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Accurate and efficient modeling of the dynamics of binary black holes (BBHs) is crucial to their detection

through gravitational waves (GWs), with LIGO/Virgo/KAGRA, and LISA in the future. Solving the

dynamics of a BBH system with arbitrary parameters without simplifications (like orbit- or precession-

averaging) in closed-form is one of the most challenging problems for the GW community. One potential

approach is using canonical perturbation theory which constructs perturbed action-angle variables from the

unperturbed ones of an integrable Hamiltonian system. Having action-angle variables of the integrable 1.5

post-Newtonian (PN) BBH system is therefore imperative. In this paper, we continue the work initiated by

two of us in [Tanay et al., Phys. Rev. D 103, 064066 (2021)], where we presented four out of five actions of a

BBH system with arbitrary eccentricity, masses, and spins, at 1.5PN order. Here we compute the remaining

fifth action using a novel method of extending the phase space by introducing unmeasurable phase space

coordinates. We detail how to compute all the frequencies, and sketch how to explicitly transform from the

action-angle variables to the usual positions and momenta. This analytically solves the dynamics at 1.5PN.

This lays the groundwork to analytically solve the conservative dynamics of the BBH system with arbitrary

masses, spins, and eccentricity, at higher PN order, by using canonical perturbation theory.
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I. INTRODUCTION

Laser interferometer detectors have made numerous

gravitational wave (GW) detections that have originated

from compact binaries made up of black holes (BHs) or

neutron stars [1–3]. Among these detections, the predomi-

nant sources of GWs are from binary black holes (BBHs),

whose initial eccentricity is believed to be mostly radiated

away by the time they enter the frequency band of the

ground-based detectors such as LIGO, Virgo, and KAGRA.

Since the upcoming LISA mission [4,5] will target compact

binaries earlier in their inspiral phase compared to the

ground based detectors, incorporating eccentricity becomes

more relevant. Since the observation time for LISA sources

will be much longer, it is imperative to find accurate closed-

form solutions to the binary dynamics.

This brings us to the question of working out closed-

form solutions of the dynamics of a generic BBH system,

with arbitrary eccentricity, masses, and with both BHs

spinning, without special alignment. Many such attempts

have been made in the literature [6–14], but most (if not all)

of them give the solution of the conservative sector of the

dynamics under some simplifying conditions such as the

quasi-circular limit, equal-mass case, only one or none of

the BHs spinning, with orbit-averaging, etc. Only recently,

one of us provided a method to find the closed-form

solution to a BBH system with arbitrary eccentricity, spins,

and masses at 1.5 post-Newtonian (PN) order for the first

time [15] (with the 1PN part of the Hamiltonian being

omitted, as it is not complicated to handle). The next natural

question is: how can one construct the solutions at 2PN, or

is it even feasible?

This line of questioning led two of us to probe the

integrability, and therefore the existence of action-angle

variables of the BBH system at 2PN in Ref. [16], wherein

we found that a BBH system is indeed 2PN integrable when

we applied the perturbative version of the Liouville-Arnold

(LA) theorem, due to the existence of two new 2PN

constants of motion that we discovered. Since integrability

precludes chaos (which would obstruct finding closed-form

solutions), establishing integrability at 2PN instills hope

toward finding a closed-form solutions at this order. A

straightforward extension of the methods of Ref. [15] from

1.5PN to 2PN appears too difficult to carry out, if not

impossible. Our hope is to use nondegenerate canonical

perturbation theory [17,18], which when supplied with

1.5PN action-angle variables, can yield 2PN action-angle

variables. If this line of work is to be pursued, the 1.5PN

action-angle variables are imperative. The calculation can-

not start from a lower PN order because the lower order

(1PN) system is degenerate in the action-angles context; this
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is discussed later. We initiated the action-angle calculation

in Ref. [16], where we computed four (out of five) actions.

In this paper, we compute the last action variable, and sketch

how to explicitly transform from the action-angle variables

to the usual positions and momenta. This basically com-

prises the closed-form solution to the 1.5PN spinning BBH

dynamics.

The history of action-angle variables literature dates

back centuries. The Kepler equation presented in 1609

gives the Newtonian angle variable [17], long before

Newton proposed his laws of motion and gravitation.

Important contributions were made by Delaunay to the

action-angle formalism of the Newtonian two-body sys-

tem [17] in the nineteenth century. More recently, on the

post-Newtonian front, Damour and Deruelle gave the 1PN

extension of the angle variable when they worked out the

quasi-Keplerian solution to the nonspinning eccentric

BBH system [19]. Damour, Schäfer and Jaranowski

worked out action variables at 2PN and 3PN ignoring

the spin effects. Such post-Newtonian calculations make

use of the work of Sommerfeld for complex contour

integration to evaluate the radial action variable [20].

Finally, Damour gave the requisite number (five) of 1.5PN

constants of motion in Ref. [21], which is required for

integrability as per the LA theorem.

This paper is a natural extension to our earlier work [16].

We compute the remaining fifth action variable using a

novel method of extending the phase space by the intro-

duction of new, unmeasurable (or fictitious) phase space

variables. We then show how to PN expand the lengthy

expression of this 1.5PN exact fifth action and retain the

much shorter leading-order contribution. Next we discuss

how to compute all the frequencies of the system. Then we

give a clear roadmap on how to compute all angle variables

of the system implicitly, by expressing the standard phase

space variables of the system ðR⃗; P⃗; S⃗1; S⃗2Þ as explicit

functions of the action-angle variables. Thereafter, we

proceed toward constructing solution to the BBH system

using action-angle variables at 1.5PN. This action-angle-

based solution can be extended to higher PN orders via

canonical perturbation theory. Finally, in one of the appen-

dices, we point out a loophole in the definition of PN

integrability that we presented in Ref. [16] and also provide

a simple fix. We mention here that in a companion paper

[22], we implemented our action-angle based solution using

Mathematica, and compared it with the corresponding

numerical solution.

The organization of this paper is as follows. In Sec. II, we

lay the conceptual foundations, introducing the phase space

(symplectic manifold) and the Hamiltonian of the system.

This includes introducing important definitions like those

of integrability and action-angle variables. In Sec. III, we

discuss the idea of extending the phase space by introduc-

ing new, unmeasurable phase space variables; they make

the computation of the fifth action possible. In the next

section, we implement these ideas to actually compute the

fifth action in explicit form. Then in Sec. V, we show how

to PN expand this fifth action and present its shortened

form. In Sec. VI, we finally show how to compute the five

frequencies, the angle variables, and construct the action-

angle-based solution to the system. Finally, we summarize

our work and suggest its future extensions in Sec. VII. As

far as appendices are concerned, some lengthy calculations

have been pushed to Appendix A, which would have

otherwise been a part of Sec. IV. In Appendix B, we prove

that our fifth action calculated in the extended phase space

is also an action in the standard phase space. Appendix C

gives some commonly occurring derivatives that occur in

the frequency calculations. Lastly, in Appendix D, we fix a

loophole in the definition of PN integrability that we

presented in Ref. [16].

II. THE SETUP

The paper is a continuation of the research initiated in

Ref. [16] and uses the same conventions, which we now

briefly describe. For an informal and pedagogical intro-

duction to the mathematical machinery employed in this

paper and Ref. [16], the reader is referred to the set of

lecture notes at [23].

We will study the BBH system in the PN approximation

within the Hamiltonian formalism. The system under

consideration is schematically displayed in Fig. 1. We work

in the center-of-mass frame with a relative separation vector

R⃗≡ r⃗1 − r⃗2 between the two black holes, and conjugate

momentum P⃗≡ p⃗1 ¼ −p⃗2, where the labels 1 and 2

indicate the two black holes, with masses m1 and m2

respectively. In Ref. [16], R⃗1;2 and P⃗1;2 were used to denote

the position and momentum vectors of the two BHs; but

here we are reserving these symbols for to-be-introduced

unmeasurable, fictitious variables (see Sec. III). The BHs

FIG. 1. Schematic setup of a precessing black hole binary.

Positions, velocities and momenta are all defined as Newtonian

vectors built from the center-of-mass.
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possess spin angular momenta S⃗1 and S⃗2 which contribute

to the total angular momentum J⃗ ≡ L⃗þ S⃗1 þ S⃗2, where

L⃗≡ R⃗ × P⃗ is the orbital angular momentum of the binary.

We will frequently use the effective spin

S⃗eff ≡ σ1S⃗1 þ σ2S⃗2; ð1Þ

σ1 ≡ 1þ 3m2

4m1

; ð2Þ

σ2 ≡ 1þ 3m1

4m2

: ð3Þ

The magnitude of any vector will be denoted by the same

letter used to denote the vector, but without the arrow.

Additionally, Seff · L, and Ra · Pa will stand for S⃗eff · L⃗, and

R⃗a · P⃗a, respectively. Einstein summation convention will

be assumed unless stated otherwise.

The 1.5PN Hamiltonian that we will primarily be

interested in is given by Eqs. (11), (12), (13), and (14)

in Ref. [16], and will be denoted by H. Note that H in this

paper is found by dropping the 2PN contribution in the H
of Ref. [16]. The only nonvanishing Poisson brackets (PBs)

between the phase space variables R⃗; P⃗; S⃗1, and S⃗2 are

fRi; Pjg ¼ δij; and
n
Sia; S

j
b

o
¼ δabϵ

ij
kS

k
a; ð4Þ

and those related by antisymmetry

ff; gg ¼ −fg; fg: ð5Þ

Here the letters a, b label the two black holes (a, b ¼ 1, 2),

and i, j, k are spatial vector indices. The PBs are

derivations, so obey the chain rule (with ξi’s standing

for all phase-space variables)

ff; gðξiÞg ¼ ff; ξig ∂g

∂ξi
: ð6Þ

Equations (4), (5), and (6) enable us to compute the PB

between any two functions of the phase-space variables. As

usual, the evolution of any phase-space function f is given

by _f ¼ ff;Hg. With this, it can be verified that both the

spin magnitudes are constant, _Sa ¼ fSa; Hg ¼ 0. This

means that we can specify each spin vector using only

two variables: the z component and the azimuthal angle of

the spin vector. This choice is particularly useful because

these two variables act like canonical ones. This is so

because Eqs. (4), (5), and (6) imply that

fϕa; S
z
bg ¼ δab: ð7Þ

This means that there are five pairs of canonically con-

jugate variables, and a total of ten canonical phase space

variables.

From a more mathematical point of view, Hamiltonian

dynamics takes place on a symplectic manifold B which is

a smooth manifold equipped with a closed, nondegenerate

differential 2-form Ω, the symplectic form. The orbital

variables Ri, Pj are canonical variables of the cotangent

bundle T�
R

3 (a symplectic manifold), while each spin

vector Sia lives on the surface of a two-sphere (also a

symplectic manifold, with symplectic form proportional to

the area 2-form). The spin vectors S⃗a being on the above

spherical symplectic manifolds is consistent with the

constancy of the spin magnitudes. The symplectic manifold

B which is the total phase space of the system is the

Cartesian product of the above symplectic manifolds

(T�
R

3, and the two 2-spheres). The symplectic form on

B is the sum of the symplectic forms from the three

manifold factors [16]. In terms of canonically conjugate

variables, Ω is
1

Ω ¼ dPi ∧ dRi þ dSz1 ∧ dϕ1 þ dSz2 ∧ dϕ2: ð8Þ

This description of the phase space manifold using a

symplectic geometry point of view makes it clear that

each spin has only two degrees of freedom (Sza and ϕa),

rather than three (Sxa; S
y
a, and Sza). Although Ω itself is

smooth, notice that this coordinate system is singular at the

poles of each spin space.

Now we define integrable systems and action-angle

variables at the same time, re-presenting the definition

given in Ref. [24]. Two quantities f and g are called

commuting or “in involution” if ff; gg ¼ 0. Consider a

system with Hamiltonian H in 2n canonical phase space

variables ðP⃗; Q⃗Þ. This system is integrable if there exists a

canonical transformation to coordinates ðJ⃗ ; θ⃗Þ such that all

the actionsJ i are mutually commuting,H is a function only

of the actions, and all the P⃗ and Q⃗ variables are 2π-periodic

functions of the angle variables θ⃗.

The Liouville-Arnold (LA) theorem [16,18,24–26]

which states that, on a 2n-dimensional symplectic mani-

fold, if ∂tH ¼ 0 and there are n independent, mutually

commuting phase-space functions Fi, such that the level

sets of these functions form compact and connected

manifolds, then the system is integrable, and the above

level sets are diffeomorphic to an n-torus. H being one of

these Fi’s implies that all the Fi’s are also constants since
_Fi ¼ fFi; Hg ¼ 0. Hence we call these Fi’s the n com-

muting constants. When Ω is exact, there is a globally

1
The relationship between symplectic form and PBs is encap-

sulated in Eq. (5.79) of Ref. [18]. The form Ω of Eq. (8) is
consistent with the PBs of Eqs. (4) and (7).
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well-defined potential one-form Θ (such that Ω ¼ dΘ),
then in canonical variables it will be

Θ ¼ PidQ
i; ð9Þ

and the action variables can be computed via [24,25]

J k ¼
1

2π

I

Ck

Θ ¼ 1

2π

I

Ck

PidQ
i; ð10Þ

where Ck is any loop in the kth homotopy class on the n-
torus defined by the level sets Fi ¼ const. The above

integral is insensitive to the choice of loop in a certain

homotopy class; see Proposition 11.2 of Ref. [24].

However, the 2-sphere (and therefore our symplectic

manifold B) does not admit a global Θ, as mentioned

earlier. In such cases, the actions are still well defined up to

some global constants, but now using integrals over areas

instead of loops; see Ref. [16] for details.

Before ending this section, we briefly introduce the

concept of Hamiltonian flows and the associated

Hamiltonian vector fields [18]. A quantity fðP⃗; Q⃗Þ defines
a Hamiltonian vector field X⃗f via f·; fg ¼ ∂=∂λ, such that

it acts on another function gðP⃗; Q⃗Þ as ∂g=∂λ ¼ fg; fg. The
collection of the integral curves of this vector field is

referred to as the Hamiltonian flow of the field.

III. THE EXTENDED PHASE SPACE:

A TOOL TO COMPUTE ACTIONS

ON SPHERICAL MANIFOLDS

In this section, there are instances where we first explain

some subtle concepts informally, before giving a more

mathematically precise statement in the next paragraph.

