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Abstract

Captions that describe or explain charts help im-
prove recall and comprehension of the depicted
data and provide a more accessible medium for
people with visual disabilities. However, cur-
rent approaches for automatically generating
such captions struggle to articulate the percep-
tual or cognitive features that are the hallmark
of charts (e.g., complex trends and patterns). In
response, we introduce VisText: a dataset of
12,441 pairs of charts and captions that describe
the charts’ construction, report key statistics,
and identify perceptual and cognitive phenom-
ena. In VisText, a chart is available as three rep-
resentations: a rasterized image, a backing data
table, and a scene graph — a hierarchical rep-
resentation of a chart’s visual elements akin to
a web page’s Document Object Model (DOM).
To evaluate the impact of VisText, we fine-tune
state-of-the-art language models on our chart
captioning task and apply prefix-tuning to pro-
duce captions that vary the semantic content
they convey. Our models generate coherent,
semantically rich captions and perform on par
with state-of-the-art chart captioning models
across machine translation and text generation
metrics. Through qualitative analysis, we iden-
tify six broad categories of errors that our mod-
els make that can inform future work.

1 Introduction

Studies have shown that captions can improve the
recall and comprehension of the data that charts
depict (Hegarty and Just, 1993; Large et al., 1995).
For instance, when a caption emphasizes visually
prominent features of a chart, like a peak or a
sharply declining trend, readers treat this infor-
mation as the key takeaway (Kim et al., 2021).
Moreover, for people with visual disabilities, cap-
tions (or equivalent descriptions such as alt text)
are often the only means of accessing the presented
data. However, as evidenced by numerous guide-
lines (Jung et al., 2021), producing high-quality
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chart captions is a non-trivial and laborious manual
process. Thus, despite these advantages, charts are
only rarely captioned in practice (Lundgard and
Satyanarayan, 2022).

To bridge this gap, several research communi-
ties have begun to explore methods for automat-
ically generating chart captions, including using
templates and heuristics (Demir et al., 2008; Srini-
vasan et al., 2019), adapting image captioning tech-
niques (Balaji et al., 2018; Chen et al., 2019a),
or via data-to-text machine translation (Kantharaj
et al., 2022; Obeid and Hoque, 2020). While
promising, these approaches have largely produced
captions that either describe a chart’s construction
(e.g., “The graph is plot between ’Number of peo-
ple’ x-axis over ’Movie Genres’ y-axis” (Balaji
et al., 2018)) or provide statistical summaries (e.g.,
“Machinery and equipment was the most valuable
commodity for Singapore in 2019” (Kantharaj et al.,
2022)). However, these captions do not articulate
the perceptual and cognitive features that make
charts a distinctive and compelling medium for
communicating data (e.g., “Prices of Big Tech cor-
porations seem to fluctuate but nevertheless in-
crease over time” (Lundgard and Satyanarayan,
2022)). Indeed, as Lundgard and Satyanarayan
(2022) find, both sighted and blind readers strongly
prefer captions that express this type of content.

To automatically produce such semantically
richer captions, we introduce VisText: a bench-
mark dataset of 12,441 pairs of charts and captions.
VisText makes two key extensions over prior ap-
proaches. First, VisText offers three representa-
tions of charts: a rasterized image and backing data
table, as in previous work; and a scene graph, a
hierarchical representation akin to a web page’s
Document Object Model (DOM), that presents
an attractive midpoint between the affordances of
chart-as-image and chart-as-data-table. Second, for
each chart, VisText provides a synthetically gen-
erated caption detailing its construction as well as



a crowdsourced caption describing its statistical,
perceptual, and cognitive features. These crowd-
sourced captions represent a substantial increase
in data over prior comparable datasets (Mahinpei
et al., 2022; Kantharaj et al., 2022).

To demonstrate the possible uses of the VisText
dataset, we train three classes of models — text-
based caption models, image-guided captioning
models, and semantic prefix-tuning. Text-based
captioning models fine-tune large language models
for VisText’s chart captioning task, revealing that
both data table and scene graph representations can
produce compelling and semantically rich captions.
Following recent advancements in image-guided
translation (Sulubacak et al., 2020), we leverage
the additional visual affordances in chart images
to develop image-guided chart captioning models.
Finally, since users often have varying preferences
about the type of semantic content in their cap-
tions (Lundgard and Satyanarayan, 2022), we ap-
ply semantic prefix-tuning to each of our models,
enabling them to output customizable captions.

Our models generate coherent, semantically rich
captions across the VisText charts. Evaluating
against standard machine translation and text gen-
eration metrics reveals that our models consistently
output captions that accurately describe the chart’s
construction, such as its chart type, title, and axis
ranges. Through qualitative analysis of our model’s
captions, we find that our model competently out-
puts semantically rich captions that describe data
trends and complex patterns. Further, we catego-
rize six common captioning errors that can inform
the future development of chart captioning models
on the VisText dataset.

The VisText dataset and source code are
available at: https://github.com/mitvis/
vistext.

2 Related work

Heuristic-Based Chart Captioning. Automati-
cally generating natural language descriptions of
data tables dates back to Reiter and Dale (1997).
Demir et al. (2008, 2010, 2012) survey this early
work and describe the process of extracting insights
from a chart by evaluating a list of propositions and
composing selected propositions together to pro-
duce a natural language summary. More recently,
data visualization researchers have explored heuris-
tics that calculate summary statistics and templates
to assemble natural language “data facts” (Srini-

vasan et al., 2019) or descriptions (Cui et al., 2019).
While useful, these approaches yield standardized
descriptions that lack the variation and linguistic
construction that characterize semantically rich cap-
tions (Lundgard and Satyanarayan, 2022).

Chart Captioning as Image Captioning. With
rapid advances of neural image captioning (Vinyals
et al., 2015; Anderson et al., 2018), researchers
have begun to adapt these methods for captioning
charts. For instance, Balaji et al. (2018) develop
a deep learning pipeline that ingests a PNG chart
image, classifies the chart type, detects and classi-
fyies textual content present in the chart, and uses
this information to generate a textual description.
Chen et al. (2019a,b, 2020) propose a simpler work-
flow using ResNet to encode the chart image and
an LSTM with Attention to decode it into a natu-
ral language description. Both approaches share
a pair of limitations. The captions they produce
convey relatively simplistic information about the
chart (e.g., title, axis labels, etc.) or articulate con-
cepts in visual rather than data terms (e.g., “Dark
Magenta has the lowest value”). While both ap-
proaches contribute associated datasets, their charts
and captions are synthetically generated and may
not represent real-world counterparts. SciCap (Hsu
et al., 2021) addresses this limitation by scraping
real-world charts from 290,000 arXiv papers; how-
ever, the baseline models trained on this dataset
struggle to generate semantically rich captions.

Chart Captioning as Text Translation. Per-
haps closest to our contribution is recent work mod-
eling chart captioning as a data-to-text problem.
For instance, Spreafico and Carenini (2020) train
an encoder-decoder LSTM architecture to generate
a natural language caption from time series data.
Similarly, Obeid and Hoque (2020) and Kantharaj
et al. (2022) explore how transformer architec-
tures can translate tabular structures into captions.
These data-to-text methods are more successful
than chart-as-image captioning, yielding captions
that better capture relevant information from the
charts and have higher BLEU scores. Nevertheless,
we observe two limitations with these data-to-text
approaches that motivate our contribution. First,
data-to-text methods are heavily reliant on access
to a chart’s data table. In practice, data tables are
only rarely published alongside charts and meth-
ods that recover equivalent information via OCR
experience a significant drop in performance (Kan-
tharaj et al., 2022). Second, the associated datasets
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do not contain sufficient training examples of cap-
tions that express semantically rich insights about
the depicted data (i.e., the perceptual and cognitive
phenoma that distinguish charts as a medium as dis-
tinct from data tables (Lundgard and Satyanarayan,
2022)). As a result, while the generated captions
are compelling, they are largely limited to report-
ing statistics which sighted and blind readers prefer
less than captions that convey complex trends and
patterns (Lundgard and Satyanarayan, 2022).

3 The VisText Dataset

We designed the VisText dataset in response to two
limitations existing datasets present for generating
semantically rich chart captions. First, existing
datasets represent charts as either rasterized images
or as data tables. While useful, these representa-
tions trade off perceptual fidelity and chart seman-
tics in mutually exclusive ways — images capture
the perceptual and cognitive phenomena that are
distinctive to charts (e.g., trends or outliers) but pix-
els cannot express the rich semantic relationships
between chart elements (e.g., estimating plotted
data values using axis labels). While the vice-versa
is true (Lundgard and Satyanarayan, 2022), tables
also present additional caveats. There is not always
a one-to-one relationship between the semantics of
a data table and chart (i.e., one data table may be
the source for several distinctly different charts).
Moreover, data tables are rarely published along-
side charts; and, automatic data table extraction is
error-prone due to the diversity of chart types and
visual styles as well as the difficulty of reasoning
about visual occlusion (Kantharaj et al., 2022; Luo
et al., 2021; Jung et al., 2017)).

Second, if existing datasets provide captions that
describe perceptual or cognitive features, these cap-
tions comprise only a small portion of the dataset.
At best, LineCap (Mabhinpei et al., 2022) offers
3,528 such captions for line charts only, while
Chart-to-Text (Kantharaj et al., 2022) estimates
that roughly 15% of the sentences in its captions
across a variety of chart types express such content.

In contrast, VisText provides 12,441 crowd-
sourced English captions that articulate statistical,
perceptual, and cognitive characteristics of bar, line,
and area charts. In VisText, charts are available as
not only data tables and rasterized images but also
as scene graphs. Scene graphs are hierarchical
representations that better preserve perceptual fi-
delity and chart semantics, are often the format for

publishing web-based charts, and can be recovered
from chart images (Poco and Heer, 2017).

3.1 Data Table Collection

The data tables found in VisText are sourced from
the Statista dataset of the Chart-to-Text bench-
mark (Kantharaj et al., 2022). The tables were
collected by crawling Statista.com in December
2020 and contain real-world data related to tech-
nology, trade, retail, and sports. We process these
tables to make them amenable for chart generation,
including stripping formatting symbols (e.g., $ and
%), standardizing data strings, and identifying the
measure type of each column (i.e., quantitative, cat-
egorical, or temporal). Data tables are discarded if
they do not contain at least one quantitative field
and one categorical or temporal field, or if other
errors occur during the processing steps. We fur-
ther down select to data tables containing between
2 to 20 columns and 10 to 500 rows. If a data table
has over 500 rows, we randomly sample rows. In
larger data tables, this step potentially affects how
salient a trend is.

3.2 Chart Generation and Representation

Charts in the Chart-to-Text Statista dataset all fea-
ture the same layout and visual appearance. In
contrast, we aim for richer visual diversity by gen-
erating charts using the Vega-Lite visualization li-
brary (Satyanarayan et al., 2016) via the Python
Altair package (VanderPlas et al., 2018). To facili-
tate collecting high-quality captions, we focus on
univariate charts: charts that depict one quantita-
tive observation against a categorical or temporal
variable. This focus is informed by recent work in
the data visualization research community which
has chosen single-series line charts as the target of
study for natural language descriptions (Kim et al.,
2021; Stokes et al., 2022). VisText also includes
single-series bar and area charts as they typically
exhibit similar perceptual features to line charts.

For each data table, we iterate through pairs of
univariate fields. If the pair contains a temporal
field, we randomly generate an area or line chart; if
the pair contains a categorical field, we randomly
generate a horizontal or vertical bar chart. For diver-
sity in layout and visual appearance, we randomly
rotate axis labels and apply one of fourteen themes
provided by the Vega-Lite library. These themes
mimic the visual style of common chart platforms
or publishers (e.g., ggplot2 or the LA Times).
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Figure 1: The VisText dataset consists of 12,441 charts represented as a rasterized image, data table, and scene
graph. Before model training, each data table and scene graph is processed from its original form (shown) to a
minimized and linearized text representation. Each chart is accompanied by a generated L1 caption describing the
aspects of the chart’s construction (e.g., chart type and axis labels) and a crowdsourced L2/L.3 caption describing
summary statistics and interesting trends (Lundgard and Satyanarayan, 2022).

In VisText, each chart is represented as a ras-
terized image, stored as an RGBA-encoded PNG
file, as well as a scene graph. A scene graph is a
textual representation of the rendered chart similar
to a web page’s Document Object Model (DOM).
Scene graphs encode the position, value or content,
and semantic role of all visual elements within a
chart, including the individual marks (i.e., bars or
points along the line), titles, axes gridlines, etc.
Thus, scene graphs express the perceptual features
of rasterized images in a more computationally-
tractable form.

Scene graphs are a standard data structure
for representing vector-based graphics — the most
common format for publishing visualizations —
and, thus, can be trivially recovered (e.g., by
traversing the SVG text string). We extract the
scene graph directly from the rendered chart us-
ing the Vega-Lite API. As most text generation
models expect a linear set of input tokens, we flat-
ten the scene graph via a depth-first traversal. To
scale to large language models, we need to fur-
ther reduce the size of the scene graph. Thus, we
preserve the following elements which we hypoth-
esize as being most critical for generating seman-
tically rich captions: title, title coordinates,
axis labels, axis label coordinates, axis
tick coordinates, mark coordinates, and
mark sizes. VisText includes both the original (hi-
erarchical) and reduced (linearized) scene graphs.

