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Abstract 

Influenza A virus (IAV) is reported to develop Pimodivir resistance because of multiple 

mutations within the Polymerase basic 2 protein (PB2) of IAV. The lack of a high-resolution 

structure of these PB2 mutants complexed with Pimodivir hinders efforts to understand the 

drug resistance. Here we decipher the binding differences of Pimodivir in the wild-type and 

mutant systems Q306H, S324I, S324N, S324R, F404Y, and N510T of IVA PB2 using homology 

modeling, molecular dynamics, molecular docking, and density functional theory simulations. 

The key residues responsible for Pimodivir binding were identified as Glu361, Arg355, Arg332, 

His357, and Phe323. Those mutations, mainly N510T, result in significant conformational 

changes of Pimodivir in the PB2 active site. As a result, the affinity of Pimodivir is significantly 

reduced in the N510T system. The mutation effects are less pronounced in the other mutant 

systems. Dynamic cross-correlation matrix (DCCM) analyses suggests that the single-point 

mutation N510T produces an allosteric effect on the ligand-binding domain, thus reducing 

ligand binding affinity. The present study reveals how a single-point mutation modulates the 

Pimodivir binding in IAV PB2, which provides important insights into designing new Pimodivir 

analogues with better binding affinities. 
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Introduction 

Influenza, caused by influenza viruses, is an acute respiratory infection of a potentially deadly 

disease that infects around one billion people each year, with hundreds of thousands of deaths 

around the globe [1]. The burden of influenza exists in spite of available vaccines, and due to 

the current coronavirus-2019 pandemic, influenza severely complicates healthcare delivery. 

The influenza virus can be transmitted through the air via droplets that are expelled when an 

infected person talks, coughs or sneezes, as well as by touching a surface contaminated with 

the virus and then touching the mouth, nose, or eyes. Symptoms of influenza commonly include 

fever, cough, sore throat, runny or stuffy nose, body aches, headache and fatigue. In some 

cases, vomiting and diarrhea may also occur. Although influenza is a self-limited illness for most 

people, it can be serious or even deadly in certain populations such as young children, elderly 

individuals and individuals with underlying health conditions. Although vaccination has become 

the mainstay of efforts to prevent and minimize the impact of influenza, it is associated with 

variable influenza virus antigens [2]. Thus, effective antivirals targeting the virus could be a key 

to controlling the impact of influenza and reducing morbidity and mortality [2, 3]. 

Influenza virus is grouped into four types based on their core proteins, type A (influenza 

virus A; IAV), type B (influenza virus B; IBV), type C (influenza virus C; ICV), and type D (influenza 

virus D; IDV) [4, 5]. Among the four genera, IAV is the most pathogenic to people, and it can be 

transmitted between species [6].  

The RNA-dependent RNA polymerase (RdRp) of IAV, which is highly conserved among 

influenza viruses, is one of the most attractive drug targets to treat IAV as it plays a crucial role in 

genom replication and transcription [7]. The RdRp consists of three protein subunits, i.e., 

polymerase acid protein (PA) with endonuclease activity, polymerase basic protein 1 (PB1) with 

polymerase activity, and polymerase basic protein 2 (PB2) containing five prime-cap binding 

sites (CBS) [5, 7, 8]. They are all closely related and responsible for replication and transcription 

of the viral RNA genome in the infected cell [9]. The polymerase synthesizes viral RNA through 

cap-snatching mechanism, which is not available in human cells. The viral RNA does not have a 
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cap bound to it as IAV does not encode guanylyl transferase, and as a result, protein translation 

using host cell machinery does not occur. The virus, however, steals the host five-prime cap 

through cap-snatching mechanism in which the host primer cap binds to the PB2 cap-binding 

site, followed by cleavage of nucleotides from the host five-prime cap by PA, and concludes by 

RNA synthesis by PB1 [5, 10, 11].  

The PB2 protein is considered a prime target for the development of new antiviral drugs 

because it has a crucial role in viral replication. Inhibition of PB2 function can effectively 

prevent the replication of the influenza virus, making it a promising target for antiviral drug 

development. The structure of PB2 consists of three domains: the N-terminal domain, the cap-

binding domain, and the C-terminal domain. The N-terminal domain contains a flexible linker 

region that connects it to the cap-binding domain, while the C-terminal domain is involved in 

interaction with other components such as the polymerase acidic protein (PA) and the 

polymerase subunit basic protein 1 (PB1), forming a heterotrimeric complex. The cap-binding 

domain of PB2 is responsible for the recognition and binding of the 5' cap structure of host pre-

mRNAs. This allows the influenza virus to hijack the host cell's machinery and use it for its 

replication. The ability of PB2 to recognize and cleave the host mRNA's 5' end is necessary for 

transcription of viral genes. Furthermore, targeting PB2 with antiviral drugs is believed to have 

broader-spectrum activity against various strains of influenza viruses rather than focusing on one 

particular strain. Recent studies have shown promising potential benefits of targeting PB2 for the 

development of broad-spectrum antiviral drugs that can tackle various strains of influenza 

viruses.  

Polymerase basic protein 2 (PB2) is an essential protein for the influenza virus. It plays a crucial 

role in viral replication by binding to the host cell's mRNA cap structure, which is essential for 

the transcription of influenza virus RNA (Lemaire et al., 2017). This process is known as cap-

snatching where PB2 cleaves the 5' end of host pre-mRNAs and uses them as primers to initiate 

the transcription of viral mRNA. 