The reader may choose to skip the more advanced wording

at the expense of some depth.

A. Motivation behind fictitious variables

In Ref. [16], we evaluated four of the five action integrals

for the 1.5PN BBH system. The fifth action computation is

a more complicated task and this leads us to invent certain

“fictitious,” “unmeasurable” variables, thereby extending

the usual standard phase space (SPS) to the extended phase

space (EPS). We now turn to explain the motivation behind

them, which has two facets.

Actions are well defined on exact symplectic manifolds;

an exact symplectic manifold admits a global potential one-

form Θ ¼ P⃗ · dQ⃗). While R⃗ and P⃗ live in T�
R

3, which is

exact (with Θ ¼ P⃗ · dR⃗), the same is not true for the spin

spherical symplectic manifolds, thereby making the SPS

nonexact; see Problem 2 of Homework 2 in Ref. [27].

Although the SPS is not exact, the EPS will be. The two

spaces will also be found to be equivalent (in a certain

sense), which justifies the computation of action in the EPS,

which we can then push forward to the SPS, since every

EPS point would map to an SPS point by construction.

The other more practical problem the EPS cures is that of

computation of the action integral in closed form. In the

SPS (with variables Ri; Pi;ϕa; S
z
a with a ¼ 1, 2), the action

integral is broken down into the orbital and spin sector

contributions,

J ¼ J orb þ J spin; ð11Þ

J orb ¼ 1

2π

I

Ck

PidR
i; ð12Þ

J
spin
A ¼ 1

2π

I

Ck

SzAdϕA: ð13Þ

Now under the flow of Seff · L, the above orbital sector

integral of Eq. (12) is easy to compute. We state beforehand

that the result comes out to be

J orb ¼ ðSeff · LÞΔλSeff ·L
2π

; ð14Þ

where ΔλSeff ·L is the flow amount under Seff · L (to be

determined). See Eqs. (30)–(33) for the intermediate steps.
2

Now although the orbital sector of the action integral under

the Seff · L flow is easy to compute, we do not know how to

compute the spin sector integral of Eq. (13). We again state

beforehand that writing the orbital angular momentum L⃗ as

a cross product of a position R⃗ and a momentum P⃗ was

critical to easily evaluating J orb under the Seff · L flow. This

is something we cannot do with the spin angular momenta

S⃗a because S⃗a are considered to be fundamental coordi-

nates, not written as cross products of some positions and

momenta. As we will see, the EPS gets rid of all these

problems, thus making the action evaluation tractable.

B. Introducing fictitious phase-space variables

We refer to the phase space with coordinates ðR⃗; P⃗;
S⃗1; S⃗2Þ as the SPS, the standard phase space. It is denoted

by the letter B. We now invent a new 18-dimensional

extended phase space (EPS) E ¼ ðT�
R

3Þ3 with canonical

coordinates Ri; Pi; R
i
a; Pai with a ¼ 1, 2, with canonical

Poisson bracket algebra

fRi; PjgE ¼ δij; fRi
a; PbjgE ¼ δabδ

i
j: ð15Þ

Here we use the subscript E to distinguish the Poisson

brackets in E from those in B. We call the R⃗a; P⃗a variables

the unmeasurable, fictitious variables. For contrast, we

2
Equations (30)–(33) are written for the EPS, but if we neglect

the spin sector terms (like J spin and PaidR
i
a=dλ with a ¼ 1, 2),

then these are also valid for the SPS.
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will sometimes refer to the SPS coordinates R⃗; P⃗; S⃗1; S⃗2 as
the observable coordinates. We also demand that for an

SPS point ðR⃗; P⃗; S⃗1; S⃗2Þ, the corresponding EPS point

must satisfy

S⃗1 ¼ R⃗1 × P⃗1; S⃗2 ¼ R⃗2 × P⃗2: ð16Þ

Of course, there are an infinity of EPS points which

correspond to the same SPS point.

In more advanced language, this is a fiber bundle (with

noncompact fibers) with projection

π∶ E → B: ð17Þ

In coordinates, this projection takes a point in E and

sends it to the point in B where its B coordinates are

determined by
3

πððR⃗; P⃗; R⃗1; P⃗1; R⃗2; P⃗2ÞÞ ¼ ðR⃗; P⃗; R⃗1 × P⃗1; R⃗2 × P⃗2Þ: ð18Þ

This is depicted in Fig. 2. In this pictorial depiction of

Fig. 2, a purely vertical displacement in the EPS space

corresponds to changing the EPS coordinates in such a

way that the observable coordinates do not change. To

change the observable coordinates, a horizontal motion is

needed, both in the SPS and the EPS. In addition to Fig. 2,

we also follow these simple pictorial conventions in later

figures like Figs. 3 and 4.

Any function on B can be pulled back with π⋆ to a

function on E. So we can evolve the fictitious variables

under the flow of the pulled-back version of H. While the

fictitious variables can appear in intermediate calculations,

they are a mathematical convenience for the purpose of

computing J 5. In the end, if physically observable quan-

tities depend on R⃗a or P⃗a, they must depend on them

through S⃗a. In other words, the observable quantities must

be functions of only the observable coordinates.

In summary, this extended manifold E, the spins are now
seen as cross products of fictitious positions and momenta.

Also, now E is exact and admits a global potential one-form

ΘE ¼ P⃗ · dR⃗þ P⃗1 · dR⃗1 þ P⃗2 · dR⃗2. It is no longer a prod-

uct of a Cartesian manifold and two-spheres. All three

angular momenta L⃗; S⃗1, and S⃗2 stand on equal mathemati-

cal footing.

C. Comparing the EPS and SPS pictures

We can now sensibly talk about PBs on either the base

SPS manifold B, or the extended EPS manifold E, denoted
as f; gB and f; gE, respectively. The former is computed

using Eqs. (4) and (7), whereas the latter is computed using

Eq. (15). Additional rules like Eqs. (5) and (6) apply

universally to both f; gB and f; gE. Now that we have rid

ourselves of the problematic features of the SPS, the next

natural question would be: are the two spaces (SPS and the

EPS) equivalent in some sense so as to justify action

computation in the EPS, instead of the SPS? It is easy to

check that, when acting on any two functions f and g that

only depend on the SPS coordinates, the two PBs agree,

since Eqs. (15) imply Eqs. (4) and (7). Because of this

crucial observation, we conclude that the SPS picture and

the EPS picture are equivalent for the evolution of f under

the flow of g. In other words,

π⋆ff; ggB ¼ fπ⋆f; π⋆ggE: ð19Þ

This means that either of the two pictures can be used to

evolve the system under the H flow.

We can state the above compatibility relation of the PBs

in B and E in more advanced language of differential

geometry. Given some symplectic form Ω, its associated

Poisson bracket ff; gg is found from

ff; gg ¼ Ω
−1ðdf; dgÞ; ð20Þ

where Ω
−1 is the bivector that is the inverse of Ω,

½Ω−1�ijΩjk ¼ δik. In our setting we have a symplectic form

ΩB in the SPS and ΩE in the EPS. Eq. (19), the compat-

ibility condition between the two PBs can be reexpressed as

FIG. 2. The extended phase space E can be viewed as a fiber

bundle with projection π∶E → B down to the standard phase

space B. Both are symplectic manifolds, but the symplectic form

in the EPS is exact. In the context of this figure, a pure vertical

motion in the EPS corresponds to keeping the SPS coordinates

fixed and changing only the fictitious coordinates.

3
A more sophisticated way to think of this projection is as

follows. Think of the three-dimensional spin manifold, with
coordinates Sia, as soð3Þ�, the vector space dual to the Lie algebra
soð3Þ of the rotation group SO(3). The dual of a Lie algebra
naturally comes equipped with a Lie-Poisson structure (results
developed by Kirillov, Kostant, and Souriau [28]). The usual
action of SO(3) on R3 induces a Hamiltonian action on its
cotangent bundle T�

R
3 (a Poisson manifold), analogous to our

fiber coordinates ðRi
a; PajÞ. From here we can build the dual map

T�
R

3
→ soð3Þ�, which is the momentum map [28]. Our projec-

tion π coincides with the momentum map.
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π⋆ðΩ−1
B ðdf; dgÞÞ ¼ Ω

−1
E ðπ⋆df; π⋆dgÞ; ð21Þ

where π⋆ is the pullback induced by the projection map π,

and f; g∶B → R. Since the left-hand side (lhs) is fiberwise

constant,
4
so is the right-hand side (rhs); and so we can also

consistently push forward this equality to B. Since f and g
are arbitrary, this compatibility and the definition of

pushforward implies that

π⋆ðΩ−1
E Þ ¼ Ω

−1
B ; ð22Þ

where π⋆ is the pushforward.

The equivalency needs to be pushed even to the

integrability arena: the 1.5PN BBH system being integrable

or chaotic must not depend on whether we choose to work

in the SPS picture or the EPS one. Fortunately, the two

pictures are also equivalent when we investigate the

integrability of the system, following the LA theorem. In

the base SPS manifold, we have the required 10=2 ¼ 5

mutually commuting constants to establish integrability:

H; J2; Jz; L
2; Seff · L. In the EPS picture, we also have the

requisite 18=2 ¼ 9 commuting constants required for

integrability. Those are the five constants already listed

above, plus S2a and Ra · Pa for a ¼ 1, 2. These nine

constants are to be viewed as functions of the EPS

coordinates. Because of the integrable nature of the system,

there are five (nine) action variables in the SPS (EPS), and

similarly for the angle variables.

An interesting question arises. Imagine two points P and

Q in the EPS which have the same SPS coordinates

R⃗; P⃗; S⃗1, and S⃗2, but some different fictitious coordinates

(shown in Fig. 3). If we were to flow under fðR⃗; P⃗; S⃗1
ðR⃗a; P⃗aÞ; S⃗2ðR⃗a; P⃗aÞÞ, with P and Q as starting points for a

fixed amount λ0, then are the SPS coordinates of the two

final points the same? In other words, is πðP0ðP; f; λ0ÞÞ ¼
πðQ0ðQ; f; λ0ÞÞ? The primes denote the final point reached

at the end of the flow. It is easy to check that the answer

to the above question is “yes,” and this is due to the

compatibility of the PBs [Eq. (19) or Eq. (22)]. In other

words, when flowing under f in the EPS, the SPS

coordinates of the final point reached by the flow depends

only on f, λ0 and the SPS coordinates (and not the fictitious

coordinates) of the starting point. This is not just a desirable

but a necessary feature because it assures us that among an

infinity of EPS configurations (lying within a single fiber)

that are compatible with a given SPS configuration, we can

choose to work with any one of them.

We can state the same result in the language of

Hamiltonian vector fields. We denote the Hamiltonian

vector field generated by the flow under f (whether in

the SPS or in the EPS) with

XB
f ≡ f·; fgB ¼ Ω

−1
B ð·; dfÞ; ð23Þ

XE
π⋆f≡f·;π⋆fgE ¼Ω

−1
E ð·;dðπ⋆fÞÞ¼Ω

−1
E ð·;π⋆ðdfÞÞ; ð24Þ

where the Poisson bracket on the EPS f·; ·gE acts on the

pullback π⋆f of the function f ¼ fðR⃗; P⃗; S⃗1; S⃗2Þ. Now the

compatibility of the brackets in the SPS and the EPS

[Eqs. (19) and (22)] tells us that

π⋆ðXE
ðπ⋆fÞÞ ¼ XB

f ; ð25Þ

i.e., the SPS vector field is the pushforward of the EPS

vector field. This is equivalent to the result arrived at in the

previous paragraph.

D. Strategy to compute the action

Since the EPS and SPS are equivalent when acting on

SPS functions, we can use either of them for our calcu-

lations. As already remarked in Sec. III A, we do not know

how to compute the fifth action in the SPS. So we now turn

to computing the fifth action in the EPS via

J k ¼
1

2π

I

Ck

�
P⃗ · dR⃗þ P⃗1 · dR⃗1 þ P⃗2 · dR⃗2

�
; ð26Þ

which interestingly is tractable. We state in advance the

necessary result that the fifth action [Eq. (35)] in the EPS is

fiberwise constant (see Footnote 4), meaning it can be

FIG. 3. Two EPS points (P and Q) with the same fictitious

coordinates are mapped to new EPS points (P0 and Q0) again
the same fictitious coordinates by a flow under a general

fðR⃗; P⃗; S⃗1ðR⃗a; P⃗aÞ; S⃗2ðR⃗a; P⃗aÞÞ by any arbitrary amount.

4
Fiberwise constancy means constancy when one moves along

a fiber through points which map to the same base point. This
means insensitivity to changing the fictitious variables (and
moving through the EPS), so long as all these fictitious variables
correspond to the same SPS point ðR⃗; P⃗; S⃗1; S⃗2Þ.
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written in terms of only the observable coordinates

(R⃗; P⃗; S⃗1; S⃗2). In other words, the dependence of this action
on the unmeasurable variables occurs only through the

combinations S⃗1 ¼ R⃗1 × P⃗1 and S⃗2 ¼ R⃗2 × P⃗2. This makes

it possible to treat the fifth action as a function of only the

SPS coordinates.

Another important question arises. Since we are com-

puting the fifth action in the EPS, do we have a legitimate

action in the SPS? The answer is “yes” in a certain sense (as

explained below), although due to the SPS-EPS equiva-

lency, we can in principle, totally disregard the SPS and

work only in the EPS, through and through. Eq. (10) is the

popular loop-integral definition of action. This action has

an important property that under its flow by 2π (and not any

smaller amount), we get a closed loop.
5
In fact, this is such

an important feature that it can also serve as another

definition of the action (call it the “loop-flow definition”).

We will use the loop-integral definition to compute the

action in the EPS, and we show in Appendix B that the

pushforward of this action to SPS satisfies the loop-flow

definition of action.

We make a few closing remarks before we turn to the

evaluation of the fifth action integral of Eq. (26). We have

numerically verified that flowing by 2π under the fifth

action [to-be-computed from Eq. (26)] yields a closed loop

(as required by the loop-flow definition), within numerical

errors, whether the action is treated as an SPS function or an

EPS function. Although, the first four action integrals

computed in Ref. [16] were done in the SPS, we could

have also computed them in the EPS, and then pushfor-

warded these integrals to the SPS. The results would be the

same as the four action integrals already presented in

Ref. [16], except for some irrelevant additive constants. In

summary, the equivalence of the two pictures (in terms of

integrability, action-angle variables, and most importantly,

the evolution under a flow associated with any observable),

the global exactness of the symplectic form ΩE, and the

ease of evaluation of the action variables, make us prefer

the EPS over the SPS for the action computation.