3.3 Caption Generation and Collection

Our captioning process is guided by the framework
developed by Lundgard and Satyanarayan (2022),
which identifies four levels of semantic content: L1
content enumerates aspects of the chart’s construc-
tion (e.g., axis ranges); L2 content reports summary

statistics and relations (e.g., extrema); L3 content
synthesizes perceptual and cognitive phenomena
(e.g., complex trends); and, L4 content describes
domain-specific insights (e.g., sociopolitical con-
text). In subsequent studies, the authors find that
while sighted readers typically prefer higher levels
of semantic content, blind readers are split about
the usefulness of L1 and L4 content. Thus, given
these differing preferences, we define a single cap-
tion to express multiple levels of content separated
across clauses or sentences. We only consider the
first three levels of this model, and leave L4 content
to future work. Following guidelines prescribed by
the National Center for Accessible Media (NCAM),
our captions begin with L1 content and then turn
to L2 and L3 content (Gould et al., 2008).

We algorithmically generate L1 content and use
a crowdsourced protocol to collect L2 and L3 con-
tent. This approach follows (Lundgard and Satya-
narayan, 2022)’s computational considerations as
well as results from Morash et al. (2015) who find
that, even with instructions and guidelines, crowd
workers do not describe a chart’s structural ele-
ments sufficiently for blind readers. Thus, synthet-
ically generating L1 content allows us to ensure
that captions convey complete descriptions of the
chart’s structural elements. L1 content comprises
1 sentence conveying the chart type and title, and
then 1 -2 sentences describing the axes (including
the titles, ranges, and scales). We use template
randomization to generate a diverse range of L1
captions to mimic human variability and reduce
the capacity of the model to overfit to a single L1
style. Three templates are defined for the first sen-
tence and twenty-six template combinations for
the subsequent sentences. During generation, we
randomly select a pair of templates and fill in in-
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Figure 2: The VisText dataset contains data table and scene graph representations of each chart paired with L1 and
L2/L3 captions. The distributions and means (dotted lines) of representations (left pair) and captions (right pair) are
shown. As the distribution of chart representations has a long tail, we split it into two charts at 2,500 characters to
better display the tail by re-scaling the y-axis of the second chart.

formation from the abstract chart specification. For
additional diversity, we randomly drop scale infor-
mation and swap template words with synonymes.
Templates and synonym replacements are listed in
Appendix E.2.

To crowdsource L2 and L3 content, we extend
the protocol used by Lundgard and Satyanarayan
(2022). After soliciting consent, we introduce the
task: participants are presented with a chart image
and corresponding L1 description; they are asked
to write a description about the trends and pat-
terns they observe without drawing on background
knowledge or repeating L1 information. The in-
troduction provides examples and explanations of
valid and invalid responses. After acknowledging
these examples, participants are asked to complete
5 random iterations of the task. To maximize the
quality of our crowdsourced captions, we manually
curated the charts and L1 descriptions used in the
study. We discarded any charts that were challeng-
ing to read (e.g., colors were too similar, marks
were not easily readable, etc.). Participants were
recruited on the Prolific.co platform, took approxi-
mately 14 minutes to complete the study, and were
compensated $3.25 ($14/hour). Additional details
on our crowdsourcing process are in Appendix E.3.

We manually verified charts where participants
failed an attention check and discarded invalid de-
scriptions. Additionally, we manually inspected
captions for personally identifiable information or
offensive content. Using heuristics, we removed
captions where respondents described charts as
unclear or illegible and replaced newline charac-
ters with spaces. Although we attempted to fix
incorrect spelling and casing errors using a similar
heuristic-based approach, we observed that this pro-
cess could improperly affect axis and chart names.
As a result, these errors remain in our dataset.

3.4 Dataset Analysis

Figure 2 shows the distribution and means of the
lengths of chart representations and captions. Syn-
thetically generated L1 captions have roughly 1.5x
more characters than crowdsourced L2/L.3 captions
(u = 255 vs. p = 177) but the average num-
ber of sentences are comparable (2.5 vs. 2). The
VisText dataset consists of captions for 3,189 area
charts, 6,238 bar charts, and 3,014 line charts — the
roughly twice-as-many bar charts as area or line
charts corresponds to the randomization of tempo-
ral fields during chart generation (Sec. 3.2). As
some charts have multiple crowdsourced captions,
we randomly split our dataset into training, vali-
dation, and test sets using the chart IDs to prevent
data leakage across sets. This resulted in an approx-
imate ratio of 80:10:10.

Finally, to understand the distribution of seman-
tic content, we manually coded 2% (230) of crowd-
sourced captions. We followed a protocol inspired
by Lundgard and Satyanarayan (2022) by break-
ing sentences down into independent statements
and mapping these statements to their semantic
content level. We marked statements as not catego-
rizable if they did not map to the framework — for
instance, if captions expressed commentary from
crowd workers such as “this chart is hard to read.”
Our analysis revealed 11 L1 statements (2.4%), 180
L2 statements (39.7%), 253 L3 statments (55.7%),
and 10 not categorizable statements (2.2%). While
a handful express L1 content, the bulk of state-
ments (95%) express L2 or L3 content, with ap-
proximately 1.4x L3 statements than L2.

4 Chart Captioning Models

To demonstrate the affordances of the VisText
dataset, we train three classes of models. First,
we fine-tune large language models to translate
from textual chart representations to natural lan-



guage captions. These models evaluate the fea-
sibility and impact of scene-graph models com-
pared to prior data-table approaches (Kantharaj
et al., 2022). Second, as VisText provides multiple
chart representations, we adapt image-guided trans-
lation (Sulubacak et al., 2020; Cho et al., 2021) to
develop two multimodal chart captioning models:
image-scene-graph and image-data-table. Fi-
nally, since VisText offers captions at different se-
mantic levels and prior work has shown significant
differences in readers’ preferences (Lundgard and
Satyanarayan, 2022), we explore prefix-tuned mod-
els that selectively output L1, L2/L3, or L1+L2/L.3
captions. Training details are in Appendix D.

4.1 Text-Based Chart Captioning

Informed by prior work (Kantharaj et al., 2022),
we investigate text translation models for generat-
ing chart captions. In particular, Kantharaj et al.
found that models that translate data tables to chart
captions significantly outperform image caption-
ing models. However, when data tables were not
available, the authors found a significant drop in
their models’ ability to extract relevant information
from the chart— an effect that was only slightly
ameliorated by using OCR methods to extract text
from chart images. In contrast, VisText’s scene
graphs can be more readily recovered from charts
when data tables are not available — for instance,
by processing the SVG format of web-based visu-
alizations. Moreover, scene graphs offer a poten-
tially richer source of information than data tables
as they encode visual properties of the chart (e.g.,
coordinates and colors) and are less noisy than
tokens recovered via OCR. Thus, to evaluate the
feasibility and efficacy of scene graphs, we train a
scene-graph text translation model and a baseline
data-table model for comparison.

For each model, we fine-tune a pretrained ByT5
transformer model (Xue et al., 2022) on the Vis-
Text dataset. We choose ByT5 over TS5 transform-
ers (Raffel et al., 2020) because it uses a token-free,
byte-encoding that eliminates the use of a tokenizer.
As a result, it is robust to noisy inputs, minimizes
the need for text preprocessing, and eliminates the
out-of-dictionary problem. This allows our model
to handle common typographical and chart read-
ing errors in the crowdsourced L2 and L3 captions
and increases generalizability to previously-unseen
words that could be present in chart and axes titles.

4.2 Image-Guided Chart Captioning

Following recent advancements in image-guided
machine translation (Sulubacak et al., 2020), we
train image-guided captioning models using the
VisText dataset. Images have improved text-based
machine translation models by providing visual
information complementary to natural language
inputs. Similarly, chart images can contain visuals
complementary to the textual specification. For
instance, visual affordances that are important for
perceiving a trend (e.g., gestalt relations, relative
sizes/areas, etc.) may be obfuscated in the scene
graph but better captured in the chart image.

We train three image-guided chart caption-
ing models: image, image-scene-graph, and
image-data-table. All models leverage the
vision-language transformer model VL-T5 (Cho
et al., 2021). VL-TS5 is pretrained on image cap-
tioning and visual grounding tasks and was suc-
cessfully applied to machine translation, making
it suitable for chart captioning. We extract vi-
sual features for each VisText chart image using
a Bottom-Up Feature Extractor (Anderson et al.,
2018). To explore the value of images to chart
captioning, our image model only takes in the
image features, while image-scene-graph and
image-data-table concatenate the image fea-
tures with the chart’s textual representations (scene
graph or data table).

4.3 Semantic Prefix-Tuning

In real-world chart captioning settings, users want
to vary the level of semantic content in their cap-
tions. For instance, while some blind users want
verbose captions that describe the chart visuals,
sighted users may only want captions that help
them expose data trends (Lundgard and Satya-
narayan, 2022). To develop models capable of such
customization, we leverage prefix-tuning strategies
alongside VisText’s semantic caption breakdown.
Prefix-tuning specifies a task alongside the input,
permitting a single large language model to per-
form many different tasks. In our setting, we use
prefix-tuning to specify the level of semantic con-
tent to include in the caption (Li and Liang, 2021).

We train each of our models with and without se-
mantic prefix-tuning. With semantic prefix-tuning,
we treat chart captioning as a multi-task fine-tuning
problem, where the model is trained to generate the
L1 and L2/L3 captions separately. In every epoch,
the model sees each VisText chart twice, once with



the L1 prefix and caption and once with the L2/L.3
prefix and caption.

5 Evaluation and Results

To evaluate the VisText dataset and our chart cap-
tioning models, we measure the readability and
accuracy of generated captions and their similarity
to the VisText target caption. We also qualitatively
analyze the descriptiveness of generated L2/L.3 cap-
tions and categorize common errors.

5.1 Quantitative Model Performance

We evaluate the results of our text-based and image-
guided captioning models with and without prefix-
tuning. We also compare to a current state-of-the-
art chart captioning model that uses data table chart
representations and a TS generation model (Kan-
tharaj et al., 2022). To measure the quality of output
captions, we evaluate each model on machine trans-
lation and language generation metrics (Table 1).

Chart images do not support captioning. The
image model performs the worst of all the chart
captioning models. Its low perplexity and high er-
ror rates indicate it is highly confident in its inaccu-
rate captions. While chart images contain the same
information encoded in the chart’s textual represen-
tations, it is presumably not adequately extracted by
the model. Both the image model backbone (Cho
et al., 2021) and the visual feature extractor (An-
derson et al., 2018) are trained on natural images,
making chart images out-of-distribution inputs that
are likely to be poorly represented by these vision
models. As the chart captioning task grows, model
backbones, architectures, and feature extractors
could be customized to chart images, which may
improve image-based chart captioning.

All models produce high quality L1 captions.
In our chart captioning setting, relation genera-
tion (Wiseman et al., 2017) measures how often
the chart title, axis names, and axis scales in the
input appear in the caption. Every model (except
image) achieves a similarly-high relation genera-
tion score, indicating that every model can generate
detailed L1 captions.

Scene graphs perform as well as data tables.
Models trained on scene graph representations
achieve similar performance across the evaluative
metrics to models trained on data tables. As scene
graphs can be more easily extracted from web-

based charts images, they may be the preferred
representation for future chart captioning models.

Image-guiding does not improve captioning.
Our image-guided captioning models do not ex-
perience the significant increase in performance
other image-guided translation tasks report. While
in image-guided translation, images contain sub-
stantial additional information beyond the text, the
image and textual representations in chart caption-
ing often contain highly similar information. The
small amount of additional information in images
might benefit complex captioning tasks on multi-
variate charts or infographics; however, the current
VisText captions rarely reference visual informa-
tion not present in the scene graph or data table.

Prefix-tuning is free. Adding semantic prefix-
tuning to our models does not significantly change
their performance. Models trained with and with-
out prefix-tuning are exposed to the same set of
charts, so it is consistent that prefix-tuning would
not impact the quality of output captions. Given
prefix-tuned models are able to output L1, L2/L.3,
and L1+L2/L3 captions, prefix-tuning may be pre-
ferred if users require semantic customization.