 

The R251K Substitution in Viral Protein PB2 Increases Viral Replication and Pathogenicity of Eurasian Avian-like 
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 The R251K Substitution in Viral Protein PB2 Increases Viral Replication and Pathogenicity of Eurasian Avian-like 
H1N1 Swine Influenza Viruses 
 
Kinase inhibitor roscovitine as a PB2 cap-binding inhibitor against influenza a virus replication 

 

 

The most advanced drug targeting PB2, pimodivir, received its fast designation approval 

from the US Food and Drug Administration (FDA) in 2017 [12, 13, 14]. It blocks the cap-

snatching activity of polymerase and inhibits the binding of host mRNA to PB2, thus preventing 

the early stage of viral transcription [2], and is particularly active against IAV [13]. 

Pimodivir extensively interact with the the cap-binding domain of PB2, which acts as a 

virulence determinant [2, 15, 16]. However, recent findings revealed that resistance against 

pimodivir emerged due to mutations on PB2. In vitro tests of pimodivir against IAV revealed the 

existence of mutations including Q306H, S324I, S324N, S324R, F404Y, and N510T, which 

resulted in decreased susceptibility of pimodivir [2, 12, 14, 17, 18, 19]. The present study aims 

to understand at the molecular level how the mutations affect pimodivir binding by employing 

molecular dynamics (MD) and density functional theory (DFT) simulations. Molecular dynamics 

simulation is a powerful to understand the details of protein-ligand interaction during a period 

of time, while the density functional theory offer more accuracy in describing protein-ligand in 

atomic details [20, 21]. These two complementary computational chemistry approaches 

provide valuable insights into the binding dynamics, structural, and energetic properties 

involved in protein-ligand interactions [20, 21, 22, 23, 24, 25, 26].  

 

Computational Details 

We applied virtual screening protocols comprising multiple filters with different scoring 

functions, including extra precision (XP) docking, molecular dynamics simulation, and MM-GBSA 

calculations to study pimodivir binding to WT and mutant proteins.  

Protein structure preparation. The PDB structure of pimodivir in complex with PB2 was 

downloaded from the RCSB Protein Data Bank with PDB ID 5FMM, resolution 2.40 Å [27]. Water 
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molecules and non-interacting ions were removed, and hydrogen atoms were added to the 

protein. The structure was then prepared using the Maestro’s Protein Preparation Wizard,[28] 

via the addition of residue missing atoms, determination of the optimal protonation states for 

histidine residues, assignment of the correct potentially transposed heavy atoms in arginine, 

glutamine, and histidine side chains, optimization of the protein's hydrogen bond network, and 

a restrained minimization was carried out using the OPLS_2005 force field [29]. The prepared 

structure of PB2 was shown in Figure 1. 

 
Figure 1. The prepared structure of PB2. 

The mutant protein structures including Q306H, S324I, S324N, S324R, F404Y, and N510T were 

then each prepared by introducing the point mutation to the WT system using the protein 

preparation wizard [30] of Maestro 10.3  [31].  

Pimodivir was prepared using Maestro including generating ionization states at pH = 7 by using 

Epik’s pKa calculations[28]. The lowest tautomeric state of Pimodivir was selected and was then 

optimized to minimize the potential energy to relax any of the bad contacts using default 

parameters (Force field: OPLS3; Method: PRCG; Maximum iterations: 2500; Gradient 

convergence threshold: 0.5) [32]. The receptor grid file was built using the prepared merged 

protein-ligand complex, in which a van der Waals scaling factor of 1 and a partial charge cutoff 

of 0.25 were used. The binding site for Pimodivir was built based on the native ligand position. 

The optimal molecular structure of Pimodivir was then docked into the built grid of the protein 
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receptor using OPLS3 force field with XP precision into the WT, Q306H, S324I, S324N, S324R, 

F404Y, and N510T receptor protein structures. The default parameters of the scoring function 

was used: ligand sampling was flexible, with sample nitrogen-inversions, same ring 

conformations, and bias sampling of torsions for amides which only penalized nonpolar 

conformations and added Epik state penalties to the docking score [33, 34, 35]. 

Molecular dynamics simulations. Due to reasons of computational cost, only residues 251 to 

522 of the protein were considered in the MD simulations. Each protein-ligand pair was used to 

construct an MD simulation system. Na+ ions were added to a concentration of 0.15 M NaCl to 

neutralize the systems. The OPLS_2005 force field, which was known for its accurancy for 

modeling protein-ligand complex was used to model the systems[36, 37]. All MD simulations 

were run using the Desmond simulation package[38]. The systems were relaxed using a 

relaxation protocol consisting of the following stages. (1) Brownian dynamics simulation under 

a constant number of atoms, volume, and temperature (NVT) ensemble at temperature 10 K 

for 100 ps. (2) Simulation under NVT ensemble at temperature 10 K with restraints on solute 

heavy atoms for 12 ps. (3) Simulation under NVT ensemble at temperature 10 K and restraints 

on solute heavy atoms for 12 ps. (4) Simulation under a constant number of atoms, pressure, 

and temperature (NPT) ensemble with temperature 10 K, pressure 1 bar, and restraints on 

solute heavy atoms for 12 ps. (5) Simulation under NPT with temperature 310 K, pressure 1 bar, 

and no restraints for 1.5 ns. A 100 ns production run was carried out under the NPT ensemble 

using the default protocol. The temperature was controlled using the Nosé-Hoover chain 

coupling scheme[39] with a coupling constant of 1.0 ps. The pressure was controlled using the 

Martyna-Tuckerman-Klein chain coupling scheme[39] with a coupling constant of 2.0 ps. M-

SHAKE[40] was applied to constrain all bonds connecting hydrogen atoms, enabling a 2.0 fs 

time step in the simulations. The k-space Gaussian split Ewald method[41] was used to treat 

long-range electrostatic interactions under periodic boundary conditions (charge grid spacing of 

~1.0 Å, and direct sum tolerance of 10–9). The cutoff distance for short-range non-bonded 

interactions was set to 10 Å, and the long-range van der Waals interactions were based on a 

uniform density approximation. To reduce the computation, non-bonded forces were 

calculated using an r-RESPA integrator [42], where the short-range forces were updated every 
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step, and the long-range forces were updated every three steps. Frames were saved at 50.0 ps 

intervals for analysis. 

