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large, but computing the k nearest neighbors is quite 
expensive if k is large. Fortunately, quickly computing 
a random nearby neighbor can significantly speed up 
such classification.

• If one wants to estimate the number of items with a 
desired property within the neighborhood, then the eas-
iest way to do it is via uniform random sampling from 
the neighborhood, for instance for density estimation23 
or discrimination discovery in existing databases.27 This 
can be seen as a special case of query sampling in data-
bases,24 where the goal is to return a random  sample of 
the output of a given query, for efficiently providing sta-
tistics on the query.

• We are interested in anonymizing the query: returning 
a random near-neighbor might serve as the first line of 
defense in trying to make it harder to recover the query. 
Similarly, one might want to anonymize the nearest 
neighbor,25 for applications where we are interested in 
a “typical” data item close to the query, without identi-
fying the nearest item.

• Popular recommender systems based on matrix factor-
ization give recommendations by computing the inner 
product similarity of a user feature vector with all item 
feature vectors using some efficient similarity search 
algorithm. It is common practice to recommend those 
items that have the largest inner product with the user’s 
vector. However, in general it is not clear that it is desir-
able to recommend the “closest” articles. Indeed, it 
might be desirable to recommend articles that are on the 
same topic but are not too aligned with the user feature 
vector and may provide a different perspective. As 
described in Adomavicius and Kwon,1 recommendations 
can be made more diverse by sampling k items from a 
larger top-  list of recommendations at random. Our data 
structures could replace the final near neighbor search 
routine employed in such systems.

To the best of our knowledge, previous results focused 
on exact near neighbor sampling in the Euclidean space 
up to three dimensions.2, 19, 24 Although these results might 
be extended to d for any d > 1, they suffer from the curse of 

dimensionality as the query time increases exponentially with 
the dimension, making the data structures too expensive in 
moderately high dimensions. These bounds are unlikely to 
be significantly improved since several conditional lower 
bounds show that an exponential dependency on d in query 
time or space is unavoidable for exact near neighbor search.4

1.1. An example

Is a standard LSH approach really biased? As an example, 
we used the MinHash LSH scheme10 to sample similar users 
from the Last.FM dataset used in the HetRec challenge 
(http://ir.ii.uam.es/hetrec2011). We associate each user with 
their top-20 artists and use Jaccard Similarity as similarity 
measure. We select one user at random as query, and repeat-
edly sample a random point from a random bucket and 
keep it if its similarity is above 0.2. Figure 1 reports on the 
ratio between the frequencies observed via this sampling 
approach from LSH buckets against an unbiased sample.  

considered the approximate variant of the problem. In the 
c-approximate near neighbor (ANN) problem, the algorithm 
is allowed to report a point p whose distance to the query is 
at most cr if a point within distance r of the query exists, for 
some prespecified constant c > 1.

Fair Near Neighbor

As detailed below, common existing data structures for 
similarity search have a behavior that introduces bias in the 
output. Our goal is to capture and algorithmically remove 
this bias from these data structures. Our goal is to develop 
a data structure for the r-near neighbor problem that pro-
vides fairness among “all the points” in the neighborhood. 
That is all the points within distance r from the given query 
have the same probability to be returned. We introduce 
and study the fair near neighbor problem: If B

S
(q, r) is the 

ball of input points at distance at most r from a query q, 
we would like that each point in B

S
(q, r) is returned as near 

neighbor of q with the uniform probability of 1/n(q, r)  
where n(q, r) = |B

S
(q, r)|.