5.2 Qualitative Caption Evaluation

To augment our quantitative evaluation, we quali-
tatively assess the descriptiveness and accuracy of
the generated chart captions. Since L1 caption ac-
curacy can be measured at scale via relation genera-
tion, we focus our evaluation on L2/L.3 predictions.
Prior analysis tasked annotators with comparing
the accuracy, coherence, and fluency of generated
captions compared to a target caption (Kantharaj
et al., 2022). Instead, our approach follows an
inductive qualitative data analysis approach: itera-
tively analyzing captions in a “bottom-up” fashion
to identify emergent patterns in how generated cap-
tions compare to the ground truth (Bingham and
Witkowsky, 2021). We randomly sample 176 gen-
erated captions from the scene-graph model with
prefix-tuning and break them into their independent
L2 and L3 statements, resulting in 181 (48.27%)
L2 statements and 194 (51.73%) L3 statements.
Approximately half (241 /512) of the L2 and L3
statements made in the generated captions are factu-
ally accurate. Moreover, many of the full sentences
are written in a natural, human-like manner and
generated captions frequently include both com-
pound and complex sentences. On average, every
generated caption has one L3 statement and zero to



Input PT BLEU 1 Perplexity | RG 1 ROUGE-1 1 ROUGE-2 1 ROUGE-L{ ROUGE-L SUM 1 WMD | TER |
Kantharaj et al. (2022) 0.30 £1.27e—3 28.51 £1.02e—1 1.69 £8.13e—3 0.58 £8.67e—4 0.4241.73e—3 0.49 4+ 9.33e—4 0.49£9.67e—4 0.67+2.43e—3  66.99 + 4.88¢—2
Kantharaj et al. (2022)  v* 0.30+2.23e—3 31.154+9.73e—1  1.69 £ 8.67e—4 0.59 +1.20e—3 0.43 £ 1.47e—3 0.49 £ 1.60e—3 0.49 & 1.60e—3 0.67 +2.33e—3  66.97 & 3.07e—1
scene-graph 0.32 £4.07e—3 20.96 +3.09¢e+0 1.82+2.67e—4 0.56+ 1.42e—2 0.39+1.62e—2 0.47 £ 1.04e—2 0.47 £1.04e—2 0.68 =8.33e—3  69.34 & 2.31le+0
data-table 0.32 £2.40e—3 20.65+2.15e+0 1.69+1.27e—3 0.56 £7.30e—3 0.39 +8.83e—3 0.47 £ 6.20e—3 0.47 £6.13e—3 0.68 +£3.60e—3  70.21 & 7.90e—1
scene-graph v 0.32£213e—3 20.02+225e+0 1.78 £4.25e—2 0.56 £6.70e—3 0.39 £6.23e—3 0.47 £ 6.37e—3 0.47 £6.40e—3 0.68 =1.23e—2  72.55 & 1.75e+0
data-table v 0.32£4.23e-3 2423+ 1.8le+0 1.73+£8.65e—2 0.57+5.90e—3 0.40=£5.57e—3 0.48+5.53e—3 0.48 £5.60e—3 0.67 +£1.63e—3  70.29 £ 2.04e+0
image 0.07 £1.07e—3 17.36 £9.46e—1 0.78 +1.0de—2 0.34 £5.87e—3 0.14 +3.60e—3 0.25 £ 4.03e—3 0.25£4.07e—3 1.11+7.10e—3  89.03 &+ 9.12e—1
image-scene-graph 0.30 £3.83e—3 28.15+2.26e+0 | 1.82+2.50e—3 0.59 £ 1.20e—3 0.43 +2.47e—3 0.49 £ 2.53e—3 0.49 £2.53e—3 0.66 = 1.53e—3  67.45 & 2.82e—1
image-data-table 0.29 £1.20e—3 29.81 £2.62e—1 | 1.81 £1.20e—3 0.59 £5.67e—4 0.44+£1.03e—3 0.49 £2.17e—3 0.49 £2.23e—3 0.66 =6.33e—4  66.80 £ 2.77e—2
image v 0.07+1.33e—3 24.08+1.77e+0 0.58 £1.34e—2 0.33+6.20e—3 0.13£3.17e—3 0.23 £4.67e—3 0.23 £4.67e—3 1.11+1.90e—3 100.04 £ 6.57e+0
image-scene-graph v 1 0.32£9.90e—3 15.50 £4.45e—1 1.82+267e—4 0.54+£8.23¢—3 0.38+£4.93e—3 0.45+3.63e—3 0.45 £3.57e—3 0.69 £ 7.13e—3  81.95 £ 4.53e+0
image-data-table v 1 032£287e-3 17.29+1.28¢+0 1.81 £4.50e—3 0.54+6.67e—3 0.38£7.50e—3 0.45 =+ 5.60e—3 0.45 £5.50e—3 0.68 +1.33e—3  80.21 & 1.34e+0

Table 1: We compare our text-based models (scene-graph and data-table), our image-guided models (image,
image-scene-graph, and image-data-table), and semantic prefix-tuning (PT) models to prior chart captioning
models (Kantharaj et al., 2022). We evaluate each model using machine translation and text generation metrics,
including BLEU (Papineni et al., 2002), Perplexity, Relation Generation (RG) (Wiseman et al., 2017), ROUGE (Lin,
2004), Word Mover’s Distance (WMD) (Kusner et al., 2015), and Translational Error Rate (TER) (Snover et al.,
2006). We report the mean and standard deviation of three independent models. Darker colors indicate better scores.

two L2 statements. Often this takes the form of a
L3 general trend statement (e.g., “The median an-
nual family income in Canada has increased from
2000 to 2018”’) accompanied by an L2 minimum
and maximum statement (“The highest was in 2015
at 80k and the lowest was in 2000”’). For the re-
maining half of analyzed captions, we identified
the following recurring types of errors:

Identity Errors. We identify 86 identity errors
(22.93% of analyzed statements). An identity er-
ror occurs when an L2 or L3 statement incorrectly
reports the independent variable for a given (often
correctly identified) trend. For bar charts, this error
means incorrectly reporting the categorical label
associated with a bar (e.g., in Appendix Figure 5c:
“The most popular music activity is vinyl albums
and vinyl singles” should be “The most popular
music activity is tickets for festivals”). For area and
line charts, this error means incorrectly identifying
the temporal point or range of the trend. With bar
charts, in particular, we observed that the identities
were often “off-by-one” (i.e., identifying a mini-
mum or maximum value, but attributing it to the
second-highest or second-lowest category).

Value Errors. A value error occurs when the
quantitative data value of a statement is incorrect.
Of the captions we analyzed, 3.20% (12) of state-
ments contained a value error. For instance, as
shown in Appendix Figure 4c, for the caption “The
total gate revenue from sporting events worldwide
by region from 2006 to 2015 has increased from
around 15 billion dollars to around 15 billion dol-
lars”, the value should be around 18 billion dollars.
If it is ambiguous whether an error is an Identity or
Value Error, we classify it as the former.

Direction Errors. A direction error occurs when
the direction (which can be increasing, decreasing,
or stable) of a trend in an L3 statement is incor-
rect. We uncovered 32 direction errors (8.53% of
analyzed statements). For instance, in the caption
“The per capita consumption of sweet corn in the
US has increased from 2000 to 2019” (Appendix
Figure 3c), the trend is actually decreased. In most
direction errors, the identity (i.e., temporal range)
is correct.

Stability Errors. A stability error occurs when
the magnitude of a direction or the variance in a
trend is incorrect. This can often refer to how much
a trend is increasing or decreasing, such as rapidly
or slowly, as well as whether it’s a steady change
or highly-fluctuating change. In Appendix Fig-
ure 4b, “The comparable sales growth of Sam’s
Club in the United States from fiscal year 2006 to
2020 has been steadily decreasing from 2006 to
2020.” should read “The comparable sales growth
of Sam’s Club in the United States from fiscal year
2006 to 2020 has been highly-fluctuatingly decreas-
ing from 2006 to 2020.” 1.07% (4) of the state-
ments we analyzed contained this error.

Repetition. Repetition is when a caption repeats
a previously-generated claim, regardless of its cor-
rectness. 117 (31.2%) statements contained repeti-
tion, making it the most common error we encoun-
tered. For example, in Appendix Figure 4a, we see
"The average age at widow hood in the Netherlands
has increased from 2008 to 2018. The average age
at widow hood in the Netherlands has increased
Sfrom 2008 to 2018." Repetition is a known problem
for text generation models with transformer back-
bones, like our chart captioning models (Fu et al.,
2021).



Nonsensical Errors. If a L2 or L3 statement can-
not be understood in context of the chart, or makes
a fundamental mistake in interpretation, we label
it as nonsensical error. We encountered 20 non-
sensical errors in addition to the 395 statements
we analyzed. For example, in Appendix Figure
5b, "The most popular visitors was Harry Potter in
1999 and 2009." misinterprets the chart. It might
instead correctly read "The destination with the
most visitors after the TV/movie’s release was New
Zealand for The Lord of the Rings".

6 Discussion

We present VisText, a chart captioning dataset of
12,441 charts and semantically rich captions. The
VisText charts are represented as a rasterized image,
data table, and scene graph to provide diverse and
complementary data modalities. Using VisText, we
fine-tune large language models to generate natural
language captions from textual chart representa-
tions and integrate image-guided chart captioning
to leverage multimodal information. Utilizing the
varied semantic content in VisText captions, we
develop semantic prefix-tuned models that output
semantically customized captions to meet diverse
user needs. Evaluations reveal that our models
output precise and semantically descriptive cap-
tions, performing on par with state-of-the-art chart
captioning models (Kantharaj et al., 2022) across
machine translation and text generation metrics.
Looking ahead, while accessibility remains a key
domain that would benefit from automated chart
captioning, and deploying automated chart caption-
ing models into the field is an exciting prospect,
we believe the most promising approach for fu-
ture work lies in “mixed-initiative” (i.e., human
+ Al) chart authoring systems. In particular, as
we describe in our Ethics Statement below, chart
captioning models are currently prone to make a
number of factual inaccuracies which can have se-
vere harmful consequences. On the other hand,
by integrating these models into chart authoring
systems (e.g., Tableau, Charticulator, Data Illustra-
tor, or Lyra), chart authors can intervene and make
any necessary corrections. Indeed, such integration
offers exciting opportunities to develop novel in-
teractive methods for verifying generated captions.
For instance, models like ours could generate an
initial caption (or set of captions) based on the chart
currently being authored; as the system has access
to all three representations of the chart (the back-

ing data table, chart image, and structured scene
graph), it might automatically segment the caption
into independent “data segments” and interactively
link and map them to rows in the table or regions
on the chart, akin to Kori (Latif et al., 2021).

Limitations

Computational Constraints. Despite using
modern GPUs, with large amounts of memory, we
were forced to use the smallest-parameter variants
of TS5 and ByTS5 as we encountered out-of-memory
errors with the larger alternatives. More problemat-
ically, the quadratic relationship between sequence
length and time/space complexity of transformer ar-
chitectures (Vaswani et al., 2017), especially when
using byte-level sequences (Xue et al., 2022), has
had a significant impact on our model performance.
In particular, to be computationally tractable, we
were forced us to truncate our input and output
sequences to, at most, 1,024 and 512 characters
respectively (1,024 coming from the underlying
ByT?5 architecture (Xue et al., 2022)).

These character thresholds have likely had an
outsized effect on scene-graph models. For in-
stance, due to these character limits, we reduced
scene graph sequences to only a minimal set of
visual characteristics; VisText also includes the
raw, unprocessed scene graphs which offer a richer
source of information about the visual features that
are important to how people decode charts (e.g.,
bounding boxes, color) but were unavailable to
our models. Moreover, as Figure 2 shows, even
with this reduced representation, the mean length
of scene graph sequences is 948 characters (cf. 426
characters for data tables) with a wide distribution.
Thus, despite scene-graph models achieving com-
parable performance to data-table models, the
former saw a much smaller proportion of complete
sequences as compared to the latter. This trun-
cation step additionally negatively impacts charts
with long titles or axis names — in such cases, we
observed that the L2 or L3 caption would be alto-
gether truncated before generation.

Chart Types and the Visualization Design Space.
VisText is scoped to only univariate bar, area, and
line charts. We chose to begin with these chart
types informed by data visualization research that
has focused on studying natural language descrip-
tions of single-series line charts — a basic, but com-
monly occurring chart type that offers a compelling
target of study as it most visibly surfaces any poten-



tial trends in the data (Kim et al., 2021; Stokes et al.,
2022). Future work can now begin to consider more
complex chart forms in a step-by-step manner. For
instance, moving from univariate bar, area, and
line charts to multivariate versions of these chart
types (i.e., stacked bars and areas, grouped bars,
and multi-series line charts). From there, work can
also consider chart types that surface perceptual
and cognitive phenomena in visually distinct ways
(e.g., scatterplots, where trends appear as clusters
of points; heatmaps, where color saturation often
encodes a trend; or maps, where color or other lay-
ered elements such as symbols are used to represent
data values). Finally, automated methods for cap-
tioning visualizations may eschew chart typologies
altogether in favor of visualization grammars — by
offering a more composable and combinatorial ap-
proach to the design space (Wilkinson, 2012), learn-
ing over visualization grammars may offer a more
robust approach to captioning highly customized
or unique visual forms.

For each future work direction, we anticipate
scene graph representations to prove more fruitful
than the data table. As the complexity of the visu-
alization increases, its relationship to the data table
only grows more ambiguous; the scene graph, on
the other hand, directly encodes the visual form and
thus remains faithful to it. As a result, to support
such future work, VisText provides the raw speci-
fications used to produce our charts (via the Vega-
Lite visualization grammar (Satyanarayan et al.,
2016)) as well as the raw, hierarchical scene graphs
prior to our linearization and reduction step.

Ethics Statement

The Consequences of Incorrect Captions. Wei-
dinger et al. (2021) comprehensively survey the
risks associated with the large language models
(LLMs) that underlie our contribution. Of the six
categories of risk they identify, harms stemming
from models producing factually incorrect state-
ments are not only most pertinent to our work, but
are likely heighted as compared to general uses of
LLMs given the context we are addressing: auto-
matically captioning charts. In particular, people
most often consume charts and visualizations in
order to make data-driven decisions (Keim et al.,
2008) — for instance, about whether to evacuate
ahead of a hurricane (Padilla et al., 2018), or health
& safety during the pandemic (Shneiderman, 2020).
Moreover, recent results have shown that readers

not only fixate for longer and are more likely to
recall the textual content of and around visualiza-
tions (Borkin et al., 2015) but this textual content
can strongly influence the takeaway message read-
ers leave with even when it is at odds with the
depicted data (Kong et al., 2018, 2019). Finally,
these issues are exacerbated by the persuasive and
rhetorical force of data and charts (Kennedy et al.,
2016; Hullman and Diakopoulos, 2011), that often
project a sense of authority and certainty (Correll,
2019). As a result, readers may not think to double
check the accuracy of chart captions, and inaccu-
rate statements that models may produce could lead
to harmful downstream decisions.

