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Abstract— Mixed-Observable Markov Decision Processes
(MOMDPs) are used to model systems where the state space can
be decomposed as a product space of a set of state variables, and
the controlling agent is able to measure only a subset of those
state variables. In this paper, we consider the setting where we
have a set of potential sensors to select for the MOMDP, where
each sensor measures a certain state variable and has a selection
cost. We formulate the problem of selecting an optimal set of
sensors for MOMDPs (subject to certain budget constraints)
to maximize the expected infinite-horizon reward of the agent
and show that this sensor placement problem is NP-Hard,
even when one has access to an oracle that can compute the
optimal policy for any given instance. We then study a greedy
algorithm for approximate optimization and show that there
exist instances of the MOMDP sensor selection problem where
the greedy algorithm can perform arbitrarily poorly. Finally,
we provide some empirical results of greedy sensor selection
over randomly generated MOMDP instances and show that, in
practice, the greedy algorithm provides near-optimal solutions
for many cases, despite the fact that one cannot provide general
theoretical guarantees for its performance. In total, our work
establishes fundamental complexity results for the problem of
optimal sensor selection (at design-time) for MOMDPs.

I. INTRODUCTION

Real-world decision problems such as autonomous naviga-
tion, robotic task execution, data center operation and machine
maintenance are made difficult by imperfect knowledge about
the state of the system (due to partial or noisy observations).
These systems can be modelled as Markov Decision Pro-
cesses (MDPs), and variants like Partially-Observable MDPs
(POMDPs) and Multi-Objective MDPs. Many algorithms
have been developed to find the optimal policy for sequential
decision-making for such systems.

Mixed-Observable Markov Decision Processes (MOMDPs)
are a variant of POMDPs, where a part of the state is
observable. We consider a class of MOMDPs where the
state space can be decomposed into a product space of a set
of state variables, and only a subset of the state variables
are measurable. For classical POMDPs, several algorithms
like Batch Enumeration [1] and the Witness or Incremental
Pruning [2] have been proposed that can compute optimal
policies. In order to solve high-dimensional POMDPs, [3]
proposes a Point-Based Value Iteration approach and [4]
proposes an efficient point-based POMDP planning algorithm
for approximating belief-space reachability. These algorithms
have been extended to solve MOMDPs by exploiting the
structure to reduce the dimensionality of the value function
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[5]. However, these algorithms primarily focus on reducing
the computational time required for solving MOMDPs, and do
not study the problem of sensor (or observation) set selection
for such systems in order to achieve optimal performance.
While the problem of sensor selection has been very well
studied for other classes of systems (e.g., linear dynamical
systems [6]-[7]), there has been no prior work on optimal
sensor selection for MOMDPs.

A. Motivation

In many autonomous systems, the number of sensors that
can be installed is limited by a certain budget and system
design constraints [8]. In case of robotics, system designers
often face the challenge of optimizing the sensor placement in
order to achieve certain design objectives, such as maximizing
observability and performance of the robot [9]-[10]. The
authors of [8] consider a path planning task where a mobile
robot has to map an unknown environment by gathering
information from a large sensor network. Due to limited
communication budget, the robot can access only a limited
number of sensors. Reinforcement learning techniques have
also been employed in applications like network congestion
control [11], load-balancing [12] and energy optimization
for large data-centers [13], where one has partial or limited
observability of the system. However, the problem of selecting
the optimal set of sensors that can result in better performance
of these systems has not been studied in the literature. Given
such scenarios where one can only utilize a limited number
of sensors in a system for sequential decision-making, in
this paper, we focus on the problem of selecting the best
set of sensors at design-time (under some budget constraints)
for a MOMDP which can maximize the optimal expected
infinite-horizon return for an agent.