Locality Sensitive Hashing

Perhaps the most prominent approach to get an ANN data 
structure is via Locality Sensitive Hashing (LSH) as pro-
posed by Indyk and Motwani,20 which leads to sublinear 
query time and sub-quadratic space. In particular, for 

 = d, by using LSH one can get a query time of n +o(1) and 
space n1+ +o(1) where for the L

1
 distance metric  = 1/c,16 and 

for the L
2
 distance metric  = 1/c2+o

c
(1).5 In the LSH frame-

work, the idea is to hash all points using several hash func-
tions that are chosen randomly, with the property that 
the collision probability between two points is a decreas-
ing function of their distance. Therefore, closer points to 
a query have a higher probability of falling into a bucket 
being probed than far points. Thus, reporting a random 
point from a random bucket computed for the query pro-
duces a distribution that is biased by the distance to the 
query: closer points to the query have a higher probability 
of being chosen. On the other hand, the uniformity prop-
erty required in fair NN can be trivially achieved by finding 
all r-near neighbors of a query and then randomly selecting 
one of them. However, this is computationally inefficient 
since the query time is a function of the size of the neigh-
borhood. One contribution in this paper is the description 
of much more efficient data structures that still use LSH in 
a black-box way.

When Random Nearby Is Better than Nearest

The bias mentioned above toward nearer points is usually a 
good property, but is not always desirable. Indeed, consider 
the following scenarios:

• The nearest neighbor might not be the best if the 
input is noisy, and the closest point might be viewed 
as an unrepresentative outlier. Any point in the neigh-
borhood might be then considered to be equivalently 
beneficial. This is to some extent why k-NN classifica-
tion15 is so effective in reducing the effect of noise. 
Furthermore, k-NN works better in many cases if k is 
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We see a large discrepancy: the higher the similarity, the 
more biased the LSH is in reporting these points as near 
neighbors. This would strongly affect statistics such as esti-
mating the average similarity of a neighbor.

1.2. Problem formulations

Here, we formally define the variants of the fair NN problem 
that we consider. For all the constructions presented in this 
article, these guarantees fail with probability at most  for 
some prespecified small  > 0.

Definition 1 (r-NNIS or Fair NN). Let S   be a set of n 

points in a metric space ( , ). The r-near neighbor indepen-
dent sampling (r-NNIS), or simply the Fair NN problem, asks to 

construct a data structure for S that for any sequence of up to n 

queries q
1
, q

2
, …, q

n
 satisfies the following properties with prob-

ability at least 1 − :

(I)  For each query q
i
, it returns a point OUT

i, q 
i
 uniformly 

sampled from B
S
(q

i
, r).

(II)  The point returned for query q
i
, with i > 1, is indepen-

dent of previous query results. That is, for any p  B
S 

(q
i
, r) and any sequence p

1
, …, p

i−1
, we have Pr[OUT

i, q
i
 = 

p | 
j
  [i−1]: OUT

j, q 
j
] = p

j
 = 1/n (q

i
, r).

In the low-dimensional setting,2,19 the r-near neighbor 
independent sampling problem is usually known as inde-

pendent range sampling (IRS) problem. Next, motivated by 
applications, we define two approximate variants of the 
problem that we study in this work. More precisely, we 
slightly relax the fairness constraint, allowing the prob-
abilities of reporting a neighbor to be an “almost uniform” 
distribution.

Definition 2 (Approximately Fair NN). Consider a set  

S   of n points in a metric space ( , ). The Approximately 
Fair NN problem asks to construct a data structure for S that for 

any query q, returns each point p  B
S
(q, r) with probability 

p
 

where  is an approximately uniform probability distribution:

(q, r)/(1 + )  
p
  (1 + ) (q, r),

where (q, r) = 1/n (q, r). We require the same independence 

guarantee as in Definition 1, that is, the result for query q
i
 must 

be independent of the results for q
1
, …, q

i−1
, with i  {2, …, n}.

Furthermore, similar in spirit to the behavior of ANN, we 
allow the algorithm to report an almost uniform distribu-
tion from an approximate neighborhood of the query.

Definition 3 (Approximately Fair ANN). Consider a set  

S   of n points in a metric space ( , ). The Approximately 
Fair ANN problem asks to construct a data structure for S that 

for any query q, returns each point p  S  with probability 
p
 

where /(1+ )  
p
  (1+ ) , where S  is a point set such that 

B
S
(q, r)  S   B

S
(q, cr), and  = 1/|S |. As before, the same 

independence guarantee as in Definition 1 is needed, that is, the 

result for query q
i
 must be independent of the results for q

1
, …, 

q
i−1

, with i  {2, …, n}.