 

Simulation analysis. To check the convergence of the MD simulations, Cα protein and ligand 

RMSDs were computed over the whole trajectory. The plots depict structural variation over 100 

ns, providing evidence that the convergence is reached. Using the Desmond trajectory 

clustering tool [43], clustering analysis was performed to obtain the most abundant structure of 

the complex. Backbone RMSD was used as the structural similarity, with the merging distance 

cutoff set at 2.5 Å. Hierarchical clustering with average linkage as the clustering method was 

employed. The structure with the greatest number of neighbors in the structural family, called 

the centroid structure, was used for representation. 

 

MM-GBSA binding energy calculations. Molecular Mechanism-General Born Surface Area 

(MM-GBSA) binding energies were calculated for each protein-ligand system. The surface-area-

based Generalized Born model[44] with an implicit solvation model [45] was used (VSGB 2.0) in 

the calculations. The OPLS3 force field employs a CM1A-BCC-based charge model based on a 

combination of the Cramer–Truhlar CM1A charges[46, 47] with an extensive parameterization 

of bond charge correction terms (BCC).  

The default procedure consists of three simulations consisting of the receptor alone, 

ligand alone, and receptor-ligand complex. The original interaction terms include Coulombic, H-

bond, GB solvation, van der Waals, p-p packing, self-contact, and lipophilic. The total binding 

free energy equation was then calculated via:   

 

ΔEbind = Ecomplex – Eligand – Ereceptor 

 

The interaction terms were then merged into three components, Eelctrostatics, EvdW, and Elipophilic, 

where: 

Eelectrostatics = Hbond + Ecoulomb + EGB_solvation 

EvdW = EvdW + Eπ-π + Eself-contact   
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The MM-GBSA scoring function lacks the solute conformational entropy, which results in higher 

negative values when compared to the actual values. Nevertheless, when used to rank different 

drugs targeting receptors with comparable binding entropy values, it has proven to be an 

effective approximation[44]. 

 

Density functional theory simulations. To gain insights into the nature of the H-bonding and 

dispersion interactions between pimodivir and the residues in the active site, we performed 

energy decomposition analyses (EDA) on truncated small models representative of the 

interactions in the active site. The geometries of the small models were fully optimized and 

confirmed to have all real harmonic frequencies at the B3LYP-D3BJ/6-31+G(d,p) level of 

theory[48, 49, 50, 51], where the protein-like environment in the active site was simulated by a 

homogeneous polarizable continuum model with the dielectric constant  = 4.0[52, 53, 54]. The 

EDA calculations were performed using the second-generation ALMO-EDA scheme by Head-

Gordon and co-workers[55]. The EDA calculations were performed with the ωB97M-V 

functional in conjunction with the Def2-SVPD basis set[56, 57]. The geometry optimizations 

were performed using the Gaussian 16 program suite[58] and the EDA calculations were 

performed using the Q-Chem program suite[59].  

Dynamic Cross Correlation Matrix. To gain a further understanding of the overall stability of 

the protein-ligand complexes, a dynamic cross-correlation matrix (DCCM) was generated for 

each system using Carma[60]. The program Carma calculates covariance and pairwise 

correlations (Cij):  

 

between pairs of atoms across and the MD trajectory. The extracted MD trajectory included 

273 atoms, where 1-272 corresponds to the protein Cα atoms and 273 corresponds to the 
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center 19 atom of the ligand, as shown in Figure 8. This trajectory of each system was used to 

calculate the covariance matrix which was then converted to the DCCM. 
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Results and Discussion 

Ligand docking. First, we performed molecular docking simulations of Pimodivir incorporated 

into the PB2 in WT, Q306H, S324I, S324N, S324R, F404Y, and N510T systems. The 2D structure 

and docked conformation of Pimodivir in WT and mutant systems are similar, as depicted in 

Figure 1.  

 

 

 

Figure 1. The 2D structure of Pimodivir (left) and docked poses of Pimodivir in WT (gray), 

Q306H (red), S324I (orange), S324N (green), S324R (blue), F404Y (purple), and N510T (pink) 

systems, with the positions of mutated residues. 

 

Table 1 shows the binding energy predicted by XP-docking of Pimodivir in WT and mutant 

systems. The binding energies predicted by XP-docking are −9.3 kcal/mol, −6.6 kcal/mol, −7.0, 

−6.8, −7.0, −8.6, and −6.9 kcal/mol, for the WT, Q306H, S324I, S324N, S324R, F404Y, and N510T 

systems, respectively. These binding energies indicate that the mutation induces a reduced 

binding energy of Pimodivir to PB2 protein.  
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Table 1. The XP docking score of Pimodivir to Wildtype and mutant systems of polymerase basic 
protein 2 (PB2) (in kcal/mol). 

No. System XP ∆XPa  

1. WT -9.3  
2. Q306H -6.6 2.7 
3. S324I -7.0 2.3 
4. S324N -6.8 2.5 
5. S324R -7.0 2.3 
6. F404Y -8.6 0.7 
7. N510T -6.9   2.4 

aDifference between the WT and mutant systems, a positive value indicates reduced binding 
energy.   
 