To proceed ethically with this line of research,
we believe that advances in data and modeling need
to be closely followed by attention devoted to miti-
gating the risks of incorrect statements. At base, au-
tomatically generated captions should be identified
as such at the forefront to raise readers’ awareness
about the potential for incorrect statements. And,
interactive visual linking strategies (such as those
explored by Kong and Agrawala (2012); Kim et al.
(2018)) could be deployed to help readers manu-
ally verify the constituent statements of a caption
against the chart. These strategies, however, place
the burden of harm mitigation on readers. Thus,
an alternate approach might never surface automat-
ically generated captions to readers directly but
instead use them as part of mixed-initiative sys-
tems for jointly authoring visualization and text,
such as Kori (Latif et al., 2021). In such systems,
automated chart captioning models would help to
accelerate the authoring process — combatting the
blank slate problem by providing an initial sum-
mary of the chart— and chart authors would make
any necessary corrections prior to publication.

Besides these human-computer interaction (HCI)
approaches for mitigating harm, an equally impor-
tant direction for future work should leverage inter-
pretability techniques to more deeply study what
the models are learning. To what degree are chart
captioning models stochastic parrots (Bender et al.,
2021), and how much do they understand the infor-
mation charts depict?

Automated Captioning for Accessibility. Al-
though accessibility is a guiding motivation for
the bulk of work in automated captioning (be it im-
age captioning or, as in our case, chart captioning),
studies find mixed reactions, at best, about these
approaches among people with disabilities (PWDs).



For instance, accessibility educator and researcher
Chancey Fleet described Facebook’s automatic im-
age descriptions as “famously useless in the Blind
community” despite “garner[ing] a ton of glow-
ing reviews from mainstream outlets” (Fleet, 2021;
Hanley et al., 2021). This disconnect appears to
stem from a more fundamental mismatch between
what PWDs describe as their captioning needs,
and what the research community — particularly
through its automatic, quantitative evaluations —
prioritizes (Jandrey et al., 2021). In particular,
surveys with PWDs repeatedly surface the con-
textual nature of captions. Bennett et al. (2021)
find that the context of use shapes the degree to
which PWD are comfortable with captions describ-
ing people’s race, gender, and disabilities — for
instance, changing their preferences if they were in
a white, cisgender, nondisabled, and professional
company versus their own community. Similarly,
Jung et al. (2022) find shifting preferences for the
content image descriptions should convey across
different photo activites — for example, when view-
ing or taking photos, participants wished for de-
scriptions that conveyed spatial cues whereas when
searching or reminiscing about photos, participants
hoped for descriptions to connect to personal data
or differentiating details.

In contrast, quantitative metrics of model per-
formance compare generated captions to a single
“ground truth” caption. This framing of success
not only makes it difficult to develop contextually-
varying caption generation but can actively penal-
ize such investigations. For instance, with our work,
we explored how prefix-tuning can be used to de-
velop models that are responsive to users’ pref-
erences about semantic content. However, as de-
scribed in Sec. 5.1, existing quantitative metrics of
model performance (e.g., BLEU, ROUGE, WMD,
and TER) show a drop in model performance de-
spite our qualitative analysis indicating that these
captions are indeed high quality.

Finally, our exploration of semantic prefix-
tuning represents only a very preliminary step to-
wards addressing the contextual captioning needs
of PWDs. In particular, the semantic labels Vis-
Text assigns to captions were derived from prior
work (Lundgard and Satyanarayan, 2022) that only
explored natural language descriptions when con-
suming presentations of visualizations — one task
from a broader palette (Brehmer and Munzner,
2013). Future work might instead extend the Vis-

Text dataset — and corresponding models — to con-
sider captions for a broader range of tasks including
consuming visualizations for scientific discovery,
enjoyment or, producing, searching, or querying
visualizations (Brehmer and Munzner, 2013).

Acknowledgements

We thank Nicolds Kennedy and Alan Lundgard
for their work developing an initial version of our
crowdsourced study protocol. This research was
sponsored by a Google Research Scholar Award,
an NSF Award #1900991, the MLA @CSAIL initia-
tive, and by the United States Air Force Research
Laboratory under Cooperative Agreement Number
FA8750-19-2-1000. The views and conclusions
contained in this document are those of the authors
and should not be interpreted as representing the
official policies, either expressed or implied, of the
United States Air Force or the U.S. Government.
The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes
notwithstanding any copyright notation herein.

References

Peter Anderson, Xiaodong He, Chris Buehler, Damien
Teney, Mark Johnson, Stephen Gould, and Lei Zhang.
2018. Bottom-up and top-down attention for im-
age captioning and visual question answering. In
2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 6077-6086, Los
Alamitos, CA, USA. IEEE Computer Society.

Abhijit Balaji, Thuvaarakkesh Ramanathan, and
Venkateshwarlu Sonathi. 2018.  Chart-text: A
fully automated chart image descriptor. ArXiv,
abs/1812.10636.

Emily M Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language models
be too big? In Proceedings of the ACM Confer-
ence on Fairness, Accountability, and Transparency
(FAccT), pages 610-623.

Cynthia L Bennett, Cole Gleason, Morgan Klaus
Scheuerman, Jeffrey P Bigham, Anhong Guo, and
Alexandra To. 2021. “it’s complicated”: Negotiat-
ing accessibility and (mis) representation in image
descriptions of race, gender, and disability. In Pro-
ceedings of the Conference on Human Factors in
Computing Systems (CHI), pages 1-19.

Andrea J Bingham and Patricia Witkowsky. 2021. De-
ductive and inductive approaches to qualitative data
analysis. Analyzing and interpreting qualitative data:
After the interview, pages 133-146.


https://doi.ieeecomputersociety.org/10.1109/CVPR.2018.00636
https://doi.ieeecomputersociety.org/10.1109/CVPR.2018.00636

Michelle A Borkin, Zoya Bylinskii, Nam Wook Kim,
Constance May Bainbridge, Chelsea S Yeh, Daniel
Borkin, Hanspeter Pfister, and Aude Oliva. 2015. Be-
yond memorability: Visualization recognition and
recall. IEEE Transactions on Visualization and Com-
puter Graphics (VIS), 22(1):519-528.

Matthew Brehmer and Tamara Munzner. 2013. A multi-
level typology of abstract visualization tasks. /IEEE
Transactions on Visualization and Computer Graph-
ics (VIS), 19(12):2376-2385.

Charles Chen, Ruiyi Zhang, Sungchul Kim, Scott Co-
hen, Tong Yu, Ryan Rossi, and Razvan Bunescu.
2019a. Neural caption generation over figures. In
Adjunct Proceedings of the ACM International Joint
Conference on Pervasive and Ubiquitous Computing
and Proceedings of the ACM International Sympo-
sium on Wearable Computers (UbiComp/ISWC), Ubi-
Comp/ISWC 19 Adjunct, page 482-485, New York,
NY, USA. Association for Computing Machinery.

Charles Chen, Ruiyi Zhang, Eunyee Koh, Sungchul
Kim, Scott Cohen, and Ryan Rossi. 2020. Figure
captioning with relation maps for reasoning. In /IEEE
Winter Conference on Applications of Computer Vi-
sion (WACV), pages 1526—1534.

Charles Chen, Ruiyi Zhang, Eunyee Koh, Sungchul
Kim, Scott Cohen, Tong Yu, Ryan Rossi, and Raz-
van Bunescu. 2019b. Figure captioning with rea-
soning and sequence-level training. arXiv preprint
arXiv:1906.02850.

Jaemin Cho, Jie Lei, Hao Tan, and Mohit Bansal. 2021.
Unifying vision-and-language tasks via text genera-
tion. In Proceedings of the 38th International Con-
ference on Machine Learning, volume 139 of Pro-
ceedings of Machine Learning Research, pages 1931—
1942. PMLR.

Michael Correll. 2019. Ethical dimensions of visualiza-
tion research. In Proceedings of the Conference on
Human Factors in Computing Systems (CHI), pages
1-13.

Zhe Cui, Sriram Karthik Badam, M Adil Yal¢in, and
Niklas Elmgqvist. 2019. Datasite: Proactive vi-
sual data exploration with computation of insight-
based recommendations. Information Visualization,
18(2):251-267.

Seniz Demir, Sandra Carberry, and Kathleen F. Mc-
Coy. 2008. Generating textual summaries of bar
charts. In Proceedings of the International Natu-
ral Language Generation Conference (INLG), INLG
"08, page 7-15, USA. Association for Computational
Linguistics.

Seniz Demir, Sandra Carberry, and Kathleen F McCoy.
2012. Summarizing information graphics textually.
Computational Linguistics, 38(3):527-574.

Seniz Demir, David Oliver, Edward Schwartz, Stephanie
Elzer, Sandra Carberry, and Kathleen F McCoy. 2010.

Interactive sight into information graphics. In Pro-
ceedings of the International Cross Disciplinary Con-
ference on Web Accessibility (W4A), pages 1-10.

Chancey Fleet. 2021. Things which garner a ton
of glowing reviews from mainstream outlets with-
out being of much use to disabled people. For in-
stance, Facebook’s auto image descriptions, much
loved by sighted journos but famously useless in the
Blind community. Twitter. https://twitter.com/
ChanceyFleet/status/1349211417744961536.

Zihao Fu, Wai Lam, Anthony Man-Cho So, and Bei
Shi. 2021. A theoretical analysis of the repetition
problem in text generation. In Proceedings of the
Conference on Artificial Intelligence (AAAI).

Bryan Gould, Trisha O’Connell, and Geoff Freed. 2008.
Effective practices for description of science content
within digital talking books: Guidelines for describ-
ing stem images.

Margot Hanley, Solon Barocas, Karen Levy, Shiri
Azenkot, and Helen Nissenbaum. 2021. Computer
vision and conflicting values: Describing people with
automated alt text. In Proceedings of the AAAI/ACM
Conference on Al, Ethics, and Society, pages 543—
554.

Mary Hegarty and Marcel-Adam Just. 1993. Construct-
ing mental models of machines from text and dia-
grams. Journal of memory and language, 32(6):717—
742.

Ting-Yao Hsu, C Lee Giles, and Ting-Hao Huang. 2021.
SciCap: Generating captions for scientific figures.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 3258-3264, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Jessica Hullman and Nick Diakopoulos. 2011. Visu-
alization rhetoric: Framing effects in narrative visu-
alization. IEEE Transactions on Visualization and
Computer Graphics (VIS), 17(12):2231-2240.

Alessandra Helena Jandrey, Duncan Dubugras Alcoba
Ruiz, and Milene Selbach Silveira. 2021. Image
descriptions’ limitations for people with visual im-
pairments: Where are we and where are we going?
In Proceedings of the Brazilian Symposium on Hu-
man Factors in Computing Systems (IHC), IHC °21,
New York, NY, USA. Association for Computing
Machinery.

Crescentia Jung, Shubham Mehta, Atharva Kulkarni,
Yuhang Zhao, and Yea-Seul Kim. 2021. Communi-
cating visualizations without visuals: Investigation
of visualization alternative text for people with visual
impairments. IEEE Transactions on Visualization
and Computer Graphics (VIS), 28(1):1095-1105.

Dacekyoung Jung, Wonjae Kim, Hyunjoo Song, Jeong-in
Hwang, Bongshin Lee, Bohyoung Kim, and Jinwook
Seo. 2017. Chartsense: Interactive data extraction
from chart images. In Proceedings of the Conference


https://doi.org/10.1109/TVCG.2013.124
https://doi.org/10.1109/TVCG.2013.124
https://doi.org/10.1145/3341162.3345601
https://doi.org/10.1109/WACV45572.2020.9093592
https://doi.org/10.1109/WACV45572.2020.9093592
https://proceedings.mlr.press/v139/cho21a.html
https://proceedings.mlr.press/v139/cho21a.html
https://twitter.com/ChanceyFleet/status/1349211417744961536
https://twitter.com/ChanceyFleet/status/1349211417744961536
https://aclanthology.org/2021.findings-emnlp.277
https://doi.org/10.1145/3472301.3484356
https://doi.org/10.1145/3472301.3484356
https://doi.org/10.1145/3472301.3484356
https://doi.org/10.1145/3025453.3025957
https://doi.org/10.1145/3025453.3025957

on Human Factors in Computing Systems (CHI), CHI
"17, page 67066717, New York, NY, USA. Associa-
tion for Computing Machinery.

Ju Yeon Jung, Tom Steinberger, Junbeom Kim, and
Mark S. Ackerman. 2022. “So What? What’s That to
Do With Me?” Expectations of People With Visual Im-
pairments for Image Descriptions in Their Personal
Photo Activities, page 1893—-1906. Association for
Computing Machinery, New York, NY, USA.

Shankar Kantharaj, Rixie Tiffany Leong, Xiang Lin,
Ahmed Masry, Megh Thakkar, Enamul Hoque, and
Shafiq Joty. 2022. Chart-to-text: A large-scale bench-
mark for chart summarization. In Proceedings of the
Annual Meeting of the Association for Computational
Linguistics (ACL), pages 4005-4023, Dublin, Ireland.
Association for Computational Linguistics.

Daniel Keim, Gennady Andrienko, Jean-Daniel Fekete,
Carsten Gorg, Jorn Kohlhammer, and Guy Melangon.
2008. Visual analytics: Definition, process, and chal-
lenges. In Information visualization, pages 154-175.
Springer.

