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ABSTRACT: This article introduces an analytic formula for entraining convective available po-

tential energy (ECAPE) with an entrainment rate that is determined directly from an environmental

sounding, rather than prescribed by the formula user. Entrainment is connected to the background

environment using an eddy diffusivity approximation for lateral mixing, updraft geometry assump-

tions, and mass continuity. These approximations result in a direct correspondence between the

storm relative flow and the updraft radius and an inverse scaling between the updraft radius squared

and entrainment rate. The aforementioned concepts, combined with the assumption of adiabatic

conservation of moist static energy, yield an explicit analytic equation for ECAPE that depends

entirely on state variables in an atmospheric profile and a few constant parameters with values

that are established in past literature. Using a simplified Bernoulli-like equation, the ECAPE

formula is modified to account for updraft enhancement via kinetic energy extracted from the

cloud’s background environment. CAPE and ECAPE can be viewed as predictors of the maximum

vertical velocity 𝑤𝑚𝑎𝑥 in an updraft. Hence, these formulas are evaluated using 𝑤𝑚𝑎𝑥 from past

numerical modeling studies. Both of the new formulas improve predictions of 𝑤𝑚𝑎𝑥 substantially

over commonly used diagnostic parameters, including undiluted CAPE and ECAPE with a con-

stant prescribed entrainment rate. The formula that incorporates environmental kinetic energy

contribution to the updraft correctly predicts instances of exceedance of
√

2CAPE by 𝑤𝑚𝑎𝑥 , and

provides a conceptual explanation for why such exceedance is rare among past simulations. These

formulas are potentially useful in nowcasting and forecasting thunderstorms and as thunderstorm

proxies in climate change studies.
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SIGNIFICANCE STATEMENT: Substantial mixing occurs between the upward moving air cur-

rents in thunderstorms (updrafts) and the surrounding comparatively dry environmental air, through

a process called entrainment. Entrainment controls thunderstorm intensity via its diluting effect

on the buoyancy of air within updrafts. A challenge to representing entrainment in forecasting and

predictions of the intensity of updrafts in future climates is to determine how much entrainment will

occur in a given thunderstorm environment without a computationally expensive high resolution

simulation. To address this gap, this article derives a new formula that computes entrainment

from the properties of a single environmental profile. This formula is shown to predict updraft

vertical velocity more accurately than past diagnostics, and can be used in forecasting and climate

prediction to improve predictions of thunderstorm behavior and impacts.

1. Introduction

Middle-to-upper tropospheric vertical velocities1 in deep convective updrafts influence a variety

of storm-related societal impacts, including precipitation (e.g., Jo and Lasher-Trapp 2022), hail

(e.g., Danielsen et al. 1972; Lin and Kumjian 2022), electrification (e.g., Romps et al. 2014;

Stolz et al. 2015), downdraft and cold pool intensity (e.g., Marion and Trapp 2019), tropospheric

convective mass flux (e.g., Peters et al. 2021), and the flux of mass, aerosols, and water vapor across

the tropopause (e.g., Mullendore et al. 2013). The magnitude of vertical velocities in the upper

reaches of deep convective updrafts are strongly influenced by updraft buoyancy (e.g., Morrison and

Peters 2018; Peters et al. 2019; Jeevanjee 2017). It is well known that entrainment-driven dilution

of deep convective updrafts substantially influences updraft buoyancy and vertical velocity (e.g.,

Zipser 2003; Romps and Kuang 2010a,b). For instance, weakly sheared deep convective updrafts

with large fractional entrainment rates are substantially diluted and often only realize a small

fraction (e.g., 20-30 %) of their convective available potential energy (CAPE) as updraft kinetic

energy (Romps and Kuang 2010a). In contrast, more organized modes of deep convection such as

squall lines and supercells with smaller fractional entrainment rates and less dilution can realize

much larger fractions of their CAPE as KE (i.e., 80-100 %; Lebo and Morrison 2015; Peters et al.

2019; Mulholland et al. 2021b). Hence, storm-to-storm variations in entrainment substantially alter

how much CAPE a storm is able to process, and consequently its updraft kinetic energy and vertical

1We contrast middle-to-upper tropospheric vertical velocities, which are primarily buoyantly driven, with lower tropospheric vertical velocities
which are often dynamically driven in squall lines (e.g., Bryan and Rotunno 2014; Jeevanjee and Romps 2015) and supercells (e.g., Weisman and
Rotunno 2000; Peters et al. 2019).
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velocity. These storm-to-storm variations in entrainment also generally supersede the influences of

variations in other updraft processes and environment factors on vertical velocity that have received

substantial attention in the literature (e.g., Lebo 2018; Grabowski and Morrison 2021), such as

aerosol effects, pressure perturbations, and precipitation behavior. Hence, the atmospheric science

community would benefit from an accurate representation of entrainment in diagnostic parameters

such as CAPE to improve our ability to characterize the intensity of convective updrafts that might

form in a given environment.

CAPE calculations that include entrainment effects are referred to as entraining CAPE, or ECAPE.

Whereas CAPE is often viewed as the theoretical maximum kinetic energy that can be extracted

by an isolated parcel from its environment via buoyant acceleration, ECAPE makes additional

assumptions about updraft steadiness and mixing to estimate how the efficiency of this kinetic

energy extraction is affected by entrainment. Various ECAPE-like calculations have been used

for the better part of the last century, primarily in the climate, tropical meteorology, and cumulus

parameterization communities. For instance, simple plume models (e.g., Squires and Turner 1962)

for moist convective updrafts predict profiles of buoyancy that include entrainment effects, which

can be vertically integrated to obtain ECAPE. The “cloud work function”, which is an essential

element of many cumulus parameterizations (Arakawa and Schubert 1974), uses the buoyancy of

a diluted parcel within its calculation, and yields a quantity that is analogous to ECAPE. ECAPE

is used as diagnostic tool in the research of tropical environments to explain the sensitivity of deep

convection initiation to free tropospheric moisture (Brown and Zhang 1997), and in the closure

formulation of cumulus parameterizations (Zhang 2009). The zero-buoyancy plume model, in

which buoyancy is assumed to be exactly extinguished by entrainment, yields analytic solutions

for the mean state thermal structure of the tropical atmosphere (Singh and O’Gorman 2013). The

range of fractional entrainment rates in the tropics is typically smaller than that of the mid latitudes

(e.g., Takahashi et al. 2021). Hence, using an ECAPE calculated with an empirically obtained

constant fractional entrainment rate provides reasonably accurate predictions of deep convective

updraft characteristics in the tropics (e.g., Gregory 2001)

There are also a few scattered applications of ECAPE in the weather forecasting community. For

instance, the spatial distribution of ECAPE has been shown to better identify the tornadic regions of

tropical (Sueki and Niino 2016) and extratropical cyclones (Tochimoto et al. 2019) than undiluted
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CAPE. ECAPE has also been used to predict vertical velocities in supercells more accurately

than standard CAPE calculations (Peters et al. 2020a). There is substantially larger variability in

fractional entrainment in the continental mid-latitudes (e.g., Peters et al. 2020b; Takahashi et al.

2021; Lasher-Trapp et al. 2021) than in the tropics, meaning that ECAPE computed with a single

fractional entrainment rate cannot accurately describe all midliatude convective environments (e.g.,

Peters et al. 2020b). This makes using ECAPE in midlatudes more difficult than in the tropics,

because it is not always clear what entrainment rate should be used in the calculation.

To address the issue of what choice of fractional entrainment rate to use in the midlatitudes, Peters

et al. (2020a) (hereafter P20) developed an analytic formula for maximum updraft vertical velocity

(which is equal to
√

2𝐸𝐶𝐴𝑃𝐸) that calculated entrainment from attributes of a storm’s background

environment, rather than requiring that the user specify an entrainment rate. The connection

between entrainment and the background environment in this formula was based on a conceptual

model developed in Peters et al. (2019). In this conceptual model, a mature updraft’s radius,

and consequently its fractional entrainment rate, are determined by its low-level environmentally-

driven inflow via mass continuity. Low-level inflow strongly corresponds with low-level storm-

relative flow (e.g., Peters et al. 2019, 2020b, 2022b) — the latter of which is predictable from an

environmental wind profile (Bunkers et al. 2000) and correlates with the magnitude of vertical

wind shear (Peters et al. 2020b). P20 leveraged these connections to use the environmental wind

profile to predict the updraft radius and fractional entrainment rate. This formula more accurately

predicted maximum updraft vertical velocities than standard ECAPE computed with a constant

pre-specified fractional entrainment rate.

There are several shortcomings of the P20 study that warrant a revisit of the concepts contained

therein. First, the expression derived in the paper uses a hodgepodge of formulas from previous

studies, such as Morrison (2017) and Peters et al. (2019) as a starting point2. The assumptions

underlying these formulas from previous studies are not explicitly discussed in P20, nor are they

even thoroughly scrutinized in their source articles. Because of this rooting in past studies, a few of

the terms that end up in the P20 equation are complicated and lack obvious physical underpinning,

which is challenging for end users of this formula.

2Note a litany of constants are carried over into P20 from these past formulas, and some of the symbols used (such as 𝐻𝑣 for the latent heat of
vaporization) are inconsistent with the symbols used in some of our more recent articles (e.g., 𝐿𝑣 for the latent heat of vaporization; Peters and
Chavas 2021; Peters et al. 2022c,a).
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Second, the end formula for maximum updraft vertical velocity is a third-order polynomial

equation that must either be solved explicitly with the complicated quartic equation, or with a

numerical root finding procedure. End users of the formula found this quartic solution difficult to

efficiently incorporate into software routines. This 3rd order polynomial equation results from the

assumption that fractional entrainment 𝜀 scales with the inverse of updraft radius 𝑅−1. However,

there is now evidence that 𝜀 ∼ 𝑅−2 is a more realistic scaling (Peters et al. 2019; Morrison et al.

2022; Mulholland et al. 2021b). Re-formulating the P20 equation with 𝜀 ∼ 𝑅−2 yields a 2nd-order

polynomial equation that is much easier to solve, as will be shown in the present study.

While not a science consideration, the title of that paper, which is “A formula for the maximum

vertical velocity in supercell updrafts”, obscures the take-home message of that article. The title

does not contain the terms entrainment or CAPE, so it is not obvious that the parameter derived in

the paper essentially modifies CAPE to account for the effects of entrainment (which is by definition

ECAPE). The concepts contained within the paper apply to any isolated deep convective updraft

existing within moderate to strong vertical wind shear – they are not limited to supercells. There is

no assumption about updraft rotation within the mathematical framework. Hence, the inclusion of

the term supercell in the title made the application of the formula sound unnecessarily restrictive,

and an ancillary objective of the present article is to better convey the general applicability of the

formula (i.e., beyond supercells) within research and forecast activities that presently rely upon

undiluted CAPE for analysis and forecasting.

Our goal in this article is to revisit the concepts of P20 to derive an ECAPE formula (Sections

2-3) that improves upon the concepts in the P20 study in the following ways:

1. The buoyancy formula in the present study is derived directly from the assumed conservation

of moist static energy, which differs from the P20 formula which used the supersaturation

tendency equation from Politovich and Cooper (1988) as a starting point. This methodological

alteration requires less severe assumptions and results in formulas with greater accuracy in

the present study.

2. The new formula uses the 𝜀 ∼ 𝑅−2 scaling, with further improves accuracy over the P20

formula.

6

Accepted for publication in Journal of the Atmospheric Sciences. DOI 10.1175/JAS-D-23-0003.1.
Brought to you by North Carolina State University Hunt Library | Unauthenticated | Downloaded 08/04/23 05:12 PM UTC



3. We also account for additional processes that were not considered by P20, such as the con-

tribution to updraft kinetic energy from the kinetic energy an updraft extracts from its inflow

via pressure gradient accelerations.

The new ECAPE formula is evaluated with output from four past numerical modeling studies

that included 141 simulations (Section 4). The formulas and their constituent terms, along with

recommended parameter values, are summarized in the discussion and conclusions (Section 5).