Pimodivir interactions with PB2 in the WT system via five hydrogen bonds formed with 

the Arg332, Arg355, His357, and Glu361 residues. Figure 2 shows a truncated model of 

pimodivir in the active site taken from the docking simulations. The Arg355 residue interacts 

with the carboxylate group of pimodivir via two H-bonds, and the His357 residue interacts with 

the carboxylate group via one H-bond. The carboxylate group of the Glu361 residue interacts 

with the pyrrole ring of pimodivir via one H-bond, and the Arg332 residue interacts with the 

pyridine nitrogen via one H-bond (Figure 2). Density functional theory calculations can provide 

insights into the noncovalent interactions involved in the above H-bonds. For this purpose, we 

performed energy decomposition analyses (EDA) using the full structure of pimodivir and the H-

bond donating or accepting moiety of each of the residues, namely guanidinium cation (for 

Arg332 and Arg355), acetate anion (for Glu361), and imidazole (for His357). These complexes 

were fully optimized at the B3LYP-D3BJ/6-31+G(d,p) level of theory, where the protein-like 

environment in the active site was simulated by a homogeneous polarizable continuum model 

with the dielectric constant  = 4.0. The EDA calculations were performed using the second-

generation ALMO-EDA scheme. With the exception of the Arg355•••pimodivir complex, all the 

complexes provide a good representation of the H-bonding and dispersion interactions found in 

the full system (see Table S1 of the Supporting Information).  
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Figure 2. Truncated model of pimodivir in the active site of (a) the wildtype polymerase basic 

protein 2 (PB2) and (b) the N510T mutant. The hydrogen bonds between pimodivir and the 

Arg355, His357, Glu361, and Arg332 residues are shown as dotted lines and the H-bond lengths 

are given in Å. The structures are taken from the docking simulations.  

 

The EDA calculations reveal that the dispersion energy component results in stabilizing 

interactions of -5.3 (Arg332), -5.0 (Glu361), and -10.2 (His357) kcal/mol. As expected, the 

dispersion interaction in His357•••pimodivir is much stronger than for the other residues, 

reflecting the p-stacking interactions between the aromatic rings of His357 and pimodivir 

(Figure 2a). Polarization interactions are rather significant for the H-bonds between pimodivir 

and the charged residues Arg332 and Glu361, namely, they amount to -11.1 and -13.5 kcal/mol, 

respectively. However, for the neutral His357 residue they amount to merely -4.1 kcal/mol. 

Likewise, charge-transfer interactions are 4–5 times as large for the charged Arg332 and Glu361 

residues compared to those in the neutral His357 residue. Namely, they are -4.5 (Arg332), -5.5 
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(Glu361), -1.1 (His357) kcal/mol. The stronger polarization and charge-transfer interactions 

between pimodivir and the charged Arg332 and Glu361 residues are reflected in shorter H-

bond distances of 1.92 and 1.86 Å, respectively, in the full system, compared to a longer H-bond 

distance of 2.11 Å obtained for the His357 residue (Figure 2a). The qualitative agreement 

between our truncated models and the full system increases our confidence in the above EDA 

results.  

 It is of interest to compare the EDA results for the WT system with those obtained for 

the key N510T mutant system. Figure 2b shows the H-bonds involved in both structures. Two 

key differences between the two structures are that the H-bonds between the carboxylate 

group of pimodivir and the Arg355 and His357 residues, which are present in the WT system, 

are not present in the N510T mutant system. Instead, in the N510T mutant system, the Arg355 

and His357 residues interact with pimodivir via weaker dispersion interactions. This is 

illustrated in our EDA calculations by reduced polarization and charge-transfer interactions 

between pimodivir and the His357 residue. Namely the polarization interactions are -4.1 (WT) 

and -2.2 (N510T) kcal/mol, and the charge-transfer interactions are -1.1 (WT) and -0.5 (N510T) 

kcal/mol. For the Arg355 our small models calculations are not representative of interactions in 

the full system, however, due to the absence of H-bonding interactions in the N510T mutant, 

we expect that similar observations will hold for the polarization and charge-transfer 

interactions between pimodivir and the Arg355 residue.  

In the mutant systems Q306H, S324I, S324N, and S324R these H-bonding interactions 

are altered in the mutant systems. Namely, three H-bonds that are observed in WT system with 

Arg332, Arg355, and His357 disappear, and a new H-bond with Val511 forms in the Q306H 

system, while those with Lys376 and Val511 were observed in S324I, S324N and S324R systems. 

In the F404Y H-bond with Arg332 disappeared, while in the N510T system, H-bonds with 

Arg355 and His357 disappeared without any new H-bond formed. 

Furthermore, p-p stacking interactions observed in WT system were Phe323, Arg332, 

His357, and Phe363. In the Q306H, S324I, S324N, and S324R, one p-p stacking interactions with 

Arg332 was disappeared. However, in those four mutants, new p-p interactions with Phe404 

were formed. In the F404Y system three p-p stacking interactions with Phe323, Arg332, and 
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Phe363 disappeared with additional p-p staking formed with Tyr404. However, N510T system 

preseverd all the p-p stacking interaction observed in WT system in addition new interaction 

with Phe404. The 2D interactions of WT and N510T systems was shown in Figure 3, while those 

for other systems were shown in Figure S1. 
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A. WT system 

 

 

B. N510T system 
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Figure 3. The 2D interaction of Pimodivir in WT (A) and N510T (B) systems.  

 

RMSD values. The RMSD of protein Cα and Pimodivir of each system during 100 ns is depicted 

in Figure 4. The alpha carbons (Cα) of the protein is all systems were kept steady throughout 

100 ns. It shows that the protein Cα was relatively more stable in WT (mean values of 1.82 Å), 

compared to those in Q306H (2.05 Å), S324I (2.26 Å), S324R (2.53 Å), F404Y (1.87 Å), and N510T 

(2.07 Å), but it was higher than that in S324N (1.49 Å).  
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Table 2. The mean RMSD of Protein Cα atoms and Mean RMSD of ligand calculated for Wild 
type (WT) and mutant systems. 

