kU k C kV k. To

obtain an upper bound for the length of a connected path x from Step 1, it suffices to bound

the number of .�; a/-cells in �, that is, to bound from above the length of every maximal

Y -band.

If a Y -band A starts and ends on p (or q), then its length does not exceed kU k since by

Lemma 3.4, every maximal � -band crosses A at most once and starts or ends on p. Let A

connect p and q. To bound the length of A it suffices to bound the number of .�; a/-cells

belonging to the intersection of A with arbitrary maximal � -band T , because the number

of maximal � -bands (connecting p and q) is at most kU k C kV k.

By Lemma 3.4, a subband of A cannot cross twice a subband of T in a van Kampen

subdiagram of �. Therefore after the Y -band A crosses T at some cell � , it has to cross

every other maximal � -band of � before A crosses T again at some cell � 0. So we have

a convolution, i.e., the subband of A of length at most kU k C kV k between � and � 0.

Hence it suffices to bound from above the number of such convolutions in A.

The subband T
0 of T between � and � 0 can be crossed by another maximal Y -band A

0

at most once (and A
0 has to connect p and q). Therefore the length of T

0 is at most kU k C

kV k. So a side of the convolution and a side of T
0 form a loop z of length O.kU k C kV k/

surrounding the hole of �.

If z surrounds another loop z0 of this type with Lab.z0/ � Lab.z/, then one can remove

the diagram between z and z0 and identify these two loops decreasing the number of cells

in the annular diagram. Since the lengths of loops of this type are bounded, the number of

them is effectively bounded as well. It follows that we have an effective upper bound for

the lengths of Y -bands as desired.

Step 6. Assume now that � is a roll containing .�; q/-cells. Then by Lemma 3.4, every

maximal q-band of � is a q-annulus surrounding the hole of � since a roll has no q-edges

in the boundary. By the same lemma, every maximal � -band crossing a q-annulus C ends

on p and q and cannot intersect C twice. Therefore the length of an arbitrary q-annulus

does not exceed min.jU j� ; jV j� /. This observation effectively bounds the number of q-

annuli in a minimal annular diagram �, because two different annuli cannot copy each

other. (One could remove the diagram between them and identify such annuli, contrary to

the minimality of �.)
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If p1; q1; : : : ; pk ; qk are pairs of boundary components of all the q-annuli counting

from p to q, then the annular diagrams between q0 D p and p1, q1 and p2; : : : ; qk and

pkC1 D q contain no .�; q/-cells. Therefore there is a roll having boundary labels U and

V if and only if there are at most k different q-annuli (where k and the lengths of the

q-annuli are effectively bounded) and � k C 1 rolls without .�; q/-cells between qi and

piC1 (i D 0; : : : ; k, and the lengths of all pj and qj are effectively bounded). So the case

of rolls is effectively reduced to the special case considered in Step 5.

Step 7. It remains to assume that � is a spiral. It follows from Lemma 3.4 that every

q-edge of � belongs to one of the (clockwise) consecutive maximal q-bands C1; : : : ; Cs

connecting p and q. Clearly we have s � min.jU jq; jV jq/. Similarly, all maximal � -bands

T1; : : : ; Tr connect p and q, and r � min.jU j� ; jV j� /.

Assume that going from p to q a � -band T D Tj crosses a q-band C D Ci clockwise.

Then Lemma 3.4 implies that if after this intersection, T crosses a q-band again, then this

next intersection is with CiC1 (the indices taken modulo s) and CiC1 is crossed clockwise

too. So if the number of intersections of T with q-bands is greater than s, it has to cross

one of the bands at least twice. See Figure 8.

Tj

Tj �1

Ci

q

Tj C1

p

CiC1

CiC2

Figure 8. Spiral structure.

Our nearest goal is to bound from above the lengths of the q-bands. And so we will

assume that every maximal � -band contains more than s different .�; q/-cells. (If there is

T crossing q-bands at most s times, then the same has to be true for every q-band.)

The spiral structure of � implies the dual property: If a maximal q-band C (directed

from p to q) crosses some Tj , then the next intersection of C (if any) is the intersection

with Tj �1 (the indices taken modulo r). It follows that the history of any q-band is periodic

with a period H of length r .