B. Contributions

The problem of finding an optimal policy for general finite-
horizon POMDPs is PSPACE Complete [14]. In this paper, we
consider a special case of POMDPs, namely MOMDPs, and
show that the sensor selection problem for MOMDPs is NP-
Hard, even when one has access to an oracle that can compute
the optimal policy for any given instance of MOMDP. Second,
we show how greedy algorithms for sensor selection can
perform arbitrarily poorly for some instances of this problem.
This also shows that the value function (objective function)
of this problem is not generally submodular in the set of
sensors selected. Finally, we provide experimental results for
the greedy algorithm for several randomly generated instances
of the budgeted sensor selection problem and observe that,
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although greedy algorithms can perform poorly for certain
instances, they produce near-optimal solutions in many cases.

C. Related Work

In [15], the authors consider active perception under a
limited budget for POMDPs to selectively gather information
at runtime. However, in our problem, we consider design-
time sensor selection for MOMDPs, where the sensor set is
not allowed to dynamically change at runtime. A body of
literature considers the problem of sensor placement or sensor
scheduling for sequential decision-making tasks and model
the task of sensor placement itself as a POMDP [16], [17].
However, we consider the problem of selecting the optimal
set of sensors for a MOMDP.

In [6] and [7], the authors study the sensor selection
and sensor attack problems for Kalman filtering of linear
dynamical systems, where the objective is to reduce the
trace of the steady-state error covariance of the filter. The
authors of [7] show that these problems are NP-Hard and
there exists no polynomial-time constant-factor approximation
algorithms for such class of problems. Linear system models
often cannot accurately capture the dynamics of complex
systems in robotics applications; instead, such systems are
often modelled as MDPs or its variants like POMDPs and
MOMDPs. We analyze the complexity and approximability
of sensor selection for MOMDPs in this paper.

For combinatorially-hard sensor selection problems, various
approximation algorithms have proven to produce near-
optimal solutions [18]-[19]. The authors of [20] exploit the
weak-submodularity property of the objective function and
provide near-optimal greedy algorithms for sensor selection.
In contrast to these results, we demonstrate that greedy
algorithms for sensor selection in MOMDPs can perform
arbitrarily poorly and the value function of a MOMDP is not
generally submodular in the set of sensors selected.

II. BACKGROUND & PRELIMINARIES

A general MOMDP is defined by the tuple M := (S =
Sy X 8,0 =0, x O, A, T,R,7,by), where S is a finite
discrete state space (decomposed into the visible part S,
and the hidden part S), O is a finite discrete observation
space (decomposed into O, — the part of the observations
that match the visible state space S, and O,, — the remaining
observations), A is a finite discrete action space, 7 : S X
A x 8§ — [0,1] is a probabilistic transition function, R :
S x A — R is the reward function, and 0 < v < 1 is the
discount factor. The initial probability distribution over the
states (initial belief) is given by by.

We consider a class of MOMDPs where the state space
is a product space of a set of state variables defined by the
tuple M := (S =8 X8 x 83 x---X S»,L,A,T,R,’)/,bo),
in which we denote S, = Hiev S; to be the visible state
space and Sy, = [];.4, Si to be the hidden state space, where
V and ‘H denote the indices of the visible and hidden state
variables. We do not define an observation space explicitly
for this class of MOMDPs, since the observation space O is
just O, which exactly equals S,.

The agent maintains a belief over the true state of the
environment b € B, where B is the belief space, which
is the set of probability distributions over the states in S.
Denote 7 (s,a,s’) to be the state-transition function such
that 7 (s,a,s’) = P(str1 =8 | st = s,a1 = a).

In MOMDPs, the reward obtained by the agent is belief-
based, denoted as p(b,a), and is given by p(b,a) =
>-sb(s)r(s,a), where b(s) is the belief over the state s,
a is the action and r(s,a) is the reward obtained for taking
action a in the state s. The goal of an agent is to maximize
the expected infinite-horizon reward, given the initial belief bg.
The objective is then to find an optimal policy satisfying 7* =
argmax e V7™ (bo) with V™ (bg) = E[> 72~ pe | bo, 7],
where p; is the reward obtained at time ¢. The policy 7
belongs to a class of policies II which map the history of
observations, actions, and rewards to the next action. The
function V™ (b) can be computed using the value iteration
algorithm based on dynamic programming with V" (b) = 0,
and V7 (b) = lim,, o V;T(b) (as described in [5]).