2. Derivation of analytic ECAPE formula

a. Overview of deviation, in words

This section contains a detailed derivation of the ECAPE formula from first principles. Readers

who are uninterested in these technical details may consider simply reading this subsection and then

skipping to section 3, which provides the computation steps required to compute ECAPE (section

3a) and evaluates the formula against past simulations (section 3b), and explores the behavior of

ECAPE in past soundings from severe weather events (section 3c).

The derivation relies on four underlying concepts:

1. An eddy diffusivity approximation for the lateral mixing between an updraft and the environ-

ment (section 2c), which yields an inverse squared scaling between entrainment and updraft

radius.

2. The assumption that moist static energy (a close cousin to equivalent potential temperature)

is diluted in a manner akin to that of a passive tracer as a parcel rises through an updraft and

mixes with the surrounding environment (section 2d). This yields an analytic relationship

between ECAPE and entrainment.

3. The assumption that an updraft’s inflow is determined by the low-level environmental storm-

relative wind speed, which yields analytic relationship between updraft radius and state

variables within an atmospheric sounding (sections 2e-f).

4. The assumption that kinetic energy is conserved along inflow that enters the low-level updraft

and is deflected upward (section 2g).
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Combining these components allows us to eliminate entrainment and updraft radius from the system

of equations to express ECAPE as a function of the state variables within a sounding.

b. Methods for evaluating our derived formulas

We will need to make several approximations through the course of the derivation. To evaluate

the accuracy of these approximations, we will first establish a benchmark calculation of both buoy-

ancy and ECAPE computed with as few approximations as possible. For instance, the benchmark

calculation includes the temperature dependency of latent heat, the hydrometeor dependency of

the moist heat capacity, and virtual temperature and condensate loading effects in buoyancy cal-

culations. Profiles of benchmark buoyancy are calculated by numerically integrating the adiabatic

unsaturated and saturated lapse rate equations derived in Peters et al. (2022c), eqs. 19 and 24 from

that article respectively, with a mixed-phase layer in the parcel temperature range of 273.5 K to

233.15 K (see that study for details on the mixed-phase calculation), and allows the user to specify

a constant-with-height fractional entrainment rate that controls the rate at which the parcel mixes

with the horizontally invariant background environment (see eq. 36-38 in that study).

The formulas are evaluated using the severe weather proximity sounding dataset of Thompson

et al. (2003). This dataset includes 1028 atmospheric profiles taken near severe weather events that

ranged from disorganized deep convection to tornadic supercells. In each profile, the parcel with

the largest undiluted CAPE in the lowest 5 km of the atmosphere is lifted to calculate buoyancy,

CAPE, and ECAPE.

c. Connecting fractional entrainment to updraft radius

Our first derivation step is to establish a relationship between updraft radius and the fractional

entrainment rate 𝜀. The derivation closely follows that of Morrison (2017) (hereafter M17), section

2a therein. We first consider a passive tracer 𝐶, whose mixing ratio (in kg kg-1) is 1 in a cloud’s

effective inflow layer (i.e., the layer of nonzero CAPE; Thompson et al. 2007; Nowotarski et al.

2020), and 0 above this layer. Conceptually, the passive tracer value represents the amount of

dilution a parcel has experienced, with 𝐶 ≈ 1 indicating undiluted air, and 0 ≤ 𝐶 << 1 indicating

highly diluted air.
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The anelastic Lagrangian tendency equation for 𝐶 may be written in cylindrical coordinates as:

𝑑𝐶

𝑑𝑡
=
𝜕𝐶

𝜕𝑡
+ 1
𝑟

𝜕𝑟𝑢𝐶

𝜕𝑟
+ 1
𝑟

𝜕𝑣𝐶

𝜕𝜙
+ 1
𝜌0

𝜕𝜌0𝑤𝐶

𝜕𝑧
= 0, (1)

where 𝑟, 𝜙, and 𝑧 are the radial, azimuthal, and vertical coordinates (𝑟 = 0 is the updraft core), 𝑢,

𝑣, and 𝑤 are the corresponding radial, azimuthal, and vertical velocities, and 𝜌0(𝑧) is a reference

density profile. Azimuthally averaging this equation, and then Reynolds averaging, yields:

𝑑𝐶̄

𝑑𝑡
= −1

𝑟

𝜕𝑟𝑢′𝐶′

𝜕𝑟
− 1
𝜌0

𝜕𝜌0𝑤′𝐶′

𝜕𝑧
(2)

where overbars denote smoothed four-dimensional fields with a spatial filter scale similar to that

of a typical deep convective updraft width (i.e., 1-2 km), primes denote deviations smaller than

the filter scale, and 𝑑𝐶̄
𝑑𝑡

≡ 𝜕𝐶
𝜕𝑡

+ 1
𝑟
𝜕𝑟𝑢𝐶
𝜕𝑟

+ 1
𝑟
𝜕𝑣𝐶
𝜕𝜙

+ 𝜕𝑤𝐶
𝜕𝑧

. Physically, the overbar terms correspond to

updraft-scale flow patterns, whereas the ′ terms correspond to turbulent fluxes. We neglect the

vertical turbulent flux term since recent large eddy simulations have supported a dominant role of

lateral mixing in entrainment (Böing et al. 2014). All quantities are valid at the updraft horizontal

center unless explicitly stated otherwise.

Following M17 and De Rooy and Siebesma (2010), we assume that 𝑢′𝐶′ varies linearly over

a turbulent mixing length scale 𝐿𝑚𝑖𝑥 and vanishes at the updraft center, such that 𝑢′𝐶′(𝑟) =
𝑢′𝐶′

���
𝐿𝑚𝑖𝑥

(
𝑟

𝐿𝑚𝑖𝑥

)
, where 𝑢′𝐶′

���
𝐿𝑚𝑖𝑥

denotes the value of 𝑢′𝐶′ at distance 𝐿𝑚𝑖𝑥 from the updraft

center. Finally, we use the chain rule to write 𝑑
𝑑𝑡
= 𝑤 𝑑

𝑑𝑧
, where 𝑑

𝑑𝑧
is the rate of change of a quantity

as the parcel changes height. Making these approximations allows us to write eq. 2 as:

𝑑𝐶

𝑑𝑧
= −2

𝑢′𝐶′
���
𝐿𝑚𝑖𝑥

𝑤𝐿𝑚𝑖𝑥
. (3)

In the eddy diffusivity approximation (e.g., Kuo 1962), we assume that turbulent fluxes act to

diffuse a quantity down-gradient. Using this approach, we may write 𝑢′𝐶′
���
𝐿𝑚𝑖𝑥

≈ − 𝑘2𝐿2
𝑚𝑖𝑥

𝑃𝑟

�� 𝜕𝑤
𝜕𝑟

�� 𝜕𝐶
𝜕𝑟
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(eqs. 5-6 in M17)3 and eq. 3 as:

𝑑𝐶

𝑑𝑧
= 2

𝑘2𝐿𝑚𝑖𝑥
𝑤𝑃𝑟

����𝜕𝑤𝜕𝑟 ���� 𝜕𝐶𝜕𝑟 , (4)

where 𝑘 is the von Karman constant and 𝑃𝑟 is the turbulent Prandtl number. Finally, we use linear

approximations to the lateral gradients in 𝐶 and 𝑤, such that 𝜕𝐶
𝜕𝑟

=
𝐶0−𝐶
𝑅

and
�� 𝜕𝑤
𝜕𝑟

�� = |𝑤0−𝑤 |
𝑅

, where

𝑤0 = 0 m s-1 and 𝐶0 = 0 are vertical velocity and tracer values in the background environment.

These approximations give:
𝑑𝐶

𝑑𝑧
= −𝜀𝐶, (5)

where

𝜀 =
2𝑘2𝐿𝑚𝑖𝑥

𝑃𝑟𝑅
2 . (6)

Equation 5 takes the form of a classical steady-state plume equation (Squires and Turner 1962;

Betts 1975), where 𝜀 is the fractional entrainment inverse length scale. This term represents the rate

at which 𝐶 is diluted with height by entrainment. There is some debate in past literature over how

𝐿𝑚𝑖𝑥 should be interpreted. For instance, in Morrison et al. (2020), P20, and Peters et al. (2021),

we simply set 𝐿𝑚𝑖𝑥 ∼ 𝑅, which from Equation 6 results in a 𝜀 ∼ 𝑅−1 scaling. However, analysis

of large eddy simulations (LES) in our more recent work (e.g., Mulholland et al. 2021b; Morrison

et al. 2022) indicates that 𝜀 ∼ 𝑅−2, suggesting from Equation 6 that 𝐿𝑚𝑖𝑥 should be viewed as a

constant. Hence, we set 𝐿𝑚𝑖𝑥 to a fixed value that is independent of 𝑅, following Morrison et al.

(2022).

The eddy diffusivity approximation for lateral mixing implicitly neglects the entrainment of

air occurring within organized updraft-scale flow, which is known as dynamic entrainment (e.g.,

De Rooy et al. 2013). However, our past work has shown that dynamic entrainment primarily

affects updraft properties below the height of maximum 𝑤 where flow is laterally convergent into

the updraft (e.g., Morrison 2017; Morrison et al. 2020, 2022). For instance, see the schematics

in Figs. 15 and 4 in Morrison (2017) and Morrison et al. (2020) respectively for the conceptual

basis of this assumption, which yields accurate predictions of the profiles of atmospheric quantities

along trajectories in simulations (see Fig,. 8 in Peters et al. 2022c). Hence, it is reasonable to

3Physically, the | 𝜕𝑤
𝜕𝑟

| term indicates that horizontal turbulent mixing will be enhanced in the presence of strong horizontal velocity gradients
and the associated shear instability (e.g., Kuo 1962) .
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neglect dynamic entrainment in our present objective of deriving an expression for ECAPE, which

pertains to the maximum kinetic energy achieved by the updraft that coincides with the position of

maximum 𝑤.

d. Derivation of analytic expressions for the buoyancy and 𝐸𝐶𝐴𝑃𝐸 of an entraining parcel

Our next step is to express ECAPE as an analytic function of 𝜀. Later, we will combine this

ECAPE expression with eq. 6 to eliminate 𝜀 and express ECAPE as a function of 𝑅. We begin

with the first law of thermodynamics for a rising parcel, which may be written as (e.g., Emanuel

1994; Romps 2015; Peters et al. 2022c):

𝑐𝑝𝑚
𝑑𝑇

𝑑𝑧
− 1
𝜌

𝑑𝑝

𝑑𝑧
+ 𝐿𝑣

𝑑𝑞𝑣

𝑑𝑧
− 𝐿𝑖

𝑑𝑞𝑖

𝑑𝑧
=𝑄 (7)

where 𝑐𝑝𝑚 is the moist heat capacity that depends on water vapor and condensates,𝑇 is temperature,

𝜌 is density, 𝑝 is pressure, 𝐿𝑣 is the temperature dependent latent heat of vaporization, 𝑞𝑣 is the

water vapor mass fraction, 𝐿𝑖 is the temperature dependent latent heat of freezing, 𝑞𝑖 is the ice mass

fraction4, 𝑄 represents all diabatic effects, and 𝑑
𝑑𝑧

represents the rate at which a quantity changes

as a parcel changes its vertical position.