Consider now a van Kampen subdiagram � bounded by two q-bands C and C
0 and

parts of p and q, such that � has no other q-bands between C and C
0. Let E be the

maximal trapezium (possibly empty) of � , bounded by subbands D and D
0 of C and C

0,

and by � -bands � and �
0 connecting C and C

0 in � . Thus, the complement of E in �

has no � -bands connecting C and C
0, and Lemma 6.1 (2) gives a quadratic bound for the

lengths of � and �
0 in terms of kU k and kV k. See Figure 9.
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q

p

D

C

�

E

�
0

�

C
0

D
0

�

Ci

z

Figure 9. To Step 7 of the proof of Lemma 6.4: the subdiagram � (left) and the loop z (right).

By Lemma 3.10 (1), the trapezium E corresponds to an eligible computation with

periodic history H . Therefore Lemma 2.4 gives a linear upper bound of the lengths of

arbitrary � -bands of E in terms of the lengths of the top and the bottom of E, and the

length of the period H of the history. So the lengths of such � -bands are quadratically

bounded in terms of kU k C kV k.

If T0 is a part of some � -band T , such that T0 starts and ends on the same q-band Ci

and crosses once every other maximal q-band, then the above argument provides us with

a cubic upper bound for the length of T0. The ends of the side of T0 are connected by a

part of length O.r/ of the q-band Ci . So this side and the connecting path form a loop z

of at most cubic length surrounding the hole of �. See Figure 9.

If z surrounds another loop z0 of this type with Lab.z0/ � Lab.z/, then one can remove

the diagram between z and z0 and identify these two loops decreasing the number of cells

in the annular diagram. Since the lengths of loops of this type are bounded, the number

of them is effectively bounded as well. It follows that we have an effective upper bound

for the lengths of q-bands in �, and so, for the length of a path connecting p and q.

Lemma 6.4 is proved.

Lemmas 6.4 and 4.4 prove Theorem 1.4.

7. The power conjugacy problem

Lemma 7.1. (a) There is an algorithm such that given a word W in the generators

of the group G, it decides whether the order of W in G is finite or infinite.

(b) To obtain an algorithm solving the power conjugacy problem in G for arbitrary

pairs of words .U; V /, it suffices to obtain such an algorithm under assumption

that the words U and V have infinite order in G.
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Proof. (a) By Lemmas 4.3 and 4.4, W has a finite order in G if and only if W L D 1

in G. Since Lemma 3.21 implies that the word problem is decidable in G, statement (a) is

proved.

(b) This statement follows from (a) since some positive powers of elements having

finite orders are trivial, and so are conjugate.

The relations (3.1)–(3.4) defining the group G immediately imply that there exists a

homomorphism � from G to the additive group Z=LZ which sends all Qt -generators to 1

and all other generators to 0. To solve the power conjugacy problem in G for a given pair

of words .U; V /, one may replace this pair with the pair .U L; V L/; thus, we may assume

further that

�.U / D 0 and �.V / D 0: (7.1)

Let U and V be two words representing elements of infinite order from the group G.

Under the condition (7.1) and the assumption that the words U and V are adapted, we

will also assume that some powers U k and V l are conjugate in G for k; l ¤ 0. Without

loss of generality we assume that k; l > 0, and there is no pair of positive exponents k0; l 0

such that U k0

is a conjugate of V l 0

, where k0 < k, l 0 < l . Thus, we will study a minimal

annular diagram �, where the outer boundary component p has the clockwise label U k

and the inner boundary component q is labeled by V l .

If two consecutive Qt -spokes C and C
0 start on a disk … of �, end both on p (or both

on q), and the van Kampen subdiagram � , bounded by a subpath of p (resp. q), a subpath

of @…, C , and C
0, contains no disks (but contains the spokes C and C

0), then we shall call

� a tp-bond at … (resp. tq-bond). See Figure 10.

p

C

…

�

C
0

Figure 10. tp-bond � at ….

�.…/

E

q

�

p

�.…0/

Figure 11. Subdiagram E between �.…/ and �.…0/.

Lemma 7.2. For every disk … of �, the number of tp-bonds (tq-bonds) is greater than

L=2 � 4 > 0. No q- or � -band of � starts and ends on p or starts and ends on q.

