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Abstract

The complex physics and numerous failure modes of structural impact creates challenges when designing for
impact resistance. While simple geometries of layered material are conventional, advances in 3D printing
and additive manufacturing techniques have now made tailored geometries or integrated multi-material
structures achievable. Here, we apply gradient-based topology optimization to the design of such structures.
We start by constructing a variational model of an elastic-plastic material enriched with gradient phase-
field damage, and present a novel method to efficiently compute its transient dynamic time evolution. We
consider a finite element discretization with explicit updates for the displacements. The damage field is solved
through an augmented Lagrangian formulation, splitting the operator coupling between the nonlinearity and
non-locality. Sensitivities over this trajectory are computed through the adjoint method, and we develop
a numerical method to solve the resulting adjoint dynamical system. We demonstrate this formulation by
studying the optimal design of 2D solid-void structures undergoing blast loading. Then, we explore the trade-
offs between strength and toughness in the design of a spall-resistant structure composed of two materials
of differing properties undergoing dynamic impact.

Keywords: Optimization, Dynamics, Damage Mechanics, Finite Elements, Variational Calculus

1. Introduction

The design of structures for impact or blast loading is encumbered by the complex interactions be-
tween wave propagation, plasticity, and material damage. This leads to failure modes such as plugging,
fracture, petaling, and spall which are highly dependent on the material parameters, loading conditions,
and structural layout [1]. This is further complicated by the trade-offs between properties such as strength
and toughness when designing integrated structures of multiple materials. In practice, engineers typically
start with industry standards and intuition, followed by sophisticated dynamical simulations to iterate on
a design before it undergoes physical testing. Usually, these designs consist of simple geometries of layered
materials [2–4]. However, with recent advances in additive manufacturing and 3D printing, we may now look
to tailored designs with complex geometries and integrated materials [5–7]. Additionally, the exponential
growth of computational capabilities makes algorithmic optimal design methods feasible. This may allow us
to efficiently design structures of unprecedented impact performance in scenarios where intuitive design is
not sufficient.

Of the optimal structural design formulations, topology optimization has proven to be one of the most
powerful methodologies. Density-based methods consider the density of material at each point in the do-
main as the unknown before the design is posed as an optimization problem over these densities. Then,
gradient-based optimization methods are used to iteratively update the design, where sensitivities are usu-
ally computed through the adjoint method. Originally introduced to optimize the compliance of linear elastic
structures [8], density-based topology optimization has since been applied to a wide range of applications
including acoustic band-gaps [9], piezoelectric transducers [10], micro-electro-mechanical systems [11], energy
conversion devices [12], and fluid structure interaction [13]. Another common method is level-set topology
optimization. Here, the boundary of the structure is defined as a level set of a scalar-valued function, and
optimization is performed over this function using the shape-gradient [14]. Finally, phase-field approaches
remain popular as their variational form yields a favorable mathematical structure [15].

For the optimal design of impact problems, it is necessary to include transient dynamics, rate-dependent
plasticity, and damage mechanics when modeling the material response. Past studies have addressed optimal
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design for transient dynamic evolution with elastic material models [16, 17]. Additionally, plasticity has been
considered in both quasi-static [18–22] and dynamic settings [23, 24]. However, a structure with damage
has only been considered in the quasi-static case. This has been studied in both the ductile [25, 26] and
quasi-brittle [27–29] regime to design damage resistant structures. A variational mechanics model, where
solutions are computed through energy principles, are favored to accurately model the physics and provide
mathematical structure. Furthermore, an efficient computational method for these fields is necessary, as the
iterative design process requires repeatedly simulating the dynamics for updated designs.

To address the above mentioned requirements, we consider small-strain, rate-dependent plasticity en-
riched with continuum damage through a variational phase-field model in a transient dynamic setting. To
efficiently simulate the dynamic response, we consider a finite element discretization where we employ an
explicit update scheme for the displacement fields, and an implicit update for both the plasticity and damage.
Because these irreversible damage updates are both nonlinear and non-local in nature, a direct computation
would be prohibitively expensive. To this end, we use an operator-splitting augmented Lagrangian alternat-
ing direction method of multipliers. By introducing an auxiliary damage and Lagrange multiplier field, we
accurately and efficiently solve for the damage updates by iterating between a nonlinear local problem, a
linear global problem, and a Lagrange multiplier update.