We simplify this equation by making a series of approximations. First, we replace the moist heat

capacity 𝑐𝑝𝑚 with the constant dry-air heat capacity 𝑐𝑝𝑑 and replace the temperature-dependent

latent heat of vaporization with its reference value at the triple point temperature 𝐿𝑣,𝑟 , following

numerous previous theoretical studies (e.g., Riehl and Malkus 1958; Romps 2014) and numerical

model configurations (e.g., Khairoutdinov and Randall 2003). Second, we approximate 1
𝜌

𝑑𝑝

𝑑𝑧
= −𝑔

using hydrostatic balance, where 𝑔 is the acceleration of gravity. Note that this does not mean that

we completely disallow nonhydrostatic vertical pressure gradient accelerations. Rather, we are

neglecting the change in static energy with height resulting from work done by the parcel that is

not directly exchangeable with gravitational potential energy (see Peters and Chavas 2021). Third,

we temporarily neglect ice (𝑞𝑖 = 0), though the affects of ice will be accounted for later. Fourth,

we assume that the only diabatic effect is the mixing of a parcel with its far-field environmental

4Mass fraction is defined as the ratio of the mass of a water variable (i.e., gas, liquid, solid) to the total air mass.
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profile. Using these approximations, we may re-write eq. 7 as:

𝑑ℎ

𝑑𝑧
= −𝜀 (ℎ− ℎ0) , (8)

where ℎ is the moist static energy, defined as

ℎ = 𝑐𝑝𝑑𝑇 + 𝐿𝑣,𝑟𝑞 +𝑔𝑧, (9)

ℎ0 is the moist static energy of the background environment, defined as:

ℎ0 = 𝑐𝑝𝑑𝑇0 + 𝐿𝑣,𝑟𝑞0 +𝑔𝑧, (10)

the subscripts 0 denote the height-dependent background environmental profile, and we have

dropped the 𝑣 subscript on 𝑞 for simplicity. The −𝜀 (ℎ− ℎ0) term represents dilution of ℎ with

height due to entrainment, and is expressed in a manner consistent with a classical plume updraft

model (e.g., Betts 1975). Note that for an adiabatic parcel (i.e., 𝜀→ 0), ℎ is conserved. Hence,

ℎ is analogous to equivalent potential temperature (𝜃𝑒). It will also be useful later to define the

saturated moist static energy of the environment ℎ∗0 as:

ℎ∗0 = 𝑐𝑝𝑑𝑇0 + 𝐿𝑣,𝑟𝑞∗0 +𝑔𝑧, (11)

where 𝑞∗ is the saturation mass fraction defined via eq. 10 in Bolton (1980). Finally, we define the

buoyancy 𝐵 of an updraft air parcel as:

𝐵 = 𝑔
𝑇 −𝑇0
𝑇0

, (12)

which (temporarily) neglects the effects of water vapor and condensate loading on buoyancy. We

will re-incorporate water vapor and condensate loading effects on buoyancy later on.

To evaluate the accuracy of these approximate equations, we integrate eq. 8 upward using

a forward Euler integration scheme with a vertical grid spacing5 of 100 m, and solve for 𝑇 at

each height using a the Matlab function “fsolve”, a numerical nonlinear equation solver. We use

5This vertical grid spacing is sufficient to produce accurate buoyancy profiles, as is shown Fig. 11 in Peters et al. (2022c)
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Fig. 1. Panel a: profiles of environmental ℎ0, ℎ∗0, and ℎ of an undiluted parcel, and the ℎ of a diluted parcel

with 𝜀 = 1×10−4 m-1 (“h dil.”), computed using the tornadic supercell composite profile from Parker (2014) as

an example. Moist static energies have been divided by 𝑐𝑝𝑑 to yield “energy temperature” with units of K. Panel

b: buoyancy of the diluted (dashed lines) and undiluted (solid lines) parcels, computed using the benchmark

parcel (black, described in the beginning of section 2b) and from the approximate formula for ℎ calculated by

numerically integrating eq.8 as described in the text (red).

𝑑𝑞

𝑑𝑧
= −𝜀 (𝑞− 𝑞0) during the unsaturated part of parcel ascent, and set 𝑞 = 𝑞∗ during the saturated

part of parcel ascent. Quantities such as buoyancy and ECAPE computed with eqs. 8 and 12

are referred to as “approximate”. The vertical distributions of ℎ0 and ℎ∗0 in a deep convective

environment are shown in Fig. 1a. Much like the typical vertical distribution of 𝜃𝑒, ℎ has a local

maximum in the lower troposphere when nonzero CAPE is present, a local minimum in the middle

troposphere, and becomes large again in the lower stratosphere. An undiluted parcel lifted from the

surface has larger ℎ than its surroundings until it reaches the lower stratosphere. In an entraining

parcel, ℎ gradually relaxes to that of the background environment as the parcel ascends. Profiles of

approximate buoyancy are compared to benchmark buoyancy, calculated from equations in Peters

et al. (2022c) as described earlier in this section, for undiluted and diluted parcels in Fig. 1b.

Despite the assumptions made thus far, the approximate and benchmark buoyancy profiles are

comparable, having similar profile shapes and magnitudes at all heights.
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Our next task is to combining eqs. 9-11 to obtain an expression for 𝐵 as a function of moist static

energy variables, which yields:

𝐵 =
𝑔

𝑐𝑝𝑑𝑇0

(
ℎ− ℎ∗0

)
− 𝑔𝐿𝑣,𝑟

𝑐𝑝𝑑𝑇0

(
𝑞∗− 𝑞∗0

)
, (13)

where we have assumed that the updraft parcel is saturated, such that 𝑞 = 𝑞∗. The second term

on the RHS of eq. 13 is often small relative to the first (e.g., Ahmed and Neelin 2018). Hence,

eq. 13 suggests that 𝐵 > 0 when ℎ > ℎ∗0. This agrees with Fig. 1a-b, which shows approximate

coincidence between the vertical extent of ℎ > ℎ∗0 (Fig. 1a) and the vertical extent of 𝐵 > 0 (Fig.

1b). An entrainment term (i.e., 𝜀) does not show up explicitly in eq. 13, but is included implicitly

via the moist static energy of the updraft parcel ℎ, which is affected by entrainment. To make 𝜀

show up explicitly, we find the particular solution to eq. 8 with ℎ = ℎ0 at 𝑧 = 0, which may be

written as:

ℎ = 𝑒−𝜀𝑧
(
ℎ𝑢𝑑 +

∫ 𝜉=𝑧

𝜉=0
𝜀𝑒𝜀𝜉ℎ0𝑑𝜉

)
, (14)

where ℎ𝑢𝑑 is the moist static energy of an undiluted parcel, 𝜉 is a dummy variable of integration,

and we defined the parcel starting height as 𝑧 = 0 for simplicity. Combining eq. 14 with eq. 13

yields the following:

𝐵 =
𝑔

𝑐𝑝𝑑𝑇0

[
𝑒−𝜀𝑧

(
ℎ𝑢𝑑 +

∫ 𝜉=𝑧

𝜉=0
𝜀𝑒𝜀𝜉ℎ0𝑑𝜉

)
− ℎ∗0

]
− 𝑔𝐿𝑣,𝑟

𝑐𝑝𝑑𝑇0

(
𝑞∗− 𝑞∗0

)
. (15)

The term 𝜀 now shows up explicitly in the equation, but is contained within an integral. We will

need to make some additional approximations to bring this term out of the integrals to obtain our

desired analytic solution.

Eq. 15 can be re-arranged to express 𝐵 as a modification to the undiluted buoyancy 𝐵𝑢𝑑 using

eq. 13 evaluated with ℎ = ℎ𝑢𝑑 and 𝑞 = 𝑞𝑢𝑑:

𝐵 = 𝐵𝑢𝑑𝑒
−𝜀𝑧 + 𝑔

𝑐𝑝𝑑𝑇0

(
𝑒−𝜀𝑧

∫ 𝜉=𝑧

𝜉=0
𝜀𝑒𝜀𝜉ℎ0𝑑𝜉 − (1− 𝑒−𝜀𝑧) ℎ∗0

)
− 𝑔𝐿𝑣,𝑟
𝑐𝑝𝑑𝑇0

(
𝑞∗− 𝑞∗0

)
+ 𝑒−𝜀𝑧 𝑔𝐿𝑣,𝑟

𝑐𝑝𝑑𝑇0

(
𝑞∗𝑢𝑑 − 𝑞

∗
0
)
.

(16)
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This re-arrangement allows us to use the traditional equation for buoyancy that includes hydrom-

eteor loading and virtual temperature effects to compute 𝐵𝑢𝑑 (i.e., the black line in Fig. 1), rather

than the approximate formula for buoyancy in eq. 12 which neglects the aforementioned effects

(i.e., the red line in Fig. 1). This substitution generally improves the accuracy of the formula

by re-introducing the virtual temperature and hydrometeor loading contributions to buoyancy that

were neglected in eq. 12, and we use this approximation in all subsequent calculations.

We note that the last two terms on the RHS of eq. 16 will cancel each other in the limit of

𝜀→ 0. In the opposite limit of 𝜀→ ∞, each of these terms individual vanish because 𝑞∗ → 𝑞∗0

and 𝑒−𝜀𝑧 → 0. We assume these terms are small in the intermediary range of 𝜀, and consequently

neglect them to simplify the equation. This approximation is further justified a posteriori later in

this section via an error analysis. Using integration by parts and neglecting the aforementioned

terms, we may re-write eq. 16 as:

𝐵 = 𝐵𝑢𝑑𝑒
−𝜀𝑧 + 𝑔

𝑐𝑝𝑑𝑇0

(
𝜀𝑧ℎ̂0 − 𝑒−𝜀𝑧𝜀2

∫ 𝜉=𝑧

𝜉=0
ℎ̂0𝜉𝑒

𝜀𝜉𝑑𝜉 − (1− 𝑒−𝜀𝑧) ℎ∗0
)
. (17)

where ℎ̂0(𝜉) ≡ 1
𝜉

∫ 𝜉∗=𝜉

𝜉∗=0 ℎ0𝑑𝜉
∗ is the average of ℎ0 below height 𝜉 and ℎ̂0 in the first term in the

parentheses on the RHS is evaluated at 𝜉 = 𝑧. Assuming that ℎ̂0 is approximately constant with

height allows us to bring this term out of the integral in eq. 17 and analytically evaluate the integral

in the following manner:

−𝑒−𝜀𝑧𝜀2
∫ 𝜉=𝑧

𝜉=0
ℎ̂0𝜉𝑒

𝜀𝜉𝑑𝜉 ≈ −𝑒−𝜀𝑧𝜀2 ℎ̂0

∫ 𝜉=𝑧

𝜉=0
𝜉𝑒𝜀𝜉𝑑𝜉 = −𝜀𝑧ℎ̂0 + (1− 𝑒−𝜀𝑧) ℎ̂0. (18)

This assumption dramatically simplifies eq. 17 to the following:

𝐵 = 𝐵𝑢𝑑𝑒
−𝜀𝑧 + 𝑔

𝑐𝑝𝑑𝑇0
(1− 𝑒−𝜀𝑧)

(
ℎ̂0 − ℎ∗0

)
. (19)

We will provide an a-posteriori justification for this assumption shortly by evaluating the errors

in profiles of 𝐵 predicted from eq. 19 relative to the benchmark buoyancy calculation. Eq. 19

is an analytic function of 𝐵𝑢𝑑 , 𝜀, and the state variables within a sounding. The first term on the

RHS represents the direct dilution of the updraft’s temperature perturbation via entrained air with
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no temperature perturbation, whereas the second term encapsulates the reduced condensation rate

resulting from the entrainment of unsaturated air by the updraft, relative to an undiluted parcel.

Before moving on to an analytic formula for ECAPE, we evaluate the accuracy of this analytic

buoyancy formula (and by extension justify the mathematical assumptions used to derive it) by

comparing the average buoyancy 𝐵 between the level of free convection (LFC) and the level of

neutral buoyancy6 (ELNB) to that of the benchmark buoyancy profile and the formula from P20

(eqs. 4-5 therein7). Here, the LFC is the highest instance of zero buoyancy below the height

of maximum buoyancy, and the ELNB is the highest instance of zero buoyancy in the profile.

We define two metrics for evaluation: Pearson correlation coefficient (𝐶𝐶) among soundings of

𝐵 from eq. 19 with 𝐵 from the more accurate benchmark lapse rate formula, and normalized

root-mean-square-error (NRMSE) defined as the the average over all soundings of the squared

difference between 𝐵 from eq. 19 and 𝐵 from the benchmark lapse rate formula, divided by the

magnitude of 𝐵 from the benchmark formula. These metrics, along with the fractional reduction

in undiluted 𝐵 by entrainment, are plotted as a function of 𝜀 and updraft radius 𝑅 on the 𝑥 axis.

We relate 𝑅 to 𝜀 using eq. 6, with 𝑘2 = 0.18 (e.g., Morrison et al. 2022), 𝑃𝑟 = 1
3 (e.g., Deardorff

1972), and 𝐿𝑚𝑖𝑥 = 120 m following Morrison et al. (2022).