III. PROBLEM FORMULATION

Consider an agent interacting with a MOMDP M : (S =
S1 X8 x83x xS, A, T, R,v,bp), where S is the state
space decomposed into sub-spaces S;, each corresponding
to a state-variable s; (which takes values from S;), and
A, T,R,v,by as defined in the previous section.

Define 2 = {w; | i = 1,2,...,n} to be a collection
of sensors, where the sensor w; measures exactly the state
variable s;. Let ¢; € R>( be the cost we pay to measure
state s; by placing the sensor w;, and let C' € R+ denote
the total budget for the sensor placement. Let I' C 2 be the
subset of sensors selected (at design-time) that generates
observations Yr(t) = {s;(t) | w; € T'}. At time ¢, the
agent has the following information: observations Y; =
{Yr(0),Yr(1),Yr(2), -+, Yr(¢)}, actions A; = {ap, a1, as, -
,a¢—1} and rewards Ry = {ro,r1,72,73,"* , It—1}-

Let ©;, = {Y;, Ay, R;} denote the set containing all the
information the agent has until time ¢. Define Iy = {7 |
7r : ©p — A} to be a class of history-dependent policies
that map from a set containing all the information known
to the agent until time ¢ to the action a; which the agent
takes at time ¢. The goal is to find an optimal subset of
sensors I'* C €, under the budget constraint, to be placed
that can maximize the expected value V¥ of the infinite-
horizon discounted reward obtained by the agent under the
optimal policy for that subset of sensors. We aim to solve
the optimization problem:

max V[
rco

s.t. Z c; <C.
w; el

We now define a decision version for the above optimization
problem as the Mixed Observable Markov Decision Process
Sensor Selection Problem (MOMDP-SS Problem).

3333

Authorized licensed use limited to: Purdue University. Downloaded on August 04,2023 at 18:42:56 UTC from IEEE Xplore. Restrictions apply.



Problem 1 (MOMDP-SS Problem): Consider a MOMDP
M and a set of n sensors (2, where each sensor w; € 2 is
associated with a cost ¢; € R>(. For a value Vr € R and
sensor budget C' € R, is there a subset of sensors I' C (2,
such that the optimal infinite-horizon expected discounted
return (or just referred to as return) V¥ for the optimal policy
in IIr satisfies V¥ > Vr and the total cost of the sensors

selected satisfies ) cpc; < C?

IV. COMPLEXITY ANALYSIS

We begin with some preliminary lemmas, which we will
use in characterizing the complexity of MOMDP-SS.

A. Preliminary Results

Consider the following instance of MOMDP-SS Problem.

Example 1: Consider a MOMDP given by M :=
{8, A, T,R,v,bo} having state space S = S; = {A, B},
0.5 0.5
0.5 0.5
for each action a € A, reward function R(s,a) = (r(A,0) =
R,r(A,1)=—R,r(B,0) = —R,r(B,1) = R) with R > 0,
discount factor y € (0, 1) and by = [0.5, 0.5]. Fig. 1 describes
state-action transitions along with their probabilities. The state
space of this MOMDP has only one sub-space &7, with state
variable s and the agent can measure this state by selecting
a noiseless sensor w = s. Let the sensor cost be ¢; = 1 and
the budget be C' = 1.

action space A = {0, 1}, transition function 7 =

Fig. 1. State transition diagram of M.

Lemma 1: For the MOMDP M defined in Example 1, the

following holds for v € (0, 1):

(i) If the state of M is measured (i.e., the agent knows if
s = A or s = B), the optimal infinite-horizon expected
reward beginning at any state is V*(s) = ﬁ.

(ii) If the state of M is not measured i.e., the agent only has
access to the sequence of actions and rewards, but not the
current state s, then the optimal infinite-horizon expected
reward beginning at a uniform belief is V*(b) = 0.
Proof: We will prove both (¢) and (i) as follows.

Case (i): Consider the case when state of the MOMDP M

is measured using sensor w. Based on the specified reward

function, we can see that the agent can obtain the maximum
reward (R) at each time-step by choosing action 0 when

s = A, and action 1 when s = B. This yields V*(s) =

max,, V™ (s) =Y 2 'R = (11_%7).