System 
Mean RMSD of Protein 

Cα atoms (Å) 
Mean RMSD of 

ligand (Å) 

WT 1.82 ± 0.31 2.01 ± 0.53 

Q306H 2.05 ± 0.37 1.37 ± 0.23 

S324I 2.26 ± 0.43 1.66 ± 0.35 

S324N 1.49 ± 0.22 1.04 ± 0.27 

S324R 2.53 ± 0.38 1.02 ± 0.23 

F404Y 1.87 ± 0.24 0.93 ± 0.23 

N510T 2.07 ± 0.29 3.71 ± 1.62 

 

However, Pimodivir had a more fluctuant RMSD in WT (2.01 Å) compared to those in Q306H 

(1.37 Å), S324I (1.66 Å), S324N (1.04 Å), S324R (1.02 Å), F404Y (0.93 Å) systems, but it was 

lower than that in N510T (3.7 Å). The Pimodivir is shown to have abrupt increase at about 60 ns 

when the phenyl ring of Pimodivir underwent a positional change, which indicated that the 

ligand in the N510T system were the most unstable during MDS. It is clear that the protein 

mutations have impacted the Pimodivir conformation to be more fluctuant in N510T system, 

but more stable in other mutant systems. 
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Figure 4. The root mean squared deviation (RMSD) of Protein Cα (black line) and ligand (green 

light) in WT, F404Y, N510T, S324I, S324N, S324R, and Q306H systems. 

 

The Protein-Ligand Interaction Analysis. To acquire a protein-ligand interaction during MDS, 

analysis of the simulation interaction diagram (SID) was performed. Interaction fraction with 

corresponding residues and protein-ligand interactions which sustained more than 20% of MDS 

is depicted in Figure 5. In the WT system (Figure 5A), H-bond interactions were observed with 

Glu361 (80% occupancy), Arg355 (98% and 91% occupancies) and Arg332 (45% occupancy), in 
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addition to p-p interaction with His357 (81% and 67% occupancies) and Phe323 (36% 

occupancy). The water-mediated H-bond was also seen with Phe404 (86% occupancy), which 

indicates their role to stabilize Pimodivir binding. 

 

In the Q306H system (Figure 5B), H-bond interactions were observed with Glu361 (94% 

occupancy), Val511 (95% and 66% occupancies), and Lys376 (84% occupancy). The high 

occupancies of H-bonds with Glu361, Val511, and Lys376 were also seen in S324I (Figure 5C) 

(98%, 99% and 39%, and 87% occupancies), S324N (Figure 5D) (98%, 97%, 44% occupancies), 

S324R (Figure 5E) (98%, 100%, and 37% occupancies), and F404Y (Figure 5F) (94%, 95%, and 

47% occupancies). However, the H-bond with Glu361 was much reduced in N510T system 

(Figure 5G) (55% occupancy), while those with Val511 and Lys376 were completely lost, and 

new H-bonds with Asn429 (79% occupancy) and His432 (80% occupancy) formed. The F404Y 

system particularly maintained additional high H-bond interactions with Arg355 with 96% and 

90% occupancies. 

In almost all mutant systems, the p-p interactions with Phe323 were observed with high 

occupancies (96% in Q306H, 86% in S324I, 85% in S324N, 81% in S324R, 81% in F404Y), 

however, it was lost in N510T system. The high occupancies of p-p interactions were also 

observed with Phe404/Tyr404 in Q306H, S324I, S324R, F404Y systems (each 80%, 77%, 69%, 

and 73%, respectively), but they became low in S324N and N510T (32% and 43% occupancies, 

respectively). The interactions with Phe363 were also high in Q306H (79% occupancy), but it 

reduced in S324N (60% occupancy), S324R (58% occupancy), F404Y (53% occupancy), and 

S324N (39% occupancy), and again it disappeared in N510T system. In addition, the S324I, 

S324N, S324R, F404Y systems maintained high occupancies of p-p interactions with His357 each 

with 87%, 79%, 87%, and 71%, respectively, but it reduced in Q306H and N510 systems (54% 

and 37% occupancies, respectively).  

The water-mediated H-bond was variable among mutant systems, for example Q306H with 

Lys339 (51% occupancy), S324I system with Arg332 (45% occupancy), S324N with Lys339 (33% 

occupancy), S324R with Val511 (47% occupancy), F404Y with Arg332 (54% occupancy) and 

Met431 (33% occupancy), and N510T system with Val511 (47% occupancy). It was clear that 
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while other mutant systems maintained interactions with key residues with high occupancies, 

the interactions has much reduced or lost in N510T system. Figure 5 and S3 show the 2D 

protein-ligand interaction diagrams lasting more than 20% of the MDS.  
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A. WT system 

 

B. N510T system 

 

Figure 5. The 2D Protein-Ligand Interaction Diagrams lasting more than 20% of the MDS (A: 

WT-Pim; B: N510T-Pim) recorded during MD simulations.  

 

Cluster analysis. To acquire the dominant conformations of the protein-ligand complex, we 

performed clustering analysis on each system and analyzed the ligand binding sites from best 

cluster. We found out that in the WT system (Figure 6), H-bond interactions were observed 
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with Glu361, Arg355, and His357, in addition to p-p interaction with His357. The water-

mediated H-bond was also seen with Lys339. H-bond with Glu361 and Val511 were observed in 

all mutant system except in N510T, while H-bonds with Lys376 were observed in S324I, S324N, 

and S324R systems. H-bond with Lys339 and Arg555 were observed S324N and F404Y, 

respectively. In addition, all mutant systems maintained p-p interactions with His357 except in 

N510T, while p-p interactions with Phe323 and Phe404/Tyr404 were observed in Q306H, S324I, 

S324R, and F404Y systems. F404Y and S324N maintained additional p-p interactions with 

Phe363, while in N510T system no p-p interaction was observed, but it formed new H-bonds 

with Arg508, His432, and Asn429. It is clear that the N510T mutation has changed much the 

interaction with crucial residues of the protein. Figure 6 and S4 show the active site 

conformation and 2D interactions of WT-Pim and mutant systems taken from most populated 

cluster. 
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Figure 6. The active site conformation and 2D interactions of WT-Pim system taken from most 

populated cluster. 