IV. COMPUTING THE FIFTH ACTION

Four out of the five actions were already presented in

Ref. [16]. Herewe compute the fifth one. For the fifth action,

we generate a closed loop on the invariant n-torus by flowing
under Seff · L, and other commuting constants. After flowing

under Seff · L by a certain amount ΔλSeff ·L (to be computed),

although the mutual angles between ðL⃗; S⃗1; S⃗2Þ return to

their original values, these individual vectors have not. So

we have not formed a closed loop yet. However, additional

flows under J2; L2; S21, and S
2
2 will close the loop (shown in

Appendix A), and at the same time ensuring that this loop is

in a different homotopy class than the four associated to the

other actions. We will see that we do not need to flow along

H or Jz for the fifth action computation. The fifth action

integral can be computed piecewise as five integrals,

J 5 ¼ J Seff ·L
þ J J2 þ J L2 þ J S2

1
þ J S2

2
; ð27Þ

where each part corresponds to the segment generated by

flowing under the quantity in the subscript.

Focusing on J Seff ·L
, we will need the evolution equations

under the flow of Seff · L in the EPS, which read

dR⃗

dλ
¼ S⃗eff × R⃗; ð28aÞ

dP⃗

dλ
¼ S⃗eff × P⃗; ð28bÞ

dR⃗a

dλ
¼ σa

�
L⃗ × R⃗a

�
; ð28cÞ

dP⃗a

dλ
¼ σa

�
L⃗ × P⃗a

�
; ð28dÞ

and they imply

dL⃗

dλ
¼ S⃗eff × L⃗; ð29aÞ

dS⃗a
dλ

¼ σa

�
L⃗ × S⃗a

�
: ð29bÞ

From these evolution equations we have

2πJ Seff ·L
¼ 2πðJ orb þ J spinÞ ð30Þ

¼
Z

λf

λi

�
Pi

dRi

dλ
þ P1i

dRi
1

dλ
þ P2i

dRi
2

dλ

�
dλ

¼
Z

λf

λi

�
P⃗ · ðS⃗eff × R⃗Þ þ P⃗1 · ðσ1L⃗ × R⃗1Þ

þ P⃗2 · ðσ2L⃗ × R⃗2Þ
�
dλ ð31Þ

¼ 2

Z
λf

λi

ðSeff · LÞdλ ¼ 2ðSeff · LÞΔλSeff ·L; ð32Þ

J Seff ·L
¼ ðSeff · LÞΔλSeff ·L

π
; ð33Þ

with ΔλSeff ·L ¼ λf − λi being the required flow parameter

amount (for the mutual angles of ðL⃗; S⃗1; S⃗2Þ to be restored).
We could pull Seff · L out of the integral since it is a

constant under the flow of Seff · L. After performing similar

calculations, we can also show that (see also Sec. III-A

of Ref. [16])

5
See the proof of Theorem 11.6 of Ref. [24] to arrive at this

conclusion.
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J J2 ¼
J2ΔλJ2

π
; ð34aÞ

J L2 ¼ L2
ΔλL2

π
; ð34bÞ

J S2
1
¼

S21ΔλS21
π

; ð34cÞ

J S2
2
¼

S22ΔλS22
π

; ð34dÞ

where the quantities Δλi’s are the flow amounts required to

close the loop under the corresponding commuting constant

in the subscript. This finally renders the fifth action to be

J 5 ¼
1

π

�
ðSeff · LÞΔλSeff ·L þ J2ΔλJ2 þ L2

ΔλL2

þ S21ΔλS21
þ S22ΔλS22

�
; ð35Þ

which means that the fifth action computation has now

boiled down to computing the five flow amountsΔλi’s. Due

to the tedious nature of the computation of these five

parameter flow amounts, they have been relegated to

Appendix A.

Summarizing, the fifth action is given by Eq. (35), where

the Δλ’s are presented in Eqs. (A42), (A67), (A77), (A94),

and (A95). Because our derivation assumed m1 > m2, this

expression of the action is not manifestly symmetric under

the exchange 1 ↔ 2 (labels of the two black holes).

However, as discussed in the text after Eq. (A28), the

symmetry can be restored simply. Note that in Ref. [16], the

flows under J2; Jz, and L2 individually form closed loops.

This implies that the associated actions are functions of just

these individual conserved quantities. Meanwhile, to get a

closed loop for the fifth action evaluation, we need to flow

under all of J; L; Seff · L; S1, and S2, which makes the fifth

action a function of all these five quantities.

A. Fifth action in the equal mass case

The above result for the fifth action in Eq. (35) is not

manifestly finite in the equal mass limit: there are many

factors of ðσ1 − σ2Þ which vanish in this limit, including

some in denominators. We have checked numerically that

the equal mass limit of J 5 is finite, but trying to take this

limit analytically is cumbersome. There is however a

simpler way, and the solvability of the equal-mass case

has been independently investigated in the literature, albeit

in the orbit- and precession-averaged approach [29].

Working with only the SPS variables, when σ1 ¼ σ2

(equal-mass case), it is easy to check that S⃗1 · S⃗2, along with

H; J2; L2, and Jz forms a set of five mutually commuting

constants. In fact, Seff · L can then be seen as a function of

these five constants, and is therefore no longer an inde-

pendent constant. It can be checked that under the flow of

S⃗1 · S⃗2 we have the flow equations (with S⃗≡ S⃗1 þ S⃗2)

n
S⃗1; S⃗1 · S⃗2

o
¼ S⃗ × S⃗1 ¼

n
S⃗1 · S⃗2; S⃗2

o
¼ S⃗2 × S⃗; ð36Þ

which imply that both the spin vectors rotate around S⃗,

which itself remains fixed under this flow. R⃗ and P⃗ do not

move and hence only the spin sectors contribute to the

action integral. At this point, we can simply use the result of

Eq. (28) of Ref. [16] with n̂ ¼ S⃗=S, which gives our fifth

action variable for the equal mass case as

J̃ 5ðm1¼m2Þ ¼ ðS⃗1 þ S⃗2Þ · S⃗=S ¼ S: ð37Þ

The reason we used a tilde in the above equation is because

J̃ 5ðm1¼m2Þ need not be the equal mass limit of J 5, since

action variables of a system are not unique; see Proposition

11.3 of Ref. [24].

Finally, using the equal mass relations

J2 ¼ L2 þ S21 þ S22 þ 2ðL⃗ · S⃗þ S⃗1 · S⃗2Þ; ð38Þ

Seff · L ¼ 7

4
L⃗ · S⃗; ð39Þ

S2 ¼ S21 þ S22 þ 2S⃗1 · S⃗2; ð40Þ

in Eq. (38) of Ref. [16], it is possible to arrive at an equation

connecting the Hamiltonian with the actions. Performing a

PN series inversion thereafter, one can write an explicit

expression for the Hamiltonian in terms of the actions, up to

1.5PN. This can be used to explicitly obtain the frequencies

of the system via ωi ¼ ∂H=∂J i for the equal-mass case.

V. FIFTH ACTION AT THE LEADING PN ORDER

The action variable given by Eq. (35) is in exact form

with respect to the 1.5PN HamiltonianH. It is a worthwhile

exercise to write the leading order contribution of this

action because it is a much shorter expression than the

“exact” one. This is in the same spirit as the expression of

the fourth action variable as a PN series which was

presented in Eq. (38) of Ref. [16]. Another advantage is

that we can then write Seff · L in terms of the actions,

including the fifth one (discussed below), which when used

with Eq. (38) of Ref. [16] can give an expression for

Hamiltonian in terms of the actions.

Note that out of the five actions: J; L; Jz;J 4, and J 5

(see Ref. [16] for the first four), the first two coincide with

each other at 1PN order due to the absence of spins. The

next important action variable at 1PN is the 1PN version of

J 4 [20]. Jz is irrelevant when it comes to computing

frequencies since the Hamiltonian is never a function of Jz.
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This explains the presence of only two frequencies (result-

ing from effectively two actions) at 1PN. Now since J 5

comes into play for the first time only at the 1.5PN order, it

makes sense to expand it in a PN series and work with the

leading order term only, if we are working at 1.5PN. We

now turn our attention to extracting this leading order term.

We sketch the plan for how to obtain the leading PN

contribution to J 5. It comprises a couple of steps which

were performed in Mathematica.

Step 1: To start with, instead of writing the various

quantities which make up J 5 in terms of the five commut-

ing constants, write them only in terms of L⃗; S⃗1; S⃗2; σ1, and

σ2 with the understanding that S⃗1 and S⃗2 are 0.5PN order

higher than L⃗; see Ref. [16] for more details on this. Attach

a formal PN order counting parameter ϵ to S⃗1 and S⃗2. This ϵ
will be used as a PN perturbative expansion parameter:

every power of ϵ stands for an extra 0.5PN order. At the end

of the calculation, ϵ will be set equal to 1. Writing various

quantities of interest in terms of L⃗; S⃗1, and S⃗2 is imperative

since it serves to expose the PN powers explicitly. For

example, J2 − L2 ¼ Oðϵ1Þ, though both J2 and L2 are

Oðϵ0Þ. This becomes manifestly clear when J2 − L2 is

written in the above way.

Step 2: Instead of trying to series expand J 5 directly in

terms of ϵ in one go, we first series expand various

quantities that make up J 5, and then use these expanded

versions to finally build up the series-expanded version of

J 5. As a first step, series expand the cubic expression of

Eq. (A21), and its roots, keeping terms up to Oðϵ2Þ.
Expansion of the roots up to Oðϵ2Þ is necessary because

the turning points f1 and f2 coincide at lower orders.

Step 3: Series expand various other quantities that make

up J 5, such as k2, B1, B2, D1, D2, α1 and α2 in ϵ such that

the resulting expansions have two nonzero post-Newtonian

terms. We do not have to worry about series expanding

certain other quantities which make up Δλ4 and Δλ5, since

they do not contribute to the fifth action variable at the

leading order.

Step 4: Using these series-expanded ingredients, build up

J 5 of Eq. (35). The PN orders of the five summands of J 5

[as shown in Eq. (27)] are schematically shown here as

J Seff ·L
¼ OðϵÞ; ð41Þ

J J2 ¼ J 0ϵ
0 þOðϵÞ; ð42Þ

J L2 ¼ −J 0ϵ
0 þOðϵÞ; ð43Þ

J S2
1
¼ Oðϵ2Þ; ð44Þ

J S2
2
¼ Oðϵ2Þ; ð45Þ

where we have indicated that the leading order components

of J J2 and J L2 cancel each other. Our leading order J 5 is

thus the sum of the first three contributions. The last two

contributions being at subleading orders can be dropped. At

this point we can set ϵ ¼ 1.

Step 5: At this point the resulting perturbative J 5 is a

function of L⃗; S⃗1; S⃗2; σ1; σ2 and dot products formed out of

them. We still want to write this as a function of the

commuting constants only, keeping in line with the

tradition followed in the action-angle variables formalism.

To do so, we eliminate L⃗ · S⃗1 and L⃗ · S⃗2 using the following
results valid up to the leading PN order

L⃗ · S⃗1 ∼
2Seff · L − ðJ2 − L2 − S21 − S22Þσ2

2ðσ1 − σ2Þ
; ð46aÞ

L⃗ · S⃗2 ∼ −
2Seff · L − ðJ2 − L2 − S21 − S22Þσ1

2ðσ1 − σ2Þ
; ð46bÞ

which finally yields the leading PN order contribution to

J 5 as

J 5 ∼
1

4Lðσ1 − σ2ÞðC21 − 4L2ðS12 þ S2
2ÞÞ
h
C31C2ðσ1 þ σ2Þ þ 4C1L

2fS12ðC2ðσ1 − σ2Þ þ 2σ1Þ

þ S2
2ðC2ðσ2 − σ1Þ þ 2σ2Þg − ðSeff · LÞf16L2ðS12 þ S2

2Þ þ 4C21C2g
i
; ð47Þ

where we define the combinations

C1 ¼ J2 − L2 − S21 − S22; ð48Þ

C2 ¼
�
1 −

4ðC1σ1 − 2Seff · LÞðC1σ2 − 2Seff · LÞ
ðC1ðσ1 þ σ2Þ − 4Seff · LÞ2 − 4L2ðσ1 − σ2Þ2ðS12 þ S2

2Þ

	
1=2

− 1: ð49Þ

We could have chosen to eliminate L⃗ · S⃗1 and L⃗ · S⃗2
using slightly modified forms of Eqs. (46) by simply

ignoring S21 and S22 terms in the numerator. These modified

forms of Eqs. (46) and the resulting modified form of the

leading order contribution to the fifth action would still

agree with the original results [Eqs. (46) and Eq. (47)] up to

the leading PN order. The above expression of linearized

fifth action is not manifestly symmetric with respect to the
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label exchange 1 ↔ 2. This is because from the beginning,

we assumed m1 > m2 while deriving the 1.5PN exact fifth

action; see the text after Eq. (A28). We can easily make this

leading PN order version of fifth action symmetric by

replacing ðσ1 − σ2Þ with −jσ1 − σ2j only in the denomi-

nator of the rhs of Eq. (47). This is because m1 > m2 ⇒

σ1 < σ2.

We note that the expression of the leading PN order

contribution to the fifth action in Eq. (47) is much shorter

than that of the exact 1.5PN fifth action (when both are

expressed in terms of the commuting constants). This could

be used in an efficient implementation of the evaluation of

the fifth action on a computer.

We also note that Eq. (47) can be used to arrive at a

quartic equation in Seff · L with other action variables as

parameters of this quartic equation. This means it is in

principle possible to solve for Seff · L as a function of the

actions. By inserting this into Eq. (38) of Ref. [16], we can

explicitly find the 1.5PN HðJ⃗ Þ as a function of all of the

actions (after a PN series inversion). This gives an

alternative approach for computing the frequencies ωi ¼
∂H=∂J i which can be compared with the approach in

Sec. VI. We have also numerically verified that J 5 as

presented in Eq. (47) above converges to the exact 1.5PN

version in the limit of small PN parameter (S1; S2 ≪ L).

