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1. Introduction

Firn is broadly defined by the gradual transition from loose surface snow to solid ice through
compaction, densification, pore closure and other effects, and is most often the uppermost
structure for large glacial systems in polar regions. In Antarctica, firn covers approximately
99% of all glaciers (van den Broeke, 2008; Ligtenberg and others, 2011) and is both an inte-
grated component of ice masses and a somewhat separate, exotic medium with significant
structural variability. Accurately estimating the firn density profile has long been a primary
objective of the glaciological community, but current models (e.g. Stevens and others, 2020)
are unable to account for the swath of local effects that cause deviations from average assump-
tions. Ice flow and its related strain environment, for instance, have recently been shown to
strongly affect layer density through settling (Horlings and others, 2021; Oraschewski and
Grinsted, 2022). Effects related to environmental surface forcing, such as temperature changes
and wind/deposition interactions, (e.g. Reeh and others, 2005; Reeh, 2008) can furthermore
cause large perturbations in firn layering and density away from an assumed smooth gradient
from snow to solid ice. Both effects cause significant uncertainties in firn profile estimates.

Beyond its global contribution as a challenging component of ice mass-balance estimates,
the inherent porosity, parametric gradient and dynamic nature of the firn allow it to absorb
environmental forcing in multiple ways, including pore space retention and refreezing of sur-
face melt (Rennermalm and others, 2013; Steger, 2017; Vandecrux and others, 2020). In some
cases, particularly with respect to ice shelves, the progressive loss of the firn can trigger cata-
strophic shelf failure due to melt ponding and hydrofracture (Kuipers and others, 2017), and
ablation and reduction in albedo (Scambos and others, 2004; Leppéranta and others, 2012;
Banwell, 2017; Kuipers and others, 2017; MacAyeal, 2018), as was the case for Larsen B Ice
Shelf, resulting in accelerated ice flow across the grounding line following its 2002 collapse
(Rignot and others, 2004).

Passive correlation-based seismic methods, which are widely applied to study structural
temporal variability for seismic velocity and scattering properties, require the deployment of
station arrays to construct interstation noise correlation functions (NCFs) through an
approach called seismic interferometry (Campillo and Paul, 2003; Snieder, 2004; Wapenaar
and Fokkema, 2006; Wapenaar and others, 2010). Such multi-station methods work best
under conditions of ambient source stability and implement significant time averaging to
reconstruct interpretable NCFs. Potentially large errors on the phase of reconstructed surface
waves can be introduced when the noise source is not temporally and spatially stable, and this
often precludes the use of higher ambient noise frequencies suitable for near-surface structures
like the firn. Seismic inversions based on the surface wave components of the NCFs (e.g. Diez
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Figure 1. (A) Example of firn resonances from nearly two years of North component ambient seismic data recorded at station DR09 on Roosevelt Island from Ross
Ice Shelf broadband array (red circle, inset map) displayed as a time/frequency plot (spectrogram) (Chaput and others, 2018). Red boxes indicate seasonal open sea
ice conditions, and corresponding spectral effects are not observed at grounded sites. Stable shelf plate modes are visible as high amplitude temporally stable
vertical bands below 5 Hz (notably during open sea ice conditions, red boxes), and temporally variable firn modes above roughly 5 Hz (observable year round). (B)
Description of environmental effects that dictate the behavior of firn resonances. (1) Wind coupling with semi-periodic surface snowforms and the low-velocity/
density firn structure excites unique firn mode patterns. (2) Firn is sensitive to anomalous near-zero surface temperatures, and the frequency range over which
resonances are altered depends on the depth penetration of the temperature anomaly. (3) Firn accommodates strain associated with flowing ice masses in a
ductile fashion at shallow depths where porosity is high, and in a brittle fashion where pores have largely closed.

strongly to environmental forcing phenomena such as storms
and temperature anomalies, and are demonstrably sensitive to
depth-dependent medium parameters such as anisotropy and
layering. Here, we summarize three recent forays exploring
these observations (Chaput and others, 2018, 2022a, 2022b) and
emphasize the potential for significant information retrieval at
single seismic stations deployed in firn media. We further elabor-
ate on directions of study involving constraints on excitation
physics that would allow these novel observations to be invertible
quantities.