Case (ii): Consider the case when the state of the MOMDP

M is not measured (i.e., the sensor w is not selected and as

a result the agent does not know the current state but only
has access to the sequence of actions and rewards).

Due to uncertainty in the state, the agent maintains a belief
b. The agent performs a Bayesian update of its belief at
each time step using the information it has (i.e., the history
of actions and observations) [3]. Consider a uniform initial
belief for the agent. By construction, the agent has an equal
probability of being in either state A or state B, at each time-
step, regardless of the history. One can easily verify that the
agent’s belief over the states will always be equal to uniform
belief (stationary distribution of the state transition matrix),
i.e., b=10.5,0.5]. It is also easy to verify that the optimal
policy for the given instance of MOMDP is to take action
1" when in state B and to take action ‘0’ when in state A.
Therefore, the expected reward at each time-step is O (since
the state could be either A or B with equal probability). Thus,
we have V*(b) = 0. |

B. NP-Hardness of the MOMDP-SS Problem

In this section, we provide a reduction from the well-
known NP-Complete Knapsack Problem to the MOMDP-SS
Problem and prove that MOMDP-SS is NP-Hard. Consider
the decision-version of the Knapsack Problem (KSP) [21].

Problem 2 (The Knapsack Problem (KSP)): There are a
total of n items, [1,2,...,n|, where each item i has a
value v; € R>o and a weight w; € R>g. The Knapsack
problem is to decide, given two positive numbers W and
Vo, whether there exists a subset I C [1,...,n] such that
Zielwi < W and Zielvi > Vb

Theorem 1: The MOMDP-SS Problem is NP-Hard.

Proof: We give a reduction from Knapsack to the
MOMDP-SS Problem. Consider the KSP with n items with
non-negative weights (wi, ws, ..., wy,), non-negative values
(v1,v2, ..., vy,), weight threshold W > 0 and value threshold
Vo > 0. The goal is to decide if there is a subset of items
with total weight at most W, such that the corresponding total
value is at least V. Given the above instance of the KSP,
we now proceed to construct an instance of MOMDP-SS
Problem.

Let the MOMDP M* consist of n identical sub-
MOMDPs {M;, Ma, ..., M, } where each MOMDP M, :
{Si,Ai,’];,Ri,’yi, (bo)l} is the MOMDP M as defined in
Example 1. We will now define the state-space, action-space,
transition function, reward function and discount factor for
M* as follows:

State Space S: Consider states S; corresponding to the
MOMDP M;. We define the state space S of the n-state
MOMDP M* as

S = {(Sl,SQ, .. .7Sn)2 S; € {A,B}} (D

Action Space A: Consider the actions A; corresponding
to the MOMDP M. We define the action space A of the
n-state MOMDP M* as

A= {(A1,42,...,4,): A; € {0,1}}. (2

Transition Function T : The probabilistic transition function
T:8xAx8 — [0,1] of the n - state MOMDP M* is
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a constant function for any present state (s), action (a) and
next state (s’) combination, given by
1
= 5
Note that the transition function is a constant and can be
compactly represented, for polynomial-time reduction.
Discount Factor y: Let the discount factors 7; ’s of all
MOMDP’s M; be equal to each other and equal to the
discount factor of MOMDP M*,

T:=P@'=|a=-,s5s=") 3)

V= = = ... = = 0.95. €))

Reward Function R: Let reward R; of MOMDP M; be
chosen such that R; = v;(1 — v) where v; corresponds to
the value of the ' item of Knapsack. Denote R;(s;,a;) :
Si x Ay — {—R;,R;} to be the reward function of the
MOMDP M; (as defined in Example 1). We define the
reward function of the n - state MOMDP M* as

Ri=> Ri(siai). (5)
=1

Denote the set of available sensors as €. The sensor w; € )
can exactly measure the state s; (i.e., the sensor w; can identify
if the state s; of the MOMDP M; is A or B). Set the cost
of sensor w; to be ¢; = w;, where w; is the weight of the
i’ item of Knapsack. Set the value function threshold to
be Vr =V} and the sensor budget to be C = W, where 1
and W are the value and weight thresholds of the Knapsack
problem, respectively. Let the initial belief by be a uniform
probability vector.