1.3. Our results

We propose several solutions to the different variants of the 
Fair NN problem. Our solutions build upon the LSH data 
structure.16 Let (n, c) and (n, c) denote space and query 
time, respectively, of an LSH data structure that solves the 
c-ANN problem in the space ( , ).

• In Section 4.2, we provide a data structure for 
Approximately Fair ANN that uses space (n, c) and whose 
query time is  in expectation. See Lemma 8 
for the exact statement.

• Section 4.3 shows how to solve the Fair NN problem in  
expected query time  and space usage 
O( (n, c) ). See Lemma 9 for the exact statement.

The dependence of our algorithms on  in the approximate 
variant is only O(log(1/ ) ). While we omitted the exact poly-
logarithmic factors in the list above, they are generally lower 
for the approximate versions. Furthermore, these methods 
can be embedded into existing LSH methods to achieve unbi-
ased query results in a straightforward way. On the other 
hand, the exact methods will have higher logarithmic  factors 
and use additional data structures.

A more exhaustive presentation of our results and fur-
ther solutions for the Fair NN problem can be found in the 
full version of the paper.8 Preliminary versions of our results 
were published independently in Har-Peled and Mahabadi,17 
Aumüller et al.9 and then jointly in Aumüller et al.7

1.4. Sampling from a sub-collection of sets

In order to obtain our results, we first study a more generic 
problem in Section 2: Given a collection  of sets from a 
 universe of n elements, a query is a sub-collection    of 
these sets and the goal is to sample (almost) uniformly from 
the union of the sets in this sub-collection. We also show how 
to modify the data structure to handle outliers in Section 3. 
This is useful for LSH, as the sampling algorithm needs to 
ignore such points once they are reported as a sample. This 
setup allows us to derive most of the results concerning vari-
ants of Fair NN in Section 4 as corollaries from these more 
abstract data structures.
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Figure 1. Bias introduced by uniform sampling from LSH buckets on 

the Last.FM dataset. The task is to (repeatedly) retrieve a uniform 

user among all users with similarity at least 0.2 to a fixed user. The 

result is split up into four buckets by rounding down the similarity to 

the first decimal. Error bars show the standard deviation. Compared 

to an unbiased sample, user vectors with small similarity are 

underrepresented, and users with high similarity are, by a factor of 

approximately 4 on average, overrepresented.
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Some examples of applications of a data structure that pro-
vides uniform samples from a union of sets are as follows:

(A)  Given a subset A of vertices in the graph, randomly 
pick (with uniform distribution) a neighbor to one of 
the vertices of A. This can be used in simulating dis-
ease spread.22

(B)  As shown in this work, we use variants of the data 
structure to implement Fair NN.

(C)  Uniform sampling for range searching.19, 2 Indeed, 
consider a set of points, stored in a data structure for 
range queries. Using the above, we can support sam-
pling from the points reported by several queries, 
even if the reported answers are not disjoint.

Being unaware of any previous work on this problem, we 
believe this data structure is of independent interest.

2. SAMPLING FROM A UNION OF SETS

The problem. Assume you are given a data structure that 
contains a large collection  of sets of objects. In total, 
there are n = | | objects. The sets in  are not necessar-
ily disjoint. The task is to preprocess the data structure, 
such that given a sub-collection    of the sets, one can 
quickly pick uniformly at random an object from the set 

 := 
A

 A.

Naive solution. The naive solution is to take the sets under 
consideration (in ), compute their union, and sample 
directly from the union set . Our purpose is to do (much) 
better—in particular, the goal is to get a query time that 
depends logarithmically on the total size of all the sets in .

Parameters. The query is a family   , and define  
m = || || := 

A
 |A| (which should be distinguished from  

g = | | and from N = | |).

Preprocessing. For each set A  , we build a set representa-
tion such that for a given element, we can decide if the ele-
ment is in A in constant time. In addition, we assume that 
each set is stored in a data structure that enables easy ran-
dom access or uniform sampling on this set (for example, 
store each set in its own array).