2. Firn resonances

Chaput and others (2018) first noted the presence of narrow band
peaks in spectrograms of ambient seismic data on the Ross Ice
Shelf (RIS; Bromirski and others, 2015, Fig. 1A), inferred to be
excited by wind forcing. Such resonances have since been
observed at other firn-covered locales including at the West
Antarctic Ice Sheet (WAIS) Divide and South Pole, with varying
types of instrumentation including completely snow-buried
instruments with low to zero wind profile. Firn spectral peaks fea-
ture complex behaviors, including frequency shifts on the order of
hours following strong wind events, response to surface softening
or melt (e.g. Nicolas and others, 2017), multi-month drifts in
peak frequency patterns, harmonic resonance patterns with
broadband coherent drift or, conversely, behavior where multiple
peaks shift independently of each other (Fig. 1A, basic forcing
effects shown in Fig. 1B). These narrow band spectral peak
patterns and their compelling spectrogram sonifications have
further sparked interest from members of the arts community
(e.g. Canadian audiovisual artist Sandra Volny and Emmy
award winning composer Lucas Cantor, among others) who are
developing multifaceted interpretive projects. The information
content of firn resonances is surprising, particularly when one
considers that observations are performed at single stations. We
review primary results from three recent papers on the subject
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(Chaput and others, 2018, 2022a, 2022b), frame them in the con-
text of broader community knowledge gaps and propose direc-
tions for future studies aiming to leverage sparse, single seismic
stations for imaging and temporal monitoring efforts in firn
media.

3. Boundary layer monitoring

Chaput and others (2018) noted that firn resonances are respon-
sive to atmospheric boundary layer processes, including surface
snowform alterations following waning storms (e.g. Sommer
and others, 2018), temperature fluctuations near the melting
point and long-term (i.e. months to years) peak frequency
decay and drift hypothesized to be related to firn compaction.
Figure 2A demonstrates that some storms are capable of dramat-
ically shifting the frequency content of resonance patterns with
their passing, pointing to a direct involvement of surface snow-
forms (e.g. sastrugi) on the source mechanism responsible for res-
onance generation. Indeed, 2D numerical wavefield simulations
(Chaput and others, 2018) have shown that by changing the spa-
tial periodicity of surface sources as a proxy for wind coupling,
different frequencies can be naturally amplified. The very low seis-
mic velocities of firn caused by high porosity also tend to drive
these amplifications to overall lower, and hence observable,
parts of the spectrum, compared to what we might expect in nor-
mal Earth media. Particularly strong storms can overcome surface
grain sintering and alter snowform distributions (e.g. Sharma and
others, 2019), as can storms with high airborne snow budgets (i.e.
with deposition effects). If relative calm follows such a storm, the
new spectral pattern will often slowly decay back to its original
state over the space of months (e.g. Fig. 1A, black boxes), suggest-
ing a sensitivity to steady-state surface erosion and compaction
processes.

Furthermore, firn resonances are highly sensitive to surface
temperatures as they approach melting, without necessarily even
crossing the threshold into meltwater generation, as for example
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Figure 2. Examples of firn resonances show in ‘peak tracked’ form, where only peak maximums for both horizontal components of the spectrogram at each time
bin are shown. (A) Firn resonance response to alterations in surface snowforms. Strong storm activity (arrows in left panel, matched with periods of high winds
shown by the black trace), can deposit new snowforms that are then slowly eroded during periods of quiescence (right panel), resulting in slow spectral decay (time
scale of months, black dotted boxes). (B) Peak tracked firn resonances at 5 stations on RIS during a shelf-wide near-zero temperature event in 2016 (bottom left
panel, Nicolas and others (2017)). Firn undergoes up to a 40% reduction in elastic moduli (top right panel) as bonds between snow grains weaken, resulting in a
downward drift in frequency for higher peaks and a reduction in amplitude (bottom right panel). (C) Peak tracked spectrogram at RIS station RS17 for 10 days
during 2016, showing the obvious offset in frequency (also frequency dependent) between North and East components. Right panel: Shallow firn deforms plas-
tically under extensional strain typical of RIS and features a strain-elongated pore space (black arrows aligned with ice flow), while deeper firn to solid ice responds
in a brittle manner, often resulting in flow-perpendicular crevassing (red arrows) unless dominant crevassing is advected and rotated from past strain regimes.