Helen Kennedy, Rosemary Lucy Hill, Giorgia Aiello,
and William Allen. 2016. The work that visualisa-
tion conventions do. Information, Communication &

Society, 19(6):715-735.

Dae Hyun Kim, Enamul Hoque, Juho Kim, and Ma-
neesh Agrawala. 2018. Facilitating document read-
ing by linking text and tables. In Proceedings of the
Annual ACM Symposium on User Interface Software
and Technology (UIST), UIST 18, page 423-434,
New York, NY, USA. Association for Computing
Machinery.

Dae Hyun Kim, Vidya Setlur, and Maneesh Agrawala.
2021. Towards understanding how readers integrate
charts and captions: A case study with line charts. In
Proceedings of the Conference on Human Factors in
Computing Systems (CHI), pages 1-11.

Ha-Kyung Kong, Zhicheng Liu, and Karrie Karahalios.
2018. Frames and slants in titles of visualizations on
controversial topics. In Proceedings of the Confer-
ence on Human Factors in Computing Systems (CHI),
pages 1-12.

Ha-Kyung Kong, Zhicheng Liu, and Karrie Karahalios.
2019. Trust and recall of information across vary-
ing degrees of title-visualization misalignment. In
Proceedings of the Conference on Human Factors in
Computing Systems (CHI), pages 1-13.

Nicholas Kong and Maneesh Agrawala. 2012. Graph-
ical overlays: Using layered elements to aid chart
reading. [EEE Transactions on Visualization and
Computer Graphics (VIS), 18(12):2631-2638.

Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Wein-
berger. 2015. From word embeddings to document
distances. In Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Pro-
ceedings of Machine Learning Research (PMLR),
pages 957-966, Lille, France. PMLR.

Andrew Large, Jamshid Beheshti, Alain Breuleux, and
Andre Renaud. 1995. Multimedia and comprehen-
sion: The relationship among text, animation, and
captions. Journal of the American society for infor-

mation science, 46(5):340-347.

Shahid Latif, Zheng Zhou, Yoon Kim, Fabian Beck, and
Nam Wook Kim. 2021. Kori: Interactive synthesis
of text and charts in data documents. IEEE Transac-
tions on Visualization and Computer Graphics (VIS),
28(1):184-194.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the Annual Meeting of
the Association for Computational Linguistics (ACL),
pages 7871-7880, Online. Association for Computa-
tional Linguistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74—81, Barcelona, Spain.
Association for Computational Linguistics.

Chin-Yew Lin and Franz Josef Och. 2004. ORANGE:
a method for evaluating automatic evaluation met-
rics for machine translation. In Proceedings of the
International Conference on Computational Linguis-
tics (COLING), pages 501-507, Geneva, Switzerland.
COLING.

Alan Lundgard and Arvind Satyanarayan. 2022. Ac-
cessible visualization via natural language descrip-
tions: A four-level model of semantic content. IEEE
Transactions on Visualization and Computer Graph-
ics (VIS), 28(1):1073-1083.

Junyu Luo, Zekun Li, Jinpeng Wang, and Chin-Yew Lin.
2021. Chartocr: Data extraction from charts images
via a deep hybrid framework. In 2021 IEEE Win-
ter Conference on Applications of Computer Vision
(WACV). The Computer Vision Foundation.

Anita Mahinpei, Zona Kostic, and Chris Tanner. 2022.
Linecap: Line charts for data visualization captioning
models. In IEEE Visualization and Visual Analytics
(VIS), pages 35-39. IEEE.

Valerie S Morash, Yue-Ting Siu, Joshua A Miele, Lu-
cia Hasty, and Steven Landau. 2015. Guiding novice
web workers in making image descriptions using tem-

plates. ACM Transactions on Accessible Computing
(TACCESS), 7(4):1-21.

Jason Obeid and Enamul Hoque. 2020. Chart-to-text:
Generating natural language descriptions for charts
by adapting the transformer model. In Proceedings
of the International Conference on Natural Language
Generation (INLG), pages 138-147, Dublin, Ireland.
Association for Computational Linguistics.


https://doi.org/10.1145/3532106.3533522
https://doi.org/10.1145/3532106.3533522
https://doi.org/10.1145/3532106.3533522
https://doi.org/10.1145/3532106.3533522
https://aclanthology.org/2022.acl-long.277
https://aclanthology.org/2022.acl-long.277
https://doi.org/10.1145/3242587.3242617
https://doi.org/10.1145/3242587.3242617
https://proceedings.mlr.press/v37/kusnerb15.html
https://proceedings.mlr.press/v37/kusnerb15.html
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2101.00190
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://www.aclweb.org/anthology/C04-1072
https://www.aclweb.org/anthology/C04-1072
https://www.aclweb.org/anthology/C04-1072
https://www.microsoft.com/en-us/research/publication/chartocr-data-extraction-from-charts-images-via-a-deep-hybrid-framework/
https://www.microsoft.com/en-us/research/publication/chartocr-data-extraction-from-charts-images-via-a-deep-hybrid-framework/
https://aclanthology.org/2020.inlg-1.20
https://aclanthology.org/2020.inlg-1.20
https://aclanthology.org/2020.inlg-1.20

Lace M Padilla, Sarah H Creem-Regehr, Mary Hegarty,
and Jeanine K Stefanucci. 2018. Decision making
with visualizations: a cognitive framework across

disciplines. Cognitive research: principles and im-
plications, 3(1):1-25.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the Annual Meeting of the Association for Computa-
tional Linguistics (ACL), pages 311-318, Philadel-
phia, Pennsylvania, USA. Association for Computa-
tional Linguistics.

Jorge Poco and Jeffrey Heer. 2017. Reverse-
engineering visualizations: Recovering visual encod-
ings from chart images. Computer Graphics Forum,
36(3):353-363.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Conference on Ma-
chine Translation (WMT), pages 186—191, Belgium,
Brussels. Association for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1).

Ehud Reiter and Robert Dale. 1997. Building applied
natural language generation systems. Natural Lan-
guage Engineering, 3(1):57-87.

Arvind Satyanarayan, Dominik Moritz, Kanit Wong-
suphasawat, and Jeffrey Heer. 2016. Vega-lite: A
grammar of interactive graphics. [EEE Transac-
tions on Visualization and Computer Graphics (VIS),
23(1):341-350.

Ben Shneiderman. 2020. Data Visualization’s Break-
through Moment in the COVID-19 Cerisis.

M Six Silberman, Bill Tomlinson, Rochelle LaPlante,
Joel Ross, Lilly Irani, and Andrew Zaldivar. 2018.
Responsible research with crowds: pay crowdwork-
ers at least minimum wage. Communications of the
ACM, 61(3):39-41.

Matthew Snover, Bonnie Dorr, Rich Schwartz, Linnea
Micciulla, and John Makhoul. 2006. A study of
translation edit rate with targeted human annotation.
In Proceedings of the Conference of the Association
for Machine Translation in the Americas (AMTA),
pages 223-231, Cambridge, Massachusetts, USA.
Association for Machine Translation in the Americas.

Andrea Spreafico and Giuseppe Carenini. 2020. Neural
data-driven captioning of time-series line charts. In
Proceedings of the International Conference on Ad-
vanced Visual Interfaces (AVI), AVI 20, New York,
NY, USA. Association for Computing Machinery.

Arjun Srinivasan, Steven M. Drucker, Alex Endert, and
John Stasko. 2019. Augmenting visualizations with
interactive data facts to facilitate interpretation and
communication. /IEEE Transactions on Visualization
and Computer Graphics (VIS), 25(1):672-681.

Chase Stokes, Vidya Setlur, Bridget Cogley, Arvind
Satyanarayan, and Marti A Hearst. 2022. Striking a
balance: Reader takeaways and preferences when in-
tegrating text and charts. IEEE Transactions on Visu-
alization and Computer Graphics (VIS), 29(1):1233—
1243.

Umut Sulubacak, Ozan Caglayan, Stig-Arne Gronroos,
Aku Rouhe, Desmond Elliott, Lucia Specia, and Jorg
Tiedemann. 2020. Multimodal machine translation
through visuals and speech. Machine Translation,
34(2-3):97-1417.

Jenny Tang, Eleanor Birrell, and Ada Lerner. 2022.
Replication: How well do my results generalize now?
the external validity of online privacy and security
surveys. In Proceedings of the Symposium on Usable
Privacy and Security (SOUPS 2022), pages 367-385.

Jacob VanderPlas, Brian Granger, Jeffrey Heer, Do-
minik Moritz, Kanit Wongsuphasawat, Arvind Satya-
narayan, Eitan Lees, Ilia Timofeev, Ben Welsh, and
Scott Sievert. 2018. Altair: interactive statistical
visualizations for python. Journal of Open Source
Software, 3(32):1057.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Fukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the International Con-
ference on Neural Information Processing Systems
(NeurIPS), NIPS’17, page 6000-6010, Red Hook,
NY, USA. Curran Associates Inc.

O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. 2015.
Show and tell: A neural image caption generator. In
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3156-3164, Los Alami-
tos, CA, USA. IEEE Computer Society.

Laura Weidinger, John Mellor, Maribeth Rauh, Conor
Griffin, Jonathan Uesato, Po-Sen Huang, Myra
Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh,
et al. 2021. Ethical and social risks of harm from
language models. arXiv preprint arXiv:2112.04359.

Leland Wilkinson. 2012. The grammar of graphics.
In Handbook of computational statistics, pages 375—
414. Springer.

Sam Wiseman, Stuart Shieber, and Alexander Rush.
2017. Challenges in data-to-document generation. In
Proceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
2253-2263, Copenhagen, Denmark. Association for
Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,


https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1111/cgf.13193
https://doi.org/10.1111/cgf.13193
https://doi.org/10.1111/cgf.13193
https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319
https://medium.com/nightingale/data-visualizations-breakthrough-moment-in-the-covid-19-crisis-ce46627c7db5
https://medium.com/nightingale/data-visualizations-breakthrough-moment-in-the-covid-19-crisis-ce46627c7db5
https://aclanthology.org/2006.amta-papers.25
https://aclanthology.org/2006.amta-papers.25
https://doi.org/10.1145/3399715.3399829
https://doi.org/10.1145/3399715.3399829
https://doi.org/10.1109/TVCG.2018.2865145
https://doi.org/10.1109/TVCG.2018.2865145
https://doi.org/10.1109/TVCG.2018.2865145
https://doi.org/10.1007/s10590-020-09250-0
https://doi.org/10.1007/s10590-020-09250-0
https://doi.ieeecomputersociety.org/10.1109/CVPR.2015.7298935
https://aclanthology.org/D17-1239

Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2019. Hug-
gingface’s transformers: State-of-the-art natural lan-
guage processing.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-
Rfou, Sharan Narang, Mihir Kale, Adam Roberts,
and Colin Raffel. 2022. ByT5: Towards a token-free
future with pre-trained byte-to-byte models. Transac-
tions of the Association for Computational Linguis-
tics (ACL), 10:291-306.


https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://aclanthology.org/2022.tacl-1.17
https://aclanthology.org/2022.tacl-1.17

A Example Model Outputs

Rasterized Image Scene Graph

Digital share of overall music salesin = tjtle Digital share of overall music sales in
selected countries from 2004 to 2014 R
/ selected countries from 2004 to 2014 x 100 y -34
x-axis x 100 y 21 Year y-axis x -32 y 100 Germany
/ xtick x @ val 2004 x 40 val 2006 x 80 val 2008 x
> 120 val 2010 x 160 val 2012 ytick y 200 val 0.00
£ y 155 val ©.85 y 109 val 0.180 y 64 val 0.15 y 18
8 val 0.20 marks line XY 8 190.909 desc XY 20.838
175.455 desc XY 40.822 158.182 desc XY 60.8085
/ 147.273 desc XY 79.989 127.273 desc XY 100.027
0 108.182 desc XY 120.811 85.455 desc XY 139.995
20042000 2008 Zot0 2o 60.909 desc XY 159.9 ...

020

Model Generated L1 Caption
Digital share of overall music sales in selected countries from 2004
t0 2014 is a line chart. The y-axis measures Germany while the
X-axis measures Year.

Model Generated L2/L3 Caption
The digital share of music sales in Germany has increased from
2004 to 2014. The digital share of music sales in Germany has
increased from 2004 to 2014.

(a) The scene-graph model’s output L1 caption and L2/L.3 caption for a VisText line chart of the “Digital share of overall
music sales in selected counties from 2004 to 2014”. The model correctly identifies the chart’s title and axis, and it accurately
identifies the upward trend. However, it repeats this claim twice. See Section 5.2 for details on model repetition.

Rasterized Image Scene Graph

title Real value of U.S. fossil fuel imports from
AR AL MS Al 1960 to 2011 (in billion U.S. dollars) x 180 y
-33.84 x-axis x 100 y 21 Year y-axis x -29.088 y
100 Real value in billion U.S. dollars xtick x @
val 1960 x 39 val 1970 x 78 val 1980 x 118 val
1990 x 157 val 2000 x 196 val 2010 ytick y 200
val @ y 156 val 160 y 111 val 200 y 67 val 300 y
22 val 400 marks line XY @ 196.04 desc XY 39.221
194.516 desc XY 78.43 126.778 desc XY 117.651

- —— 160.747 desc XY 137.256 168.604 desc XY 156.861
e 132.467 desc XY 176 ...

Model Generated L1 Caption
Here a line graph is called Real value of U.S. fossil fuel imports from
1960 to 2011 (in billion U.S. dollars). The y-axis measures Real
value in billion U.S. dollars while the x-axis measures Year.