We have now successfully created an instance of the
MOMDP-SS problem using an instance of the Knapsack
problem. The n-state MOMDP-SS Problem instance is thus:
MOMDP M* : {S, A, T,R,v,bo} (1) - (5), a set of n
sensors 2 with costs {cy,ca,...c,}, sensor budget C and
expected infinite-horizon return (value function threshold)
Vr. The goal is to decide if there is a subset of sensors
I" C Q with total cost at most C, such that the corresponding
infinite-horizon expected return for an agent interacting with
the MOMDP is at least Vr.

Suppose the answer to the Knapsack Problem is True, then
there exists a subset of indices I C [1,2,...,n] such that
the total value satisfies Zie 7 Vi = Vo and the total weight
satisfies > ,_;w; < W. By construction ), ,w; < W
implies Zie ;¢ < C. Since the state transitions of MOMDP
M* are decoupled and the reward R is an algebraic sum of
the rewards R;, the value function of the MOMDP M* is
also an algebraic sum of the value functions of the individual
MOMDPs, i.e, V(s) = E?Zl Vi(s;). By Lemma 1, the return
for the MOMDP M; is R;/(1 — ) in case the sensor w;
is selected or O in case the sensor w; is not selected. Thus,
weget Vii =3  Ri/(1—7) = > ,c i Since Y, v >
Vo = Vr, we have V' > V7, and thus the answer to the
constructed MOMDP-SS instance is also True.

Conversely, if the answer to the MOMDP-SS is True,
then there exists a subset of sensors I' C 2 such that
Zwier ¢i < Cand V¥ > Vp. Let I C [1,2,...,n] denote

the indices of the sensor subset. It follows from the previous
arguments that ), v; > Vg and ), ; w; < W. Thus, the
answer to the KSP is True. We now have a polynomial-time
reduction from the Knapsack Problem (KSP) to the MOMDP-
SS Problem. Since the Knapsack Problem is NP-Complete
[21], the MOMDP-SS Problem is NP-Hard. |

V. APPROXIMABILITY OF SENSOR SELECTION

Greedy algorithms, which iteratively and myopically
choose items that provide the largest immediate benefit,
provide computationally tractable and near-optimal solutions
to many combinatorial optimization problems [19],[22]-[23].
Algorithm 1 provides a greedy approach for any given instance
of MOMDP-SS with uniform sensor costs to output a subset
of sensors to be selected.

Algorithm 1: Greedy Algorithm for MOMDP-SS
Data: MOMDP M = (S, A, T, R,v,bg), set of
candidate sensors (2, uniform sensor costs
C = (c1,c2, ..., ¢y), and sensor budget C
Result: A set I' of selected sensors
k0T«
while k£ < C do
for i € (Q\T) do
| Calculate optimal expected return V*(I' U {i})
end
j = argmax; (V*(I' U {i}))
F%FU{j},k‘(—k"i‘Clj
end

In this section, we present an explicit example showing
that the greedy algorithm can perform arbitrarily poorly for
even simple cases of the MOMDP-SS with just 4 states.

Example 2: Consider an instance of the MOMDP-SS
problem with the MOMDP M = {S,A,T,R,v,bo}
constructed with 4 sub-MOMDPs { M1, Ma, M3, My},
where MOMDPs { M, My, M3} are the single-state
variable MOMDPs as defined in Example 1. The MOMDP
My, has the state s4, which depends on states so and sg
as s4 = S9 D s3, where @ is the Exclusive-OR (XOR)
Boolean function over the binary states s, and s3.! The state
transitions of s; depend on the independent state transitions
of so and ss, while the state transitions of sp,s2,S3 are
independent of each other. However, the action space and
reward function for the MOMDP M, is the same as that of
the single-state variable MOMDP as defined in Example 1.
State Space S: The state space S of the MOMDP M is a
set of 4-tuples defined as S := {(s1, 2, 53, 54)|(51, 52, $3) €
{A, B}3, Sy = 82 D 83};