VI. FREQUENCIES AND ANGLE VARIABLES

A. Computing the frequencies

Since we have an integrable Hamiltonian system, the

Hamiltonian is a function of the actions and not the angles,

though it may not be possible to write H explicitly in terms

of the actions. In terms of the actions, the equations of

motion for the respective angle variables are trivial,

_θi ¼ ∂H

∂J i

¼ ωiðJ⃗ Þ: ð50Þ

As a consequence, the usual phase space variables are all

multiply-periodic functions of all of the angle variables.

Concretely, this means a Fourier transform of some regular

coordinate would consist of a forest of delta function peaks

at integer-linear combinations of the fundamental frequen-

cies ωi [30]. Additionally, if we know the frequencies, we

can locate resonances—where the ratio of two frequencies

is a rational number—which are key to the KAM theorem

and the onset of chaos.

With C⃗ standing for the vector of all five mutually

commuting constants, H being one of these Ci’s, H is

automatically a function of C⃗. In principle, once can invert

J⃗ ðC⃗Þ (at least locally, via the inverse function theorem) for

C⃗ðJ⃗ Þ, and thus find an explicit expression forHðJ⃗ Þ paving
the road for the computation of the frequencies ωi

’s. But

this is not necessary.

Instead, we follow the approach given in Appendix A of

Ref. [31] to find the frequencies as functions of the

constants of motion, via the Jacobian matrix between

the five Ci’s and the five J i’s. For the purpose of

frequency computations, we take our Ci’s to be (in this

specific order) C⃗ ¼ fJ; Jz; L;H; Seff · Lg. As two of us

showed in Ref. [16], the first three of these are already

action variables. We take the order of the actions to be

J⃗ ¼ fJ; Jz; L;J 4;J 5g. The expression for J 4 was given

as an explicit function of ðH;L; Seff · LÞ in Ref. [16]. The

Jacobian matrix ∂J i=∂Cj can be found explicitly, since we

have analytical expressions for J⃗ ðC⃗Þ. This matrix is

somewhat sparse, given by

∂J i

∂Cj
¼

2
66666664

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0
∂J 4

∂L
∂J 4

∂H
∂J 4

∂ðSeff ·LÞ
∂J 5

∂J
0

∂J 5

∂L
0

∂J 5

∂ðSeff ·LÞ

3
77777775
: ð51Þ

Now we use the simple fact that the Jacobian ∂Ci=∂J j is

the inverse of this matrix (assuming it is full rank),

∂J i

∂Cj

∂Cj

∂J k
¼ δik; ð52Þ

∂C⃗

∂J⃗
¼
�
∂J⃗

∂C⃗

	−1
: ð53Þ

Because of the sparsity of the matrix in Eq. (51), we

directly invert and find the only nonvanishing coefficients

in the inverse are

∂Ci

∂J j
¼

2
66666664

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

∂H
∂J

0 ∂H
∂L

∂H
∂J 4

∂H
∂J 5

∂ðSeff ·LÞ
∂J

0
∂ðSeff ·LÞ

∂L
0

∂ðSeff ·LÞ
∂J 5

3
77777775
: ð54Þ

The frequencies we seek are in the fourth row of this

matrix. Matrix inversion yields the following expressions

for the frequencies:

∂H

∂J
¼ ω1 ¼ ð∂J 4=∂ðSeff · LÞÞð∂J 5=∂JÞ

ð∂J 4=∂HÞð∂J 5=∂ðSeff · LÞÞ
; ð55aÞ

∂H

∂Jz
¼ ω2 ¼ 0; ð55bÞ
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∂H

∂L
¼ ω3 ¼

�
ð∂J 4=∂ðSeff · LÞÞð∂J 5=∂LÞ

− ð∂J 4=∂LÞð∂J 5=∂ðSeff · LÞÞ
	

× ð∂J 4=∂HÞ−1ð∂J 5=∂ðSeff · LÞÞ−1; ð55cÞ

∂H

∂J 4

¼ ω4 ¼ ð∂J 4=∂HÞ−1; ð55dÞ

∂H

∂J 5

¼ ω5 ¼ −
∂J 4=∂ðSeff · LÞ

ð∂J 4=∂HÞð∂J 5=∂ðSeff · LÞÞ
: ð55eÞ

The frequency ω2 ¼ ∂H=∂Jz vanishes since H cannot

depend on Jz, to preserve SO(3) symmetry. The deriva-

tives of J 4 with respect to ðH;L; Seff · LÞ are easy to

compute from the explicit expression given in Eq. (38) of

Ref. [16]. Taking the derivatives of J 5 in Eqs. (55)

involves many intermediate quantities that arise from

the chain rule, and are presented in Appendix C.

B. The angle variables

Canonical perturbation theory [17,18] has the potential

to furnish 2PN action-angle variables when supplied with

1.5PN ones. To use this tool, we want to be able to express

perturbations to the Hamiltonian (namely, higher PN order

terms) as functions of the angle variables which are

canonically conjugate to the actions. One of these angles

—the mean anomaly, which is conjugate to our J 4—has

been presented previously in the literature, in pieces. We

have explicitly checked that the Poisson bracket between

J 4 the 1.5PN mean anomaly (combining 1PN and 1.5PN

pieces of the results from Refs. [19] and [32]) is 1, up to

1.5PN order.
6

1. Constructing angle variables

We now lay out a roadmap on how to implicitly construct

the rest of the angle variables on the invariant tori of

constant J⃗ (or constant C⃗). To be more precise, we show

how to obtain the standard phase-space coordinates ðP⃗; Q⃗Þ
as explicit functions of action-angle variables ðJ⃗ ; θ⃗Þ. This
is in fact the more useful transformation [rather than ðJ⃗ ; θ⃗Þ
as explicit functions of ðP⃗; Q⃗Þ] for canonical perturbation
theory, since we will need to transform the 2PN and higher

Hamiltonian [which is given as explicit function of ðP⃗; Q⃗Þ]
into action-angle variables.

The method to assign angle variables on invariant tori is

straightforward. Pick a fiducial point P0 on an invariant

torus, and give it angle coordinates 0⃗≡ ð0;…; 0Þ. Then

every other point on this same torus, with angle coordi-

nates θi, is reached by integrating a flow from P0 by

amounts θi under each of the actions J i. This is because

the flow parameter is in fact the angle parameter:

dθi=dλj ¼ fθi;J jg ¼ δij. The Poisson brackets evaluating

to Kronecker delta follows because θi and J j are canoni-

cally conjugate coordinates; see Theorem 10.17 of

Ref. [24]. Since the actions commute, we are free to flow

under these actions in any order.

The construction explained above was only on an

individual torus. The only requirement for extending these

variables to being full phase space variables is that the

choice of fiducial point P0ðJ⃗ Þ is smooth in J⃗ . Given any

choice of angle variables, we can always reparametrize them

by adding a constant that is a smooth function of J⃗ . That is,

if θi are angle variables, then so are θi ¼ θi þ δθiðJ⃗ Þ, with
smooth δθi, which can be verified by taking Poisson

brackets: fθ̄i;J jg ¼ δij. Some of these angle variables

may be simpler than others, but here we are only interested

in finding one such construction.

So now, the problem of assigning the angle coordinates

on the torus has been transformed into that of flowing under

all the actions, one by one, by amounts equal to the angle

coordinates of the point whose angles are desired (assuming

that the starting point had θ⃗ ¼ 0⃗). To integrate the equations

under the flow associated with any of the five actions, we

start with

dξ

dλ
¼
n
ξ;J iðC⃗Þ

o
;

¼ fξ; Cjg
∂J i

∂Cj

; ð56Þ

where ξ is any one of the phase space coordinates. This is

the same sparse matrix ∂J i=∂Cj which appeared in the

previous section in Eq. (51). The matrix ∂J i=∂Cj is a

function of only the C⃗’s, and thus is constant on each torus

and each of the flows we consider. Hence, integrating the

above equation boils down to integrating under the flow of

the Ci’s. We will now briefly explain how to obtain the

solution for the flow under each of the Ci’s one by one.

2. Solutions to flow under the commuting constants

The solution for flow under H has been given in

Ref. [22]; it has been termed as the “standard solution”

there. It is found by filling in the gaps in the solution

provided in Ref. [15].
7
The solution for the flow under Seff ·

L is constructed in Appendix A, with minor caveats.

Eqs. (A39), (A66), and (A76) in Appendix A collectively

6
The result in Refs. [19] [Eq. (7.1 a)] does not have the 1.5PN

piece, whereas the result in Ref. [32] [Eq. (11b)] is missing the
1PN piece.

7
Reference [15] ignored the 1PN Hamiltonian throughout for

brevity since the authors deemed it straightforward. Equa-
tions (3.28-c, d) of this article have typos.
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give solutions for L⃗ and R⃗, but the appendix does not give

explicit solutions for P⃗; S⃗1, and S⃗2. However, this is not a

major hurdle for the following reasons. The solution for P⃗

can be easily found from that for R⃗ by noting that P and the

angular offset between R⃗ and P⃗ remain constant under the

Seff · L flow. Also, the solutions for S⃗1 can be had using

similar calculations as for the solution for L⃗. Once we have

S⃗1, S⃗2 can be found from S⃗2 ¼ J⃗ − L⃗ − S⃗1, and the fact that

J⃗ does not change under the Seff · L flow.

It now remains to show how to integrate under the flow

of the remaining three Ci’s, (J
2; Jz and L2). Section III

[specifically Eqs. (21)–(23)] of Ref. [16] showed that the

equations for a flow under any of these quantities can be

concisely written in a generalized form as

dV⃗

dλ
¼
n
V⃗;J i

o
¼ U⃗ × V⃗: ð57Þ

Here U⃗ is the constant vector (under the respective flow)

2J⃗; ẑ, or 2L⃗ when Ci is J
2; Jz, or L

2, respectively. In the

above equation, V⃗ stands for any of R⃗; P⃗; S⃗1, and S⃗2, with

the exception that under the flow of L2, spin vectors do not

move; so V⃗ stands for only R⃗ and P⃗ in this case. This

basically means that V⃗ rotates around the fixed vector U⃗
with an angular velocity whose magnitude is simply U.
Constructing the solutions to the flows under J and L in

terms of Cartesian components is cumbersome, so we will

work with the magnitudes and the directions of the vectors

instead. This paragraph assumes the reader is familiar with

the definitions of the frames ðijkÞ and ði0j0k0Þ which have

been introduced with the help of Fig. 5 in Appendix A.

Now in light of Eq. (57), it is a simple matter to see that the

equations for flow under J and L (or rather Eqs. (21) and

(23) of Ref. [16]) imply that

(i) Under the flow of J by an amount Δλ, the azimuthal

angles of R⃗; P⃗; S⃗1, and S⃗2 in the inertial ðijkÞ frame

increase byΔλ. The magnitudes of the vectors do not

change.

(ii) Under the flow of L by an amount Δλ, the azimuthal

angles of R⃗, and P⃗ in the noninertial ði0j0k0Þ frame

increase by Δλ, whereas the spin vectors do not

move. The magnitudes of the vectors do not change.

The flow under Jz can be handled similarly. With all the

individual pieces now identified, it is now straightforward,

although lengthy to find each standard phase space variable

as an explicit function of the angle variables θi, on any

invariant torus.

C. Action-angle based solution at 1.5PN

and higher PN orders

Now there are two approaches to solving the real-time

dynamics of the system, i.e., a flow underH. The approach

by one us in Ref. [15] was to directly integrate the

differential equations
7
, yielding a quasi-Keplerian para-

metrization. Although this method is direct, it seems quite

difficult to extend this to higher PN orders. The second

approach is the action-angle based one, the subject of this

paper. All the angles have a trivial real time evolution, each

one increasing linearly with time _θi ¼ ωiðJ⃗ Þ. After a

certain time t, θi has changed by ωit, which we can

compute. So assuming that θ⃗ðt ¼ 0Þ ¼ 0⃗, we can compute

the angles θ⃗ðtÞ at any general time t, with the J⃗ unchanged.

Now the problem has become that of computing ðP⃗; Q⃗ÞðtÞ
given ðJ⃗ ; θ⃗ÞðtÞ, whose road map has been clearly laid out

in Sec. VI B. This concludes our brief description of

the action-angle based method of computing the solution.

This method has the advantage that evaluating the state of

the system (or its derivatives, as needed for computing

gravitational waveforms) can be trivially parallelized by

evaluating each time independently. Both the above sol-

ution methods have been implemented by us in a public

Mathematica package [22].

Moreover, our action-angle based solution allows for

the possibility of using nondegenerate perturbation theory

[17,18] to extend our solution to higher PN orders. The

procedure of Sec. VI B will yield the standard phase-space

variables ðP⃗; Q⃗Þ as explicit functions of ðJ⃗ ; θ⃗Þ. This is

exactly what is required for computing perturbed action-

angle variables at higher PN order with canonical pertur-

bation theory. Higher-PN terms in the Hamiltonian are

given in terms of ðR⃗; P⃗; S⃗1; S⃗2Þ, and one must transform

them to (unperturbed) action-angle variables to apply

perturbation theory. If successful, our method can be seen

as the foundation of closed-form solutions of BBHs with

arbitrary masses, eccentricity, and spins to high PN orders

under the conservative Hamiltonian (excluding radiation-

reaction for now). This is in the same spirit as Damour and

Deruelle’s quasi-Keplerian solution method for nonspin-

ning BBHs given in Ref. [19], which has been pushed to

4PN order recently [33]. We are also currently working to

find the 2PN action-angle based solution via canonical

perturbation theory.

Note that we could not have applied nondegenerate

perturbation theory to a lower PN order (say 1PN) to arrive

at 1.5PN or higher PN action-angle variables, because the

lower PN systems are degenerate in the full phase space.

This is because the spin variables are not dynamical until

the 1.5PN order; so at lower orders, there are fewer than

four action variables and frequencies.
8
At 1.5PN, the

system becomes nondegenerate, and can be used as a

starting point for perturbing to higher order. We therefore

view our construction of the action-angle variables as

8
There can be at most 4 different nonzero frequencies of this

system irrespective of the PN order, sinceH must be independent
of Jz to preserve SO(3) symmetry.
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significant for finding closed-form solutions of the com-

plicated spin-precession dynamics of BBHs with arbitrary

eccentricity, masses, and spin.