The 𝐶𝐶 of the new formula with the benchmark calculation is very close to 1 (Fig. 2a) for all

𝑅 > 750 m and for fractional reductions in CAPE of < 0.9 (i.e., updrafts that realize 10 % or more

of their CAPE; Fig. 2c), which is the range of fractional reductions expected in midlatitude deep

convection (e.g., Peters et al. 2020b; Lasher-Trapp et al. 2021). For 𝑅 less than 750 m and when

fractional reductions approach 1, 𝐶𝐶 begins to drop, suggesting that the formula is less accurate

for strongly entraining weak convection. The story is similar for NRMSE (Fig. 2e), which is

relatively small in magnitude (i.e. < 0.1) for 𝑅 > 750 m, but increases when 𝑅 falls below 750

m. Compared to the P20 formula, the new formula derived here has smaller NRMSE Fig. 2e)

and larger 𝐶𝐶 Fig. 2a), indicating that we have made an improvement in accuracy in the present

derivation. This improvement over the P20 formula is primarily due to an over-estimation of the

fractional reduction in buoyancy via entrainment in the P20 formula that does not occur in the one

derived here (Fig. 2c), potentially due to the less accurate 𝑅−1 scaling with entrainment used in

that study. This difference is particularly noticeable when we restrict our analysis to soundings

6The E in ELNB stand for “entraining”, and differentiates this quantity from the traditional definition of the LNB that pertains to an undiluted
parcel.

7We also use the 𝐵𝑢𝑑 computed with the benchmark parcel in the P20 formula to maximize this formula’s accuracy.
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Fig. 2. Comparison of vertically-averaged buoyancy 𝐵 calculated using the formula from the present study

(eq. 19, red), the P20 buoyancy formula (gray), and the benchmark parcel (black). Panels a,b show 𝐶𝐶, c,d the

fractional reduction in 𝐵, and e,f the NRMSE. 𝐶𝐶 and NRMSE are calculated relative to the benchmark parcel.

Left panels show results from all Thompson et al. (2003) soundings, and right panels show results from only

soundings with < 1000 J kg-1 undiluted CAPE to illustrate the shortcomings of the P20 formula.

with less than 1000 J kg−1 of undiluted CAPE (Fig. 2b,d,f). In this low CAPE regime, the NRMSE

(Fig. 2f) and 𝐶𝐶 (Fig. 2b) of the new formula are comparable to the errors for the whole sounding

data set, whereas the P20 formula performs considerably worse with respect to both 𝐶𝐶 and errors

in the low CAPE regime.

Our next task is to use eq. 19 to obtain an expression for ECAPE. We define ECAPE as:

ECAPE =

∫ 𝑧=𝐸𝐿𝑁𝐵

𝑧=𝐿𝐹𝐶

𝐵𝑑𝑧. (20)

Vertically integrating eq. 19 from the LFC to the ELNB and combining with eq. 20 yields:

ECAPE =

∫ 𝑧=𝐸𝐿𝑁𝐵

𝑧=𝐿𝐹𝐶

𝐵𝑢𝑑𝑒
−𝜀𝑧𝑑𝑧+

∫ 𝑧=𝐸𝐿𝑁𝐵

𝑧=𝐿𝐹𝐶

𝑔

𝑐𝑝𝑑𝑇0
(1− 𝑒−𝜀𝑧)

(
ℎ̂0 − ℎ∗0

)
𝑑𝑧. (21)
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It will make it easier to pull 𝜀 out of the integral terms if we have the integral bounds on the RHS

of eq. 21 extend to the LNB for an undiluted parcel8 𝐻, rather than to the ELNB. We note that

the integral of the first term from the ELNB to the 𝐻 will always be positive, since 𝐵𝑢𝑑 is positive

below the 𝐻 by definition. On the other hand, the integral of the second term over this range is

typically negative (as will be discussed shortly), and at least partially cancels the contribution of

the integral of the first term over this range. Hence, we extend the upper bounds of these integrals

to the 𝐻, assuming that the partial cancellation between the terms mitigates the resulting errors.

This assumption is evaluated a-posteriori later in this section using an error analysis.

To pull 𝜀 out of the integrals in eq. 21, we use integration by parts and these integral definitions

to write the first term on the RHS of eq. 21 as:∫ 𝑧=𝐻

𝑧=𝐿𝐹𝐶

𝐵𝑢𝑑𝑒
−𝜀𝑧𝑑𝑧 = 𝑒−𝜀𝐻CAPE+ 𝜀

∫ 𝑧=𝐻

𝑧=𝐿𝐹𝐶

𝑒−𝜀𝑧 (𝑧− 𝐿𝐹𝐶) 𝐵̂𝑢𝑑𝑑𝑧 (22)

where

CAPE =

∫ 𝑧=𝐻

𝑧=𝐿𝐹𝐶

𝐵𝑢𝑑𝑑𝑧, (23)

and

𝐵̂𝑢𝑑 =
1

𝑧− 𝐿𝐹𝐶

∫ 𝜉=𝑧

𝜉=𝐿𝐹𝐶

𝐵𝑢𝑑𝑑𝜉, (24)

Following the steps taken in eq. 18, we assume that 𝐵̂𝑢𝑑 is constant with height and pull this

term out of the integral in eq. 22, which allows us to analytically evaluate the integral. We also

assume that 𝐿𝐹𝐶 << 𝐻 and hence𝐻−𝐿𝐹𝐶 ≈𝐻, and neglect entrainment below the LFC such that

𝑒−𝜀𝐿𝐹𝐶 ≈ 1. We apply analogous assumptions to the 2nd term on the RHS of eq. 21. Once again,

these assumptions are justified a posteriori via an error analysis later in this section. Modifying

eq. 21 with these assumptions yields:

ECAPE =

(
1− 𝑒−𝜀𝐻
𝜀𝐻

)
CAPE−

(
1− 1− 𝑒−𝜀𝐻

𝜀𝐻

)
NCAPE (25)

where

NCAPE = −
∫ 𝑧=𝐻

𝑧=𝐿𝐹𝐶

𝑔

𝑐𝑝𝑑𝑇0

(
ℎ̂0 − ℎ∗0

)
𝑑𝑧, (26)

8We use the symbol 𝐻 in equations for compactness to represent the LNB for compactness.
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where the N in NCAPE stands for ”negative.” The coefficient
(

1−𝑒−𝜀𝐻

𝜀𝐻

)
ranges from 0 to 1, with

small and large values reflecting strong and weak entrainment-driven dilution respectively.

There are several parallels between eq. 25 and the analytic-empirical formula for buoyancy de-

rived by Ahmed and Neelin (2018) to explain the physical processes responsible for the relationship

between plume buoyancy and precipitation in the tropics. Physically, the first term on the RHS of

eq. 25 represents the dilution of CAPE via the entrainment of air outside the updraft with zero

buoyancy, and is analogous to the saturation terms derived in section 3c of Ahmed and Neelin

(2018). NCAPE represents the potential buoyancy loss from the entrainment of dry air into the

updraft and the associated reduction in the condensation and deposition rate, and is analogous to

the saturation deficit terms in section 3c of Ahmed and Neelin (2018). NCAPE is purely dependent

on environmental variables (like CAPE), and is principally determined by the saturation deficit of

the environment. The definition of ℎ̂0 as an average below a given level captures the cumulative

effect of entrainment with height. Because ℎ∗0 is comparable to or larger than ℎ̂0 (Fig. 3a), NCAPE

is typically positive (Fig. 3b). In (rare) conditions where the free troposphere is very moist,

NCAPE becomes negative. This is an unphysical artifact of our assumption that the water vapor

mixing ratio in the updraft is equal to the saturation water vapor mixing ratio of the surrounding

environment, and we simply set NCAPE to zero in these situations.

The difference term in the integral ℎ̂0 − ℎ∗0 (Fig. 3a) and hence the magnitude of NCAPE (Fig.

3b) will be larger when the free troposphere is dry and ℎ̂0 is far smaller than ℎ∗0, compared to when

the free troposphere is moist and ℎ̂0 is closer in magnitude to ℎ∗0. A warm free troposphere at a

given RH generally increases the difference between ℎ∗0 and ℎ̂0 (Fig. 3c) compared to a situation

when the free troposphere is cool at the same RH. For a fixed RH, this makes NCAPE larger when

the free troposphere is warm, relative to when it is cool (Fig. 3d). Hence, NCAPE generally

encapsulates the effects of tropospheric dryness and temperature on buoyancy via entrainment.

Eq. 25 achieves the stated purpose of this derivation, since 𝜀 is now outside of the integral terms.

It will become advantageous in the next sub-section to further simplify the exponential terms in eq.

25. One may consider making first order Taylor series approximations for the exponential terms.

For instance 1−𝑒−𝜀𝐻

𝜀𝐻
≈ 1− 𝜀𝐻

2 . However, the exponential functions in eq. 25 are strongly nonlinear

with respect to 𝜀𝐻 in the range of 0 < 𝜀𝐻 < 10, which is the typical range we would encounter in

our analysis, making the first order Taylor series approximation inaccurate (compare the blue and
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Fig. 3. Demonstrations of the sensitivities of NCAPE to relative humidity (RH) and free tropospheric

temperature. Panel a: profiles of ℎ∗0 (red, divided by 𝑐𝑝𝑑 to yield units of K), and ℎ̂0 (blue, K) for the baseline

sounding (solid), RH increased by 20 % (dashed blue), and RH decreased by 20 % (dotted blue). Panel b: profiles

of NCAPE (J kg-1) corresponding to panel a. Panels c-d: analogous to panels a-b, but showing differences in ℎ∗0
and ℎ̂0 resulting from an increase in 𝑇 by 2 K with RH held constant (dashed), and a decrease in 𝑇 of 2 K with

RH held constant (dotted).

black lines in Fig. 4a). Instead, we invert the exponential term 1−𝑒−𝜀𝐻

𝜀𝐻
, approximate its inverse

with a first order Taylor series, and then invert the result. For instance:

𝜀𝐻

1− 𝑒𝜀𝐻
≈ 1+ 𝜀𝐻

2
. (27)

and consequently:
1− 𝑒𝜀𝐻
𝜀𝐻

≈ 1
1+ 𝜀𝐻

2
. (28)

20

Accepted for publication in Journal of the Atmospheric Sciences. DOI 10.1175/JAS-D-23-0003.1.
Brought to you by North Carolina State University Hunt Library | Unauthenticated | Downloaded 08/04/23 05:12 PM UTC



Fig. 4. Panel a: comparison of the scale factor in eq. 25 (solid black) with its first order Taylor series

approximation (blue dashed), and the first order Taylor series approximation of its inverse (dashed red). Panels

b-d: analogous to Fig. 2a,b,c, but evaluating ECAPE from eq. 29 (red, the present article), ECAPE from P20

(gray), and ECAPE from numerically integrating eq. 19 (black), all relative to the benchmark calculation.

This approximation is far more accurate (compare the red and black lines in Fig. 4a). Substituting

these approximations into eq. 25 and re-arranging yields:

ECAPE =
CAPE− 𝜀𝐻

2 NCAPE
1+ 𝜀𝐻

2
. (29)

As a sanity check, we examine the behavior of eq. 29 under limiting scenarios. For instance, in

the limit of no entrainment where 𝜀→ 0, ECAPE → CAPE, which makes sense given that ECAPE

for an undiluted parcel intuitively converges to the CAPE. In the converse limit of 𝜀→∞, we may

use L’Hôpital’s rule to deduce that ECAPE →−NCAPE, which is inconsistent with the definition

of CAPE as a quantity greater than or equal to zero. However, this situation is easily remedied by

simply setting ECAPE to a minimum value of 0.