Binding energy prediction. The MM-GBSA binding energy was calculated to assess the 

effectiveness of the mutation on the binding energy of Pimodivir. The total binding energy for 

the WT system was −61.2 kcal/mol, which was lower than that in the N510T (−48.2 kcal/mol) 
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and S324N (−60.4 kcal/mol) systems, but it was higher than those in the Q306H (−67.9 

kcal/mol), S324I (−64.6 kcal/mol), S324R (−65.3 kcal/mol), and F404Y (−65.2 kcal/mol). The 

binding energy changes between the WT system and those in the N510T, Q306H, S324I, S324N, 

S324R, and F404Y systems were 13 kcal/mol, 6.7 kcal/mol, 3.4 kcal/mol, 0.8 kcal/mol, 4.1 

kcal/mol, and 4.0 kcal/mol, respectively. Clearly, among those mutations, N510T mutation 

resulted in much lower affinity of Pimodivir followed by S324N system, but a mutation in 

Q306H, S324I, S324R, and F404Y resulted in a slightly stronger affinity of Pimodivir. Table 3 

shows the binding energy calculated for last 50 ns of each system. 

 

Table 3. The binding energies (ΔG, kcal/mol) calculated for the last 50 ns of each trajectory. 

 
 

It was observed that the van der Waals interactions (ΔEvdw) is the dominant factor when 

considering favorable binding contributions, each with −42.9 kcal/mol, −59.9 kcal/mol, −57.9 

kcal/mol, −51.8 kcal/mol, −57.6 kcal/mol, −51.4 kcal/mol, and −40.3 kcal/mol in WT, Q306H, 

S324I, S324N, S324R, F404Y, and N510T, respectively. The differences of van der Waals 

interactions (ΔΔEvdw) were 17 kcal/mol, 15 kcal/mol, 8.9 kcal/mol, 14.7 kcal/mol, 8.5 kcal/mol, 

and 2.6 kcal/mol in Q306H, S324I, S324N, S324R, F404Y, and N510T systems, each compared to 

the WT system.  

Meanwhile, the lipophilic interactions (ΔElipo) were also more positive in the N510T system 

(−13.4 kcal/mol) than in other systems each with −15.3 kcal/mol, −19.5 kcal/mol, −19.6 

kcal/mol, −18.7 kcal/mol, −19.7 kcal/mol, −18.9 kcal/mol in WT, Q306H, S324I, S324N, S324R, 

and F404Y, respectively. The mutations have reduced the van der Waals and lipophilic 

Systems WT Q306H S324I S324N S324R F404Y N510T 

ΔGbind −61.2±4.7 −67.9±6.1 −64.6±4.2 −60.4±4.4 −65.3±4.4 −65.2±6.4 −48.2±7.8 
ΔΔGbind  −6.7 −3.4 0.8 −4.1 −4.0 13.0 
ΔEvdw

 −42.9±3.9 −59.9±4.2 −57.9±3.4 −51.8±3.9 −57.6±3.7 −51.4±4.7 −40.3±7.3 
ΔΔEvdw  17.0 15.0 8.9 14.7 8.5 2.6 
ΔEele

 −3.0±4.3 11.5±3.2 12.9±2.3 10.1±4.1 11.9±2.9 5.1±4.3 5.4±4.0 
ΔΔEele  14.5 15.9 13.1 14.9 8.1 8.4 
ΔElipo

 −15.3±1.5 −19.5±1.4 −19.6±1.1 −18.7±1.1 −19.7±0.9 −18.9±1.2 −13.4±2.3 
ΔΔElipo  4.2 4.3 3.4 4.4 3.6 1.9 
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interactions in N510T system with 2.6 kcal/mol and 1.9 kcal/mol changes compared to the WT 

system, respectively. 

It was clear that the van der Waals energy were more positive in the N510T system compared 

to other systems. The possible explanations are the H-bond decreased percentage with Glu361 

and disappearance of H-bonds with Val511 in the T179A system (Figure 4B).  

 

It was observed that the electrostatic energy (ΔEele) is favorable binding contributions to WT 

with −3.0 kcal/mol, however it became unfavorauble in Q306H, S324I, S324n, S324R, F404Y, 

and N510T systems each with 11.5 kcal/mol, 12.9 kcal/mol, 10.1 kcal/mol, 11.9 kcal/mol, 51.1 

kcal/mol, and 5.4 kcal/mol, respectively. The differences of electrostatic interactions (ΔΔEele) 

were 14.5 kcal/mol, 15.9 kcal/mol, 13.1 kcal/mol, 14.9 kcal/mol, 8.1 kcal/mol and 8.4 kcal/mol 

in Q306H, S324I, S324n, S324R, F404Y, and N510T systems, respectively, each compared to the 

WT system.  