VII. SUMMARY AND NEXT STEPS

In this paper, we continue the integrability and action-

angle variables study of the most general BBH system

(both components spinning in arbitrary directions, with

arbitrary masses and eccentricity) initiated in Ref. [16].

There, two of us presented four (out of five) actions at

1.5PN and showed the integrable nature of the system at

2PN by constructing two new 2PN perturbative constants

of motion. Here, we computed the remaining fifth action

variable using a novel mathematical method of inventing

unmeasurable phase space variables. We derived the lead-

ing order PN contribution to the fifth action, which is a

much shorter expression than the “exact” one. We showed

how to compute the fundamental frequencies of the system

without needing to write the Hamiltonian explicitly in

terms of the actions. Finally, we presented a recipe for

computing the five angle variables implicitly, by finding

(R⃗; P⃗; S⃗1; S⃗2) as explicit functions of action-angle variables.
We leave deriving the full expressions to future work. We

also sketched how the 1.5PN action-angle variables can be

used to construct solutions to the BBH system at higher PN

orders via canonical perturbation theory.

Typically, action-angle variables are found by separating

the Hamilton-Jacobi (HJ) equation [17], though we were

able to work them out without effecting such a separation.

Finally from this vantage point, we summarize the major

ingredients that went into our action-angle based solution

for the PN BBHs: (1) the classic Sommerfeld contour

integration method for the Newtonian system, which gave

the Newtonian radial action long ago [17]; (2) its PN

extension by Damour and Schäfer [20]; (3) the integration

techniques worked out in the context of the 1.5PN

Hamiltonian flow by one of us in Ref. [15]; and finally,

(4) the method of extending the phase space by inventing

fictitious phase-space variables introduced in this paper.

A couple of extensions of the present work are possible in

the near future. Currently we are working on presenting our

1.5 PN action-angle-based solution in a more concrete and

consolidated form, as well as re-presenting the solution

given in Ref. [34] with 1PN terms included that were

ignored in the original work. We have developed a public

Mathematica package that implements these two solutions

[22], as well as the one from numerical integration. This will

prepare a solid base for pushing our action-angle-based

solution to 2PN.

Since the integrable nature (existence of action-angle

variables) has already been shown in Ref. [16], constructing

the 2PN action-angle variables (via canonical perturbation

theory) and an action-angle based solution should be the

next natural line of work. Our group has already initiated

the efforts in that direction. With the motivation behind

these action-angle variables study of the BBH systems being

having closed-form solution to the system, it would be an

interesting challenge to incorporate the radiation-reaction

effects at 2.5PN into the to-be-constructed 2PN action-angle

based solution. There is also hope that the action-angle

variables at 1.5PN can be used to re-present the effective

one-body (EOB) approach to the spinning binary of

Ref. [21] (via a mapping of action variables between the

one-body and the two-body pictures) as was originally done

for nonspinning binaries in Ref. [35]. Also, it would be

interesting to try to compare our action-angle and frequency

results in the limit of extreme mass-ratios with similar work

on Kerr extreme mass-ratio inspirals (EMRIs) [36] in some

selected EMRI parameter space region where PN approxi-

mation is also valid. Comparison is also possible with the

recently derived solution of EMRIs with spinning secon-

daries [37,38]. Another line of effort could be the task of

building gravitational waveforms using the BBH solution

presented in this paper; Ref. [14] may serve as one of

the guides.

Lastly, there a possibility of a mathematically oriented

study of our novel method of introducing the unmeasur-

able, fictitious variables to compute the fifth action. A few

pertinent questions along this line could be (1) Is there a

way to compute the fifth action without introducing the

fictitious variables? (2) Are there other situations (with

other topologically nontrivial symplectic manifolds) where

an otherwise intractable action computation can be made

possible using this new method? (3) What is the deeper

geometrical reason that makes this method work?
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APPENDIX A: EVALUATING THE FLOW

AMOUNTS Δλ’S

In this appendix, we will rely heavily on the methods of

integration first presented in Ref. [15], which integrated the

evolution equations for flow under H, with the 1PN

Hamiltonian terms omitted. We first need to set up some

vector bases before we can integrate the equations of

motion. Figure 5 below displays two sets of bases. The

one in which the components of a vector will be assumed to

be written in this paper is the inertial triad ðijkÞ, unless
stated otherwise. Since derivatives of components of

vectors depend on the basis, we mention here that this

ðijkÞ triad is also the frame in which all the component

ACTION-ANGLE VARIABLES OF A BINARY BLACK HOLE … PHYS. REV. D 107, 103040 (2023)

103040-13



derivatives of any general vector will be assumed to be

taken, unless stated otherwise.
9

1. Evaluating ΔλSeff·L

The evaluation of ΔλSeff ·L can happen only when we can

compute the mutual angles between L⃗; S⃗1 and S⃗2 as a

function of the flow parameter under the flow of Seff · L.
Therefore, most of Appendix A 1 deals with how to do this

calculation and only toward the end we arrive at the

expression of ΔλSeff ·L.

Under the flow of Seff · L, a generic quantity g evolves as
dg=dλ ¼ fg; Seff · Lg which implies the three evolution

equations for the dot products between the three angular

momenta under the flow of Seff · L,

1

σ2

dðL⃗ · S⃗1Þ
dλ

¼ −
1

σ1

dðL⃗ · S⃗2Þ
dλ

¼ 1

ðσ1 − σ2Þ
dðS⃗1 · S⃗2Þ

dλ
¼ L⃗ · ðS⃗1 × S⃗2Þ; ðA1Þ

which means that we can easily construct three constants of

motion (dependent on the five mutually commuting con-

stants as introduced before). These are the differences

between the three quantities

(
L⃗ · S⃗1

σ2
;−

L⃗ · S⃗2

σ1
;
S⃗1 · S⃗2

σ1 − σ2

)
; ðA2Þ

whose λ derivatives all agree, the triple product

L⃗ · ðS⃗1 × S⃗2Þ. Namely, these constants of motion are

Δ1 ¼
S⃗1 · S⃗2

σ1 − σ2
−
L⃗ · S⃗1

σ2

¼ 1

σ1 − σ2

�
1

2
ðJ2 − L2 − S21 − S22Þ −

L⃗ · S⃗eff

σ2

	
; ðA3Þ

Δ2 ¼
S⃗1 · S⃗2

σ1 − σ2
þ L⃗ · S⃗2

σ1

¼ 1

σ1 − σ2

�
1

2
ðJ2 − L2 − S21 − S22Þ −

L⃗ · S⃗eff

σ1

	
; ðA4Þ

Δ21 ¼
L⃗ · S⃗1

σ2
þ L⃗ · S⃗2

σ1

¼ L⃗ · S⃗eff

σ1σ2
: ðA5Þ

Stated differently, all this means that the three mutual angles

between L⃗, S⃗1, and S⃗2 satisfy linear relationships. With the

understanding that hatted letters denote unit vectors, if we

define the mutual angles as cos κ1 ≡ L̂ · Ŝ1, cos κ2 ≡ L̂ · Ŝ2,

and cos γ ≡ Ŝ1 · Ŝ2, their relations are

cos γ ¼ Σ1 þ
L

S2

σ1 − σ2

σ2
cos κ1 ðA6Þ

cos κ2 ¼ Σ2 −
σ1S1

σ2S2
cos κ1; ðA7Þ

where

Σ1¼
ðσ1−σ2ÞΔ1

S1S2
¼σ2ðJ2−L2−S21−S22Þ−2Seff ·L

2σ2S1S2
; ðA8Þ

Σ2 ¼
Seff · L

σ2LS2
¼ Δ21σ1

LS2
: ðA9Þ

We will integrate the solution for

f ≡
S⃗1 · S⃗2

σ1 − σ2
¼ S1S2 cos γ

σ1 − σ2
; ðA10Þ

df

dλ
¼ L⃗ · ðS⃗1 × S⃗2Þ; ðA11Þ

which is the most symmetrical of the three dot products

given above. Thus if we have a solution for fðλÞ, we

automatically have solutions for the three dot products,

S⃗1 · S⃗2 ¼ ðσ1 − σ2Þf; ðA12Þ

L⃗ · S⃗1 ¼ σ2ðf − Δ1Þ; ðA13Þ

L⃗ · S⃗2 ¼ −σ1ðf − Δ2Þ: ðA14Þ

The triple product on the rhs of Eq. (A11) is the signed

volume of the parallelepiped with ordered sides L⃗; S⃗1; S⃗2.

In general, for a parallelepiped with sides A⃗; B⃗; C⃗, and dot

products

A⃗ · B⃗ ¼ AB cos γ0; ðA15Þ

A⃗ · C⃗ ¼ AC cos β0; ðA16Þ

B⃗ · C⃗ ¼ BC cos α0; ðA17Þ

a standard result from analytical geometry is that the signed

volume of this parallelepiped can be written as

9
While the time derivative of a vector is a good geometric

object, the time derivatives of basis components are not; see Ch. 4
of Ref. [17].
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V ¼ A⃗ · ðB⃗ × C⃗Þ ¼ �ABC

h
1þ 2ðcos α0Þðcos β0Þðcos γ0Þ

− cos2α0 − cos2β0 − cos2γ0
i
1=2

; ðA18Þ

where the sign comes from the handedness of the ðA⃗; B⃗; C⃗Þ
triad. The radicand is always non-negative. As above in

Eqs. (A12)–(A14), we can rewrite all angles in terms of f.
We can then use this volume equation to express the

evolution for f as

df

dλ
¼ �

ffiffiffiffiffiffiffiffiffiffi
PðfÞ

p
; ðA19Þ

where the cubic PðfÞ ≥ 0 and is given by

PðfÞ ¼ L2S21S
2
2 þ 2ðL⃗ · S⃗1ÞðL⃗ · S⃗2ÞðS⃗1 · S⃗2Þ

− L2ðS⃗1 · S⃗2Þ2 − S21ðL⃗ · S⃗2Þ2 − S22ðL⃗ · S⃗1Þ2 ðA20Þ

¼ L2S21S
2
2 − 2σ1σ2ðσ1 − σ2Þfðf − Δ1Þðf − Δ2Þ

− L2ðσ1 − σ2Þ2f2 − S22σ
2
2ðf − Δ1Þ2 − S21σ

2
1ðf − Δ2Þ2:

ðA21Þ

This is a general cubic, which we will write as

PðfÞ ¼ a3f
3 þ a2f

2 þ a1f þ a0; ðA22Þ

with the coefficients

a3 ¼ 2σ1σ2ðσ2 − σ1Þ; ðA23aÞ

a2 ¼ 2ðΔ1 þ Δ2Þðσ1 − σ2Þσ1σ2 − L2ðσ1 − σ2Þ2

− σ21S
2
1 − σ22S

2
2; ðA23bÞ

a1 ¼ 2½σ21S21Δ2 þ σ22S
2
2Δ1 þ σ1σ2Δ1Δ2ðσ2 − σ1Þ�; ðA23cÞ

a0 ¼ L2S21S
2
2 − σ21S

2
1Δ

2
2 − σ22S

2
2Δ

2
1: ðA23dÞ

It is important here to note the sign of a3,

sgnða3Þ ¼

8
><
>:

þ1; m1 > m2;

0; m1 ¼ m2;

−1; m1 < m2:

ðA24Þ

The fact that the cubic becomes undefined when m1 ¼ m2

is the reason we treated the equal-mass case separately

toward the end of Sec. IV.

Now we rewrite the cubic in terms of its roots,

PðfÞ ¼ Aðf − f1Þðf − f2Þðf − f3Þ; ðA25Þ

where A ¼ a3 is the leading term, and when all three roots

are real, we assume the ordering f1 < f2 < f3. In other

words, we assume the roots to be real and simple.

For completeness, we state the roots in the trigonometric

form. The cubic can be depressed by defining g≡ f þ
a2=ð3a3Þ in terms of which P becomes P ¼ a3ðg3 þ pgþ
qÞ with the coefficients

p¼ 3a1a3 −a22
3a23

; q¼ 2a32 − 9a1a2a3þ 27a0a
2
3

27a33
: ðA26Þ

When there are three real solutions, p < 0, and the argu-

ment to the arccos below will be in ½−1;þ1�. In terms of

these depressed coefficients, the trigonometric solutions for

the k ¼ 1, 2, 3 roots are

fk ¼ −
a2

3a3
þ 2

ffiffiffiffiffiffiffi
−p

3

r
cos

"
1

3
arccos

 
3q

2p

ffiffiffiffiffiffi
−3

p

s !
þ 2πk

3

#
:

ðA27Þ

This form yields the desired ordering f1 < f2 < f3.

Whenever any two of the vectors fL⃗; S⃗1; S⃗2g are col-

linear, the triple product on the rhs of Eq. (A11) vanishes. A

less drastic degeneracy is if two roots coincide. Here we

will restrict ourselves to the case of three simple roots. At

the end of this subsection, we will argue that the cubic has

three real roots for the cases of physical interest. Since

PðfÞ > 0, we have

(
f1 ≤ f ≤ f2; m1 > m2;

f2 ≤ f ≤ f3; m1 < m2:
ðA28Þ

That is, f will lie between the two roots where PðfÞ > 0.

Without loss of generality wewill takem1 > m2 and handle

only this case.

Since PðfÞ is cubic, the ODE df=dλ ¼ �
ffiffiffiffiffiffiffiffiffiffi
PðfÞ

p
can be

integrated analytically in terms of elliptic integrals (and their

inverses, elliptic functions). The behavior is typical: f
oscillates between the two turning points f1, f2 (when

m1 > m2). We cannot integrate through the turning point

using the first-order form df=dλ (it is not Lipschitz

continuous there), but by taking a derivative of Eq. (A19)

to find d2f=dλ2, we can see that the motion is regular at each

turning point. At both turning points, the � sign [the

handedness of the triad ðL⃗; S⃗1; S⃗2Þ] must flip, so that f
oscillates between the two turning points.