We look to optimize the material placement of the structure over the dynamic trajectory for a given
objective function. By assuming the material parameters are dependent on a continuous design variable, we
derive sensitivities through the adjoint method. This results in an adjoint dynamical system that we solve
in a manner which shares similarities to the forward problem numerics. We use a explicit update scheme
for the adjoint displacement variable, and another augmented Lagrangian method for the adjoint damage
variable. However, the adjoint problem is solved backwards in time, and the adjoint damage operator is linear
rather than the nonlinear operator seen in the forward problem. With the adjoint solution, we compute the
sensitivities and update the design.

We start in Section 2 by presenting the energy functional for system, then discuss the dynamic equilibrium
relations. We apply the adjoint method, where sensitivities and adjoint relations are derived for a general
objective. In Section 3 we detail the solution process. First, we apply an augmented Lagrangian to operator
split the damage updates. Then, using a finite element discretization, we solve the system with explicit
displacement updates, followed by implicit plasticity and damage updates. We demonstrate the accuracy
and efficiency of the numerical scheme by considering the solution convergence and time-scaling for a model
problem. We use a similar numerical scheme for the adjoint system and the associated dual variables. Next,
in Section 4, we discuss material interpolation schemes through intermediate densities for both solid-void
structures and multi-material designs. In Section 5, we demonstrate the methodology by looking at two
examples. First we consider the design of 2D solid-void structures optimized for blast loading. Next, we
explore the trade-offs between strength and toughness in a two material spall-resistant structure undergoing
impact. Finally, in Section 6, we summarize our findings and discuss further directions.

2. Theoretical Formulation

2.1. Forward Problem

We consider an elastic-plastic material capable of sustaining damage occupying a bounded, open domain
Ω ⊂ Rn in its reference configuration over time [0, T ]. We assume prescribed loads on ∂fΩ ⊂ ∂Ω and
prescribed displacements on ∂uΩ ⊂ ∂Ω. We consider small-strain, rate-dependent J-2 plasticity with isotropic
hardening to model the plasticity [30, 31]. Damage is measured by the phase-field scalar quantity a :
Ω× [0, T ] ↦→ [0, 1], where values of 0 and 1 correspond to the undamaged and fully damaged states. Here, we
use a phase-field fracture model which we adapt for damage by considering a finite length scale [32]. These
models have been modified for ductile fracture by including small-strain plasticity [33], and we adopt a
similar formulation. We assume the material parameters are dependent on a design field η : Ω ↦→ [0, 1] which
determines the species of material at each point. We consider a variational structure, where minimization
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principles yields the internal variable evolution [34]. Thus, we consider the incremental energy

E(u, q, εp, a, η) =
∫︂
Ω

{︄
W e(ε, εp, a, η) + d(a)

[︃
W p(q, η) +

∫︂ t

0

g∗(q̇, η) dt

]︃

+
Gc(η)

4cw

[︃
wa(a, η)

ℓ(η)
+ ℓ(η)∥∇a∥2

]︃
+

∫︂ t

0

ψ∗(ȧ, η)dt

}︄
dΩ,

(1)

where u : Ω× [0, T ] ↦→ Rn is the displacement field, εp : Ω× [0, T ] ↦→ Rn×n is the volume preserving plastic
strain, and q : Ω× [0, T ] ↦→ R+ is the accumulated plastic strain whose evolution is defined by

q̇ =

√︃
2

3
ε̇p · ε̇p. (2)

W e is the stored elastic energy density, which accounts for the tension-compression asymmetry in its damage
dependence [35],

W e(ε, εp, a, η) =
K(η)

2
tr−(εe)2 + d(a)

[︃
K(η)