Proof. If a � -band connects p with p, then a van Kampen subdiagram � of � is bounded

by T and by a subpath p0 of the cyclic path p, and the word U must contain both positive

and negative occurrences of � -letters. Proving by contradiction, we may assume that T is

a unique maximal � -band of � since every maximal � -band of � has to start and end on p0.
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Therefore the word W � Lab.p0/ has no � -letters except for the first and the last ones.

Hence W is a subword of a cyclic permutation of the word U . However such a diagram �

is impossible since U is an adapted word.

Assume now that there is a q-band C starting and ending on p. Then there is a van

Kampen diagram � bounded by C and a subpath p0 of p. To obtain a contradiction, we

assume that � has no maximal q-bands starting and ending on p except for C . Suppose �

has disks. Since the sides of C have no q-edges, the disk … provided by Lemma 3.17 (2)

applied to � has at least L � 4 consecutive tp-bonds. Since there are no Qt -letters between

the ends of the Qt -spokes defining these bonds, there is subpath x of p containing exactly

L � 3 Qt -edges, namely, the ends of the Qt -spokes defining the tp-bonds. However U has

at least L Qt -letters by the equalities (7.1). Hence Lab.x/ is a subword of a cyclic permu-

tation of the adapted word U , and L � 3 of these Qt -spokes end on x, which contradicts

Lemma 6.2 (a) since L � 3 > L=2 C 1. If � contains no disks, the argument from the

previous paragraph leads to contradiction again.

Let us prove the first statement of the lemma. Under the assumption that � contains

disks, Lemma 3.17 (2) gives a disk … with L0 C L00 � L � 3 Qt -spokes ending on p and q.

If, say, L00 < L=2 � 3, then L0 > L=2. However U has at least L Qt -letters by the equalities

(7.1). So by property (b) of Lemma 6.2 for an adapted word U , these Qt -spokes end on a

subpath of p labeled by a subword of a cyclic permutation of U , a contradiction with

property (a) of adapted words in Lemma 6.2. Thus, we have L00 � L=2 � 3 and similarly,

L0 � L=2 � 3 > 0.

Now consider a maximal set D of disks … with the following property. Every disk …

from D has at least L � 5 Qt -spokes ending either on p or on q. Note that two neighbor Qt -

spokes ending on p (or on q) define a tp-bond at …, i.e., the subdiagram � , bounded

by these spokes, a part of p, and a part of @…, contains no disks, because otherwise

Lemma 3.17 (1) applied to � would give us another disk with at least L � 4 tp-bonds,

which is impossible again since L � 4 > L=2.

We claim that all disks of � belong to D. Indeed, let �.…/ denote the subdiagram

formed by a disk … from D and all the tp- and tq-bonds at …. Consider the maximal

van Kampen subdiagram E between neighboring �.…/ and �.…0/; see Figure 11. If E

contains a disk, then it has a disk � provided by Lemma 3.17 (1). It has at least L � 3

Qt -spokes in E. But the number of its spokes ending either on p or on q is less than L � 5

since � does not belong to D. It follows that a pair of Qt -spokes connects � with … or with

…0 in a van Kampen subdiagram, which is impossible by Lemma 3.16. Thus, every disk

… of � has to belong to the set D.

The number of Qt spokes at a disk … from D is L, and at most two Qt -spokes connect it

with neighboring disks from D. So there are at least .L � 2/ � 2 D L � 4 tp- and tq-bonds

at …. As above, the number of the tp-bonds at … is less than L=2, whence the number of

tq-bonds of it is greater than L � 4 � L=2 D L=2 � 4 > 0. Similarly, there are > L=2 � 4

tp-bonds at …; and the lemma is proved.
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Lemma 7.3. There is a recursive function f such that the integers k and l do not exceed

f .kU k C kV k/, provided the words U and V have no q-letters.

Proof. By Lemma 3.17 (2) the annular diagram � contains no disks, and so it is a roll.

Assume first that � has no .�; q/-cells.