Continuing further with Eq. (A19), we write

dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf − f1Þðf − f2Þðf − f3Þ

p ¼
ffiffiffiffi
A

p
dλ: ðA29Þ

Reparametrize this integral via

f ¼ f1 þ ðf2 − f1Þsin2ϕp ðA30Þ

df ¼ 2ðf2 − f1Þ sinϕp cosϕpdϕp: ðA31Þ
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We define ϕp so it increases monotonically with λ as

2dϕpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf3 − f1Þ − ðf2 − f1Þsin2ϕp

q ¼
ffiffiffiffi
A

p
dλ: ðA32Þ

Now factor out ðf3 − f1Þ from the radicand in the

denominator to give

dϕpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2ϕp

q ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðf3 − f1Þ

p
dλ; ðA33Þ

where we have defined the elliptic modulus

k≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 − f1

f3 − f1

s
: ðA34Þ

Note that 0 < k < 1, because of the ordering of the roots.

Equation (A33) can be integrated to give

u − u0 ≡ Fðϕp; kÞ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðf3 − f1Þ

p
ðλ − λ0Þ; ðA35Þ

where Fðϕp; kÞ is the incomplete elliptic integral of the

first kind defined as [39–42]

Fðϕ; kÞ≡
Z

ϕ

0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2θ

p : ðA36Þ

In Eq. (A35), λ0 is the initial value of the flow parameter and

u0 ≡ uðλ0Þ ¼ F

 
arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðλ0Þ − f1

f2 − f1

s
; k

!
: ðA37Þ

We can now rewrite the parametrization in terms of sn and

am, the Jacobi sine and amplitude functions [39],

snðu; kÞ≡ sinðamðu; kÞÞ≡ sinϕp: ðA38Þ

This turns our parametrization into

fðλÞ ¼ f1 þ ðf2 − f1Þsn2ðuðλÞ; kÞ: ðA39Þ

The solution for f is thus given by Eq. (A39) accompanied

by Eqs. (A35) and (A37).

It now remains to generalize the solution for f when f at

λ ¼ λ0 may be in any arbitrary initial state (such as

df=dλ < 0 or > 0) and it can oscillate between f1 and

f2 any arbitrary number of times during the integration

interval. In this most general scenario, the solution is still

given by Eq. (A39), accompanied by Eq. (A35) and a

variant of (A37), which reads

u0 ≡ uðλ0Þ ¼ F

 
arcsin�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðλ0Þ − f1

f2 − f1

s
; k

!
; ðA40Þ

where we use the þ sign if ðdf=dλÞjλ0 > 0, and vice versa.

From this solution for fðλÞ, we recover solutions for the
three dot products S⃗1 · S⃗2, L⃗ · S⃗1, and L⃗ · S⃗2, by using

Eqs. (A12)–(A14). We also immediately get the λ-period

of the precession. One precession cycle occurs when ϕp

goes from 0 to π, or when f starts from f1, goes to f2 and
then returns back to f1 [see parametrization in Eq. (A30)].

Integrating on this interval via Eq. (A35) gives the

equation for the λ-period of precession, which we call

Λ, in terms of the complete elliptic integral of the first kind

KðkÞ≡ Fðπ=2; kÞ ¼ Fðπ; kÞ=2,

Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðf3 − f1Þ

p
¼ 2Fðπ; kÞ ¼ 4KðkÞ: ðA41Þ

Recall that our goal is to close a loop in the EPS by

successively flowing under Seff · L; J
2; L2; S21, and S22. A

necessary condition for the phase-space loop to close is that

the mutual angles between L⃗; S⃗1, and S⃗2 recur at the end of

the flow. Since the flows under J2; L2; S21, and S22 do not

change these mutual angles, we choose to flow under Seff ·
L by exactly the precession period,

ΔλSeff ·L ¼ Λ: ðA42Þ

This flow under Seff · L is pictorially represented by the red

PQ curve in Fig. 4.

Now we try to address the issue of the nature of roots of

the cubic PðfÞ of Eq. (A22). It is predicated on the nature

of the cubic discriminantD, withD > 0 implying three real

roots, D < 0 implying one real and two distinct complex

roots, andD ¼ 0 implying repeated roots. The discriminant

of the exact cubic PðfÞ is too complicated for us to

investigate its sign analytically. We rather choose to

investigate the sign of its leading order PN contribution.

It is in the same spirit as the calculation of the leading

PN order contribution of J 5 in Sec. V. We write D in terms

of L⃗, S⃗1, and S⃗2 while attaching a formal power counting

parameter ϵ to both S⃗1 and S⃗2, for every factor of ϵ signifies
an extra 0.5PN order. Then series expand D in ϵ and keep

only the leading order term, which comes out to be

D ∼ 4L4

h
L2S21 −

�
L⃗ · S⃗1

�
2
ih
L2S22 −

�
L⃗ · S⃗2

�
2
i

× ðσ1 − σ2Þ6ϵ4 þOðϵ5Þ > 0; ðA43Þ

and this implies three real roots. If both spins are aligned or

antialigned with L⃗, we will have repeated roots, and the

spins will remain aligned or antialigned with L⃗ as the

system evolves under the flows of Seff · L or H. Aside from
this special case, the above discussion suggests that the
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D < 0 case of only one real root is disallowed. This is also

necessary on physical grounds, as there must be two

turning points for the mutual angle variable f, otherwise
f would be unbounded.

2. Evaluating ΔλJ2

After flowing under Seff · L by parameter ΔλSeff ·L, the

mutual angles between L⃗; S⃗1, and S⃗2 have recurred, but L⃗,

S⃗1, and S⃗2 have not. We now plan to flow under J2 by ΔλJ2

so that L⃗ is restored; this restoration is a necessary

condition for closing the phase space loop. To find the

required amount of flow under J2 so that L⃗ is restored, we

need to find the final state of L⃗ after flowing under Seff · L
by ΔλSeff ·L. Instead of working with Cartesian components,

we find it more convenient to work with the polar and

azimuthal angles of L⃗ in a new noninertial frame that we

now introduce.

At this point we introduce a noninertial frame with

ði0j0k0Þ axes whose basis vectors are unit vectors along

J⃗ × L⃗; L⃗ × ðJ⃗ × L⃗Þ, and L⃗ respectively, as depicted picto-

rially in Fig. 5. Without loss of generality, we choose the z-

axis of the ðijkÞ frame to point along the J⃗ vector. Now

there are two angles to find: the polar θJL, where

cos θJL ¼ J⃗ · L⃗=ðJLÞ, and an azimuthal ϕL.

Since we have already solved for the angles between

L⃗; S⃗1, and S⃗2 in Appendix A 1, we have the angle θJL from

J⃗ · L⃗ ¼ JL cos θJL ¼ L2 þ S⃗1 · L⃗þ S⃗2 · L⃗: ðA44Þ

This shows that θJL has recurred after the Seff · L flow,

because all the mutual angles between L⃗; S⃗1, and S⃗2 have.
So, what remains to be tackled is the azimuthal angle ϕL.

The inertial ðijkÞ components of L⃗ are

L⃗ ¼ Lðsin θJL cosϕL; sin θJL sinϕL; cos θJLÞ; ðA45Þ

and therefore it follows that

dL⃗

dλ
¼ L

�
cos θJL cosϕL

dθJL

dλ
− sin θJL sinϕL

dϕL

dλ
;

cos θJL sinϕL

dθJL

dλ
þ sin θJL cosϕL

dϕL

dλ
;

− sin θJL
dθJL

dλ

�
: ðA46Þ

As mentioned in the beginning of Appendix A, all vector

derivatives are assumed to be taken in the inertial ðijkÞ
frame, unless stated otherwise. With the aid of the instanta-

neous azimuthal direction vector given by

ϕ̂ ¼ J⃗ × L⃗

jJ⃗ × L⃗j
¼ J⃗ × L⃗

JL sin θJL
¼ ẑ × L⃗

L sin θJL
; ðA47Þ

we can extract dϕL=dλ via an elementary result involving

the dot product ϕ̂ · ðdL⃗=dλÞ

ϕ̂ ·
dL⃗

dλ
¼ L sin θJL

dϕL

dλ
: ðA48Þ

This leads to

dϕL

dλ
¼ ϕ̂ · ðdL⃗=dλÞ

L sin θJL
¼ J⃗ × L⃗

JL2sin2θJL
·
dL⃗

dλ
: ðA49Þ

FIG. 4. Schematic depiction of closing the loop in the EPS over

which the fifth action integral is computed. This is done by

flowing under Seff · L (red), J2 (green), L2 (blue), S21 (black), and

S22 (orange). The curve in cyan is the one found by flowing under

J 5 in the EPS. The corresponding π projections of the solid

curves in the EPS is shown by broken curves in the SPS with the

same color. The segments ST and TP are vertical because only

the fictitious variables change along these.

FIG. 5. The noninertial ði0j0k0Þ triad (centered around

L̂≡ L⃗=L) is displayed along with the inertial ðijkÞ triad (centered
around Ĵ ≡ J⃗=J).
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Now using dL⃗=dλ ¼ −dS⃗1=dλ − dS⃗2=dλ, and inserting the precession equations for the two spins,

dϕL

dλ
¼ 1

JL2sin2θJL
ðJ⃗ × L⃗Þ · ðS⃗eff × L⃗Þ ¼ J

J2L2 − ðJ⃗ · L⃗Þ2
h
ðJ⃗ · S⃗effÞL2 − ðJ⃗ · L⃗ÞðL⃗ · S⃗effÞ

i
ðA50Þ

¼
J
h
ðσ1S21 þ σ2S

2
2 þ ðσ1 þ σ2ÞS⃗1 · S⃗2ÞL2 − ðS⃗1 · L⃗þ S⃗2 · L⃗ÞðL⃗ · S⃗effÞ

i

J2L2 − ðL2 þ S⃗1 · L⃗þ S⃗2 · L⃗Þ2
: ðA51Þ

We see that everything on the rhs is given in terms of constants of motion (J; L; L⃗ · S⃗eff) and the inner products between

the three angular momenta (which can be found from fðλÞ in the previous section). Put everything in terms of f using

Eqs. (A12)–(A14) and separate into partial fractions,

dϕL

dλ
¼

J
h
ðσ1S21 þ σ2S

2
2 þ ðσ21 − σ22ÞfÞL2 − ðσ2ðf − Δ1Þ − σ1ðf − Δ2ÞÞðL⃗ · S⃗effÞ

i

J2L2 − ðL2 þ σ2ðf − Δ1Þ − σ1ðf − Δ2ÞÞ2
ðA52Þ

¼ B1

D1 − ðσ1 − σ2Þf
þ B2

D2 − ðσ1 − σ2Þf
; ðA53Þ

where we have defined

B1 ¼
1

2

h
ðL⃗ · S⃗eff þ L2ðσ1 þ σ2ÞÞðJ þ LÞ þ Lðσ1S21 þ σ2S

2
2 þ ðσ1 þ σ2ÞðΔ2σ1 − Δ1σ2ÞÞ

i
; ðA54Þ

B2 ¼
1

2

h
ðL⃗ · S⃗eff þ L2ðσ1 þ σ2ÞÞðJ − LÞ − Lðσ1S21 þ σ2S

2
2 þ ðσ1 þ σ2ÞðΔ2σ1 − Δ1σ2ÞÞ

i
; ðA55Þ

D1 ¼ LðLþ JÞ þ Δ2σ1 − Δ1σ2; ðA56Þ

D2 ¼ LðL − JÞ þ Δ2σ1 − Δ1σ2: ðA57Þ

So we need to be able to perform the two integrals (with i ¼ 1, 2)

Ii ≡

Z
Bi

Di − ðσ1 − σ2Þf
dλ ¼

Z
Bi

Di − ðσ1 − σ2Þf
dλ

df
df ¼

Z �Bi

Di − ðσ1 − σ2Þf
dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Aðf − f1Þðf − f2Þðf − f3Þ
p ; ðA58Þ

where the last equality is due to Eq. (A19). With these integrals, we will have

Z
dϕL

dλ
dλ ¼ ϕLðfÞ − ϕL;0 ¼ I1 þ I2: ðA59Þ

The integrals Ii are another type of incomplete elliptic integral (defined below). Using the parametrization of Eqs. (A30) and

(A31), Ii becomes

IiðλÞ ¼
Z

ϕp Bi

Di − ðσ1 − σ2Þðf1 þ ðf2 − f1Þsin2ϕpÞ
2dϕpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Aðf3 − f1Þð1 − k2sin2ϕpÞ
q ðA60Þ

¼ 2Biffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðf3 − f1Þ

p 1

Di − f1ðσ1 − σ2Þ

Z
ϕp 1

1 − α2i sin
2ϕp

dϕpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2ϕp

q ; ðA61Þ

where we have defined
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α2i ≡
ðσ1 − σ2Þðf2 − f1Þ
Di − f1ðσ1 − σ2Þ

: ðA62Þ

Thus we can identify the Ii’s in terms of the incomplete

elliptic integral of the third kind, which is defined as [39]

Πða; b; cÞ≡
Z

b

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2sin2θ

p dθ

1 − asin2θ
: ðA63Þ

Ii thus becomes

IiðλÞ ¼
2Biffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Aðf3 − f1Þ
p Πðα2i ; amðuðλÞ; kÞ; kÞ

Di − f1ðσ1 − σ2Þ
; ðA64Þ

and we get the solution for ϕLðϕpÞ

ϕLðλÞ − ϕL;0 ¼
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Aðf3 − f1Þ
p

�
B1Πðα21;ϕp; kÞ

D1 − f1ðσ1 − σ2Þ

þ B2Πðα22;ϕp; kÞ
D2 − f1ðσ1 − σ2Þ

	
: ðA65Þ

Here ϕL;0 is an integration constant to be determined by

inserting λ ¼ λ0 and ϕL ¼ ϕLðλ0Þ into the Eq. (A65).