The analytic formula for ECAPE in eq. 29 loses a bit of accuracy relative to the numerically

integrated analytic buoyancy equation at larger values of 𝜀 (i.e., smaller updraft radii; Fig. 4b-d),

but remains more accurate than the formula for maximum updraft vertical velocity 𝑤𝑚𝑎𝑥 from P20
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(Eq. 18 therein, which is converted to ECAPE via 𝑤2
𝑚𝑎𝑥

2 ), with the main improvement over that

formula occurring for narrow updrafts. These errors stem from a slight underestimation of the

fractional reduction in undiluted CAPE at large 𝜀 values (Fig. 4c) that results from our changing

of the integral bounds in eq. 21 from the LNB to 𝐻. Despite these errors, this formula is quite

accurate over the range of 𝑅 and 𝜀 that typify deep moist convection (i.e., fractional reductions of

no greater than 0.8, Fig. 4c).

e. Relating fractional entrainment to environmental variables

To make formulas more compact and easier to algebraically manipulate in subsequent steps, we

convert them to nondimensional forms. We define the nondimensional ECAPE as 𝐸 ≡ ECAPE
CAPE ,

the nondimensional NCAPE as 𝑁 ≡ NCAPE
CAPE , and the nondimensional fractional entrainment rate

𝜀̃ ≡ 𝜀𝐻. Using these definitions, we re-write eq. 29 as:

𝐸 =
1− 𝜀̃

2𝑁

1+ 𝜀̃
2
. (30)

Our next task is to eliminate 𝜀̃ from eq. 29 by expressing this term as function of other updraft and

environmental attributes. We proceed by defining 𝑅 ≡ 𝑅
𝐻

and use eq. 6 to write:

𝜀̃ = 𝜖𝑅−2, (31)

where

𝜖 =
2𝑘2𝐿𝑚𝑖𝑥
𝐻𝑃𝑟

. (32)

Combining eq. 31 with eq. 30 yields:

𝐸 =
1− 𝜖

2𝑅2𝑁

1+ 𝜖

2𝑅2

. (33)

Following P20 and Peters et al. (2022a), we may express 𝑅 as a function of updraft and environ-

mental attributes by making the following assumptions about updraft geometry and inflow:

1. Updrafts are cylindrical.
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2. 𝑅 (and consequently 𝑅) are constant with height. Numerous previous studies show this to

be approximately valid (e.g., Sherwood et al. 2013; Hernandez-Deckers and Sherwood 2016;

Morrison et al. 2021).

3. We assume that all environmental storm-relative wind V𝑆𝑅 that encounters the cross-sectional

area of the updraft on the upstream side becomes inflow. Past studies also show this assumption

to be reasonable (e.g., Peters et al. 2019, 2022b).

4. The updraft maximum vertical velocity 𝑤𝑚𝑎𝑥 is proportional to the horizontally averaged

vertical velocity < 𝑤 > at the same height, such that < 𝑤 >= 𝛼𝑤𝑚𝑎𝑥 , where 0 < 𝛼 < 1 (e.g.,

Morrison 2017; Morrison and Peters 2018).

5. For the time being, we assume that the updraft maximum vertical velocity is primarily

determined by updraft buoyancy, such that 𝑤𝑚𝑎𝑥 =
√

2ECAPE. This assumption is supported

by previous studies (Morrison and Peters 2018; Jeevanjee 2017; Peters et al. 2019, 2020a).

We will relax this assumption later on.

6. 𝑤𝑚𝑎𝑥 occurs at height 𝐻, which follows from assumption 5.

With these assumptions at hand, we start by writing the anelastic continuity equation in cylindrical

coordinates as:

𝜌0
𝜕𝑟𝑢

𝜕𝑟
+ 𝜌0

𝜕𝑣

𝜕𝜙
+ 𝑟 𝜕𝜌0𝑤

𝜕𝑧
= 0. (34)

Azimuthally integrating from 𝜙 = 0 to 𝜙 = 2𝜋, radially integrating from 𝑟 = 0 to the updraft radius

at 𝑟 = 𝑅, and vertically integrating from the surface to 𝐻 (assuming 𝑤 = 0 at 𝑧 = 0) and dividing by

2𝜋 yields:

𝐻𝜌0𝑢̂𝑅 +𝑅
𝜌0,𝐻 < 𝑤𝐻 >

2
= 0. (35)

where

𝑢̂𝑅 =
1

2𝜋

∫ 𝑧=𝐻

𝑧=0 𝜌0
∫ 𝜙=2𝜋
𝜙=0 𝑢𝑑𝜙𝑑𝑧∫ 𝑧=𝐻

𝑧=0 𝜌0𝑑𝑧
(36)

is the density-weighted vertical average of 𝑢 at radius 𝑅, and between the surface and height 𝐻,

and represents the average inflow speed,

< 𝑤 >=
1
𝜋𝑅2

∫ 𝑟=𝑅

𝑟=0

∫ 𝜙=2𝜋

𝜙=0
𝑟𝑤𝑑𝜙𝑑𝑟 (37)
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is the area average of 𝑤 within radius 𝑅, 𝜌0 is the vertical average of 𝜌0 between the surface and

height 𝐻, and 𝜌0,𝐻 is 𝜌0 valid at height 𝐻. Making use of < 𝑤 >= 𝛼𝑤𝑚𝑎𝑥 (assumption 4) at height

H and 𝑤2
𝑚𝑎𝑥

2 = 𝐸𝐶𝐴𝑃𝐸 (assumption 5), and re-arranging eq. 35 yields:

𝑅 = −2
𝜎

𝛼

𝑢̂𝑅√
2ECAPE

, (38)

where 𝜎 =
𝜌̂0
𝜌0,𝐻

> 1. We may relate 𝑢̂𝑅 to the horizontal storm-relative wind speed 𝑉𝑆𝑅 = |V𝑆𝑅 |,
where V𝑆𝑅 is the storm-relative wind vector, by first defining the upstream flank of the updraft as

the range from 𝜙 = − 𝜋
2 to 𝜙 = 𝜋

2 . We next assume that all inflow is accomplished by the cloud-

relative wind entering the upstream updraft flank, and the radial component of the environmental

cloud-relative wind at the updraft edge is 𝑢 = −𝑉𝑆𝑅 cos𝜙 and 𝑢 = 0 m s-1 on the downstream edge.

The aforementioned assumptions allow us to re-write eq. 36 as:

𝑢̂𝑅 = − 1
2𝜋

∫ 𝑧=𝐻

𝑧=0

∫ 𝜙= 𝜋
2

𝜙=− 𝜋
2
𝜌0𝑉𝑆𝑅 cos𝜙𝑑𝜙𝑑𝑧∫ 𝑧=𝐻

𝑧=0 𝜌0𝑑𝑧
= −𝑉𝑆𝑅

𝜋
, (39)

where 𝑉𝑆𝑅 is the density weighted vertical average of 𝑉𝑆𝑅 below height 𝐻. Physically, these

assumptions imply that the entirety of storm-relative flow below the height of 𝑤𝑚𝑎𝑥 is absorbed

by the updraft. In other words, all storm-relative flow becomes inflow. There is support for this

behavior in past simulations. For instance, Fig. 4 in Peters et al. (2019) shows that storm-relative

flow below 3 km strongly correlates with inflow in that layer, and Figs. 11a and 15a-b in Peters et al.

(2022b) show that the horizontal storm-relative flow component nearly vanishes on the downstream

of flank of simulated updrafts at low-levels. The assumption of all inflow being absorbed is more

tenuous aloft near the height of 𝑤𝑚𝑎𝑥 . However, winds aloft contribute far less to the vertical

average in 𝑉𝑆𝑟 than winds at lower levels because of the density weighting in eq. 39.

In defining 𝑣̃ ≡ 𝑉𝑆𝑅√
2CAPE

, combining eqs. 38 and 39 and the definition of 𝜖 , and squaring and

inverting the result, we obtain

𝑅−2 =
𝛼2𝜋2

4𝜎2
𝐸

𝑣̃2 . (40)
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combining eq. 40 with eq. 33 (our expression for 𝐸 as a function of 𝑅) to eliminate 𝑅 yields:

𝐸2 𝜓

𝑣̃2 +𝐸
(
1+ 𝜓

𝑣̃2𝑁

)
−1 = 0, (41)

where

𝜓 =
𝑘2𝛼2𝜋2𝐿𝑚𝑖𝑥

4𝑃𝑟𝜎2𝐻
, (42)

and 𝐸 is the only remaining unknown that is not computed from constants or the background

sounding. Solving eq. 41 for 𝐸 using the quadratic formula gives:

𝐸 =

−1− 𝜓

𝑣̃2𝑁 +
√︂(

1+ 𝜓

𝑣̃2𝑁

)2
+4 𝜓

𝑣̃2

2 𝜓

𝑣̃2

, (43)

where we have neglected the negative quadratic root that yields an imaginary solution. Solutions

for 𝐸 , which represent the fractional reduction of undiluted CAPE by entrainment, are contoured

in Fig. 5a as a function of 𝑣̃ (non-dimensional storm-relative flow speed) and 𝑁 (non-dimensional

NCAPE). In general, 𝐸 increases from left-to-right in the figure as 𝑣̃ becomes large, indicating

stronger storm-relative inflow, wider updrafts, and hence smaller fractional entrainment. From

bottom-to-top on the figure, 𝐸 decreases as 𝑁 increases. This trend occurs because larger 𝑁

implies a drier and/or warmer mean free troposphere, both of which amplify entrainment-driven

dilution relative to situations with a cooler and/or moister free troposphere.

In dimensional form, eq 43 is:

ECAPE =

−1− 2𝜓
𝑉2
𝑆𝑅

NCAPE+
√︂(

1+ 2𝜓
𝑉2
𝑆𝑅

NCAPE
)2
+ 8𝜓
𝑉2
𝑆𝑅

CAPE

4 𝜓

𝑉2
𝑆𝑅

. (44)

Solutions for ECAPE from eq. 44 as a function of 𝑉𝑆𝑅 and CAPE are shown in Fig. 5b,c,d for

NCAPE=500 J kg-1, 1000 J kg-1, and 5000 J kg-1 respectively. In general, curves of ECAPE take on

hyperbolic shapes with respect to the 𝑥 and 𝑦 axes, with contours of ECAPE paralleling the 𝑥 axis

for large 𝑉𝑆𝑅, and the 𝑦 axis for small 𝑉𝑆𝑅 and large CAPE, and with the largest values coinciding

with the largest 𝑉𝑆𝑅 and undiluted CAPE in the upper-right corners of the figures. This pattern
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means that different combinations of 𝑉𝑆𝑅 and undiluted CAPE may result in similar ECAPE. For

instance, an environment with 1000 J kg-1 of undiluted CAPE, a 𝑉𝑆𝑅 of 30 m s-1, and an NCAPE

of 5000 J kg-1, has an ECAPE of roughly 1000 J kg-1 (Fig. 5d). Due to their large 𝑉𝑆𝑅, mature

isolated deep convective updrafts in this environment will be sufficiently wide to be approximately

undiluted and thereby realize nearly all of their undiluted CAPE. A contrasting environment with

6000 J kg-1 of undiluted CAPE and an NCAPE of 5000 J kg-1, but with a 𝑉𝑆𝑅 of only 5 m s-1 will

have a similar ECAPE of 1000 J kg-1. Despite the large undiluted CAPE in the second environment,

updrafts are narrow and substantially diluted by entertainment because of small 𝑉𝑆𝑅.

Fig. 5. Panel a: 𝐸 (shading) as a function of 𝑣̃ (𝑥 axis) and 𝑁 (𝑦 axis), with 𝐻 set to 12,000 m, 𝐿 = 120

m, 𝛼 = 0.8, 𝜎 = 1.131, 𝑘2 = 0.18, and 𝑃𝑟 = 1
3 . Panels b-d: ECAPE (shading, J kg-1) as a function of 𝑉𝑆𝑅 (𝑥

axis, m s-1) and undiluted CAPE (𝑦 axis, J kg-1), and 𝐸 (black contours), with NCAPE = 500 J kg-1 (panel

a), NCAPE = 1000 J kg-1 (panel b), and NCAPE = 5000 J kg-1 (panel c). In panels b-d, 𝐻 is determined via

𝐻 = 5808+96.12
√

2𝐶𝐴𝑃𝐸 , based on a linear regression between these variables among the soundings. All other

parameters are the same as in panel a.