Variants. As in Section 1.2, we consider problem variants 
where sample probabilities are either exact or approximate.

2.1. Almost uniform sampling

The query is a family   . The degree of an element x  , is 
the number of sets of  that contain it—that is, d (x) = |D (x)|, 
where D (x) = {A   | x  A}. We start with an algorithm (sim-
ilar to the algorithm of Section 4 in Karp and Luby21) that 
repeatedly does the following:

(I)  Picks one set from  with probabilities proportional 
to their sizes. That is, a set A   is picked with prob-
ability |A|/m.

(II)  It picks an element x  A uniformly at random.
(III)  Outputs x and stops with probability 1/d (x). Other-

wise, continues to the next iteration.
Since computing d (x) exactly to be used in Step (III) is 

costly, our goal is instead to simulate a process that accepts 

x with probability approximately 1/d (x). We start with the 
process described in the following lemma.

Lemma 1. Assume we have g urns, and exactly d > 0 of them, are 

non-empty. Furthermore, assume that we can check if a specific 

urn is empty in constant time. Then, there is a randomized algo-

rithm, that outputs a number Y  0, such that [Y] = 1/d. The 

expected running time of the algorithm is O( g/d).

Proof. The algorithm repeatedly probes urns (uniformly at 
random), until it finds a non-empty urn. Assume it found a 
non-empty urn in the ith probe. The algorithm outputs the 
value i/g and stops.

Setting p = d/g, and let Y be the output of the algorithm. 
We have that

using the formula . The expected num-
ber of probes performed by the algorithm until it finds a 
non-empty urn is 1/p = g/d, which implies that the expected 
running time of the algorithm is O( g/d). 

The natural way to deploy Lemma 1 is to run its algorithm to 
get a number y and then return 1 with probability y. The prob-
lem is that y can be strictly larger than 1, which is meaning-
less for probabilities. Instead, we back-off by using the value 
y/ , for some parameter . If the returned value is larger 
than 1, we just treat it at zero. If the zeroing never happened, 
the algorithm would return one with probability 1/(d (x) ). 
The probability of success is going to be slightly smaller, but 
fortunately, the loss can be made arbitrarily small by taking 

 to be sufficiently large.

Lemma 2. There are g urns, and exactly d > 0 of them are not 

empty. Furthermore, assume one can check if a specific urn 

is empty in constant time. Let   (0, 1) be a parameter. Then 

one can output a number Z  0, such that Z  [0, 1], and 
, where  = ln −1 + 4 = (log −1). The 

expected running time of the algorithm is O( g/d). Alternatively, 

the algorithm can output a bit X, such that [X = 1]  I.

Proof. We modify the algorithm of Lemma 1, so that it out-
puts i/( g ) instead of i/g. If the algorithm does not stop in the 
first g  + 1 iterations, then the algorithm stops and outputs 
0. Observe that the probability that the algorithm fails to stop 
in the first g  iterations, for p = d/g, is .

Let Z be the random variable that is the number output 
by the algorithm. Arguing as in Lemma 1, we have that 

[Z]  1/(d ). More precisely, we have

Easy calculations shows that

Let . We have that , where 
. Furthermore, for j  , we have
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being an upper bound on the number of these elements in 
each segment. By the initial random permutation, we have 
that each segment contains at most  = ( (N/k) log n) ele-
ments from  with probability at least 1 − 1/n2. (Of course, 
N is not known at query time.)

The query algorithm works in the following steps in 
which all random choices are independent.

(A) Set k = n, and let  = (log n), 
fail

 = 0 and  =  (log2 n).
(B) Repeat the following steps until successful or k < 2:

(I)  Assume the input sequence  to be split into k 
segments 

i
 of size n/k, where 

i
 contains the 

points in  with ranks in [i  n/k, (i+1)  n/k).
(II)  Select an integer h in {0, …, k − 1} uniformly at 

random (i.e., select a segment 
h
);

(III)  Increment 
fail

. If 
fail

 = , then set k = k/2 and 
fail

 = 0.
(IV)  Compute 

,h
 and with probability 

,h
/ , declare 

success.
(C)  If the previous loop ended with success, return an 

element uniformly sampled among the elements in 
 in 

h
, otherwise return .