Step 1. If the words U; V have no � -letters, then by Lemmas 7.2 and 3.4, every maximal

� -band T of � is an annulus surrounding the hole, and has side labels of the form .U 0/k ,

where U 0 is U or, due to a superscript, a copy of U . This obviously bounds the number of

such labels in terms of kU k, and since we may assume that different � -annuli do not copy

each other, every vertex of p can be connected with a vertex of q by a path of bounded

length. If two such paths x1 and x2 define a van Kampen subdiagram with boundary

x1y1x�1
2 y�1

2 , where

Lab.x1/ � Lab.x2/; Lab.y1/ D V l 0

; Lab.y2/ D U k0

with jk0j < k and jl 0j < l , then we obtain a contradiction with the choice of k and l . But the

absence of pairs of such cuts x1; x2 bounds the exponents k and l in terms of kU k C kV k

since the labels of such cuts belong to a bounded set.

The dual argument works if the words U; V have no Y -letters.

We may also assume that � has no Y -bands starting and terminating on p (resp. q).

Indeed otherwise there is a rim a-band, and removing it, we replace U (resp. V ) with a

conjugate word xU , such that j xU ja < jU ja and j xU j� D jU j� ; this replacement is effective.

Step 2. As in Step 1, � has no .�; q/-cells, but now U contains � -letters. By Lemma 7.2,

it remains to assume that every maximal � -band of � connects the contours p and q. The

same is true for maximal Y -bands as we noticed in the previous paragraph. It follows that

kjU jY D jU kjY D jV l jY D l jV jY and therefore

jU jY

jV jY
D

l

k
: (7.2)

Since the numbers jU jY and jV jY are less than kU k C kV k, it follows from (7.2) that k

and l have a common divisor d such that k D dk0 and l D dl 0, where k0; l 0 < kU k C kV k.

If d D 1, then k; l < kU k C kV k, i.e., we get a desired upper bound. Proving by contradic-

tion, we assume now that d > 1. The words U 0 � U k0

and V 0 � V l 0

have equal Y -length

since their d -th powers U k and V l have equal Y -length.

Without loss of generality, we may assume that U starts with a Y -letter a. Let p0 be

a subpath of p labeled by U 0a. Let us denote by T1 and T2 the maximal Y -bands starting

with the first and the last edges of p0. They end on q, and we get a van Kampen subdiagram

� bounded by p0, by a subpath q0 of q and by the sides of T1 and T2. Since all maximal

Y -bands of � connect p0 with q0, we have jq0jY D jp0jY , and so Lab.q0/ � V 0a. (Here we

may replace the word V 0 with a cyclic permutation of it.)
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The boundary label of �nT2 is T1V 0T �1
2 .U 0/�1, where T1 and T2 are side labels of

T1 and T2, respectively, and so we obtain

T2 D .U 0/�1T1V 0 (7.3)

in G. Also, cutting � along the side of T1, we have in G:

T �1
1 .U 0/d T1 D .V 0/d (7.4)

because the paths p and q are labeled by .U 0/d and .V 0/d , respectively.

Both diagrams � and � contain only .�;a/-cells, and they are diagrams over the group

G�a generated by Y -letters and � -letters only, which satisfy only .�; a/-relations from the

sets (3.1)–(3.3). The form of the .�;a/-relations implies the existence of a homomorphism

� of G�a onto the free group F generated by � -letters: � is identical on � -letters and trivial

on Y -letters. On the one hand, equality (7.4) gives us

�

�.T1/�1�.U 0/�.T1/
�d

D �.V 0/d ;

which implies �.T1/�1�.U 0/�.T1/ D �.V 0/ in the free group F , and so

�.T1/ D �.U 0/�1�.T1/�.V 0/:

On the other hand, we get

�.T2/ D �.U 0/�1�.T1/�.V 0/

from (7.3). Therefore we have �.T2/ D �.T1/ in F , whence T2 D T1 in G, because T1 and

T2 contain only � -letters. Now the equalities T2 D T1 and (7.3) give us the conjugation of

the words U 0 D U k0

and V 0 D V l 0

in G, where k0 < k and l 0 < l , which contradicts the

choice of the pair .k; l/.