To close the loop, we need to know the angle ΔϕL that

ϕL goes through under one period of the precession cycle

(when flowing under L⃗ · S⃗eff), that is, when ϕp advances by

π. This is given in terms of the complete elliptic integral of

the third kind, Πðα2; kÞ≡ Πðα2; π=2; kÞ yielding

ΔϕL ≡ ϕLðλ0 þ ΛÞ − ϕLðλ0Þ

¼ 4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðf3 − f1Þ

p
�

B1Πðα21; kÞ
D1 − f1ðσ1 − σ2Þ

þ B2Πðα22; kÞ
D2 − f1ðσ1 − σ2Þ

	
; ðA66Þ

where we have used the fact that Πðα2; π; kÞ ¼ 2Πðα2; kÞ.
To negate this angular offset caused by flowing under

Seff · L and thereby closing the loop, we need to flow under

J2 by

ΔλJ2 ¼ −
ΔϕL

2J
: ðA67Þ

Note that this flow does not alter the mutual angles between

L⃗; S⃗1, and S⃗2, as is necessary to close the loop in the

phase space. Now that the mutual angles within the triad

ðL⃗; S⃗1; S⃗2Þ have recurred and the full L⃗ vector has recurred,

the concern is if the spin vectors have recurred or not. The

spin vectors are constrained not only by their mutual angles

with L⃗, but also J⃗. Their angles with J⃗ are algebraically

related to the mutual angles that we have previously dealt

with, e.g., J⃗ · S⃗2 ¼ L⃗ · S⃗1 þ S⃗1 · S⃗2 þ S22.

After the respective flows under Seff · L and J2 by

amounts indicated in Eqs. (A42) and (A67), all of these

angle cosines between L⃗; S⃗1, and S⃗2 have recurred, which

narrows things down to two solutions: the original

configuration for ðL⃗; S⃗1; S⃗2Þ, and its reflection across

the J − L plane. We can rule out the reflected solution

with the following observation. The original configura-

tion and its reflection have opposite signs for the signed

volume L⃗ · ðS⃗1 × S⃗2Þ, and thus opposite signs for the

radical
ffiffiffiffiffiffiffiffiffiffi
PðfÞ

p
in Eq. (A19). Now once we return back to

the same point on the f axis after flowing under Seff · L,

the handedness of the ðL⃗; S⃗1; S⃗2Þ triad is restored. This is

because the handedness must have flipped twice: first

when f touched f1 and second when it touched f2.
10

Therefore, after the flows by Seff · L and J2 by the

amounts specified in Eqs. (A42) and (A67), each of the

three vectors ðL⃗; S⃗1; S⃗2Þ have recurred. This second flow

under J2 is pictorially represented by the green QR curve

in Fig. 4.

3. Evaluating ΔλL2

After flowing under Seff · L and J2, all the three angular

momenta L⃗; S⃗1, and S⃗2 have recurred, but the orbital

vectors (R⃗, P⃗) and fictitious vectors have not. We will

now restore R⃗ and P⃗ by flowing under L2 by ΔλL2, to be

determined in this section.

Now, R⃗ has to be in the i0j0 plane because R⃗⊥L⃗.

Denote by ϕ the angle made by R⃗ with the i0 axis. The
key point is that after successively flowing under Seff · L

by λSeff ·L, J
2 by λJ2, and L2 by a certain amount λL2 (to

be calculated), if ϕ is restored, then so are R⃗ and P⃗.

This is because under these three flows, R, P, and R⃗ · P⃗
do not change. Hence the restoration of ϕ after the

above three flows by the stated amounts restores both R⃗

and P⃗.
Our strategy is to compute ϕ under the flow of Seff · L.

The flow under J2 does not change the angle ϕ, since J2

rigidly rotates all vectors together. And in the end, we will

undo the change to ϕ (caused by the Seff · L flow) by

flowing under L2.

Under the flow of Seff · L, we have

_
R⃗ ¼ fR⃗; Seff · Lg ¼ S⃗eff × R⃗: ðA68Þ

10
There is also a complex-analytic interpretation. The functionffiffiffiffiffiffiffiffiffiffi

PðfÞ
p

is an analytic function on a Riemann surface of two

sheets. The different signs of L⃗ · ðS⃗1 × S⃗2Þ correspond to being
on the two different sheets. The solution is periodic after
completing a loop around both branch points, ending on the
same sheet where we started.
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To write the components of this equation in the ði0j0k0Þ
frame, we need the components of all the individual vectors

involved in the same frame which are given by

R⃗ ¼

2
64
R cosϕ

R sinϕ

0

3
75
n

; L⃗ ¼

2
64
0

0

L

3
75
n

;

J⃗ ¼

2
64

0

J sin θJL

J cos θJL

3
75
n

; S⃗1 ¼ S1

2
64
sin κ1 cos ξ1

sin κ1 sin ξ1

cos κ1

3
75
n

;

S⃗2 ¼ S2

2
64
sin κ2 cos ξ2

sin κ2 sin ξ2

cos κ2

3
75
n

; ðA69Þ

where ϕ is the azimuthal angle of R⃗ in the ði0j0k0Þ frame.

Here the letter n beside these columns indicates that the

components are in the ði0j0k0Þ frame, and ξi’s are the

azimuthal angles of S⃗i in this ði0j0k0Þ frame.

The Euler matrix Λ̃, which when multiplied with the

column consisting of a vector’s components in the inertial

frame gives its components in the ði0j0k0Þ frame is

Λ̃¼

0
B@

−sinϕL cosϕL 0

−cosϕL cosθJL −sinϕL cosθJL sinθJL

cosϕL sinθJL sinϕL sinθJL cosθJL

1
CA: ðA70Þ

Now we take the R⃗ in Eq. (A69), evaluate its components in

the inertial frame using Λ̃
−1. We then differentiate each of

these components with respect to λ (the flow parameter

under Seff · L) and transform these components back to the

ði0j0k0Þ frame using Λ̃, thus finally yielding the components

(in the noninertial frame) of the derivative of R⃗. The result
comes out to be (keeping in mind that dR=dλ ¼ 0)

_
R⃗ ¼

2
664

−R sinϕð _ϕL cos θJL þ _ϕÞ
R cosϕð _ϕL cos θJL þ _ϕÞ

Rð− _ϕL sin θJL cosϕþ _θJL sinϕÞ

3
775
n

: ðA71Þ

Plugging Eqs. (A69) and (A71) in Eq. (A68) and using

the first two components of the resulting matrix equation

gives us

dϕ

dλ
¼ σ1S1 cos κ1 þ σ2S2 cos κ2 − cos θJL

dϕL

dλ
ðA72Þ

Note that what we need for Eq. (A68) is the noninertial-

frame components of the frame-independent vector
_
R⃗; not

to be confused with the time derivatives of the noninertial-

frame components of R⃗.
We digress a bit to write J⃗ ¼ L⃗þ S⃗1 þ S⃗2 in component

form in the ði0j0k0Þ frame using Eqs. (A69). Only the third

component is of interest to us, which reads

J cos θJL ¼ Lþ S1 cos κ1 þ S2 cos κ2: ðA73Þ

We use this equation for θJL, and Eqs. (A53) for dϕL=dλ, to
write dϕ=dλ in terms of κ1, κ2, and γ. Finally using

Eqs. (A12)–(A14) to express everything in terms of f,
we get

dϕ

dλ
¼ B1

D1 − ðσ1 − σ2Þf
−

B2

D2 − ðσ1 − σ2Þf

−
Seff · Lþ ðΔ1 − Δ2Þσ1σ2 þ L2ðσ1 þ σ2Þ

L
: ðA74Þ

This is the equivalent of Eq. (A53) for dϕL=dλ, and

therefore its solution can be found in a totally parallel

way to what led us to ϕLðλÞ in Eq. (A65). This gives us

ϕðλÞ − ϕ0 ¼
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Aðf3 − f1Þ
p

�
B1Πðα21;ϕp; kÞ

D1 − f1ðσ1 − σ2Þ
−

B2Πðα22;ϕp; kÞ
D2 − f1ðσ1 − σ2Þ

	

− ðSeff · Lþ ðΔ1 − Δ2Þσ1σ2 þ L2ðσ1 þ σ2ÞÞ
ðλ − λ0Þ

L
; ðA75Þ

where again the integration constant ϕ0 is determined by inserting λ ¼ λ0 and ϕ ¼ ϕðλ0Þ into this equation.

The angle Δϕ that ϕ goes through under one period of the precession cycle when flowing under L⃗ · S⃗eff, is given in a

similar manner as we arrived at Eq. (A66). We get

Δϕ≡ ϕðλ0 þ ΛÞ − ϕðλ0Þ ¼
4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Aðf3 − f1Þ
p

�
B1Πðα21; kÞ

D1 − f1ðσ1 − σ2Þ
−

B2Πðα22; kÞ
D2 − f1ðσ1 − σ2Þ

	

− ðSeff · Lþ ðΔ1 − Δ2Þσ1σ2 þ L2ðσ1 þ σ2ÞÞ
Λ

L
: ðA76Þ
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To negate this angular offset caused by flowing under

Seff · L, we need to flow under L2 by

ΔλL2 ¼ −
Δϕ

2L
: ðA77Þ

Note that this flow does not change any of the three angular

momenta L⃗; S⃗1, or S⃗2, which is necessary for closing the

loop in the phase space. This third flow under L2 is

pictorially represented by the blue RS curve in Fig. 4.

4. Evaluating ΔλS2
1
and ΔλS2

2

Once we have made sure that R⃗; P⃗; S⃗1; S⃗2 (and hence also

L⃗) have been restored by successively flowing under

Seff · L; J
2, and L2 by ΔλSeff ·L;ΔλJ2, and ΔλL2 respectively,

now is the time to restore the fictitious vectors R⃗1=2 and

P⃗1=2. The strategy and calculations are analogous to the

ones for R⃗ and P⃗, so we will not explicate them in full

detail. We will show the basic road map and the final

results.

For the purposes of these calculations, the relevant figure

is Fig. 6, which shows a second noninertial frame ði00j00k00Þ
adapted to S⃗1. Its axes point along J⃗ × S⃗1; S⃗1 × ðJ⃗ × S⃗1Þ
and S⃗1, respectively. We also use this figure to introduce the

definitions of the azimuthal angle ϕS1
and polar angle θJS1

pictorially. Also, just like ϕ was the angle between R⃗ and

the i0 axis in Appendix A 3, we define ϕ1 to be the angle

between R⃗1 and the i00 axis, with the understanding that R⃗1

lies in the i00j00 plane.
As far as the fictitious variables of the first black hole

are concerned, just like in Appendices A 2 and A 3, all

we have to worry about is to restore the change in ϕ1

which the Seff · L flow (by λSeff ·L) brings about, for doing

so would imply that both R⃗1 and P⃗1 have been restored.

The justifications are analogous to those presented in

Appendices A 2 and A 3 while dealing with the orbital

sector. Now we proceed to compute the change in ϕ1

brought about by the Seff · L flow.

We denote components in the (i00j00k00) frame by using the

subscript n2. In this frame we have

J⃗ ¼

2
664

0

J sin θJS1

J cos θJS1

3
775
n2

; S⃗1 ¼

2
664

0

0

S1

3
775
n2

: ðA78Þ

We also have

L⃗¼L

2
64
sinκ1 cosξ3

sinκ1 sinξ3

cosκ1

3
75
n2

; S⃗2¼ S2

2
64
sinγ cosξ4

sinγ sinξ4

cosγ

3
75
n2

: ðA79Þ

Here ξ3 and ξ4 are the azimuthal angles of L⃗ and S⃗2,
respectively, in the ði00j00k00Þ frame. We now write the k00

component of J⃗ ≡ L⃗þ S⃗1 þ S⃗2 as

J cos θJS1 ¼ S1 þ L cos κ1 þ S2 cos γ: ðA80Þ

The derivative of S⃗1 along the flow of Seff · L is

_
S⃗1 ≡

dS⃗1

dλ
¼
n
S⃗1; S⃗eff · L⃗

o
¼ σ1L⃗ × S⃗1: ðA81Þ

The analog of dϕ=dλ given in Eq. (A49) becomes

dϕS1

dλ
¼ J⃗ × S⃗1

JS21sin
2θJS1

·
dS⃗1

dλ
: ðA82Þ

Using Eq. (A81), we can arrive at the analog of dϕ=dλ as a
function of f [Eq. (A53)],

dϕS1

dλ
¼ Jσ2 þ

B1S1

D1S1 þ σ1f
þ B2S1

D2S1 þ σ1f
; ðA83Þ

where we have defined

B1S1 ¼
1

2
½−S1σ1ðL2 − JS1 þ S21 þ Δ2σ1Þ þ ðJ − S1Þ2S1σ2

− ðJ − 2S1ÞΔ1σ1σ2 þ ðJ − S1ÞΔ1σ
2
2�; ðA84Þ

B2S1 ¼
1

2
½S1σ1ðL2 þ JS1 þ S21 þ Δ2σ1Þ − ðJ þ S1Þ2S1σ2

− ðJ þ 2S1ÞΔ1σ1σ2 þ ðJ þ S1ÞΔ1σ
2
2�; ðA85Þ

D1S1 ¼ ðS1 − JÞS1 − Δ1σ2; ðA86Þ

D2S1 ¼ ðS1 þ JÞS1 − Δ1σ2: ðA87Þ

FIG. 6. The second noninertial ði00j00k00Þ triad (centered around

Ŝ1 ≡ S⃗1=S1) is displayed along with the inertial ðijkÞ triad

(centered around Ĵ ≡ J⃗=J).
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Analogous to matrix equations for R⃗ and
_
R⃗ in Eqs. (A69)

and (A71), we can write R⃗1 in component form as

R⃗1 ¼

0
B@

R1 cosϕ1

R1 sinϕ1

0

1
CA

n2

; ðA88Þ

and its derivative as (keeping in mind that dR1=dλ ¼ 0

along the flow under Seff · L)

_
R⃗1 ¼

0
BB@

−R1 sinϕ1ð _ϕS1 cos θJS1 þ _ϕ1Þ
R1 cosϕ1ð _ϕS1

cos θJS1 þ _ϕ1Þ
R1ð− _ϕS1

sin θJS1 cosϕ1 þ _θJS1 sinϕ1Þ

1
CCA

n2

ðA89Þ

Also, along the flow under Seff · L, R⃗1 evolves as

_
R⃗1 ¼ σ1L⃗ × R⃗1: ðA90Þ

Using Eqs. (A79), (A88), and (A89) to express Eq. (A90) in

component form and either the first or the second compo-

nent of the equation when supplemented with Eqs. (A80)

and (A83) to eliminate cos θJS1 and dϕS1
=dλ gives us _ϕ1.