 

The RMSF values. The RMSF of protein Cα atoms were compared between protein WT and the 

mutants. Each prominent RMSF value was assigned with black, red, orange, green, blue, purple, 

pink arrows in WT, Q306H, S324I, S324N, S324R, F404Y, and N510T systems, respectively 

(Figure 7). The highest peaks are residues of carboxyl and amino ends of the protein. The high 

peaks at N456, G459, and Y488, were a protein loop, while the key residues intecating with 

protein were observed stable. Concisely, mutation in N510T induced the largest impact on 

protein residues compared to other mutations. 
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A 

 

B 

 

C 

 

D 

 

E 

 

F 

 

 

Figure 7. The RMSF values comparison between WT and Q306H (A), WT and S324I (B), WT and 

S324N (C), WT and S324R (D), WT and F4-4Y (E), and WT and N510T (F). The RMSF values of the 

Cα atoms for residues in WT (black), Q306H (red), S324I (orange), S324N (blue), S324R (blue), 

F404Y (purple), and N510T (pink) are shown with the mutant positions are noted by yellow 

asterisks. 
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Ligand RMSF Values. The RMSF values of the ligand atoms were recorded as depicted in Figure 

8. A higher fluctuation of ligand generally reflect its lower stability in the protein binding site. 

The RMSF of Pimodivir in WT system was lower with mean RMSF values (1.51 Å) compared to 

those in N510T (2.39 Å), but it was higher than those in Q306H (0.69 Å), S324I (0.85 Å), S324N 

(0.88 Å), S324R (0.68 Å), and F404Y (0.70 Å) systems, which indicated that Pimodivir was more 

stable in the WT system than in N510T but it was less stable compared to in Q306H, S324I, 

S324N, S324R, and F404Y systems. It is showed that the most fluctuant atoms in N510T were 

those in the the phenyl ring (atom number 9) as shown by their highest peaks .  

 

Figure 8. The RMSF values for atoms of Pimodivir. 

 

The secondary structure of the protein. The SSE of protein monitored during MDS were plotted 

in Figure 9, which displays the distribution of SSE, including Alpha-helices and Beta-strands by 

residue. The total percentage of SSE for WT, Q306H, S324I, S324N, S324R, F404Y, and N510T 

were 51.96%, 50.82%, 51.42%, 51.22%, 52.12%, 50.85%, and 48.67%, respectively. It was clear 

that the mutation in N510T system has reduced the SSE percentage in the system, but the 

mutation in the other system had minor effects on SSE of the protein. 
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Figure 9. Protein SSE for the WT, Q306H, S324I, S324N, S324R, F404Y, and N510T systems 

during MDS. The alpha helices, beta sheets, and random coil were represented by red, blue, 

and white spaces. 

Dynamic Cross-Correlation Matrix Analysis. The single-point mutation N510T rather than the 

Q306H, S324I, S324N, S324R and F404Y single-point mutations induces a very different dynamic 
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response in the ligand-binding region that is far from the mutation site, as shown in the 

dynamic cross-correlation matrix (DCCM) (Figure 10). The DCCM of the seven systems were 

calculated by the Carma program, as described in the methods section. A pairwise comparison 

of the DCCMs from all six mutant systems are included in the supporting document (Figures S6-

S11). The dynamical structure of the systems can be further elucidated upon viewing the 

topology diagram (Figure S5). In both the N-terminal and ligand-binding domain, as seen in 

Figure 10, there appears to be perpendicular signals to the diagonal. As shown in Figure S5, this 

is due to the strong hydrogen bonds coupling the long-distance alpha helices and beta sheets. 

The DCCM for the WT and N510T systems generated in Figure 10 displays subtle differences in 

the dynamical structure of the protein. Notably, the ligand-binding domain region appears to 

be more yellow (+0.5) in the N510T mutant system than the WT system, which appeared redder 

(+1). Overall, it was clear that the single-point mutation in the N510T system has reduced 

positive correlation, but the mutations in the other five mutant systems were comparable with 

the WT system. 

 

WT system N510T system 

 

 



30 

 

Figure 10. Dynamic cross-correlation matrix (DCCM) for the WT and N510T systems. 1-272: 

protein Cα atoms. 273: the center atom (19 of Fig. 8) of the ligand. 1-272 corresponds to 251-

675 in the full sequence. The sequence and the secondary structure of the protein is provided 

along the x and y axes.  

Correlation Coefficient Plot. To understand the dynamic change of the protein-ligand 

complexes due to a single-point mutation, the correlation coefficients between the ligand 

center atom (19 of Fig. 8) position and the protein residue CA position (1-272) were extracted 

from the DCCM and plotted in Figure S12. The differences between the six single-point mutants 

and WT are shown in Figure 11, which was divided into three regions. Region 1 corresponds to 

the N-terminal, where it is shown that the N510T system has a significantly higher positive 

correlation than the other five mutant-Q306H, S324I, S324N, S324R, and F404Y-systems. In 

region 2, which corresponds to the ligand-binding domain, we see that the N510T system 

shows a negative correlation response in comparison to the five other single-point mutants, 

which show a positive correlation. Region 3, corresponding to the N510T mutation region, 

additionally exhibits an opposite, negative correlation in the N510T system in comparison to 

the other mutant sytems. In Figure 11, seven key residue interactions, which were present in 

more than four systems (Table S2), are indicated by a black arrow. The red arrows indicate the 

the six single-point mutations. Ultimately, this demonstrates the allosteric effects, explaining 

why the N510T single-point mutation had a significantly reduced binding energy in the 

MMGBSA analysis (Table 3).  
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Figure 11. The changes of correlation coefficients between the ligand center atom (19 of Fig. 8) 

position and the protein residue Cα position upon a single-point mutation in the WT system. 

Single point mutations include Q306H, S324I, S324N, S324R, F404Y, and N510T, which 

corresponds to Q56H, S74I, S74N, S74R, F154Y, and N260T, respectively. Black arrows indicate 

key residue interactions occuring within the six systems. Red arrows indicate mutated residues. 

The sequence and the secondary structure of the protein is provided along the top of the graph. 