Step 3. If � contains .�; q/-cells, then by Lemma 3.4, every maximal q-band of � is a

q-annulus surrounding the hole of � since a roll has no q-edges in the boundary. By the

same lemma, every maximal � -band crossing a q-annulus C connects p and q and cannot

intersect C twice. Therefore all q-annuli have length jU jk
�

, and the boundary label of each

of them is a k-th power with the length of base bounded from above by kU k. Since one

may assume that two different q-annuli do not copy each other, the number of q-annuli is

effectively bounded. Therefore the solution of power conjugation is reduced to the annular

diagrams between the annuli, where there are no .�; q/-cells. Since the number of such

annular diagrams is bounded, the problem is reduced to the case considered in Step 2,

because one can use the transitiveness: if U k is a conjugate of V l and V r is a conjugate

of W s , then U kr is a conjugate of W sl .

Lemma 7.3 is proved.

For any disk … of the diagram �, we have a tq-bond � at … by Lemma 7.2, because

L=2 � 4 > 0. If there is a � -band of � connecting the two spokes bounding � , then there
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is such a � -band T closest to …. Let E be the subdiagram of � formed by … and T .

One may apply Lemma 3.20 and replace E with a diagram E 0 formed by a new disk …0

and a � -band T
0. This transformation replaces � with the tq-bond � 0 D �nT at …0. The

iteration of such transformation replaces the tq-bond � with a tq-bond �0 at a disk …0,

where there are no � -bands connecting Qt -spokes C and C
0 at …0.

Lemma 7.4. The perimeter of …0, the lengths of the Qt -spokes C , C
0, and the length krk of

some path r of � -length 0 connecting …0 and q in �0 are effectively bounded from above

in terms of kV k.

Proof. The quadratic upper bounds for the lengths C , C
0, and @…0 in terms of the length

of the subpath x of q connecting C and C
0 is given by Lemma 6.1. However we have

kxk < kV k since the equality �.V / D 0 implies that the word V contains at least L

Qt -letters, but x has only two Qt -edges by Lemma 7.2. It remains to define the path r. This

path starts from …0, where the q-band C starts, but it is a side of a maximal � -band T0

of �0. Then T0 must end on q by the definition of �0. The length of r is bounded by

Lemma 6.1 since the perimeter of �0 is bounded and the number of cells in �0 is also

effectively bounded by Lemma 3.21.

By Lemma 7.2, all disks of � can be moved toward q in the same way we have moved

…. So we obtain an annular diagram z�, where by Lemma 7.4, each disk … has effectively

bounded perimeter and is connected with q by a path r D r.…/ having effectively bounded

length and jrj� D 0. The obtained annular diagram z� has the same boundary labels as �,

but it is not necessarily minimal. Every disk … can be removed from z� if one makes the

cut along r�1, around … and back along r. After removal of all the disks, we obtain a

diskless annular diagram �0. See Figure 12.

�0

Q�

p

q

Figure 12. �0 is obtained by cutting off all disks from z�.

We may keep notation p and q for the boundary components of z�, where p is also

the outer boundary component of �0. If �0 is not reduced, we replace it with a reduced

annular diagram with the same boundary labels. So we will assume that �0 is a reduced

annular diagram and z� is built of �0 and disks. The inner contour q0 of �0 is obtained

from q by inserting pathes z D z.…/ for every disk …, where jzj� D 0 and the length kzk

is effectively bounded in terms of kV k.
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Lemma 7.5. There is no � -band in �0 which starts and ends on q0 or starts and ends

on p.

Proof. Every path z D z.…/ has no � -edges. Therefore a � -band T starting and ending

on q0 has to start and end on q. So the word V has � -letters, and there is van Kampen

subdiagram � in z�, where the boundary of � has form uv, where u is a side of T and

Lab.v/ has no � -letters except for the first and the last letter; whence Lab.v/ is a subword

of a cyclic permutation of V ˙1. The diagram � can be replaced with a minimal diagram

with the same boundary label whose two � -edges have to be connected by a � -band. But

this is not possible for the adapted word V . The p-version of the lemma admits a similar

proof.

Lemma 7.6. There is a recursive function f such that the integers k and l do not exceed

f .kU k C kV k/ provided the path p has no � -edges.