Since each object in  has probability 1/(k ) of being 
returned in Step (C), the result is a uniform sample of . 
Note that the main iteration in Step (B) works for all values 
k, but a good choice has to depend on  for the following 
reasons. On the one hand, the segments should be small, 
because otherwise Step (IV) will take too long. On the other 
hand, they have to contain at least one element from , 
otherwise we sample many “empty” segments in Step (II). 
We will see that the number k of segments should be roughly 
set to N to balance the trade-off. However, the number N of 
distinct elements in  is not known. Thus, we use the naive 
upper bound of k = n. To compute 

,h
 efficiently, we assume 

that, at construction time, the elements in each set in  are 
sorted by their rank.

Lemma 4. Let N = | |, g = | |, m = 
X

 |X|, and n = | |. 
With probability at least 1 − 1/n2, the algorithm described 

above returns an element x   according to the uniform dis-

tribution. With high probability, the algorithm has a running 

time of O( g log4 n).

Proof. We start by bounding the initial failure probability 
of the data structure. By a union bound, we have that the fol-
lowing two events hold simultaneously with probability at 
least 1 − 1/n2:

1.  Every segment of size n/k contains no more than  
 = (log n) elements from  for all k = 2i where i  

{1, …, log n}. Since elements are initially randomly 
permuted, the claim holds with probability at least 1 − 
1/(2n2) by suitably setting the constant in  = (log n).

2.  It does not happen that the algorithm reports . The 
probability of this event is upper bounded by the prob-
ability p  that no element is returned in the  itera-
tions where k = 2 log N  (the actual probability is even 
lower, since an element can be returned in an itera-
tion where k > 2 log N ). By suitably setting constants in  

As such, we have that

by the choice of value for . This implies that [Z]  1/(d ) 
−   1/(d ) − , as desired.

The alternative algorithm takes the output Z, and returns 
1 with probability Z, and zero otherwise. 

Lemma 3. The input is a family of sets  that one pre- 

processes in linear time. Let    be a sub-family and let  

N = | |, g = | |, and let   (0, 1) be a parameter. One can sam-

ple an element x   with almost uniform probability distri-

bution. Specifically, the probability p of an element to be output 

is (1/N)/(1+ )  p  (1+ )(1/N). After linear time preprocessing, 

the query time is O( g log( g/ ) ), in expectation, and the query 

succeeds, with high probability (in g ).

Proof. The algorithm repeatedly samples an element x using 
steps (I) and (II). The algorithm returns x if the algorithm of 
Lemma 2, invoked with  = ( /g)O(1) returns 1. We have that  

 = (log( g/ ) ). Let  = 1/(d (x) ). The algorithm returns x in 
this iteration with probability p, where p  [  − , ]. Observe 
that   1/( g ), which implies that   ( /4) , it follows that 
(1/(d (x) ) )/(1 + )  p  (1 + )(1/(d (x) ) ), as desired. The 
expected running time of each round is O( g/d (x) ).

We prove the runtime analysis of the algorithm in the full 
version of the paper. In short, the above argument implies 
that each round, in expectation takes O(Ng/m) time, where  
m = || ||. Further, the expected number of rounds, in 
expectation, will be O( m/N). Finally, this implies that 
the expected running time of the algorithm is O( g ) = O( g 
log( g/ ) ). 

Remark 1. The query time of Lemma 3 can be made to work 

with high probability with an additional logarithmic fac-

tor. Specifically, with high probability, the query time is O( g 
log( g/ ) log N).

2.2. Uniform sampling

In this section, we present a data structure that samples an 
element uniformly at random from . The data structure 
uses rejection sampling as seen before but splits up all data 
points using random ranks. Instead of picking an element 
from a weighted sample of the sets, it will pick a random seg-
ment among these ranks and consider only elements whose 
rank is in the selected range. Let  be the sequence of the  
n = | | input elements after a random permutation; the 
rank of an element is its position in . We first highlight 
the main idea of the query procedure.