Consistent with the dependence of 𝐸 on 𝑁 seen in Fig. 5a, the fractional reduction in undiluted

CAPE by ECAPE increases as NCAPE increases, particularly for smaller values of undiluted
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CAPE. This is most evident as a movement to the right of the contours of 𝐸 (black) in Fig. 5b-d

as NCAPE increases, indicating that an updraft with a given combination of undiluted CAPE and

𝑉𝑆𝑅 will realize less of its CAPE when NCAPE is large, compared to when NCAPE is small.

f. Accounting for kinetic energy the storm derives from its environment

While it is somewhat infrequent, past studies have documented instances in supercells where

𝑤𝑚𝑎𝑥 exceeds
√

2CAPE for extended periods of time (e.g., Fiedler 1994), likely due to vertical

pressure gradient accelerations. This section introduces a simple adjustment factor to the ECAPE

formula to represent of how such pressure effects redirect environmental kinetic energy into the

updraft. To derive this adjustment factor, we must make the following assumptions:

1. The Lagrangian evolution of kinetic energy following an air parcel is well described by the

Boussinesq approximation, meaning that 𝜌0 is constant. Past studies have shown that errors

related to an over-estimation of 𝜌0 aloft in deep convective environments have a small effect

on analytic solutions for vertical velocity, (e.g., Morrison 2016a,b).

2. Dynamic pressure perturbation acceleration (DPA) in the lower troposphere is assumed to

deflect horizontal environmental kinetic energy into the vertical direction within the updraft.

3. DPA in the middle-to-upper troposphere is neglected. Dynamic pressure perturbations aloft

may be large in magnitude, but they typically occur within the toroidal circulations of moist

thermals (e.g., Romps and Charn 2015; Morrison and Peters 2018; Peters and Chavas 2021).

As parcels ascend through these thermals, they experience an upward acceleration below the

minimum in 𝑝′, and then a commensurate downward acceleration above the minimum in 𝑝′.

Hence, any temporary kinetic energy gained by the interaction of a parcel with these pressure

perturbations is quickly lost.

4. Buoyancy pressure perturbation acceleration (BPA) is neglected, because there is evidence in

past literature that the effect of BPA on overall updraft maximum 𝑤 is small (Morrison and

Peters 2018; Peters et al. 2019, 2020a), though we acknowledge that BPA may substantially

alter the vertical distribution of vertical accelerations (e.g., Peters 2016; Kuo and Neelin

2022). In fact, it is possible to amend the formulas in this article to include buoyancy pressure

perturbation accelerations, though this substantially increases the complexity of the resulting
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ECAPE formula. Repeating our analysis with this modification (not shown) affirmed that the

influence of BPA on ECAPE does not substantially alter our results.

5. Direct dilution of kinetic energy via entrainment is negligible. This assumption is also

supported by past studies (e.g., Sherwood et al. 2013). Note that entrainment will still

indirectly affect kinetic energy via the entrainment-driven dilution of updraft buoyancy.

6. Updrafts are approximately steady, such that 𝜕
𝜕𝑡

of quantities are small.

7. The magnitude of convective inhibition (CIN) is negligable relative to the magnitude of

ECAPE.

8. Horizontal storm-relative flow vanishes at the height of 𝑤𝑚𝑎𝑥 .

We may use the first assumption to write eq. 15 in Peters and Chavas (2021), which describes

the Lagrangian tendency for kinetic energy, as:

𝑑𝐾𝐸

𝑑𝑡
= V · ∇

(
𝑝′

𝜌0

)
+𝑤𝐵 (45)

where 𝑝′ is a pressure perturbation. We define kinetic energy (𝐾𝐸) here in an updraft relative sense,

such that 𝐾𝐸 =
𝑢2
𝐶𝑅

+𝑣2
𝐶𝑅

+𝑤2

2 , where 𝑢𝐶𝑅 and 𝑣𝐶𝑅 are the 𝑢 and 𝑣 cloud-relative wind components.

Because of the steady state assumption, we may substitute 𝑑
𝑑𝑡

(
𝑝′

𝜌0

)
= V · ∇

(
𝑝′

𝜌0

)
. We further use the

chain rule to write 𝑑
𝑑𝑡
= 𝑤 𝑑

𝑑𝑧
, where 𝑑

𝑑𝑧
is the rate of change of a quantity as a parcel changes height.

Making these assumptions and substitutions, and integrating from a parcel starting position (defined

as 𝑧 = 0) to an ending position at the height of 𝑤𝑚𝑎𝑥 yields the following form of the classical

Bernoulli equation:

𝐾𝐸𝐿𝑁𝐵 −𝐾𝐸0 =
𝑝′
𝐿𝑁𝐵

𝜌
−
𝑝′0
𝜌
+
∫ 𝑧=𝐿𝑁𝐵

𝑧=0
𝐵𝑑𝑧. (46)

If a parcel originates within an updraft’s unmodified background environmental flow then 𝑝′ = 0,

𝑤 = 0, and 𝐾𝐸0 =
𝑉2
𝑆𝑅

2 . We may also neglect 𝑝′
𝐿𝑁𝐵

𝜌
because of assumption (2) above. Finally, we

note that
∫ 𝑧=𝐿𝑁𝐵

𝑧=0 𝐵𝑑𝑧 = ECAPE + ECIN, where ECIN is the convective inhibition for an entraining

parcel (ECAPE here is defined via eq. 44). Combining all these assumptions and substitutions,

neglecting ECIN, and assuming that horizontal storm-relative flow vanishes at the height of 𝑤𝑚𝑎𝑥
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gives:

ECAPE𝐴 =
𝑤2
𝑚𝑎𝑥

2
=
𝑉2
𝑆𝑅

2
+ECAPE (47)

where the subscript 𝐴 indicates “adjusted”. According to this equation, the role of low-level pres-

sure perturbations is to preserve the incoming cloud-relative horizontal kinetic energy, deflecting

it into the vertical. Further, the maximum updraft kinetic energy at the height of 𝑤𝑚𝑎𝑥 consists

of the sum of the kinetic energy gained from the release of ECAPE and the kinetic energy of the

redirected inflow. Nondimensionalizing by the undiluted CAPE yields:

𝐸𝐴 = 𝑣̃
2 +𝐸, (48)

where 𝐸𝐴 is the nondimensional analogy to ECAPE𝐴. Recall that in the derivation in the previous

sub-section, we neglected pressure effects and assumed that ECAPE =
𝑤2
𝑚𝑎𝑥

2 when deriving the

expression for 𝑅−2 in eq. 40. Now we must account for the influence of the added contribution

to 𝑤𝑚𝑎𝑥 from velocity from environmental kinetic energy on updraft radius. Hence, we set

ECAPE𝐴 =
𝑤2
𝑚𝑎𝑥

2 , and adjust eq. 40 using eq. 48 to:

𝑅−2 =
𝛼2𝜋2

4𝜎2
𝑤2
𝑚𝑎𝑥

𝑉2
𝑆𝑅

=
𝛼2𝜋2

4𝜎2

(
𝐸

𝑣̃2 +1

)
. (49)

Combining eqs. 48-49 with eq. 33 yields:

𝐸2 𝜓

𝑣̃2 +𝐸
(
1+𝜓 + 𝜓

𝑣̃2𝑁

)
−1+𝜓𝑁 = 0, (50)

Solving 𝐸 using the quadratic formula and then plugging the result into eq. 48 to solve for 𝐸𝐴
gives:

𝐸𝐴 = 𝑣̃
2 +

−1−𝜓− 𝜓

𝑣̃2𝑁 +
√︂(

1+𝜓 + 𝜓

𝑣̃2𝑁

)2
+4 𝜓

𝑣̃2

(
1−𝜓𝑁

)
2 𝜓

𝑣̃2

, (51)
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which may be written dimensionally as:

ECAPE𝐴 =
𝑉2
𝑆𝑅

2
+
−1−𝜓− 2𝜓

𝑉2
𝑆𝑅

NCAPE+
√︂(

1+𝜓 + 2𝜓
𝑉2
𝑆𝑅

𝑁𝐶𝐴𝑃𝐸

)2
+8 𝜓

𝑉2
𝑆𝑅

(CAPE−𝜓NCAPE)

4 𝜓

𝑉2
𝑆𝑅

.

(52)

Fig. 6. Same as Fig. 6, but showing 𝐸𝐴 (panel a), and ECAPE𝐴 (panels b-d).

The solution for 𝐸𝐴 from eq. 52 (Fig. 6a) is similar to that of 𝐸 from eq. 43 at small values of

𝑣̃, but diverges notably from 𝐸 at large 𝑣̃, exceeding 1 (indicating that ECAPEA surpasses CAPE).

Similar behavior is evident in the solutions for ECAPEA as a function of 𝑉𝑆𝑅 and CAPE (Fig.

6b-d). Notably, ECAPEA is similar to ECAPE at smaller values of 𝑉𝑆𝑅, but larger than ECAPEA

at large values of 𝑉𝑆𝑅, which is evident as a persistent downward slant of ECAPEA as one moves

from left-to-right on the figure. Again, we see that drastically different combinations of 𝑉𝑆𝑅 and

CAPE can yield the same value of ECAPEA. For instance, an environment with NCAPE of 500 J

kg-1, 1000 J kg-1 of CAPE, and a 𝑉𝑆𝑅 of 45 m s-1 will have an ECAPEA of 2000 J kg-1. A starkly

contrasting environment with NCAPE of 5000 J kg-1, 7000 J kg-1 of CAPE, and a 𝑉𝑆𝑅 of 7 m s-1

will also have an ECAPEA of 2000 J kg-1.

30

Accepted for publication in Journal of the Atmospheric Sciences. DOI 10.1175/JAS-D-23-0003.1.
Brought to you by North Carolina State University Hunt Library | Unauthenticated | Downloaded 08/04/23 05:12 PM UTC



To illustrate the circumstances under which pressure accelerations (as they have been formulated

here) have the greatest enhancement effect on updrafts, we examine the quantity 𝐹 =

√︃
ECAPE𝐴

ECAPE −1,

which is equal to the ratio of the fractional enhancement in 𝑤𝑚𝑎𝑥 due to pressure accelerations in

Fig. 7. Fractional enhancement is quite small (< 0.1) for most combinations of 𝑉𝑆𝑅 and CAPE. It

only becomes larger than 0.1 for smaller values of CAPE and/or larger values of 𝑉𝑆𝑅. Physically,

when CAPE is large and/or 𝑉𝑆𝑅 is small, the kinetic energy generation from buoyancy dominates

the updraft kinetic energy budget. Whereas, when CAPE is small and/or 𝑉𝑆𝑅 is large, the kinetic

energy input from the environmental wind becomes comparable to the kinetic energy generation

from buoyancy. Given this distribution of 𝐹, a potential explanation for why many past studies have

found that 𝑤𝑚𝑎𝑥 is primarily determined by buoyancy is that the CAPE and𝑉𝑆𝑅 in these simulations

fell within the region of the parameter space where 𝐹 is small. In other words, the kinetic energy

input into the updraft via the background environmental flow is insignificant compared to the

kinetic energy generation via the release of CAPE in most storm environments.

Fig. 7. 𝐹 (shading, nondimensional) as a function of 𝑉𝑆𝑅 (𝑥 axis, m s-1) and CAPE (𝑦 axis, J kg-1). Colored

dots indicate the 𝑉𝑆𝑅 and CAPE from the simulated storms analyzed in section 4.
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3. Evaluation of the formulas

a. Implementation of formula

The ECAPE formula derived in the previous section takes as input a single atmospheric profile

of temperature, pressure, water vapor, and wind, and several constants with recommended values

listed blow. We recommend using the following steps to compute this quantity in a software

routine:

1. Set the following constant values: 𝑐𝑝 = 1005 J kg-1 K-1, 𝐿𝑣,𝑟 = 2,501,000 J kg-1, 𝑔 = 9.81 m

s-1, 𝜎 = 1.1, 𝛼 = 0.8, 𝑘2 = 0.18, 𝑃𝑟 = 1
3 , and 𝐿𝑚𝑖𝑥 = 120 m.

2. Compute CAPE, the 𝐿𝐹𝐶, and the 𝐻 for an undiluted parcel from an atmospheric profile

using an existing software routine (e.g., SHARPy, Metpy).

3. Compute the following parameter:

𝜓 =
𝑘2𝛼2𝜋2𝐿𝑚𝑖𝑥

𝑃𝑟𝜎
2𝐻

, (53)

where 𝐻 is the equilibrium level.

4. Compute𝑉𝑆𝑅 from an atmospheric profile. We recommend averaging𝑉𝑆𝑅 in the 0-1 km layer,

using the method for estimating storm motion described by Bunkers et al. (2000).