2
tr+(εe)2 + µ(η)εeD : εeD

]︃
, (3)

where K and µ are the bulk and shear moduli. d(a) models the weakening of the material with damage,

d(a) = (1− a)2 + d1a
2, (4)

where d1 << 1. εe = ε− εp is the elastic strain, and εeD is its deviatoric component. tr+(ε) and tr−(ε) are
the positive and negative parts of the strain trace,

tr+(ε) = max(tr(ε), 0), tr−(ε) = min(tr(ε), 0). (5)

This decomposition of the volumetric strain allows for tension-compression asymmetry in the damage model;
the tensile bulk modulus is affected by damage, while the compressive bulk modulus remains unaffected. W p

and wa are the plastic and damage hardening functions, respectively. The damage parameters Gc and ℓ
control the toughness and damage length scale, with cw as a normalization constant. Finally, the rate
dependence of both the damage and plastic hardening is handled by the dissipation potentials ψ∗ and g∗,
respectively. These functions also account for irreversibility, as they take a value of +∞ for negative rates,

g∗(q̇, η) =

{︄
ḡ∗(q̇, η) q̇ ≥ 0

∞ q̇ < 0
, ψ∗(ȧ, η) =

{︄
ψ̄
∗
(ȧ, η) ȧ ≥ 0

∞ ȧ < 0
. (6)

For the plastic potentials, we consider power-law hardening and rate-sensitivity functions

W p(q, η) = σy

[︄
q +

nεp0
n+ 1

(︃
q

εp0

)︃(n+1)/n
]︄
, ḡ∗(q̇, η) =

mσy ε̇
p
0

m+ 1

(︃
q̇

ε̇p0

)︃(m+1)/m

. (7)

εp0 and ε̇p0 are the reference plastic strain and strain rate and σy is the initial yield stress. n and m are the
powers for the hardening and rate sensitivity, with the perfecty plastic and rate-indepdendent cases occurring
as n → ∞+ and m → ∞+, respectively [30]. These plastic hardening and rate-hardening parameters may
all depend on η. For the damage hardening, we consider a quadratic function

wa(a, η) = w1a+ (1− w1)a
2, (8)

where w1 ∈ [0, 1], which ensures wa(1) = 1, and may be dependent on η. For simplicity, we consider the
damage to be rate-independent by choosing ψ̄

∗
(ȧ, η) = 0. Here, we scale both the plastic potential and shear

modulus with the same damage function d(a). Thus, the yield strength and Mises stress have the same
damage dependence, leading to damage independent plastic updates. A further discussion on the behavior
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of a similar material model can be found in [33]. However, this choice of constitutive is not essential, and
the methodologies we present below remain general.

We consider dynamic evolution through the incremental action integral

L(u, q, εp, a, η) =
∫︂ t2

t1

{︄
E(u, q, εp, a, η)−

∫︂
Ω

ρ(η)

2
|u̇|2dΩ−

∫︂
Ω

fb · u dΩ−
∫︂
∂fΩ

f · u dS

}︄
dt, (9)

where fb and f are the body force and surface tractions, and ρ is the material density. Stationarity of this
action integral gives the dynamic evolution and the kinetics of the internal variables [36]

0 =

∫︂
Ω

[︃
ρü · δu+

∂W e

∂ε
· ∇δu

]︃
dΩ−

∫︂
Ω

fb · δu dΩ−
∫︂
∂fΩ

f · δu dΩ ∀δu ∈ U , (10a)

0 ∈ σ̄M − ∂W p

∂q
− ∂g∗, on Ω, (10b)

0 = εṗ − q̇M on Ω, (10c)

0 ∈ ∂W e

∂a
+
∂d

∂a

(︃
W p +

∫︂ t

0

g∗(q̇) dt

)︃
−∇ ·

(︃
Gcℓ

2cw
∇a
)︃
+

Gc
4cwℓ

∂wa

∂a
+ ∂ψ∗ on Ω, (10d)

a = 0 on ∂uΩ, ∇a · n = 0 on ∂fΩ. (10e)

Here, we assume quiescent initial conditions. U is the space of admissible displacement variations

U = {u ∈ H1(Ω), u = 0 on ∂uΩ}. (11)

(10a) is the second-order dynamic evolution of the displacement field. (10b) and (10c) are the yield relation
and the evolution of the plastic strain, where σ̄M is the normalized Mises stress (divided through by d(a)),
and M is the direction of plastic flow. (10d) is the irreversible evolution of the damage field, with (10e)
being the boundary conditions for a. The differential inclusion in the yield relation and damage equilibrium
enforces the irreversibility of their respective internal variables. A further discussion on the damage evolution
relation (10d) can be found in [37].