Let k  1 be a suitable value that depends on the collec-
tion  and assume that  is split into k segments 

i
, with  

i  {0, …, k − 1}. (We assume for simplicity that n and k are 
powers of two.) Each segment 

i
 contains the n/k elements 

in  with rank in [i  n/k, (i + 1)  n/k). We denote with 
,i
 the 

number of elements from  in 
i
, and with   max

i
 

,i
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Lemma 6. The input is a family of sets  that one can preprocess in 

linear time. A query is a sub-family   , a set of outliers , and a 

parameter m . With high probability, one can either:

(A) Sample a uniform element x  , or

(B) Report that d ( )  m .
The expected query time is O( ( g + m ) log4 n).

4. FINDING A FAIR NEAR NEIGHBOR

In this section, we employ the data structures developed in 
the previous sections to show the results on fair near neigh-
bor search listed in Section 1.3.

First, let us briefly give some preliminaries on LSH. We 
refer the reader to Har-Peled et al.16 for further details. 
Throughout the section, we assume our metric space ( , ) 
admits an LSH data structure.

4.1. Background on LSH

Locality Sensitive Hashing (LSH) is a common tool for solv-
ing the ANN problem and was introduced in Har-Peled et al.16

Definition 4. A distribution  over maps h:   U, for a 

suitable set U, is (r, c r, p
1
, p

2
)-sensitive if the following holds 

for any x, y  :

• if (x, y)  r, then Pr
h
[h(x) = h(y)]  p

1
;

• if (x, y) > c  r, then Pr
h
[h(x) = h(y)]  p

2
.

The distribution  is an LSH family, and has quality 
.

For the sake of simplicity, we assume that p
2
  1/n: if p

2
 > 

1/n, then it suffices to create a new LSH family 
K
 obtained 

by concatenating  K =  (log
p2

 (1/n)) independent and identi-
cally distributed hashing functions from . The new family 

K
 is (r, cr, , )-sensitive and  does not change.
The standard approach to (c, r)-ANN using LSH functions 

is the following. Let  denote the data structure constructed 
by LSH, and let c denote the approximation parameter of LSH. 
Each  consists of L = n  hash functions 

1
, …, 

L
 randomly 

and uniformly selected from .  contains L hash tables 
H

1
, … H

L
: each hash table H

i
 contains the input set S and uses 

the hash function 
i
 to split the point set into buckets. For 

each query q, we iterate over the L hash tables: For any hash 
function, compute 

i
(q) and compute, using H

i
, the set

 H
i
(p) = {p : p  S, 

i
(p) = 

i
(q)} (1)

of points in S with the same hash value; then, compute the 
distance (q, p) for each point p  H

i
(q). The procedure stops 

as soon as a (c, r)-near point is found. It stops and returns  
if there are no remaining points to check or if it found more 
than 3L far points. We summarize the guarantees in the fol-
lowing lemma.16

Lemma 7. For a given query point q, let S
q
 = 

i
 H

i
(q). Then for 

any point p  B
S
(q, r), we have that with a probability of least 

1 − 1/e − 1/3, we have (i) p  S
q
 and (ii) |S

q
  B

S
(q, cr)|  3L, that 

is, the number of outliers is at most 3L. Moreover, the expected 

number of outliers in any single bucket S
i, i (q)

 is at most 1.

 = (log n) and  = (log2 n), we get:

From now on assume that these events are true.
As noted earlier, each element has probability of 1/

(k ) of being returned as output, and thus, elements are 
equally likely to be sampled. Note also that the guaran-
tees are independent of the initial random permuta-
tion as soon as the two events above hold. This means 
that the data structure returns a uniform sample from a 
union-of-sets.

For the running time, first focus on the round where 
k = 2 log N . In this round, we carry out (log2 n) iterations. In 
Step (IV), 

,h
 is computed by iterating through the g sets 

and collecting points using a range query on segment 
h
. 