5. Evaluate the following formula, using a numerical integration scheme.

ℎ̂0(𝑧) =
1
𝑧

∫ 𝑧∗=𝑧

𝑧∗=0

(
𝑐𝑝𝑑𝑇0 + 𝐿𝑣,𝑟𝑞0 +𝑔𝑧∗

)
𝑑𝑧∗, (54)

This procedure only needs to be done once in a given profile, and yields < ℎ0 > as a function

of height.

6. Compute NCAPE, using the following formula:

NCAPE = −
∫ 𝑧=𝐸𝐿

𝑧=𝐿𝐹𝐶

𝑔

𝑐𝑝𝑑𝑇0

(
ℎ̂0 − ℎ∗0

)
𝑑𝑧, (55)
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NCAPE is positive in most contexts though it may become negative in environments with

large free tropospheric relative humidity. In the case of negative NCAPE, set this quantity to

zero.

7. Nondimensionalize quantities: 𝑣̃ = 𝑉𝑆𝑅√
2𝐶𝐴𝑃𝐸

, 𝑁 = 𝑁𝐶𝐴𝑃𝐸
𝐶𝐴𝑃𝐸

.

8. Compute nondimensional entraining CAPE (𝐸𝐴), using the following formula:

𝐸𝐴 = 𝑣̃
2 +

−1−𝜓− 𝜓

𝑣̃2𝑁 +
√︂(

1+𝜓 + 𝜓

𝑣̃2𝑁

)2
+4 𝜓

𝑣̃2

(
1−𝜓𝑁

)
2 𝜓

𝑣̃2

, (56)

This quantity represents the fraction of undiluted CAPE realized by an updraft. In the case of

a negative solution to this equation, set the 𝐸𝐴 to 0.

9. Compute dimensional entraining CAPE as 𝐸𝐶𝐴𝑃𝐸𝐴 = 𝐸𝐴𝐶𝐴𝑃𝐸 .

Matlab and Python examples of this routine are provided at the link in the data availability statement.

b. Comparison of predicted 𝑤𝑚𝑎𝑥 with the output from past simulations

We evaluate the accuracy of the formulas derived in the previous section by using them to predict

the vertical velocities from simulations. The simulations, which featured a mix of supercells and

multicellular clusters, originate from four past studies: Coffer et al. (2022) (C23, 9 simulations),

Peters et al. (2023) (P23, 32 simulations), Peters et al. (2020c) (P20, 48 simulations), and Peters

et al. (2019) (54 simulations). All simulations used Cloud Model 1 (CM1 Bryan and Fritsch 2002)

and were initialized with soundings that featured a variety of different wind and thermodynamic

profiles. Convection initiation in these simulations was generally driven by warm bubbles and

updraft nudging methods, and no surface fluxes or radiation was used. Additional details of the

model configurations are available in Table 1, along with the studies referenced in this paragraph.

We computed all subsequent quantities with the initial model thermodynamic and wind profiles

and storm motions in past simulations. Predictions of 𝑤𝑚𝑎𝑥 were derived using 𝑤𝑚𝑎𝑥 =
√

2𝐶𝐴𝑃𝐸

and 𝑤𝑚𝑎𝑥 =
√

2𝐸𝐶𝑃𝐸 . We compared the predicted values of 𝑤𝑚𝑎𝑥 to the temporal median of the

instantaneous domain-wide 𝑤𝑚𝑎𝑥 from the cm1out stats files during the 1-3 hour time range in

the simulations, excluding tornadic periods in the P23 and C23 simulations (see those studies for
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Table 1. Summary of model configurations from past studies. Δ𝑥 and Δ𝑧 denote horizontal and vertical grid

spacing, with a range of vertical grid spacing indicating a stretched grid. The “updraft tracking info” column

references the page (P) abd section (S) in the referenced study that describes how updrafts were tracked.

Origin study Δ𝑥 Δ𝑧 Domain horiz and vert. extent Initiation method Updraft tracking info. LBC

Coffer et al. (2022) 80 m 20-280 m 100 x18 km heat flux P: 5, S: 2c1 semi-slip
Peters et al. (2023) 100 m 25-250 m 100 x 20 km updraft nudging P: 235, S: 2c semi-slip
Peters et al. (2020c) 250 m 100 m 100 x 20 km warm bubble P: 3041 S: 3d free-slip
Peters et al. (2019) 250 m 100 m 100 x 18 km warm bubble P: 3173 S: 2b free-slip

definitions of “tornadic periods”). The parameter 𝑉𝑆𝑅 was computed by subtracting the tracked

motion vector of simulated updrafts from the initial model profile, and averaging the resulting

storm-relative wind profile in the 0-1 km layer. Other layer averages, including 0-500 m, 0-2 km,

0-3 km, and the density weighted average from the surface to the EL gave nearly identical results.

We will first see how well
√

2CAPE, which is the traditional “thermodynamic speed limit”,

predicts 𝑤𝑚𝑎𝑥 (Fig. 8a). In this case, we calculate CAPE using the benchmark adiabatic parcel

described in the beginning of section 2. This parameter loosely captures the differences in 𝑤𝑚𝑎𝑥
among groups of simulations, but does not capture any of the variability in𝑤𝑚𝑎𝑥 among simulations

that shared the same CAPE. Most 𝑤𝑚𝑎𝑥 were less than the traditional thermodynamic speed limit

(i.e., below the 1-to-1 line). However, the bulk of the P23 simulations and a few of the P19

simulations exceeded this threshold, by up to 15 m s-1. The 𝑉𝑆𝑅 and CAPE of these simulations

puts them in the portion of the parameter space where our theoretical representation of pressure

effects predicts that their 𝑤𝑚𝑎𝑥 should exceed
√

2CAPE (see the gray and red dots in Fig. 7). The

coefficient of determination (𝑅2) of
√

2CAPE with simulated 𝑤𝑚𝑎𝑥 was 0.38, with a root-mean-

square-error (RMSE) of roughly 15 m s-1.

To see if we can do a better job of predicting 𝑤𝑚𝑎𝑥 with ECAPE that uses a fixed entrainment

rate, we used a trial-and-error method to find the 𝜀 that yielded the smallest RMSE between

predictions by eq. 25 and simulated 𝑤𝑚𝑎𝑥 (this value was 𝜀 = 2.25× 10−5 m-1). This prediction

reduces the RMSE to 12.2 m s-1, but does not improve the 𝑅2 much (Fig. 8b). Hence, with no

knowledge of how the variations in environmental wind profiles affect entrainment, ECAPE with

a fixed entrainment rate only slightly improves predictions of the mean 𝑤𝑚𝑎𝑥 among groups of

simulations, but does not capture any of the variance in 𝑤𝑚𝑎𝑥 within a particular group.
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We can do a better job of predicting𝑤𝑚𝑎𝑥 by forming a mult-linear regression with
√

2CAPE,𝑉𝑆𝑅,

and 3-7 km AGL mean relative humidity as predictors, and 𝑤𝑚𝑎𝑥 as a predictand. This regression

equation takes the form 𝑤𝑚𝑎𝑥,𝑝𝑟𝑒𝑑 = 0.7823
√

2CAPE+ 1.503𝑉𝑆𝑅 − 13.3437. The predictions by

this formula reduce RMSE to 7.95 m s-1 and increase the 𝑅2 to 0.75 (Fig. 8c). This formula also

produces an improved subjective correspondence between predicted and simulated 𝑤𝑚𝑎𝑥 , but does

not provide physical insight for the connections between these variables.

The ECAPE formula from P20, computed using all the procedures and parameter values described

in that study, also better captures the variability in 𝑤𝑚𝑎𝑥 among simulations with the same CAPE

value than the
√

2CAPE and ECAPE with a fixed entrainment rate, with a 𝑅2 with 𝑤𝑚𝑎𝑥 of 0.77.

The RMSE of 12 m s-1, however, is inferior to that of the linear regression and comparable to that

of
√

2CAPE and ECAPE with a fixed entrainment rate. This large error stems from a low bias in

predictions from this formula, relative to the values in simulations, which is demonstrated by the

dots mostly falling to the left of the one-to-one line in Fig. 8b). Recall that P20 used a 𝜀 ∼ 𝑅−1

scaling, and the buoyancy formula from that study consequently over-estimated the fractional

reduction in undiluted buoyancy by entrainment. Both of these factors may have contributed to the

formula’s bias.

To evaluate the ECAPE and ECAPEA derived in the present study, we set 𝐿𝑚𝑖𝑥 = 120 m when

evaluating the ECAPE formulas derived in the present study against the P23 and C23 simulations,

and 𝐿𝑚𝑖𝑥 = 250 m when evaluating against the P20, N20, and P19 simulations to account for their

coarser grid spacing. All other parameter values were the same as those used to generate Figs.

5-6. The new ECAPE formula improves correspondence (𝑅2 = 0.79), reduces the low bias in

prediction, and substantially decreases RMSE (8.2 m s-1) relative to the formula from P20 and

the linear regression. The improvement over linear regression likely reflects an advantage of the

nonlinear physical model underlying the ECAPE formula in capturing the nonlinear dependence

of 𝑤𝑚𝑎𝑥 on 𝑉𝑆𝑅, CAPE, and entrainment. Dots in Fig. 8c fall close to the 1-1 line, suggesting that

the 𝜀 ∼ 𝑅−2 scaling better reflects the trends in entrainment-driven dilution in the simulations than

𝜀 ∼ 𝑅−1.

The ECAPEA formula further improves correspondence between predicted and simulated 𝑤𝑚𝑎𝑥
(𝑅2 = 0.82), decreases RMSE to 6.4 m s-1, and brings points closer to the 1-to-1 line. The most

notable difference between ECAPEA and ECAPE occurs with the P23 simulations, whose 𝑤𝑚𝑎𝑥
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Fig. 8. All panels: predicted 𝑤𝑚𝑎𝑥 (𝑥 axis, m s-1) versus simulated 𝑤𝑚𝑎𝑥 (𝑦 axis, m s-1). Predictors are: the

traditional “thermodynamic speed limit”
√

2CAPE (panel a), ECAPE with the fixed 𝜀 that minimized the RMSE

(panel b), a multi-linear regression with 𝑉𝑆𝑅 and
√

2CAPE as predictors (panel c), ECAPE from P20 (panel d),

ECAPE from the present study (panel e), and ECAPEA from the present study (panel f). Bias, RMSE and 𝑅2

values are shown in the title of each plot. Colors correspond to the study where the simulations originated (see

the legend in panel e).

substantially exceeded
√

2CAPE (red dots above the 1-to-1 line in Fig. 8a) and was under-predicted

by the ECAPE formulas from both P20 (red dots above the 1-to-1 line in Fig. 8b) and the present

study (red dots above the 1-to-1 line in Fig. 8c). The ECAPEA brings the red dots much closer to

the 1-to-1 line, correctly reflecting that 𝑤𝑚𝑎𝑥 in many of these simulations exceeded
√

2CAPE.

The take home message is that the two formulas derived in the present study are superior

predictors of 𝑤𝑚𝑎𝑥 when compared to CAPE and ECAPE with a fixed entrainment rate. They also

perform better than a simple linear regression that includes CAPE and 𝑉𝑆𝑅, suggesting that the

additional information contained in our formula about the environmental thermodynamic profile

36

Accepted for publication in Journal of the Atmospheric Sciences. DOI 10.1175/JAS-D-23-0003.1.
Brought to you by North Carolina State University Hunt Library | Unauthenticated | Downloaded 08/04/23 05:12 PM UTC



via the NCAPE parameter is critical to accurately representing the effects of entrainment on 𝑤𝑚𝑎𝑥 .

Finally, the new ECAPE formulas correct a low bias in the older P20 formula.
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Fig. 9. Panel a: 𝑅2 (shading) of 𝑤𝑚𝑎𝑥 predicted from 𝐸𝐶𝐴𝑃𝐸𝐴 with 𝑤𝑚𝑎𝑥 from simulations as a function

of a range of 𝐿𝑚𝑖𝑥 (𝑥 axis, m) and 𝛼 (𝑦 axis) values, where the formula is evaluated with the 0-1 km mean 𝑉𝑆𝑅.