Action Space A: The action space A of the
MOMDP M is a set of 4-tuples defined as
A= {(a1,as,a3,a4)|(a1,az,as3,as) € {0,1}*};

Transition Function T : The probabilistic transition function

IThe XOR function over the binary states { A, B} is defined as follows:
{AbA=A A®B=B,BGA=B,B®B=A}
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T:8xAxS — [0,1] of the MOMDP M is a constant
function given by 7 :=P(s' =:| a =+, s =) = 15;
Reward Function R: Let the reward functions R;(s;,a;) of
MOMDPs M; for i = {1,2,3,4} be defined as in Example
1, with R; € ]RZO such that R4y > Ry = R1 > Rs.

We now define the reward function for the MOMDP M as
R :=Ri(s1,a1) + Ra(s2,a2) + Ra(s4, as); (6)

Discount Factor ~y: Let the discount factors of MOMDPs M;
be equal to the discount factor of M i.e., 11 =72 =3 =
Y4 =7

Let Q = {wi,ws,ws} be the set of sensors which can
measure states, Si, Sa, S3 respectively. Let the cost of the
sensors be C = (¢; = 1,c2 = 1,¢3 = 1) and the sensor
budget be C' = 2. Assume uniform initial beliefs (by) for
all the MOMDPs M; and M. We now apply the greedy
algorithm described in Algorithm 1 to this instance of the
MOMDP-SS. Ig:gr any such instance of MOMDP-SS, define
rgre(T') = {5, where V™ and VP are the infinite-
horizon expecrted return obtained by the greedy algorithm
and the optimal infinite-horizon expected return respectively.
Define h = R4/ R>.

Proposition 1: For the instance of MOMDP-SS prob-
lem described in Example 2, the ratio r,.(I") satisfies
limp, 00 Tgre(I') = 0.

Proof: By Equation (6), we know that the overall reward
of the MOMDP M depends on the individual rewards of
MOMDPs M1, My and M,. However, there is no sensor
that can measure the state s, directly. In the first iteration, the
greedy algorithm will have to break-tie between w; and wso,
because R; = Rj. In general, many greedy algorithms use an
arbitrary tie-breaking heuristic. Without loss of generality, we
can assume that greedy chooses w;. In the second iteration,
greedy would pick ws (because Ry = R, > R3) and
terminate due to the budget constraint. Therefore, the sensor
subset selected by the greedy algorithm is I' = {wy,ws}.
By Lemma 1 and Equation (6), the infinite-horizon expected
reward of the greedy algorithm is

VFgre _ Rl + R2 _ 2R2 )

11—y 1—v 1-—¥v

Consider the following selection of sensors for the MOMDP-

SS instance: I' = {ws, w3 }. By selecting sensors wy and ws,

the states s and s3 can be measured. Since the state s4 is

a function of states s» and s3, the agent can estimate the

state s4 (measure it indirectly) via sensors ws and ws. As a

result, both so and s4 will be measurable. By Lemma 1 and
Equation (6), the infinite-horizon expected reward is

R2 R4 o R2+R4

)

Remark 1: Proposition 1 means that if we make Ry
arbitrarily larger than Rp, the expected return obtained by
greedy can get arbitrarily small compared to the expected
value obtained by optimal selection of sensors. This is because
greedy picks sensors w; and we due to its myopic behavior.
It does not consider the fact that, in spite of R3 being the
least reward, selecting ws would eventually lead to an indirect
measurement of s4 having the highest reward R4. An expected
consequence of the arbitrarily poor performance of the greedy
algorithm is that the optimal value function of the MOMDP
is not necessarily submodular in the set of sensors selected.
For completeness, we now state this explicitly.

A. Lack of Submodularity of the Value Function

Submodular set functions have a property of diminish-
ing returns, which makes them suitable for approximation
algorithms.

Definition 1 (Submodular Function): A submodular func-
tion over a finite set € is a set function f : 2 — R, which
satisfies f(X U{z}) — f(X) > f(Y U{z}) — f(Y), for all
X, YCQwith X CY and forall z € Q\ Y.