Since elements in each set are sorted by their rank, the 
range query can be carried out by searching for rank hn/k 
using a binary search in O(log n) time and then enumer-
ating all elements with rank smaller than (h+1)n/k. This 
takes time O(log n + o) for each set, where o is the output 
size. Since each segment contains O(log n) elements from 

 with high probability, one iteration of Step (IV) takes 
time O( g log n).

The time to carry out all  = (log2 n) iterations is thus 
bounded by O( g log3 n). Observe that for all the rounds car-
ried out before, k is only larger and thus, the segments are 
smaller. This means that we may multiply our upper bound 
with log n, which completes the proof. 

Using count distinct sketches to find a good choice for the 
number of segments k, the running time can be decreased 
to O( g log3 n); we refer to the full version8 for more details.

3. HANDLING OUTLIERS

Imagine a situation where we have a marked set of outliers . 
We are interested in sampling from . We assume that 
the total degree of the outliers in the query is at most m  for 
some prespecified parameter m . More precisely, we have 
d ( ) = 

x
 d (x)  m . We get the following results by run-

ning the original algorithms from the previous section and 
removing outliers once we encounter them. If we encounter 
more than m  outliers, we report that the number of outliers 
exceeds m .

Running the algorithm described in Section 2.1 provides 
the guarantees summarized in the following lemma.

Lemma 5. The input is a family of sets  that one can preprocess 

in linear time. A query is a sub-family   , a set of outliers , a 

parameter m , and a parameter   (0, 1). One can either:

(A)  Sample an element x   with an -approximate uni-

form distribution: specifically, the probability 
x
 of x to 

be output is /(1 + )  
x
  (1 + ) , with  = 1/| |.

(B) Alternatively, report that d ( ) > m .
The expected query time is O(m  + g log(n/ ) ), and the query 

succeeds with high probability, where g = | |, and n = || ||.

Running the algorithm described in Section 2.2 and 
keeping track of outliers has the following guarantees.
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• Uniform/uniform: Picks bucket uniformly at random 
and picks a random point in bucket.

• Weighted/uniform: Picks bucket according to its size, 
and picks uniformly random point inside bucket.

• Degree approximation: Picks bucket according to size, 
and picks uniformly random point p inside bucket. It 
approximates p’s degree (using Lemma 1) and rejects p 
with probability 1 − 1/ deg (p). This is the approach dis-
cussed in Remark 2.

• Optimal: Picks bucket according to size, and picks 
uniformly random point p inside bucket. Then, it com-
putes p’s degree exactly and rejects p with probability 1 − 1/ 
deg(p). This is the approach discussed in Remark 2, but 
with exact degree approximation, solving Fair NN.

Each method removes non-close points that might be 
selected from the bucket. We remark that the variant 
Uniform/uniform most closely resembles a standard LSH 
approach. Weighted/Uniform takes the different bucket 
sizes into account, but disregards the individual frequency 
of a point. Thus, the output is not expected to be uniform, but 
might be closer in distribution to the uniform distribution.

Output Distribution. For each query q, we compute the set of 
near neighbors M(q) of q in the LSH buckets. For each sam-
pling strategy, we carry out the query 100|M(q)| times. The 
sampling results give rise to a distribution  on M(q), and 
we compare this distribution to the uniform distribution 
in which each point is sampled with probability 1/|M(q)|. 
Figure 2 reports on the total variation distance between the 
uniform distribution and the observed distribution, that 
is, . As in our introductory example, we 
see that uniformly picking an LSH bucket results in a heav-
ily biased distribution. Taking the size of the buckets into 
account in the weighted case helps a bit, but still results in 
a heavily biased distribution. Even with the easiest approxi-
mation strategy for the degree, we see an improvement and 
achieve a total variation distance of around 0.08, with the 
optimal algorithm achieving around 0.04.

Differences in Running Time. Compared to a naïve approach 
of collecting all colliding points in the buckets and select-
ing a near neighbor at random, the methods presented here 
provide a speed-up of more than two orders of magnitude 
in our experiments. The fair methods based on rejection 

By repeating the construction O(log n) times, we guarantee 
that with high probability B(q, r)  S

q
.