We again write the partial fraction form [analogous to

Eq. (A74)]

_ϕ1 ¼ S1ðσ2 − σ1Þ −
�

B1S1

D1S1 þ σ1f
−

B2S1

D2S1 þ σ1f

�
: ðA91Þ

We have also used Eqs. (A6), (A7), and (A10) to write the

cosines of κ1, κ2, and γ in terms of f.
Finally, in a way very similar to how Δϕ in Eq. (A76)

was found, we find the angle Δϕ1 that ϕ1 goes through

under one period of the precession cycle when flowing

under Seff · L. We get

Δϕ1 ¼
−4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Aðf3 − f1Þ
p

�
B1S1Πðα21S1; kÞ
D1S1 þ f1σ1

−
B2S1Πðα22S1; kÞ
D2S1 þ f1σ1

	

þ S1ðσ2 − σ1ÞΛ; ðA92Þ

where we have defined

α2iS1 ≡
−σ1ðf2 − f1Þ
DiS1 þ f1σ1

: ðA93Þ

To negate this angular offset brought about flowing under

Seff · L, we need to flow under S21 by

ΔλS2
1
¼ −

Δϕ1

2S1
; ðA94Þ

This fourth flow under S21 is pictorially represented by the

black ST curve in Fig. 4.

And finally, by performing similar calculations as above,

we can see that ΔλS2
2
(the amount we need to flow under S22)

is given by the following set of equations

ΔλS2
2
¼ −

Δϕ2

2S2
; ðA95Þ

Δϕ2 ¼
−4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Aðf3 − f1Þ
p

�
B1S2Πðα21S2; kÞ
D1S2 þ f1σ2

−
B2S2Πðα22S2; kÞ
D2S2 þ f1σ2

	

þ S2ðσ1 − σ2ÞΛ; ðA96Þ

B1S2 ¼
1

2
½S2σ2ðL2 − JS2 þ S22 − Δ1σ2Þ − ðJ − S2Þ2S2σ1

− ðJ − 2S2ÞΔ2σ1σ2 þ ðJ − S2ÞΔ2σ
2
1�; ðA97Þ

B2S2 ¼
1

2
½S2σ2ð−L2 − JS2 − S22 þ Δ1σ2Þ þ ðJ þ S2Þ2S2σ1

− ðJ þ 2S2ÞΔ2σ1σ2 þ ðJ þ S2ÞΔ2σ
2
1�; ðA98Þ

D1S2 ¼ ðJ − S2ÞS2 − Δ2σ1; ðA99Þ

D2S2 ¼ −ðJ þ S2ÞS2 − Δ2σ1; ðA100Þ

α2iS2 ≡
−σ2ðf2 − f1Þ
DiS2 þ f1σ2

: ðA101Þ

This final fifth flow under S22 is pictorially represented by

the orange TP curve in Fig. 4. Of course, this final set of

flows under S21 and S22 do not disturb the already restored

configurations of the other variables such as R⃗; P⃗; S⃗1, and

S⃗2. We mention that it is not recommended to try to arrive at

ΔλS2
2
from ΔλS2

1
by a mere label exchange 1 ↔ 2 (signify-

ing the exchange of the two black holes) because we have

already introduced asymmetry in these labels when we

assumed m1 > m2 in Appendix A 1.

Finally, although not required for the fifth action

computation, we mention as an aside that the result of

the integration of Eq. (A83) is

ϕS1ðλÞ − ϕS10 ¼
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Aðf3 − f1Þ
p

�
B1S1Πðα21S1;ϕp; kÞ

D1S1 þ f1σ1

þ B2S1Πðα22S1;ϕp; kÞ
D2S1 þ f1σ1

	
þ Jσ2ðλ − λ0Þ;

ðA102Þ

where again the integration constant ϕS10 is determined by

inserting λ ¼ λ0 and ϕS1 ¼ ϕS1ðλ0Þ into this equation.

APPENDIX B: PROOF THAT π
⋆
ðJ 5Þ

IS AN ACTION IN THE SPS

By construction, J 5 is an action variable in the EPS (as

per the loop-integral defintion), but we also need to show
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that its pushforward π⋆ðJ 5Þ is an action (as per the loop-

flow definition) in the SPS; see Sec. III for these two

definitions. The pushforward can be constructed since J 5

is fiberwise constant. To show that π⋆ðJ 5Þ is an action, we

need to show that (i) flowing under π⋆ðJ 5Þ forms a closed

loop, and (ii) this flow by parameter 2π takes us around the

loop exactly once.

Condition (i) can be shown to be satisfied automatically.

Since the loop-integral definition of action implies the loop-

flow definition, flowing under J 5 in the EPS forms a loop.

Call this loop γ (shown in solid cyan in Fig. 4). The image of

this loop πðγÞ (shown in dashed cyan in Fig. 4) is a loop in

the SPS. Meanwhile, because of the compatibility of the

PBs (see Sec. III C), the pushforward of the Hamiltonian

vector field π⋆ðX⃗J 5
Þ is the Hamiltonian vector field of the

pushforward, X⃗π⋆ðJ 5Þ ¼ π⋆ðX⃗J 5
Þ. Therefore flowing under

X⃗π⋆ðJ 5Þ forms a loop, namely the image πðγÞ.
The second part follows from homotopy equivalence. In

Fig. 4, let γ1 be the path PQRS in the EPS, which is not a

loop. However, its image πðγ1Þ (in dashed red-green-blue) is
a loop in the SPS. Recall from Appendix A that we

constructed γ1 using three successive flows (under Seff ·

L; J2 and L2) to bring the SPS coordinates back to their

starting values, thereby making exactly one loop in the SPS.

Let γ2 be the segment STP, which is vertical in the EPS (it is

contained in a single fiber); its image πðSTPÞ is a single

point. Their composition is γ3 ¼ γ2 · γ1, where · is compo-

sition of paths. Composing with the projection,

πðγ3Þ ¼ πðγ2 · γ1Þ ¼ πðγ2Þ · πðγ1Þ ¼ πðγ1Þ: ðB1Þ

Now, the Liouville-Arnold theorem is constructive, mean-

ing that when we find the action J 5 ¼
H
γ3
PidQ

i=ð2πÞ, it
generates a flow (γ) in the same homotopy class as the path

we integrated over (γ3). The two loops are homotopic, i.e.,

½γ� ¼ ½γ3�, where the notation ½γi� denotes the homotopy

class of a map γi. Since π is a continuous map, the two

images are also homotopic. Therefore we also have the

homotopy

½πðγÞ� ¼ ½πðγ3Þ� ¼ ½πðγ1Þ�: ðB2Þ

Therefore we conclude that πðγÞ goes around exactly once,

just like πðγ1Þ, being in the same homotopy class.

APPENDIX C: FREQUENTLY OCCURRING

DERIVATIVES IN FREQUENCY

CALCULATIONS

Here we present some common derivatives that arise in

the computation of frequencies in Eqs. (55). The most

important ones are the derivatives of the roots fi of the
cubic P. These roots are implicit functions of the constants

of motion, fi ¼ fiðC⃗Þ, and the coefficients of the cubic

depend explicitly on the constants,P ¼ Pðf; C⃗Þ. Since fi is
a root,

0 ¼ PðfiðC⃗Þ; C⃗Þ; ðC1Þ

and this identity is satisfied smoothly in C⃗, therefore

0 ¼ ∂

∂Cj

h
PðfiðC⃗Þ; C⃗Þ

i
; ðC2Þ

0 ¼ P0ðfiÞ
∂fi

∂Cj

þ ∂P

∂Cj

����
f¼fi

; ðC3Þ

where we have expanded with the chain rule. We can now

easily solve for the derivative of a root with respect to a

constant of motion,

∂fi

∂Cj

¼ −
1

P0ðfiÞ
∂P

∂Cj

����
f¼fi

: ðC4Þ

Here P0ðfÞ ¼ ∂P=∂f is the quadratic

P0ðfÞ ¼ 3a3f
2 þ 2a2f þ a1; ðC5Þ

where the coefficients are given in Eq. (A23). The

denominator P0ðfiÞ only vanishes if fi is a multiple

root, which only happens if there is no precession.

Notice that all the polynomials ∂P=∂Cj are also quadrat-

ics, since the leading coefficient a3 in Eq. (A23a) does not
depend on any constants of motion. We present these

explicitly below.

Taking the derivative of J 5 in Eq. (35) requires

applying the product rule and chain rule many times.

We need the derivatives of the Δλ’s from Eqs. (A42),

(A67), (A77), (A94), and (A95), which involve the

quantities fi; Bi; Di; BiS; DiS and various elliptic integrals.

Derivatives of fi ’s have already been discussed above and

those of Bi; Di; BiS; DiS are not too hard to compute.

Derivatives of the elliptic integrals via the application of

the chain rule can be written in terms of derivatives of their

arguments: αi; αiS and k. Derivatives of the first two can be
written in terms of the derivatives of fi, Di and DiS,

whereas the derivative of k [Eq. (A34)] simplifies to

dk

dCi

¼
−ðf2 − f3Þ2 ∂P

∂Ci

����
f¼f1

þ ð1→ 2→ 3Þ þ ð1→ 3→ 2Þ

2kAðf1 − f3Þ2ðf1 − f2Þðf1 − f3Þðf2 − f3Þ
:

ðC6Þ

The ∂P=∂Ci polynomials occur in both Eqs. (C4) and

(C6). use of the expression of P as given in Eq. (A25) is to

be made to compute it. The nonzero ∂P=∂Ci’s are the

quadratic polynomials
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∂P

∂L
¼ 2L

h
−ðσ21 þ σ22Þf2 þ ð2δσσ1σ2G − δσ−1½ðσ1 þ σ2ÞSeff · Lþ S21σ

2
1 þ S22σ

2
2�Þf

þ GðS21σ21 þ S22σ
2
2Þ − δσ−2ðS21σ1 þ S22σ2ÞSeff · Lþ S21S

2
2

i
; ðC7Þ

∂P

∂J
¼ 2J

h
2σ1σ2f

2 − ð2δσσ1σ2G − δσ−1½ðσ1 þ σ2ÞSeff · Lþ S21σ
2
1 þ S22σ

2
2�Þf

− GðS21σ21 þ S22σ
2
2Þ þ δσ−2ðS21σ1 þ S22σ2ÞSeff · L

i
; ðC8Þ

∂P

∂Seff · L
¼ 2

h
−ðσ1 þ σ2Þf2 þ ½δσðσ1 þ σ2ÞG − δσ−1ð2Seff · Lþ S21σ1 þ S22σ2Þ�f

þ GðS21σ1 þ S22σ2Þ − δσ−2ðS21 þ S22ÞSeff · L
i
; ðC9Þ

where we have used the shorthands

δσ ¼ σ1 − σ2; ðC10Þ

G ¼ J2 − L2 − S21 − S22
2δσ2

: ðC11Þ

The last piece are the derivatives of the complete elliptic

integrals of the first and third kinds with respect to their

arguments. By differentiating their integral definitions, the

derivatives are expressible again as elliptic integrals [39],

d

dk
KðkÞ ¼ EðkÞ

kð1 − k2Þ −
KðkÞ
k

; ðC12Þ

∂Πðn; kÞ
∂n

¼ 1

2ðk2 − nÞðn − 1Þ

�
EðkÞ þ 1

n
ðk2 − nÞKðkÞ

þ 1

n
ðn2 − k2ÞΠðn; kÞ

�
; ðC13Þ

∂Πðn; kÞ
∂k

¼ k

n − k2

�
EðkÞ
k2 − 1

þ Πðn; kÞ
�
: ðC14Þ

APPENDIX D: REFINING THE DEFINITION

OF PN INTEGRABILITY IN REF. [16]

The definition of PN integrability was first provided in

Sec. IV-A of Ref. [16] which was later refined in Sec. IV-D,

for it had some shortcomings. According to the refined

definition, we have qPN perturbative integrability in a

2n-dimensional phase space when we have n independent

phase-space functions (including the ðqþ 1=2ÞPN
Hamiltonian) which are in mutual involution up to at least

qPN order. One shortcoming in regard to even this refined

definition has come to our notice which we attempt to point

out and fix in this appendix.

In Ref. [16], we noted that fL2 þ c1S
2
1h=c

2 þ c2S
2
2h=c

2

was in mutual perturbative involution with all the other

phase space constants, for arbitrary real coefficients c1, c2,

where ˜L2 was given by Eqs. (50) and (53), and hwas defined

in Eq. (52) of Ref. [16]. Similarly, for any real coefficients

c3, c4, c5, the combination gSeff · Lþ c3S
2
1h=c

2 þ
c4S

2
1h=c

2 þ c5S⃗1 · S⃗2=c
2 was in mutual perturbative invo-

lution with the other phase space constants. It is important to

note that the free terms with coefficients ci are at the same

PN order that we are keeping, and that they are not simply

built out of other constants of motion. With our previous

definition of PN integrability, this seems to suggest far more

than n independent functions in mutual perturbative invo-

lution. This is in stark contrast with exact integrability

scenario where one cannot have more than n independent

functions in mutual involution on a 2n dimensional phase

space. Clearly, something is wrong.

Another way to look at this problem is to realize

that for 2PN integrability, if we enumerate the required n ¼
5 commuting constants by including the 2.5PNHamiltonian,

J2, Jz,
˜L2 and fL2 þ c1S

2
1h=c

2 þ c2S
2
2h=c

2, the latter two

quantities will coincide in the PN limit 1=c → 0, thereby

leaving us with only four independent quantities in exact

mutual involution, whereas the requisite number is 5 (both

for PN perturbative and exact integrability). This means that

the 1=c → 0 limit of the requisite number n of quantities in

PNmutual involution (required for PN integrability) may not

be enough for exact integrability (in the 1=c → 0 limit),

which is bizarre. The definition of PN integrability clearly

needs a fix.

To fix the definition, we add one more demand: the n

independent phase-space functions (including the ðqþ
1=2ÞPN Hamiltonian) must be such that in the limit

1=c → 0, they reduce to n independent phase-space

functions in exact mutual involution. As per this new

we cannot count fL2 and fL2 þ c1S
2
1h=c

2 þ c2S
2
2h=c

2
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simultaneously in our list of independent functions in

mutual involution. This remedies the aforementioned

problems with the definition of PN integrability. It’s easy

to see that the BBH system is still 2PN integrable per this

revised definition of PN integrability since fL2 and gSeff · L
reduce to L2 and Seff · L in the 1=c → 0 limit, which

exactly mutually commute and are independent of

each other.
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