Model Generated L2/L3 Caption

The real value of US fossil fuel imports has increased from 1960 to
2011. The real value of US fossil fuel imports has increased from
1960 to 2011. The real value of US fossil fuel imports has increased
from 1960 to 2011.

(b) The scene-graph model’s output L1 caption and L2/L.3 caption for a VisText line chart of the “Real values of U.S. fossil fuel
imports from 1960 to 2011 (in billion U.S. dollars)”. The model correctly identifies the chart’s title and axis, and it accurately
identifies the upward trend. However, it repeats this claim twice. See Section 5.2 for details on model repetition.

Rasterized Image Scene Graph

- - title Per capita consumption of fresh sweet corn
Per capita consumption of fresh sweet corn
in the United States from 2000 to 2019 (in in the United States from 26006 to 2019 (in

pounds} pounds) x 100 y -54.5 x-axis x 100 y 21 Year

y-axis x -23 y 100 Per capita consumption in
pounds xtick x @ val 2600 x 53 val 2005 x 185 val
2010 x 158 val 2015 ytick y 260 val 68 y 160 val 2
y 120 val 4 y 80 val 6 y 40 val 8 y 0 val 10
marks line XY © 20.0 desc XY 10.548 16.0 desc XY
21.066 20.0 desc XY 31.585 16.0 desc XY 42.104
20.0 desc XY 52.651 26.0 desc XY 63.17 34.0 desc
XY 73.689 16.0 desc XY 84.20 ...
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Model Generated L1 Caption
This line graph is called Per capita consumption of fresh sweet corn
in the United States from 2000 to 2019 (in pounds). The y-axis
measures Per capita consumption in pounds while the x-axis
measures Year.

Model Generated L2/L3 Caption
The per capita consumption of sweet corn in the US has increased
from 2000 to 2019. The per capita consumption of sweet corn in
the US has increased from 2000 to 2019.

(c) The scene-graph model’s output L1 caption and L2/L3 caption for a VisText line chart of the “Per capita consumption
of fresh sweet corn in the United States from 2000 to 2019 (in pounds)”. The model correctly identifies the chart’s title and
axis. However, it makes a direction error and claims the increasing trend is actually decreasing. See Section 5.2 for details on

direction errors.

Figure 3: scene-graph model captions of VisText line charts.



Rasterized Image Scene Graph

title Average age at widow (er) hood in the
Netherlands from 2608 to 20818 , by gender (in
years) x 100 y -37 x-axis x 100 y 21 Year y-axis
m 2008 to 2018 , by gender (in years) X -23 y 100 Men xtick x @ val 2008 x 40 val 2010
x 80 val 2012 x 120 val 2014 x 160 val 2016 ytick
y 200 val @ y 150 val 20 y 100 val 40 y 50 val 60
y @ val 80 marks area XY © 19.25 H 180.75 desc XY
20.038 18.75 H 181.25 desc XY 40.022 18.25 H
181.75 desc XY 60.005 18.25 H 181.75 desc XY

N 79.989 17.0 H 183 desc XY 100.027 16.0 H 184 desc
oD 2 2 2 XY 120.011 15.25 H 184 ...

Average age at widow (er) hood in the Netherlands
frop

Model Generated L1 Caption
Average age at widow (er) hood in the Netherlands from 2008 to
2018, by gender (in years) is a area chart. The y-axis measures Men
while the x-axis measures Year.

Model Generated L2/L3 Caption
The average age at widow hood in the Netherlands has increased
from 2008 to 2018. The average age at widow hood in the
Netherlands has increased from 2008 to 2018.

(a) The scene-graph model’s output L1 caption and L2/L.3 caption for a VisText area chart of the “Average age at widow (er)
hood in the Netherlands from 2008 to 2018, by gender (in years)”. The model correctly identifies the chart’s title and axis, and it
accurately identifies the upward trend. However, it repeats this claim twice. See Section 5.2 for details on model repetition.

Rasterized Image Scene Graph

§ title Comparable sales growth of Sam's Club in
Comparable sales growth of Sam 's Club in . )
tzr‘;ezgnited States from fiscal year 2006 to the United States from fiscal year 2006 to 2020 x
-54.258 y -50 x-axis x 100 y 41.713 Year y-axis x
N -41.258 y 100 Comparable sales growth xtick x @
val 2006 x 29 val 20808 x 57 val 2010 x 86 val
2012 x 114 val 20814 x 143 val 2016 x 171 val 2018
ytick y 200 val -0.04 y 169 val -0.02 y 138 val
0.00 y 108 val ©0.02 y 77 val 0.04 y 46 val 0.06 y
15 val 0.08 marks area XY @ 61.538 H 76.923 desc

Comparable sales growth
o,

-

0g

ISR RIS XY 14.277 100 H 38.462 desc XY 28.555 63.077 H
M

75.385 desc XY ...
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Model Generated L1 Caption
Here a area graph is called Comparable sales growth of Sam's Club
in the United States from fiscal year 2006 to 2020. The y-axis
measures Comparable sales growth while the x-axis measures
Year.

Model Generated L2/L3 Caption
The comparable sales growth of Sam's Club in the United States
from fiscal year 2006 to 2020 has been steadily decreasing from
2006 to 2020.

(b) The scene-graph model’s output L1 caption and L2/L3 caption for a VisText are chart of the “Comparable sales growth of
Sam’s Club in the United States from fiscal year 2006 to 2020”. The model correctly identifies the chart’s title and axis. However,
it makes a stability error by stating the trend is steady when it is highly-fluctuating. See Section 5.2 for details on stability errors.

Rasterized Image Scene Graph

Total gate revenues from sporting events | t1t1€ Total gate revenues from sporting events

ldwide by region from 2006 to 2015 (i ; 4 § i11i
worldwide Zlﬂffr:"l'j'.s’."‘;';“ms) © Gn worldwide by region from 2006 to 2815 (in billion

U.S. dollars) x 108 y -48.222 x-axis x 100 y 20
15 /\‘\/ Year y-axis x -30 y 100 North America xtick x
0.012676199168441335 val 2006 x
44.430078085386874 val 2008 x 88.90832572761383
val 2010 x 133.32572761383227 val 2012 x
5 177.80397525605923 val 2014 ytick y

33.33333333333333 val 0 y 88.88888888888889 val 5
0 Sooe 010 Sors y 144 .44444444444443 val 10 y 200 val 15 marks

Year area XY @ 38.778 H 161.222 desc XY 22.209 ...

North America
S

Model Generated L1 Caption
Total gate revenues from sporting events worldwide by region from
2006 to 2015 (in billion U.S. dollars) is a area chart. The y-axis
measures North America while the x-axis measures Year.

Model Generated L2/L3 Caption
The total gate revenue from sporting events worldwide by region
from 2006 to 2015 has increased from around 15 billion dollars to
around 15 billion dollars. The total gate revenue from sporting
events worldwide by region from 2006 to 2015 has increased from
around 15 billion dollars to around 15 billion dollars in 2015.

(c) The scene-graph model’s output L1 caption and L.2/L.3 caption for a VisText area chart of the “Toral gate revenues from
sporting events worldwide by region from 2006 to 2015 (in billion U.S. dollars)”. The model correctly identifies the chart’s
title and axis. However, it makes a value error by claiming the revenue has increased to 15 billion dollars when it has actually

increased to 18 billion dollars. See Section 5.2 for details on value errors.

Figure 4: scene-graph model captions of VisText area charts.



Rasterized Image

Impact of coronavirus (COVID-19) on monthly
retail sales development in the United States
2020, by retail sector
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Scene Graph

title Impact of coronavirus (COVID-19) on monthly
retail sales development in the United States
2020 , by retail sector x -203 y -50 x-axis x 100
y 22 July to August y-axis x -190 y 130 retail
sector xtick x @ val -0.06 x 44 val -0.04 x 89
val -0.02 x 133 val 0.00 x 178 val 0.02 ytick y
10 val Building material & garden equipment &
supplies dealers y 30 val Clothing & clothing
accessories stores y 50 val Electronics &
appliance stores y 70 val Food & beverage stores
y 90 val Furniture & home ...

Model Generated L1 Caption
Impact of coronavirus (COVID-19) on monthly retail sales
development in the United States 2020, by retail sector is a bar
graph. The y-axis measures retail sector while the x-axis measures
July to August.

Model Generated L2/L3 Caption
The total retail sector has been impacted on clothing and clothing
accessories sectors the most. The lowest impact was in sporting
goods.

(a) The scene-graph model’s output L1 caption and L2/L.3 caption for a VisText bar chart of the “Impact of coronavirus
(COVID-19) on monthly retail sales development in the United States 2020, by retail sector”. The model correctly identifies the
chart’s title and axis, and it correctly identifies the the most and least impacted sectors.

Rasterized Image

Number of visitors to destinations which
featured in select screen products before
and after the film/TV series release (in

ousands) as of 2

Scene Graph

title Number of visitors to destinations which
featured in select screen products before and
after the film/TV series release (in thousands)
as of 2011 x 180 y -62 x-axis x 100 y 26 After
release y-axis x -185 y 140 Title/location/years
xtick x @ val @ x 38 val 500 x 77 val 1,000 x 115
val 1,500 x 154 val 2,000 x 192 val 2,500 ytick y
10 val Alice in Wonderland, Anthony House,
England (visitors in 2008 and 2011) y 30 val Arn,
Skaraborg; Sweden (visitors in 1999 and 2009) y
50 val Balamory ...

Model Generated L1 Caption
Here a bar graph is labeled Number of visitors to destinations which
featured in select screen products before and after the film/TV
series release (in thousands) as of 2011. The y-axis measures
Title/location/years while the x-axis measures After release.

Model Generated L2/L3 Caption

The most popular visitors was Harry Potter in 1999 and 2009. The
lowest visitors were Harry Potter in Alnwick Castle in England and
Harry Potter in Alnwick Castle in England. The lowest visitors were
Harry Potter in Alnwick Castle in England.

(b) The scene-graph model’s output L1 caption and L2/L.3 caption for a VisText are chart of the “Number of visitors to
destinations which featured in select screen products before and after the film/TV series release (in thousands) as of 2011”. The
model correctly identifies the chart’s title and axis. However, it makes a nonsensical error by stating that most popular visitors
was Harry Potter. See Section 5.2 for details on nonsensical errors.

Rasterized Image

Average spending per consumer on selected

9
music activities in the United States as
of July 2018

Scene Graph

title Average spending per consumer on selected
music activities in the United States as of July
2018 x 110 y -52 x-axis x 110 y 165.054 Response
y-axis x -32 y 100 $48 to $99.99 xtick x 18 val
CD albums/singles x 38 val MP3/download albums x
50 val MP3/download singles/tracks x 70 val Music
DVDs x 90 val Music merchandise items x 110 val
Music streaming subscription gift cards x 130 val
Pre-paid music voucher x 150 val Tickets for
festivals x 170 val Tickets for music
concerts/gigs x 190 val

Model Generated L1 Caption
Average spending per consumer on selected music activities in the
United States as of July 2018 is a bar graph. The x-axis measures
Response while the y-axis measures $40 to $99.99.

Model Generated L2/L3 Caption

The most popular music activity is vinyl albums and vinyl singles.
The least popular music activity is vinyl albums.

(c) The scene-graph model’s output L1 caption and L2/L3 caption for a VisText bar chart of the “Average spending per
consumer on selected music activities in the United States as of July 2018)”. The model correctly identifies the chart’s title and
axis. However, it makes an identity error by incorrectly identifying the most popular music activity. See Section 5.2 for details

on identity errors.

Figure 5: scene-graph model captions of VisText bar charts.



Input Level BLEU 1 Perplexity | ROUGE-1 1 ROUGE-21  ROUGE-L1 ROUGE-L SUM 1 WMD | TER |
Kantharaj etal. (2022) L1 | 043+ 1.33¢=3  67.58 + 2.56e+0 = 0.734£3.00c—4 0.61+1.00c—3 0.63+1.33¢—3  0.63+ 1.40e—3 0.58 +2.67e—3 5348 +2.19¢—2

scene-graph Ll  043+4.67e=3 61.01 £3.41e+0 0.74£2.70e—3 0.61 +6.80e—3 0.63 & 5.67e—4 0.63£5.33e—4  0.57£1.72¢—2  53.05 & 2.60e—1
data-table L1 | 042+£273e-3 70.68 £4.33¢+0 0.74 £5.40e—-3 0.62+6.50e—3 0.63 & 2.70e—3 0.63£2.97e—3 0.57£1.33e—2 53.27 +4.48e—1
image L1 0.09+2.20e—3 70.14 £4.24e+0 0.40 £2.50e—3 0.20 +3.47e—3  0.30 & 2.50e—3 0.30 £2.47e—3 1.09 +8.33e—3  83.69 + 3.25e—1
image-scene-graph L1 0.43+235-3 55.66+7.58¢+0 0.74+1.65e—3 0.6241.10e—3 0.63 & 1.50e—3 0.63 £ 1.50e—3  0.58 £6.05e—3  53.22 4 1.27e—1
image-data-table Ll 043+1.53e—3 6457 £1.05e+0 0.74 £1.07e—-3 0.624+1.43e—3 0.63 & 2.20e—3 0.63 £2.27e—3 0.57 £4.47e—3 53.47+6.8le—2

(a) Model results using the L1 captions.