Greedy algorithms have a guarantee of producing at
least (1 — 1/e) times the optimal (maximal) solution for
monotonically increasing, submodular and non-negative (or
normalized) objective functions. It is easy to verify that the
value function of MOMDP-SS is a monotonically increasing,
non-negative function. Since we showed that a greedy
algorithm can perform arbitrarily poorly for MOMDP-SS,
we have the following result.

Corollary 1: The value function of the MOMDP-SS prob-
lem is not necessarily submodular in the set of sensors (I")
selected. ]

VI. EXPERIMENTS

In the previous section, we showed that the greedy
algorithm for MOMDP-SS can perform arbitrarily poorly.
However, this arbitrary poor performance was for a specific
instance of MOMDP-SS, and in general, greedy might not
actually perform poorly for all instances. In this section, we
evaluate the greedy algorithm for several randomly generated
instances of MOMDP-SS. Since MOMDPs are a special class
of POMDPs, we use the SolvePOMDP software package
[24], a Java program that can solve POMDPs optimally using
incremental pruning [2] combined with state-of-the-art vector
pruning methods [25]. We run the exact algorithm in this
package to compute the optimal solution for infinite-horizon
cases by setting a value function tolerance n = 1 x 1076 as a
stopping criterion. We generate 20 instances of MOMDP-SS
with each instance having |S| = 16 states (4 binary state

VPt = = (8) variables) and |A| = 16 actions. The transition function 7 :
A 1=n SxAx8 — [0,1] for each starting state s € S, action a € A
By Equations (7) and (8), we have, and ending state s’ € S is a value uniformly sampled over a
2R, 2 2 probability simplex (A|s|). The rewards R : & x A — Ryq
rgre(I') = Ro+ R = Ra : (9 for each state-action pair (s,a) are randomly sampled from
2 4 1432 1+4h ) ,
2 abs(N(0,0)), with ¢ ~ uniform random(0,10). We
Therefore, limy,_yo0 7gre(I') = 0. B consider a set of 4 noise-less sensors 2 = {w1,ws,ws, w4},
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which can measure the states (s1, $2, S3, S4), respectively. We
consider uniform sensor costs ¢; =c; =c3 =c¢4 =1 and a
sensor budget of C' = 2. We apply a brute-force technique by
generating all possible sensor subsets I' C 2 of size |T'| = 2,
to compute the optimal set of sensors I'* and compute the
optimal return V;?”* using the solver. We run Algorithm 1
for each of these instances to compute the return V™.

10

Number of Instances

N

00 20 40 60 80 100

Percentage Return from Greedy with respect to Optimal

Fig. 2. Empirical distribution of percentage of expected infinite-horizon
return from greedy sensor selection with respect to that of optimal sensor
selection for 20 randomly generated MOMDP-SS instances.

It can be seen from Fig. 2 that greedy shows near-optimal
performance for many instances, with an average of 90.19%
of the optimal. We conclude from these results that, in spite of
arbitrarily poor performance for some instances, in practice,
greedy may be able to achieve near-optimal solutions.

VII. CONCLUSIONS

In this paper, we studied the budgeted design-time sensor
selection problem for MOMDPs, and proved that it is NP-hard
in general. We analyzed the performance of greedy algorithms
for sensor selection, and explicitly provided an example
showing that greedy algorithms can perform arbitrarily poorly
on some instances. Thus, one cannot provide theoretical
guarantees for the performance of the greedy algorithm.
Further, we showed the lack of submodularity of the value
function of the MOMDP, to conclude that this problem is
more difficult than other variants of sensor selection problem
that have submodular objectives. Finally, we demonstrated the
empirical performance of the greedy algorithm for randomly
generated MOMDP-SS instances and concluded that although
greedy performed arbitrarily poorly for some instances, it
provided near-optimal solutions for many instances. Future
works on extending the results to MOMDPs over finite time
horizons, and identifying classes of systems that admit near-
optimal approximation algorithms are of interest.
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