4.2. Approximately Fair ANN

For t = O(log n), let 
1
, …, 

t
 be data structures constructed 

by LSH. Let  be the set of all buckets in all data structures, 
that is, . For a query point q, con-
sider the family  of all buckets containing the query, that is, 

, and thus | | = O(L log n). Moreover, we 
let  to be the set of outliers, that is, the points that are farther 
than cr from q. Note that as mentioned in Lemma 7, the expected 
number of outliers in each bucket of LSH is at most 1. Therefore, 
by Lemma 5, we immediately get the following result.

Lemma 8. Given a set S of n points and a parameter r, we can 

preprocess it such that given query q, one can report a point  
p  S with probability 

p
 where /(1 + )  

p
  (1+ ) , S is a 

point set such that B
S
(q, r)  S  B

S
(q, cr), and  = 1/|S|. The 

algorithm uses space O(L log n) and its expected query time is 

O(L log n log(n/ ) ).

Remark 2. By repeatedly calling the query procedure and 

disregarding points at distance larger than r, the algorithm 

described above solves the Approximately Fair NN Problem 

(Definition 2). The probability that the algorithm succeeds in a 

round is  = n(q, r)/n(q, cr), and as such the expected number 

of rounds is 1/ . Thus, this approach has expected query time 

.

4.3. Fair NN

We use the same setup as in the previous section and build  
t = O(log n) data structures 

1
, …, 

t
 using LSH. We use the 

algorithm described in Section 2.2 with all points at dis-
tance more than r from the query marked as outliers. By the 
properties of the LSH and the random ranks, we expect to 
see  points at distance at least r. This allows us to 
obtain the following results.

Lemma 9. Given a set S of n points and a parameter r, we can 

preprocess it such that given a query q, one can report a point  
p  S with probability 1/n(q, r). The algorithm uses space  

O(L log n) and has expected query time .

5. EXPERIMENTAL EVALUATION

The example provided in Section 1.1 already showed the bias 
of sampling naively from the LSH buckets. In this section, we 
want to consider the influence of the approximative variants 
discussed here and provide a brief overview of the running 
time differences. A detailed experimental evaluation can be 
found in the full paper.8

For concreteness, we take the MNIST dataset of handwritten 
digits available at http://yann.lecun.com/exdb/mnist/. We use 
the Euclidean space LSH from Datar et al.,13 set a distance thresh-
old of 1250, and initialize the LSH with L = 100 repetitions, k = 15, 
and w = 3750. These parameter settings provide a false negative 
rate of around 10%. We take 50 points as queries and test the fol-
lowing four different sampling strategies on the LSH buckets:

Uniform
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Weighted UniformApprox. DegreeExact Degree
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Figure 2. Total variation distance of different approaches on the 

MNIST dataset.
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sampling are approximately a factor of 10 slower than their 
biased counterparts that just pick a (weighted) point at ran-
dom. Finally, the approximate degree sampling provides 
running times that are approximately two times faster than 
an exact computation of the degree.

6. CONCLUSION AND FUTURE WORK

In this paper, we have investigated a possible definition of 
fairness in similarity search by connecting the notion of 
“equal opportunity” to independent range sampling. An 
interesting open question is to investigate the applicabil-
ity of our data structures for problems such as discrimi-
nation discovery,27 diversity in recommender systems,1 
privacy preserving similarity search,26 and estimation of 
kernel density.11 Moreover, it would be interesting to inves-
tigate techniques for providing incentives (that is, reverse 
discrimination27) to prevent discrimination: An idea 
could be to merge the data structures in this paper with 
distance-sensitive hashing functions in Aumüller et al.,6 
which allow to implement hashing schemes where the col-
lision probability is an (almost) arbitrary function of the 
distance. Finally, the techniques presented here require 
a manual trade-off between the performance of the LSH 
part and the additional running time contribution from 
finding the near points among the non-far points. From a 
user point of view, we would much rather prefer a param-
eterless version of our data structure that finds the best 
trade-off with small overhead, as discussed in Ahle et al.3 
in another setting.
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