observed during an extended period of near-zero temperatures on
the Ross Ice Shelf in 2016 (Nicolas and others, 2017), and shown
in Figure 2B. For all stations within the event area, the frequency
content of higher frequency peaks drifted downward and fell in
amplitude, hitting a minimum after 3-4 days, and partially recov-
ered when a subsequent cold snap occurred. Takei and Maeno
(2004) showed that snow undergoes up to a 40% reduction in
elastic moduli as temperatures approach zero without even
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necessarily generating melt, pointing a direct link between
increasing temperatures, decreasing seismic velocities and
decreasing frequency content. The insensitivity of lower frequency
firn modes (i.e. 5-10 Hz, shown in Chaput and others (2018)) to
this event were physically interpreted through a surface-driven
thermal diffusion model as noted in other snow studies (e.g.
Gilbert and othets, 2014), where surface temperature anomalies
without melt only reached a limited depth in the firn. Given
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Figure 3. Multi-faceted seismic and distributed acoustic sensing (DAS) experiment coupled with drone-based photogrammetry aiming to make key firn seismic and
environmental measurements to advance understanding of the firn medium and environmental forcing effects that govern resonance peak and other seismological
observations, leveraging a long-running UW-Madison (UWM) autonomous weather or similar station (e.g. Lazzara and others, 2012).

strong evidence that firn resonances are related to surface wave
excitation (Chaput and others, 2022a) with frequency-dependent
depth sensitivities (i.e. lower frequency Rayleigh waves are on
average sensitive to deeper structures than higher frequencies),
firn resonances can be used to evaluate the depth penetration of
temperature-related atmospheric forcing.

4. Constraining models of firn structure

As mentioned above, one of the most daunting barriers to accur-
ately modeling firn density profiles lies in estimating fluctuations
away from steady-state densification models. This encompasses,
for example, elusive effects related to surface temperature forcing
(e.g. Reeh and others, 2005; Reeh, 2008) and constraining the
firn’s settling behavior under different strain regimes (Horlings
and others, 2021; Oraschewski and Grinsted, 2022). While study-
ing past, and thus buried, strain effects and imaging fine layering
due to ice lens and melt layers remain difficult problems, firn
resonances offer potential avenues of study with the added benefit
that the necessary observations can be performed on single sen-
sors. Firn resonances present several interesting quantities that
are at least partially invertible. Firstly, the spectral patterns them-
selves may offer constraints on firn structure, as shown by
Bayesian explorations of resonances for 2D models Chaput and
others (2018), with the caveat that resonance peaks are a combin-
ation of both surface source distributions and firn structure.
Chaput and others (2022a) furthermore showed that resonance
peak patterns are indeed affected by local structures, and their fre-
quency content follows similar spatial variation trends to several
other well-known site response metrics associated with Rayleigh
waves propagating in strong parametric gradients, such as the
widely used H/V ratio (e.g. Nakamura, 1989) and Rayleigh wave
particle motions patterns (e.g. Tanimoto and Rivera, 2005;
Denolle and others, 2012; Berbellini and others, 2016). Given
that overhead satellite imagery offers the potential for estimating
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surface snowform distributions, firn resonances could be coupled
with these other metrics in a joint inversion of firn profiles (par-
ticularly with H/V, since it is another single station measurement).

Chaput and others (2022b) noted that spectral patterns can be
mined for another interesting parameter set, as they almost uni-
versally display a frequency offset between the seismometer’s
orthogonal horizontal components (referred to here as ‘peak split-
ting’) that can be interpreted in the context of azimuthal anisot-
ropy. This link was confirmed with active sources at WAIS Divide
as part of the TIME project (Chaput and others, 2022b).
Azimuthal anisotropy from firn resonances was interpreted as
being governed at greater depth and lower frequencies (<~25 Hz)
by remote-sensing visible advected crevasses in the ice governed
by strains imparted through accelerating flow (Ledoux and others,
2017), and at shallow depths and higher frequencies (>~25 Hz) by
plastic elongation of the pore space in the shallow firn. Although
this latter mechanism has not been directly observed in snow, it
has been widely studied in materials engineering (e.g. Melon and
others, 1995, 1998; Tita and Caliri Junior, 2012) and medical phys-
ics (e.g. Hosokawa and Otani, 1998; Lee and others, 2007) in terms
of anisotropic properties of open-celled foams. For snow, this
results in fast anisotropic directions that are aligned with ice flow
(i.e. maximum extension) at higher frequencies and with crevassing
at lower frequencies (Fig. 2C, right panel).