Proof. It follows from Lemmas 3.4 and 7.5 that every maximal � -band of �0 is an annulus

crossing every maximal q-band starting on p exactly once. Therefore all maximal q-bands

starting on p have equal histories. The history and the one-letter base determine side labels

of a q-band up to superscripts. If we have two maximal q-bands C and C
0 starting with

two edges e and e0 of a subpath efe0 of p and the length kef k is a multiple of kU k, then

the corresponding superscripts must be equal by Remark 3.3 since �.U / D 0 in (7.1), that

is, C and C
0 have equal side labels. So there is a set S of different sides with equal labels,

where #.S/ � k.

An arbitrary path s from S either connects p and q or ends on a disk … of z�. In the

latter case the path s can be extended by a subpath x of the path z.…/. The extension s0

connects p and q. The lengths of all z.…/ and so the lengths of the extending paths x were

bounded in terms of kV k, i.e., by g.kV k/ for a recursive function g, in Lemma 7.4. So the

number of possible labels Lab.x/ is bounded by an exponential function of g.kV k/, where

the base of the exponent depends on the number of generators of the group G. Hence there

is a set of paths S0 with equal labels, connecting p and q, where #.S0/ > c0k, where .c0/�1

is effectively bounded from above.

An arbitrary path s0 2 S0 starts with a vertex of p, which decomposes the period U of

Lab.p/ as U � U1U2. Similarly, the end of s0 gives a factorization V � V1V2. If two cuts

s1; s2 2 S0 define the same factorizations of the words U and V , we say that these cuts

are compatible. Since the number of factorizations of the words U and V are bounded,

there is a set of pairwise compatible paths S00 � S 0 with #.S00/ > c00k, where the positive

constant c00 is effectively bounded from below. However two different compatible cuts

from S00 together with parts of p and q bound a simply-connected diagram with the label

T .U 0/k0

T �1.V 0/�l 0

, where T is the label of these cuts, U 0 and V 0 are cyclic permutations

of the words U and V , respectively, and k0 < k, l 0 < l . It follows that the powers U k0

and

V l 0

are conjugate in the group G contrary to the choice of k and l . Hence c00k � 1, which

effectively bounds k from above. Lemma 7.2 linearly bounds the q-length of the path q in

terms of jpjq . Therefore the exponent l is also effectively bounded.
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Lemma 7.7. There is a recursive function f such that the integers k and l do not exceed

f .kU k C kV k/, provided the path p has � -edges and q-edges.

Proof. Step 1. Let C be a maximal q-band of �0 starting on p. As in Lemma 7.2, it ends

on q0 since the word U is adapted. If a � -band T starting from p crosses C from left to

right, then it follows from Lemma 3.4 that it cannot also cross C from right to left. Also

there is no other � -band T
0 starting on p and crossing the q-band C from right to left since

both T and T
0 cannot cross each other but both should end on q0. Therefore, all maximal

� -bands consequently crossing C and starting from p cross C from left to right (or cross

it from right to left). It follows that these � -bands start with consecutive � -edges of p,

and so the history of C is a periodic word whose period is the � -projection of U because

Lab.p/ � U k . Moreover, the histories of all maximal q-bands starting on p are periodic

words with the same period H , where 0 < kHk < kU k.

Furthermore, a side label of C is a periodic word with a period u, where juj� D jU j� .

To prove this, one should show that the cell � number a in C (counting from p) is a

copy of the cell � 0 having number a C jU j� in C . Indeed, if a � -band T (resp. T
0) starts

on p and crosses q-bands b times (resp. b0 times) before it crosses C at � (resp. at � 0),

then b � b0 D jU j� . Since T and T
0 have the first � -edges labeled by the same letter, by

Remark 3.3, we have equal superscripts when T and T
0 cross C at � and � 0, respectively,

because �.U / D 0 in (7.1).

Step 2. As in Lemma 7.6, a side y of every maximal q-band admits a continuation x D yz

in z�, where the length of z is bounded, and we have a set S of such compatible cutting

paths x1; x2; : : : ; xr (xi D yi zi ), starting with different vertices of p, and so, all the begin-

nings y1; y2; : : : ; yr are the side labels of q-bands C1; : : : ; Cr starting with the edges of p

with the same base letter q0. We add the additional requirement that the prefixes of length

kHk of all words Lab.y1/; : : : ; Lab.yr / are equal (say, the histories of the correspond-

ing q-bands Ci start with H ), and still have r > ck, where the positive constant c�1 is

recursively bounded from above in terms of kU k C kV k.