Region 1 corresponds to the N-terminal region. Region 2 corresponds to the ligand-binding 

domain. Region 3 corresponds to the N510T single-point mutation region. The raw data for 

each system is included in Figure S12. 
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Conclusions 

This study uses homology modeling, molecular docking, molecular dynamics, and 

density functional theory simulations, and dynamic cross-correlaton matrixes to provide a 

detailed understanding of the structural and chemical interactions governing the binding of 

Pimodivir to the IAV PB2 in the WT and mutant systems. We find that the key residues 

interacting with Pimodivir include Glu361, Arg355, Arg332, His35, and Phe323, which is 

consistent with the experimental results. Importantly, we show that the binding of Pimodivir in 

the mutant systems results in conformational changes of Pimodivir, which in turn results in a 

significantly reduced binding affinity in the N510T system. However, the effect of mutations in 

the other mutant systems was not found to be significant. In the N510T system, the low binding 

affinity is attributed to the absence of H-bonding interactions with the Arg355 and His357 

residues, in addition to generally weaker van der Waals interaction. Analysis of the dynamic 

cross-correlation matrixes also appears to suggest that the mutant N510T induces a long-range 

allosteric effect in reducing the binding interaction.  The present study reveals the molecular 

details of how a single mutation in PB2 of IAV affects the binding affinity of Pimodivir, which 

need further experimental validation. We hope that these results will be useful for the design of 

new improved analogues of Pimodivir with better binding affinities. 

 

Supplementary Materials. Cartesian coordinates for the truncated models considered in the 
DFT/EDA calculations (Table S1). Ligand and protein residue contacts occurring within the WT 
and mutant systems. Mutant systems include the single-point mutations: S324I, S324N, S324R, 
Q306H, N510T, and F404Y. Residues highlighted in yellow indicate that more than four systems 
presented with this key residue interaction (Table S2).  2D interaction of Pimodivir in the 
mutant systems (Figure S1); The root mean squared deviation (RMSD) of Protein Cα (black line) 
and ligand (green light) in WT, in which the equilibration time was 1000 ps (Figure S2); 2D 
Protein-Ligand Interaction Diagrams lasting more than 20% of the MDS (A: Q306H-Pim; B: 
S324I-Pim; C: S324N-Pim; D: S324R-Pim; E: F404Y-Pim) recorded during MD simulations (Figure 
S3); The active site conformation and 2D interactions of Q306H-Pim (A), S324I-Pim (B), S324N-
Pim (C), S324R-Pim (D), F404Y-Pim (E), N510T-Pim (F) systems taken from the most populated 
cluster (Figure S4); Topology diagram for PDB ID: 5FMM gathered from the PDBsum website. 
Red cylinders represent the α-helices. Pink arrows represent the β-sheets. Portions boxed in 
blue are regions outside the residues of interest: 1-272 protein Cα atoms. 1-272 corresponds to 
251-675 in the full sequence (Figure S5); Dynamic cross-correlation matrix (DCCM) for the WT 
and Q306H systems. 1-272: protein Cα atoms. 273: the center atom (19 of Fig. 8) of the ligand. 
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1-272 corresponds to 251-675 in the full sequence. The sequence and the secondary structure 
of the protein is provided along the x and y axes. The black arrow along the y-axis indicates the 
location of single-point mutation Q306H (Figure S6); Dynamic cross-correlation matrix (DCCM) 
for the WT and S324I systems.    1-272: protein Cα atoms. 273: the center atom (19 of Fig. 8) of 
the ligand. 1-272 corresponds to 251-675 in the full sequence. The sequence and the secondary 
structure of the protein is provided along the x and y axes. The black arrow along the y-axis 
indicates the location of single-point mutation S324I (Figure S7); Dynamic cross-correlation 
matrix (DCCM) for the WT and S324N systems.   1-272: protein Cα atoms. 273: the center atom 
(19 of Fig. 8) of the ligand. 1-272 corresponds to 251-675 in the full sequence. The sequence 
and the secondary structure of the protein is provided along the x and y axes. The black arrow 
along the y-axis indicates the location of single-point mutation S324N (Figure S8); Dynamic 
cross-correlation matrix (DCCM) for the WT and S324R systems.   1-272: protein Cα atoms. 273: 
the center atom (19 of Fig. 8) of the ligand. 1-272 corresponds to 251-675 in the full sequence. 
The sequence and the secondary structure of the protein is provided along the x and y axes. 
The black arrow along the y-axis indicates the location of single-point mutation S324R (Figure 
S9); Dynamic cross-correlation matrix (DCCM) for the WT and F404Y systems.   1-272: protein 
Cα atoms. 273: the center atom (19 of Fig. 8) of the ligand. 1-272 corresponds to 251-675 in the 
full sequence. The sequence and the secondary structure of the protein is provided along the x 
and y axes. The black arrow along the y-axis indicates the location of single-point mutation 
F404Y (Figure S10); Dynamic cross-correlation matrix (DCCM) for the WT and N510T systems.  
1-272: protein Cα atoms. 273: the center atom (19 of Fig. 8) of the ligand. 1-272 corresponds to 
251-675 in the full sequence. The sequence and the secondary structure of the protein is 
provided along the x and y axes. The black arrow along the y-axis indicates the location of 
single-point mutation N510T (Figure S11); The correlation coefficients between the ligand 
center atom (19 of Fig. 8) position and the protein residue Cα position in the WT and single 
mutant systems. Black arrows indicate key residue interactions occuring within the seven 
systems. Single-point mutations include Q306H, S324I, S324N, S324R, F404Y, and N510T, which 
corresponds to Q56H, S74I, S74N, S74R, F154Y, and N260T, respectively. Red arrows indicate 
mutated residues. The sequence and the secondary structure of the protein is provided along 
the top of the graph. Region 1 corresponds to the N-terminal region. Region 2 corresponds to 
the ligand-binding domain. Region 3 corresponds to the N510T single-point mutation region 
(Figure S12). 
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