That being said, mapping these splitting observations to exact
depths is a complex problem. Chaput and others (2022a, 2022b)
numerically showed that Rayleigh waves propagating in realistic
firn media (i.e. with strong shallow deviations away from a
smooth densification model similar to those modeled by Reeh
(2008)) will, at certain frequencies determined by fluctuations
in structure, have their sensitivity become extremely focused at
specific depths as opposed to smoothly distributed (Tanimoto
and Rivera, 2005; Haney and Tsai, 2015). Thus, although it is
clear that the transition between ductile and brittle strain accom-
modation in the firn occurs roughly at the same frequency for



Annals of Glaciology

most seismic sites on RIS, suggesting a physical generality
(Chaput and others, 2022b), it is unclear what that depth might
be beyond conjecture or simple assumptions of smooth depth
sensitivity. In the latter case, however, fundamental mode
Rayleigh sensitivity kernels indicate a likely transition between
10 and 20m for a firn profile derived by Diez and others
(2016) for a dense array on RIS. Passive anisotropy measurements
in firn settings describing a depth at which strain accommodation
switches from ductile to brittle is an attractive goal, given that it
describes a new form of depth transition in density that can be
leveraged in profile estimations.

In light of the direct and physically justifiable causation
between firn resonances and both structural and temporally vari-
able metrics, there is a strong impetus for developing further
physical models that reach beyond qualitative inferences. This
push will require focused and interdisciplinary experiments.

5. Future work and directions

Although clear temporal and structural data products have been
constructed from firn resonances through meticulous compari-
sons with other datasets, there remain multiple questions pertain-
ing to the full physics that excite, propagate and induce temporal
variations in firn mode frequency. A high-dimensional parameter
space of cause and effect is expected here, and a commensurately
focused multi-scale cross-disciplinary experiment should be
employed, with a downstream goal of clarifying and interpreting
these phenomena. We thus propose that the emerging field of
cryoseismology (Podolskiy and Walter, 2016; Aster and
Winberry, 2017) would greatly benefit from a dense multifaceted
and sufficiently long-term experiment aiming to robustly con-
strain the seismic behavior of Antarctic firn. An experiment aim-
ing to constrain the finer points of firn seismology should
ultimately be able to document the following aspects of the
Antarctic firn environment: (1) snowform topographic variability
and its relation to the ambient seismic source, (2) the impact of
strong near-surface layering and other structure on resonance pat-
terns, (3) the types of seismic waves responsible for firn resonance
observations, (4) 3D spatial variability of the resonance peaks
with respect to ice cores and local structure imaged via other
means and (5) influences of environmental forcing factors
(e.g. temperature, wind strength and history, wind shear, wind
direction, humidity, atmospheric pressure and depositional and
stripping history) on the firn wavefield.

A concept sketch for such an experiment is depicted in
Figure 3A. Wavefield separation into P and S components
requires the calculation of the 3D wavefield gradient and curl,
which in turn requires a 3D array of conventional three-
component seismic instruments, rotational sensors or both
(Schmelzbach and others, 2018). Mapping variability in surface
structure (e.g. dunes and sastrugi) requires altimetry or photo-
grammetry methods (or both), and the ability to track changes
over time. Assessment of influences due to any relevant above-
snow mechanical instrumentation resonances  requires
on-instrument  accelerometers (Qin and others, 2022).
Characterization of environmental forcing and surface topog-
raphy requires dedicated weather stations, such as the already
long running Antarctic Automatic Weather Stations (AWS)
Project (Lazzara and others, 2012) and optical camera, LIDAR
or laser altimeter surveys. Accurately constraining the near surface
velocity model and layering is also a key component of reducing
parametric complexity in source effects. A dense nodal seismo-
graph deployment combined with Distributed Acoustic Sensing
(DAS) fiber optic strain rate, and snow core analysis (as an ancil-
lary product of installing borehole seismometers, broadly sup-
ported by the US Antarctic Drilling Program) would provide
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directly sampled medium constraints. Finally, seismic modeling
and inversion should be facilitated by a numerical model capable
of replicating resonance patterns and other high-frequency seis-
mic observables. For this, we require a framework capable of
implementing a full 3D anisotropic velocity model with surface
topography and distributed surface sources, such as SPECFEM3D
(Komatitsch and Tromp, 2002).
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