Input Level BLEU 1 Perplexity | ROUGE-1 1 ROUGE-2 1 ROUGE-L1 ROUGE-L SUM 1 WMD | TER |
Kantharaj et al. (2022) L2/L3 = 0.07 £ 7.67e—4 41.17+1.52e+0 | 0.30£2.57e—-3 0.124+1.27e—3 0.26 £ 1.80e—3 0.26 £2.03e—3  0.92 & 6.00e—4 94.95 £ 1.53e+0
scene-graph L2/L3 =~ 0.07£8.07e—3 18.81 4 3.74e+0 0.28 £1.65e—2 0.1149.43e—3 0.25 £ 1.02e—2 0.24 £1.02e—2  0.92£8.90e—3 120.62 £ 6.72e+0
data-table L2/L3 | 0.07 £4.27e—3 23.90 £2.75¢e+0 0.30£1.09e—2 0.11 £6.50e—3  0.25 £ 7.40e—3 0.25+£7.43e—3 0.92+£1.2le-2 111.76 £ 8.77e+0
image L2/L3  0.02 £2.73e—3 764+ 719e—1 0.17+£1.22e—2 0.03+3.83e—3 0.14 £ 1.02e—2 0.144+1.02e—2  1.19 £ 7.40e—3  148.95 £ 1.79e+1

image-scene-graph  L2/L3  0.06 +4.85e—3 19.08 £6.66e—1 0.26 4+ 1.13e—2 0.10 +6.00e—3 0.22 & 6.65e—3 0.22 £ 6.55e—3 =~ 0.93 £1.50e—3 151.28 £1.17e+1
image-data-table L2/L3  0.06 £5.13e—=3 19.024 1.79e+0 0.27 £5.00e—3 0.1143.23e—3  0.23 £ 3.47e—3 0.23 £3.53e—3  0.92£2.20e—-3 144.20 £6.11e+0

(b) Model results using the L2/L.3 captions.

Table 2: We separately evaluate our L1 and L.2L3 captions on all the same metrics except for Relation Generation.
In general, we observe that L1 captions perform better than the L2/L.3 captions. Our models generate verbose L1
captions that are similar to the structure of our L1 templates, while the L2/L.3 captions are human-generated and
contain more variability. Darker colors indicate better scores.

B Additional Evaluations
B.1 Independent L1 and L2/L.3 Caption Evaluation

To better understand how our models generate varying levels of semantic content, we separately evaluate
our prefix-tuned models on L1 captioning and L2/L.3 captioning tasks. Each prefix-tuned model can
output an L1 or an L2/L3 caption for each chart. We evaluate these captions to their respective L1 or
L2/L.3 ground truth captions and report the results in Table 2.

Since we compute Relation Generation using only the L1 chart fields (e.g., chart title, axis scale,
etc.), we do not report the results separately for L1 versus L2/L.3 captioning. There is no direct Relation
Generation analog for L2/LL.3 captions, since they are human-generated and do not follow a specific
template. The Relation Generation for L1 captions is identical to the Relation Generation for L1/L.2/L.3
captions reported in Table 1.

B.2 Evaluation Details

Quantitative Model Performance Metrics. We evaluate our models using NLP and machine trans-
lation metrics, including BLUE (Papineni et al., 2002; Lin and Och, 2004), Perplexity, Relation Gen-
eration (Wiseman et al., 2017), ROUGE (Lin, 2004), Word Mover’s Distance (WMD), and Translation
Edit Rate (TER) (Snover et al., 2006; Post, 2018). We implement Relation Generation per Wiseman et al.
(2017), use the Gensim implementation of WMD, and use the Hugging Face implementation (Wolf et al.,
2019) for the remaining metrics.

* BLEU: BLEU requires several gold standard references. In our evaluation setup, we use the test set
caption as a single reference.

* Perplexity: We use a pretrained GPT-2 Medium model to compute Perplexity.

e Relation Generation: The fields we evaluate on are the chart title, axis names, and axis scales (if
any).

* Translation Edit Rate (TER): Edits consist of deletions, additions, and substitutions, as present in
SacreBLEU.

Qualitative Caption Evaluation. To produce our qualitative evaluation results (Sec. 5.2), we iteratively
evaluated randomly sampled captions until there was no more marginal information about they types of
errors to be gained from evaluating more captions. For each L2/L.3 caption, we assess the number of



independent, mutually-exclusive L2 and L3 claims/statements that are being made. In comparison to
evaluating at a sentence-level, this allows us to take a more nuanced approach that isn’t limited by where
the model has generated a full-stop. This approach allows us to more-accurately evaluate factual precision
without overly-penalizing for a single mistake.

An example might take the form of "The lowest value is X (claim 1), the highest value is Y (claim 2),
and the second highest is Z (claim 3). Overall, it is increasing over time (claim 4)." We observe that the
first sentence is a compound sentence that consists of three independent clauses, each with a single factual
L2 claim, while the second sentence is a single factual L3 claim. Let us assume that claim 1 was factually
incorrect. If we evaluate at a sentence-level, then the entire first sentence comprising of claim 1, claim 2,
and claim 3 would be incorrect. However, by breaking this caption into independent, mutually-exclusive
claims, we can more precisely calculate the factual precision of our text generation.



Experiment Input PT BLEU 1 Perplexity | RG?  ROUGE-1?  ROUGE:21 ROUGE-L? ROUGE-LSUM t WMD | TER |

BART-base 02745033 43.06+5.76e+0 1.69%9.80e—3 0.59+9.67e—4 043+£473—3 048+207e—3  048+2.00e—3 065+ 147e—3 67.08 +1.50e—1

Transformer T5-small 0.30£3.53—3 27.34+ 1.8%+0 1.82+333e—4 058%127e-3 042+2830-3 049+137e-3  049%150e—3 0.67+1.60e—3 67.03 %1821
Backbome Ts-small v 0.3045.40e-3 20.52+ 1.35e+0 1L15+7.70e~2 052+ 106e—2 035+£8.77e—3 043+7.83%—3  043£7.90e—3 0.71+122—2 7644+ 1.28e+0
Ours (ByT5-small) 0.32+£4.07e-3 20.96+3.09%+0 1.82+267c-4 05641422 0391622 047+104e—2  047=1.04e-2 068+8.33¢—3 69.34+231let0

Ours (ByT5-small) v 0.32+2.13e—3 20.02+2.25e+0 1.78 £4.25e—2 0.56 +6.70e—3 0.39 £6.23e—3 0.47 +6.37e—3 0.47 £6.40e—3 0.68 +1.23e—2 72.55 £ 1.75e+0

new-seed v 0.32£4.47e—3 21.77+1.63e+0 1.82+0.00e+0 0.57+8.87e—3 0.40 £8.30e—3 0.47 £ 7.73e—3 0.47 £7.67e=3 0.67 £ 3.70e—3 71.61 £ 2.95e+0
original-seed v 0.32£2.13e—3 20.02+2.25e+0 1.78+4.25e—2 0.56+6.70e—3 0.39£6.23e—3 0.47 £ 6.37e—3 0.47 £6.40e—3 0.68 £1.23e—2 72.55 £ 1.75e+0

L1 Generation

(a) Ablation study results using the combined L1L2L3 captions.

Experiment Input Level BLEU 1 Perplexity | ROUGE-1 1 ROUGE-2 1 ROUGE-L T ROUGE-L SUM 1 WMD | TER |
Transformer T5-small L1 042+ 7.87e—3 73.01 £5.20e+0 0.64 £1.64e—2 0.52+ 1.44e—2 0.56 & 1.10e—2 0.56 £ 1.09e—2  0.65 + 1.06e—2  62.76 £ 1.10e+0
Backbone Ours (ByT5-small) L1 043 +4.67e—3 61.01 £3.4le+0 0.74+2.70e—3 0.61 +6.80e—3 0.63 & 5.67e—4 0.63 £5.33e—4 0.57 £1.72e—2 53.05 & 2.60e—1

new-seed L1 043 £1.50e—3 68.24 + 1.49e+1 0.74 £4.67e—4 0.62 +6.67e—5 0.63 & 2.97e—3 0.63 £3.07e—3 0.56 & 1.19e—2 53.17 £ 1.72e—1

L1 Generation original-seed LI 0.43+4.67c—3 61.01+341c+0 0.74+2.70c—3 0.61+6.80c—3 0.63+567e—4  0.63+533e—4 0.57+1.72—2 53.05 + 2.60c—1

(b) Ablation study results using the L1 captions.

Experiment Input Level BLEU 1 Perplexity | ROUGE-1 1 ROUGE-2 1 ROUGE-L 1 ROUGE-L SUM WMD | TER |
Transformer T5-small L2/L3  0.06 £2.67e—3 35.81 £4.13e4+0 0.254+6.43e—3 0.09 + 3.43e—3  0.22+ 5.73e—3 0.22 4+ 5.60e—3  0.99 £ 8.70e—3 | 113.33 & 2.94e+0
Backbone Ours (ByT5-small) L2/L3 = 0.07£8.07e=3 18.81 £3.74e+0 0.28 4+ 1.65e—2 0.11 £9.43e—3 0.25 £ 1.02e—2 0.244 +1.02e—2  0.924+8.90e—3  120.62 & 6.72e+0

new-seed L2/L3 = 0.08+5.93e—3 20.96 +2.7le+0 0.29+£5.77e—3 0.11 £2.33e—3 0.25 + 5.30e—3 0.25+£5.27e—3 0.91+1.83e—3 116.36 + 1.11e+1

L1 Generation original-seed L2/L3 0.07+8.07e—3 18.81+3.74e+0 028+1.65e—2 0.11+9.43e—3 025+1.02e—2 02441022 0.92+8.90e—3 120.62 + 6.72e+0

(c) Ablation study results using the L2/L.3 captions.

Table 3: We perform two ablation studies to measure the impact of our model architectures and L1 caption
generation. Our Transformer Backbone ablation study compares our ByT5-small backbone to T5-small with and
without prefix-tuning (PT) and BART-base. Our L1 Generation ablation study analyzes our stochastic L1 caption
generation pipeline with different random seeds. We evaluate each model using machine translation and text
generation metrics: BLEU, Perplexity, Relation Generation (RG), ROUGE-1, ROUGE-2, ROUGE-L, ROUGE-L
SUM, Word Mover’s Distance (WMD), and Translational Error Rate (TER). Darker colors indicate better scores.

C Ablation Studies

To evaluate our modeling and dataset design choices, we run ablation studies measuring the impact of our
transformer model backbones and stochastic data generation pipeline. We report the results in Table 3.

Transformer Backbone. To understand the impact of our token-free, byte-to-byte architecture ByT5
model backbone, we explore other large language models. Specifically, we compare our 300M parameter
ByT5-small model (Xue et al., 2022) with a 60M parameter T5-small (Raffel et al., 2020) and 140M
parameter BART-base model (Lewis et al., 2020). We also apply prefix-tuning to the ByT5 and T5
models. We cannot apply prefix-uning to BART because BART does not support multi-task learning.
Quantitatively, using ByT5 does not appear to significantly improve upon TS. However, we theorize that
ByT5’s token-free paradigm increases the input sequence length by compressing more input text into
fewer input tokens.

L1 Caption Generation. Since we generate L1 captions stochastically, we evaluate whether our initial
randomization impacted the model’s results. We compare generate a second set of L1 captions using a
different random seed. We see the results are nearly identical across all metrics, indicating our dataset
captures a diverse set of L1 captions.



Model PT Seeds Epochs Batch Size Optim. Adam 51 Adam 32 Adame Weight Decay LR

Kantharaj et al. (2022) 10, 20, 30, 40, 50 50 2 AdamW 0.9 0.999 1le—08 Linear 5e — 05
Kantharaj et al. (2022) v 10, 20, 30, 40, 50 50 3 AdamW 0.9 0.999 1le—08 Linear 5e — 05
scene-graph v 10, 20, 30, 40, 50 50 3  AdamW 0.9 0.999 1le—08 Linear 5e — 05
data-table v 10,20, 30, 40, 50 50 4  AdamW 0.9 0.999 1le—08 Linear 5e —05
scene-graph 10, 20, 30, 40, 50 50 3 AdamW 0.9 0999 1e—08 Linear 5e — 05
data-table 10, 20, 30, 40, 50 50 4  AdamW 0.9 0.999 1le—08 Linear 5e — 05
image-scene-graph 9555, 16710, 23578 50 4  AdamW 0.9 0.999 1le— 06 0.01 5e—05
image-scene-graph v 1393, 16983, 23814 50 4  AdamW 0.9 0.999 1le—06 0.01 5e—05
image-data-table 7504, 9586, 32579 50 4  AdamW 0.9 0.999 1le — 06 0.01 5e — 05
image-data-table v 4120, 7625, 19179 50 4  AdamW 0.9 0.999 1le—06 0.01 5e—05
image 13423, 17963, 29028 50 32 AdamW 0.9 0.999 1le— 06 0.01 5e— 05
image v’ 4650, 7434, 15249 50 32 AdamW 0.9 0.999 1le — 06 0.0 5e — 05
BART-base scene-graph 10, 20, 30, 40, 50 50 2  AdamW 0.9 0.999 1le—08 Linear 5e — 05
T5-small scene-graph 10, 20, 30, 40, 50 50 2  AdamW 0.9 0.999 1le—08 Linear 5e — 05
T5-small scene-graph v 10, 20, 30, 40, 50 50 3  AdamW 0.9 0.999 1le—08 Linear 5e — 05
new-seed scene-graph v 10, 20, 30, 40, 50 50 3 AdamW 0.9 0.999 1le—08 Linear 5e —05

Table 4: A summary of notable hyperparameters we used to train the baseline, text-based, image-guided, and
ablation study models. For all parameters and code, see: https://github.com/mitvis/vistext

D Implementation Details

Code to train and evaluate our text-based and image-guided models is available at https://github.com/
mitvis/vistext. Table 4 summarizes our model training parameters.