Since the side label of the q-bands Ci are compatible and �.U / D 0, we have Lab.x/ �

usv, for every x 2 S, where s D s.x/ and the word v has bounded length. So changing the

constant c effectively, one may assume that the suffixes v are the same for every x 2 S.

Then it follows that we have sufficiently many different pairs of different paths .x0; x00/

from S, the origins .x0/� and .x00/� of which are ‘close’ to each other; more precisely, the

number of disjoint pairs .x0; x00/ 2 S2, where the subpath of p connecting .x0/� and .x00/�

has length � 3c�1 is greater than r=4. Let P be the set of such pairs.

Step 3. We want to bound from above the lengths kx0k;kx00k for arbitrary pair .x0;x00/ 2 P.

Thereby the number of different labels of the paths from such pair will be effectively

bounded. However two compatible cutting paths from S cannot have equal labels, since as

in Lemma 7.6, this would lead to a contradiction with the minimality of the pair .k; l/.

Let E be a van Kampen subdiagram of z� with boundary path x0q0.x00/�1.p0/�1, where

.x0; x00/ 2 P, p0 and q0 are subpaths of p and q, respectively, and so kp0k � 3c�1 and
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jp0jq � 3c�1. This implies that jq0jq � c�1L since every maximal q-band starting on q

ends either on p or on a disk, which is also connected to p by q-bands.

Replacing the words U and V with cyclic permutations, we may assume that

Lab.p0/ � U a and Lab.q0/ � V b for some a; b > 0:

Step 4. Recall that x0 D y0z0, where the length of z0 is bounded and y0 is a side of a

maximal q-band C
0 stating on p. Similarly, we have C

00 and x00 D y00z00. If E has a � -band

connecting C
0 and C

00, we have a trapezium � of maximal height formed by such � -bands

and parts of C
0 and C

00. Two components of En� (just one if � is empty) have maximal

q-subbands of bounded lengths since maximal � -bands crossing them have at least one

end on p0 or q0. Thus, it remains to bound the height h of � .

By Lemma 3.10 (1), the top and the bottom labels W0 and Wh of � are the first and

the last permissible words of a computation W W W ;
0 ! � � � ! W ;

h
with periodic history

having period H . Therefore by Lemma 2.5 the height h is recursively bounded in terms of

kW0k, kWhk, and kHk, provided there is no subcomputation W ;
i ! � � � ! W ;

j of W with

history H and with W ;
i � W ;

j . Then it follows that h is also effectively bounded in terms

of kU k C kV k, as desired. Thus to complete the proof by contradiction, we assume now

that W contains a subcomputation W ;
i ! � � � ! W ;

j with history H and with W ;
i � W ;

j .

Step 5. It follows from Lemma 3.10 (2) that the trapezium � contains a subtrapezium � 0

corresponding to the subcomputation W
0 W W ;

i ! � � � ! W ;
j . Since W ;

i � W ;
j , we have

Wi � Wj , because � is bounded by subbands of C and C
0, which are copies of each other,

and so the corresponding letters of Wi and Wj have equal superscripts by Remark 3.3.

Consider now the following auxiliary surgery. Since Wi � Wj , one can make a cut

along a side of a � -band of � labeled by Wi and insert a trapezium �.n/ with history H n,

where n > 1. The obtained trapezium �n has the same top/bottom labels, has H -periodic

history, but hn � h D nkHk, where hn is the height of �n. This surgery also replaces the

diagram E D E0 with a diagram En. See Figure 13.

Recall that by the definition of the set of cuts S, both words Lab.x0/ and Lab.x00/ are

equal to usv and ut v with bounded length of v, Lab.p0/ � U a, Lab.q0/ � V b . Since

usv

U a

V b

E
ur v usCnv

U a

V b

En
urCnv

Figure 13. Subdiagram E and diagram En.
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a < k and b < l , we have t ¤ s, and without loss of generality, we may assume that

t > s. Thus, the boundary label of E gives us the equality ut v D U �ausvV b in G. For

n D .t � s/, the diagram En provides us with the equality utCnv D U �ausCnvV b , i.e.,

usv D U �ausCnvV b . Similarly, from E2n; E3n; : : : , we obtain

usv D U �ausCnvV b;

usCnv D U �ausC2nvV b;

:::

usC.l�1/nv D U �ausCnlvV b :

On the one hand, it follows that

usv D U �ausCnvV b D U �2ausC2nvV 2b D � � � D U �lausClnvV lb (7.5)

in G. On the other hand, cutting � along the path x0, we obtain a diagram whose boundary

label gives us usv D U �kusvV l in G, whence usv D U �kbusvV lb , which together with

(7.5) gives

uln D U la�kb : (7.6)

Step 6. To obtain the final contradiction, it remains to show that the equality (7.6) is

impossible in G.