The maximum 𝑅2 for all 𝛼 and 𝐿𝑚𝑖𝑥 is shown the panel title. Panel b: same as panel a, but with the 𝜌0 weighted

average of 𝑉𝑆𝑅 below the height of 𝑤𝑚𝑎𝑥 in the simulated updrafts. Blue lines trace the 𝐿𝑚𝑖𝑥 = 120 m (vertical)

and 𝛼 = 0.8 (horizontal) values used in the study.

There are several “tunable parameters” contained within the ECAPE formula (e.g., 𝐿𝑚𝑖𝑥 , 𝛼,

𝜎, the definition of 𝑉𝑆𝑅), and their optimal values/configurations for producing a close fit to

modeling data like that shown in Fig. 8 may vary due to a variety of factors, including model

grid spacing, microphysics, differences between modeled and real-life updraft dynamics, and the

mode of convection being analyzed (i.e., isolated updrafts, mesoscale convective systems). Hence,

we emphasize that the important forecasting and research utility of ECAPE𝐴 is the robustness of

its ability to predict relative differences in updraft intensities among different environments. For

example, Fig. 9 shows the 𝑅2 of predicted 𝑤𝑚𝑎𝑥 with that of the simulations we analyzed here for

variety of 𝐿𝑚𝑖𝑥 and 𝛼 values with the 0-1 km mean 𝑉𝑆𝑅 (panel a), and the mean 𝜌0 weighted 𝑉𝑆𝑅
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below the height of 𝑤𝑚𝑎𝑥 in the simulations (panel b). Distributions of 𝑅2 show broad regions

of impressive 𝑅2 (i.e., > 0.75), and all 𝑅2 shown are substantially larger than the 𝑅2 = .4 and

𝑅2 = 0.41 for standard CAPE and ECAPE with a fixed 𝜀 respectively. This demonstrates that

ECAPE𝐴 provides added value in terms of differentiating relative updraft intensities relative to

traditional thermodynamic parameters even when parameter values are not optimized for a given

dataset.

c. Properties of ECAPE in severe weather proximity soundings

Fig. 10. Top panels: scatter plots of ECAPE𝐴 (𝑥 axis, J kg-1) versus CAPE (𝑦 axis, J kg-1), computed with the

Thompson et al. (2003) soundings. Panel a: 351 nonsupercell events, and panel b: 834 supercell events. Contours

of 𝐸𝐴 are shown in red. Panels c-d: 𝑅2 between solutions for ECAPE𝐴 computed using different definitions of

𝑉𝑆𝑅. A given cell shows the correlation coefficient between ECAPE𝐴 computed with the 𝑉𝑆𝑅 definition on the

𝑥 axis, with that on the corresponding 𝑦 axis, with colors corresponding to the relative magnitudes.
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Our final analysis examines the distribution of ECAPE𝐴 within the Thompson et al. (2003)

sounding dataset. Once again, we use the 0-1 km mean 𝑉𝑆𝑅 computed with the observed9 storm

motion in our formulas, though we evaluate other definitions of 𝑉𝑆𝑅 later in this sub-section. The

distribution of ECAPE𝐴 for all nonsupercell severe weather events is plotted against undiluted

CAPE in Fig. 10a. Contours of 𝐸𝐴 (the fraction of CAPE “realized”) are also shown for

reference. There is substantial variability 𝐸𝐴, with ECAPE𝐴 ≈ CAPE (𝐸𝐴 ≈ 1) in some events,

and ECAPE𝐴 << CAPE (𝐸𝐴 << 1) in others. Furthermore, case-to-case variations in ECAPE𝐴
and CAPE only loosely corresponded with one another, with 𝑅2 = 0.46 based on a linear fit of

these two quantities. In most events, particularly those with significant CAPE (> 1000 J kg−1),

ECAPE𝐴 was less than CAPE because of the typically smaller 𝑉𝑆𝑅 in nonsupercell environments.

This suggests that most nonsupercell storms only realize a fraction of their available CAPE.

In contrast with nonsupercell events, there is a much closer correspondence between ECAPE𝐴 and

CAPE in supercell events, with 𝑅2 = 0.90 between these two variables (Fig. 10b). Furthermore,

𝐸𝐴 > 0.5 for nearly every supercell sounding, and this quantity was close to 1 in many cases,

and exceeded 1 in a handful of instances. This corroborates the idea, proposed by Peters et al.

(2019), that supercells realize a larger percentage of their environmental CAPE than nonsupercells.

The primary reason for this difference is the larger vertical wind shear, and consequently storm-

relative flow, in supercell environments relative to nonsupercell environments. Hence, CAPE

may be a better predictor of storm-to-storm variations in updraft intensity in supercells than it is

in nonosupercells. However, there is still substantial variability in the correspondence between

ECAPE and CAPE, particular for larger CAPE values, which suggests that ECAPE provides added

value over CAPE in supercell environments.

To evaluate the sensitivity of ECAPE to how 𝑉𝑆𝑅 is calculated, we re-computed ECAPE𝐴 with

the 0-3 km mean 𝑉𝑆𝑅 with the observed storm motion, the density weighted average of 𝑉𝑆𝑅 below

the LFC with the observed storm motion, the 0-1 km mean 𝑉𝑆𝑅 computed using the storm motion

estimate of Bunkers et al. (2000) which estimates the advective storm motion component using

the 0-6 km mean wind vector and propagation using an ad-hoc additive vector that is oriented

perpendicular to the 0-6 km wind shear, and the advective storm motion only using half the 0-6

km bulk wind difference. Results with the 𝑉𝑆𝑅 measures that use the observed storm motion (i.e.,

9Observed storm motions in the Thompson et al. (2003) were determined via manual tracking of storm cells in radar imagery.
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the lower-left of Fig. 10c-d) yield 𝑅2 in both nonsupercells (Fig. 10c) and supercells (Fig. 10d),

with values ranging from 0.96 to 0.99.

In the case of supercells, the ECAPE𝐴 computed with the observed storm motion corresponded

well with the ECAPE𝐴 computed using the Bunkers storm motion estimate and half the bulk wind

difference (Fig. 10d). However, this correspondence was degraded slightly in nonsupercell events,

with the 𝑅2 ranging form 0.71 to 0.75 between ECAPE𝐴 computed with the observed storm-motion,

with that computed using the bunkers estimate and bulk wind difference. This result indicates that

the motion of nonsupercell storms is more often influenced by extraneous factors like outflow and

airmass boundaries, than in supercells. Hence, sounding-based estimates for storm motion do not

correspond with actual storm motions as well in nonsupercell events as they do in supercell events.

In many contexts where this formula would be used, such as in forecasting, the storm motion is

unknown and must be estimated. This analysis suggests that estimating storm motion with the

method of Bunkers et al. (2000) or half the 0-6 km BWD are both viable choices.

4. Summary, conclusions, and discussion

In summary, we have derived a formula for ECAPE that depends entirely on state variables

available within an atmospheric sounding. This formula relies on three concepts: a scaling

between fractional entrainment and updraft radius of 𝜀 ∼ 𝑅−2, the adiabatic conservation of moist

static energy, and a direct correspondence between the cloud relative flow and the updraft radius.

Finally, we have accounted for the potential enhancement of updraft kinetic energy via pressure

accelerations.

Our results show that ECAPE provides a more accurate prediction of updraft intensity than stan-

dard CAPE when forecasting severe weather hazards that depend on middle-to-upper tropospheric

vertical velocities. Examples of these situations include forecasting heavy precipitation, large hail,

and intense cold pools and downdrafts. Hence, it would benefit the forecasting community to

display this quantity alongside standard CAPE on websites that provide numerical weather pre-

diction model output graphics, such as the storm-prediction center Mesoanalysis site. In addition,

𝐸𝐴, which is the fraction of CAPE realized, is a powerful discriminator of supercellular from

nonsupercellular storm mode, with a True Skill Statistic (TSS; e.g., section 2 in Peters et al. 2020c)

of 0.76 in this prediction. This is on par with the TSS for 0-1 km 𝑉𝑆𝑅, which is 0.79 (these values
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are not statistically different). The physical reason behind this discriminatory skill relates to the

conclusions of Peters et al. (2019), who showed that supercells realize larger fractions of their

CAPE than nonsupercells (and hence have larger 𝐸𝐴).

A variety of research applications would also benefit from the consideration of ECAPE, in

addition to standard CAPE. For instance, studies in past literature often contrast storm dynamics in

high-shear low-CAPE severe weather events with events (e.g., Schneider and Dean 2008) occurring

in environments with higher CAPE (and sometimes weaker shear). The premise behind this

distinction is, because of the small updraft buoyancy in low-CAPE events, the updrafts accelerations

in these storms are dominated by dynamic pressure accelerations rather than buoyancy (Wade and

Parker 2021). However, it is possible that because of the extreme shear and storm-relative flow in

many low-CAPE severe weather outbreaks, updrafts in these scenarios realize a higher percentage

of their CAPE than their counterparts in high CAPE environments with weaker shear, because

of the wider updrafts and reduced entrainment-driven dilution in the low-CAPE environments.

Hence, ECAPE may more accurately distinguish between storms with large and small buoyancy

than standard CAPE, and a reconsideration of the analyses in these past studies with distinctions

drawn between high ECAPE and low ECAPE events may yield additional insights into storm

dynamics.

ECAPE may also yield novel insight into the influence of climate change on thunderstorms. For

instance, a subset of studies that investigate the influence of climate change on severe storm behavior

use proxy analyses in global climate model (GCM) simulations, assessing the impacts of global

warming on parameters like CAPE and CIN. Future changes to free tropospheric relative humidity,

temperature, and vertical wind shear are also likely to influence thunderstorms via the connection

between these environmental attributes and entrainment. Investigating changes to the climatology

of ECAPE in future climates is a concise way of encapsulating these yet-to-be explored climate

change influences on storm entrainment, and consequently storm intensity. Efforts to quantify the

effects of climate change among the authors of the present study are currently underway.

Some of the intermediary formulas that express buoyancy and ECAPE as an analytic function of

fractional entrainment may be useful in cumulus parameterization schemes. For instance, multi-

plume schemes like the scheme of Arakawa and Schubert (1974), the Relaxed Arakawa-Schubert

scheme (Moorthi and Suarez 1992), the EDMF𝑁 scheme (Neggers 2015), and the MAP scheme
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(Peters et al. 2021) require the computation of diluted buoyancy and ECAPE for each plume.

In the traditional approach for computing ECAPE, these schemes would execute two numerical

integrations for each plume. This procedure, however, is dramatically simplified by using eq. 25

in the present study, where only 3 vertical integrations per grid cell are needed to obtain CAPE

and NCAPE, and then the ECAPE associated with each plume is computed analytically. The MAP

scheme from (Peters et al. 2021) was also formulated to use the formula from P20 as part of its

closure for convective mass flux. The formula presented here is a more accurate alternative.

A potential caveat to using this parameter operationally is that ECAPE𝐴 vanishes in the absence

of 𝑉𝑆𝑅, whereas we know that deep convection is possible in the absence of substantial 𝑉𝑆𝑅. This

discrepancy is likely a consequence of the primary controls on updraft width shifting away from

vertical wind shear to other environmental factors when shear is weak, such as the planetary

boundary layer (PBL) depth (e.g., Mulholland et al. 2021a) or the width scale of terrain features

(e.g., Nelson et al. 2021; Kirshbaum 2022). Hence, the applicability of the present form of this

formula in regions where weakly sheared deep convection (such as in the tropics) is unclear. A

potential way to circumvent this issue is to revert to a standard ECAPE calculation (with a user-

prescribed 𝜀) in these weakly sheared environments, setting the updraft radius to scale with the

PBL depth or to a constant value (e.g., 1500 m, as was done in Peters et al. 2021). A related caveat

pertains to storm mode. The assumptions made in our theoretical derivation assume that updrafts

are isolated and hence our results are most applicable to isolated updrafts. However, there is

evidence that the connection between 𝑉𝑆𝑅 and updraft width also applies to mesoscale convective

systems (MCSs, Mulholland et al. 2021b), and hence this formula may be applicable in MCS

environments as well. Future work will address this possibility. Finally, the ECAPE𝐴 could easily

be modified to “elevated” storm environments by simply using the MUCAPE in the calculation

and calculating 𝑉𝑆𝑅 within the effective inflow layer. Future work will consider this possibility.
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