D.1 Text-Based Chart Captioning

To train our text-based chart captioning models, we use the Huggingface implementation of ByT5 (Wolf
et al., 2019). Due to hardware limitations, we use the ByT5-small model, which has 300M parameters.
We fine-tune each model for 50 epochs, using Adam optimization with a learning rate of 5e—05. To fit
the input features into GPU memory, we truncate the input text (i.e., scene graph or data table) to 1024
tokens and the output caption to 512 tokens. We select the best model epochs based on the validation loss
of the validation set. See Table 4 or the VisText GitHub repository! for each model’s full training details
and hyperparameters.

We train each model three times with and without prefix-tuning and report the mean and standard
deviation in Table 1. We train each model on four NVidia V100 GPUs with 32GB of memory connected
by an NVLink2 network. With prefix-tuning, training, evaluation, and inference took approximately
39 hours for the scene-graph model and 11 hours for the data-table models. Without prefix-tuning,
training, evaluation, and inference took approximately 78 hours for the scene-graph model and 22 hours
for the data-table models. We estimate that we trained each model between 30 to 45 times to achieve
our final results.

D.2 Image-Guided Chart Captioning

Our image-guided chart captioning models extend the VLTS5 model (Cho et al., 2021), which is a
multimodal extension of T5-base. We extract visual features from VisText’s chart images using Bottom-
Up Feature Extraction (Anderson et al., 2018) and 36 bounding boxes per image. After feature extraction,
we fine-tune VLTS on the VisText dataset for 50 epochs following the default VLTS training protocol® (Cho
et al., 2021). To fit the input features into GPU memory, we truncate the input text (i.e., scene graph or
data table) to 1024 tokens and the output caption to 512 tokens. After 50 epochs, we select the epoch
with the lowest validation loss as the best model. See Table 4 or the VisText GitHub repository? for each
model’s full training details and hyperparameters.

We train each model three times with and without prefix-tuning and report the mean and standard
deviation in Table 1. We train each model on four NVidia V100 GPUs with 1TB of memory. The image
models take approximately 2 minutes per training epoch without prefix-tuning and approximately 3

"https://github.com/mitvis/vistext
2https://github.com/j-min/VL-T5
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Package Version

bleurt 0.0.2
datasets 2.10.1
evaluate 0.4.0
gensim 4.3.0
h5py 3.7.0
nltk 3.7
numpy 1.22.3
pandas 1.4.2
pot 0.9.0
pytorch 1.10.2
pyyaml 54.1
sacrebleu 2.0.0
scipy 1.7.3
sentencepiece 0.1.95
tokenizers 0.11.4
torchvision 0.13.1
transformers 4.24.0

Table 5: The package versions used for training and evaluating our VisText models. Further implementation details
and code are available at: https://github.com/mitvis/vistext.

minutes per training epoch with prefix-tuning. The image-scene-graph and image-data-table models
take approximately 10 minutes per training epoch without prefix-tuning and approximately 15 minutes
per training epoch with prefix-tuning. We estimate that we trained each model between 5 to 10 times to
achieved our final results.

D.3 Ablation Models

We train our ablation models using the same parameters as our default models, only varying the parameter
of interest. We train them on 16 virtual CPU cores on Xeon ES5 hypervisors with 128GB of memory and
PCI pass-through access to eight NVidia Titan XP GPUs with 12GB of memory.

D.4 Notable Package Versions

Package versions are listed in Table 5.


https://github.com/mitvis/vistext

E Additional VisText Dataset Details

E.1 Licensing

Our use of the raw Statista data from Kantharaj et al. (2022) is consistent with its intended use case. The
data was licensed under the GNU General Public License v3.0. We release our data and code under GNU
General Public License v3.0.

E.2 L1 Caption Generation Process

The Level 1 captions are generated from a random process that chooses from 3 title templates and 6 axis
templates. The title templates we use are:

e This is a [chart-type] titled [chart-title]
e This [chart-type] is titled [chart-title]
e [chart-title]isa [chart-type]
The axis templates we use for each axis are:
* On the [axis], [axis-1label] is plotted with a [axis-scale]
* [axis-label] is plotted with a [axis-scale] on the [axis]
* The [axis] plots [axis-1label] with a [axis-scale]
e A [axis-scale] can be found on the [axis], labeled [axis-1label]
e This is a [axis-scale] on the [axis], labeled [axis-1label]
We additionally have one template for both axes:

* The [axis1] plots [axis1-1label] with [axis1-scale] while the [axis2] plots [axis2-1label]
with [axis2-scale]

For each axis template, we randomly choose whether to include the axis scale. Furthermore, within each
template, we further randomly swap words with synonyms. A list of words and their possible synonym
substitutions are:

e this: here, a

* chart: graph, diagram, plot

titled: called, named, labeled

e on: along

plotted: defined, measured, drawn, shown
* plots: measures, shows

o with: using, on, along, as

* found: seen

¢ labeled: marked



E.3 Crowdsourced Study Protocol

Figures 6-10 screenshot the introduction, eligibility and consent statements, instructions, and a task from
our crowdsourced study. We recruited participants on the Prolific.co crowdsourcing platform, following
conventions in the data visualization research community® and recent research results (Tang et al., 2022)
that suggest Prolific yields higher quality results than Amazon Mechanical Turk. We conducted multiple
pilot runs to calibrate the amount of time it would take participants to complete the study, and found
that most participants were able to successfully do so within 14 minutes. Following Silberman et al.
(2018), who advocate for paying workers at least minimum wage at your location, we choose to pay our
participants $3.25 — a roughly $14/hour rate in line with the $14.25/hour minimum wage in Massachusetts
at the time the study was conducted.

Our study was determined to be exempt by MIT’s institutional review board (IRB). Participants had
to explicitly provide their consent in order to proceed with the study — if participants did not consent,
they were redirected back to the Prolific platform. The consent statement (Fig. 8) reminded participants
of their rights (including that their participation is voluntary and consent could be revoked at any time),
and encouraged participants to contact either the study PI or IRB board directly should they have any
concerns. We constrained our participant pool (and eligibility requirements) to people living within the
United States or United Kingdom who self-reported as being sighted with no vision or color impairments.
We did not collect any additional demographic data from participants as we did not determine this to bias
or otherwise affect the content we hoped to collect.

Each task (an example of which is shown in Fig. 10) included an attention check where participants
were asked to correctly identify the chart type shown. If participants failed more than two attention
checks, their submission was flagged for manual review —in practice, the bulk of participants who
failed attention checks nevertheless produced valid captions and, thus, were paid fully. The task asked
participants to complete a free response question to describe as completely as they could the trends and
patterns observed, emphasizing that their response would be evaluated for correctness and completeness.
Despite best practices suggesting a more structured, querying approach (called QID) can yield higher
quality captions (Morash et al., 2015), we opted for our free-response approach as the benefits of QID
(namely, in expressing the chart type, title, and axes units) would already be captured by our synthetically
generated L1 captions. Moreover, in contrast to the templatized output produced by QID, we hoped that
our free-response responses would yield more “natural” articulations of perceptual and cognitive trends,
following the Lundgard and Satyanarayan (2022) framework.

3h'ctps ://twitter.com/eagereyes/status/1187773534745088000
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Describing Data Visualizations

You are invited to participate in a research study about describing data visualizations to
improve their accessibility to people who are blind or have low-vision. You have been
asked to participate because we need to determine what language sighted readers use to
describe charts, and the sorts of trends and patterns you identify when reading a chart.
We will ask you to read data visualizations (such as a bar chart or line chart), and to also
read a textual description of each visualization. Then, we will ask you to answer questions
about each visualization, and to write your responses in English.

Full completion of this study consists of the following:

1. Reading through an introductory example task.
2. Completing up to 5 visualization description tasks, with 1 open-ended question per
task (5 text input questions total).

The estimated time to complete this study is 14 minutes.

Figure 6: Introduction to the crowdsourcing study.

Eligibility Statement

You are eligible for this study if and only if:

You are sighted and do not have color blindness or other color vision impairment.
You are comfortable reading and writing in English.

You are over 18 years of age.

You are comfortable with interpreting charts and graphics.

You have JavaScript enabled in your browser.

A ol A

@) | have read the above information and attest that | AM eligible to participate in this study.

O I have read the above information and attest that | AM NOT eligible to participate in this
study.

Figure 7: Eligibility statement for the crowdsourcing study.



Consent Statement

Please review the following information about this study.

e If you agree to participate in this study, we will ask you to complete a sequence of
visualization description tasks.

e \We expect this study to take 14 minutes, and you will receive $3.25 as compensation.

e We don't anticipate any risks from participating in this study to be greater than normal
activity.

e There will be no direct benefits to you other than compensation.

¢ No personally identifying information will be revealed to anyone other than the
researchers conducting this study.

e The records of this study will be kept private. In any sort of report we make public, we
will not include any information that will make it possible to identify you.

e Research records will be kept on encrypted serves. Only the researchers will have
access to the records.

o Participating in this study is completely voluntary. If you decline to participate, it will
not affect your current or future relationship with the researchers.

e If you agree to participate, you are free to withdraw at any time. We will delete any
data related to your participation upon your request.

¢ You may ask any questions about the research at any time. If you have questions
about the research after you leave today you should contact _

e |f you are not satisfied with response of research team, have more questions, or want
to talk with someone about your rights as a research participant, you should contact

O]

®) | have read the above information and AGREE to participate in this study.
O I have read the above information and DO NOT AGREE to participate in this study.

Figure 8: Consent statement for the crowdsourcing study.



Example Task
In this task, we first present a visualization, followed by a textual description of that
visualization. Then, we ask you a question, and provide an example response.

This question the same as the ones you will be asked in the upcoming tasks. Note that the
responses are open-ended text input. We ask that you try your best and respond in
complete sentences.

Please confirm that you have read and understood each example question by clicking the
button below it.

Example Visualization

Cars by Country Origin
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Example Visualization Description

A scatterplot entitled “Cars by Country Origin” that plots cars’ Horsepower versus
Miles_per_Gallon by Origin. Car Origin includes Europe, Japan, and USA, encoded by
Color and Shape: Europe (blue, circle), Japan (orange, square), and USA (red, triangle).
Horsepower is plotted on the horizontal x-axis from 0 to 250 with an increment of 50.
Miles_per_Gallon is plotted on the vertical y-axis from 0 to 50 with an increment of 10.

Example Question

Besides what was already said in the above description, what other conclusions can you
draw from this visualization? What trends or patterns can you observe?

Please only articulate trends or patterns using information contained in the visualization.
Please do not introduce background knowledge or assumptions about the data apart form
what is represented in the visualization. Please state as many observations as you are
able. Please state each observation using one Your will
be forits and

Example Responses

Mapan produces the car with the greatest Miles_per_Gallon. USA produces the car with the fe
Miles_per_Gallon. Most cars have around 40 to 120 Horsepower. Most of the cars can drive
faround 20 to 40 Miles_per_Gallon.

These sentences are good because they accurately reference information contained
in the chart.

verall, as horsepower increases, miles per gallon decreases. USA cars have the highest
horsepower. European and Japanese cars seem to have better miles per gallon.

These sentences are also good because they describe a trend in the data presented
by the chart using only the information provided by the chart.

Incorrect Responses

Certain sentences should not be written. For example:

"The cars have between 0 Miles_per_Gallon and 50 Miles_per_Gallon."
o While this is an accurate description of the chart, it should not be written because a

similar description was already given in the above Example Description.

"European cars are shown as blue circles, Japanese cars are orange squares, and American cars
are read triangles."
o This is a bad response because it focuses on the visual appearance of the chart
rather than describing trends or patterns.

*Compared to Europe and Japan, the USA does a poor job of manufacturing environmentally
efficient cars. Japanese cars have the highest miles per gallon, and are therefore most
environmentally friendy."
o This is a bad response because i
efficiency and friendliness that is not ined within the chart itself.

roduces background knowledge about

O | have read and understood the Example Question.

This concludes the Example Task. You will now be asked to complete up to 5 similar
visualization description tasks.

O | have read and understood the Example Task.

Figure 9: Instructions for the crowdsourcing study, with examples of correct and incorrect responses.



Visualization Description Task (./imgs_47/multiColumn/data/3262_1.png)

Task

Directions: Please read the data visualization and the corresponding textual description.
Then, please provide a response to the text-input question.

Visualization

Number of Facebook fans/twitter followers
of the Green Bay Packers (NFL) from 2012
to 2020 (in millions)
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What type of visualization is shown above?

@) Scatter Plot
QO Line/Area Chart
QO Bar Chart

Visualization Description

Number of Facebook fans/twitter followers of the Green Bay Packers (NFL) from 2012 to
2020 (in millions) is a area diagram. A linear scale from 0.00 to 2.00 can be found on the y-
axis, marked Twitter followers. There is a linear scale from 2014 to 2020 on the x-axis,
marked Month.

Question

Besides what was already said in the above description, what other conclusions can you
draw from this visualization? What trends or patterns can you observe?

Please only articulate trends or patterns using information contained in the visualization.
Please do not introduce background knowledge or assumptions about the data apart form
what is represented in the visualization. Please state as many observations as you are
able. Please state each observation using one complete sentence. Your response will
be evaluated for its correctness and completeness.

Figure 10: An example task from a specific run of the crowdsourcing study.