The word u is a label of a side of a reduced q-band. Therefore its label is a word with

non-empty cyclically reduced �-projection onto the free group generated by � -letters. If

kb � la D 0, then by Lemmas 3.18 and 3.4, the minimal diagram for the equality uln D 1

has neither disks nor .�; q/-cells. So it is a diagram over a group generated by � - and

Y -letters. Then the homomorphism � gives the equality �.u/ln D 1 in the free group, a

contradiction.

If kb � la ¤ 0, then the van Kampen diagram �0 corresponding to (7.6) has no disks.

Indeed, otherwise by Lemma 3.17 (1), we have a disk with s � L � 3 consecutive Qt -

spokes C1; : : : ; Cs ending on the boundary subpath labeled by U kb�la, because u has no

q-letters. If there are no other disks between neighbor Ci and CiC1 (i D 1; : : : ; s � 1),

then we have a contradiction with the property that U is an adapted word. If there is a disk

in a diagram �i , between some Ci and CiC1, then again Lemma 3.17 (1) provides us with

a disk � in �i , contrary to the definition of adapted word. Every maximal q-band of �0

has to start and end on the boundary subpath labeled by the power of U , and so there is a

q-band starting and ending on a subpath labeled by a cyclic permutation of U ˙1, which

is impossible since the word U is adapted. Hence U cannot contain q-letters, contrary to

the assumption of the lemma.

Proof of Theorem 1.3. (1) To decide if some powers U k and V l with non-zero exponents

are conjugate in G, we may assume by Lemma 7.1 that the words U and V represent ele-

ments of infinite order. Also it can be assumed that equality (7.1) holds and that the words

U and V are adapted according to Lemma 6.2. If both U and V have no q-letters, then the
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exponents k; l can be effectively bounded in terms of kU k C kV k by Lemma 7.3. Other-

wise the recursive bounds for k and l are given by Lemmas 7.6 and 7.7. This reduces the

power conjugacy to the conjugacy of words of bounded length. Since the conjugacy prob-

lem for pairs of words of infinite order is decidable by Theorem 1.4, the power conjugacy

problem is decidable in G. The group G has undecidable conjugacy problem and quadratic

Dehn function by Lemmas 4.2 and 3.21 if the machine M0 is chosen with non-recursive

language of accepted input words. Thus, Theorem 1.3 (1) is proved.

(2) Let us start with McCool’s group

…2 D
˝

yn; zn .n D 1; 2; : : : / j ynzn D znyn; y�.n/ D zn
�.n/ .n D 1; 2; : : : /

˛

;

where � is a recursive one-to-one function with a non-recursive range. This group has

decidable word problem [19], and so it has decidable conjugacy problem, being a free

product of abelian groups. It follows from the relations that some powers of yi and zi are

conjugate if and only if they are equal, and we can obtain such an equality if and only

if i belongs to the range of the function �. Since this range is not recursive, the power

conjugacy problem is undecidable in the group …2.

By [25, Theorem 3], the countable group …2 with decidable conjugacy problem

embeds in a 2-generated group K with decidable conjugacy problem. Moreover, by [25,

Lemma 8 (6)], this embedding has the Frattini property, i.e., two elements from the sub-

group …2 are conjugate in K if and only if they are conjugate in …2. Hence the power

conjugation problem is undecidable in K too.

Finally, by [24, Theorem 1.1] the finitely generated group K having decidable conju-

gacy problem Frattini embeds in a finitely presented group with decidable conjugacy prob-

lem. Thus, the power conjugacy problem is undecidable in H too, and Theorem 1.3 (2) is

proved.
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