We briefly comment on the regularity of the solution to the forward problem. The plastic strains may
be discontinuous in space, however, they remain continuous in time as the rate-dependence provides tem-
poral regularity. The damage field, a ∈ L∞((0, T );H1(Ω;Rn)), is continuous in space while being pos-
sibly discontinuous in time in the rate-independent case (ψ̄

∗
(ȧ, η) = 0). Finally, the displacement field,

u ∈ H1((0, T );H1(Ω;Rn)), is continuous in both space and time as the inertia provides temporal regularity.

2.2. Sensitivities and Adjoint Problem

We look to find the design field η(x) such that an objective, dependent on the dynamic trajectory, is
minimized. Thus, we consider a general objective of integral form

min
η(x)

O(η) :=

∫︂ T

0

∫︂
Ω

o(u, q, εp, a, η) dΩ dt

subject to: Equillibrium relations in (10).

(12)

To conduct gradient-based optimization, the variation of the objective with η must be computed. For this, we
employ the adjoint method [38]. We introduce fields ξ, γ, µ, and b as the dual variables to the displacement,
plastic hardening, plastic strain, and the damage fields, respectively. We consider the necessary Kuhn-Tucker
conditions for the irreversible equilibrium relations, and carry out the adjoint calculation. The full details
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of this can be found in Appendix A. This gives the total variation of the objective as

O,ηδη =

∫︂ T

0

∫︂
Ω

{︃
∂o

∂η
+
∂ρ

∂η
ü · ξ + ∂2W e

∂ε∂η
· ∇ξ + bȧ

(︃
∂2W e

∂a∂η
+
∂d

∂a

∂W p

∂η
+
∂d

∂a

∫︂ t

0

∂g∗

∂η
dτ

)︃
+

1

2cw

∂(Gcℓ)

∂η
∇(bȧ) · ∇a+ bȧ

(︃
wa′

4cw

∂(Gc/ℓ)

∂η
+
∂2ψ∗

∂ȧ∂η

)︃
+ γq̇

(︃
∂σ̄M
∂η

− ∂σ0
∂η

− ∂2g∗

∂q̇∂η

)︃}︃
δη dΩ dt,

(13)
where the adjoint variables satisfy the dynamic evolution

0 =

∫︂
Ω

[︃
ρξ̈ · δηu+

∂o

∂u
· δηu+

(︃
∇ξ · ∂

2W e

∂ε∂ε
+ bȧ

∂2W e

∂a∂ε
+ γq̇

∂σ̄M
∂ε

− q̇µ · ∂M
∂ε

)︃
· ∇δηu

]︃
dΩ ∀δηu ∈ U ,

(14a)

d

dt

[︄
γ

(︃
σ̄M − σ0 −

∂ḡ∗

∂q̇

)︃
− γq̇

∂2ḡ∗

∂q̇2
+
∂ḡ∗

∂q̇

(︄∫︂ T

t

bȧd′(a)dτ

)︄
− µ ·M

]︄

=
∂o

∂q
+ bȧd′(a)

∂W p

∂q
− γq̇

∂σ0
∂q

on Ω, (14b)

dµ

dt
=

∂o

∂εp
+∇ξ · ∂

2W e

∂ε∂εp
+ bȧ

∂2W e

∂a∂εp
+ γq̇

∂σ̄M
∂εp

− q̇µ · ∂M
∂εp

on Ω, (14c)

d

dt

[︄
Dab+

∂2ψ̄
∗

∂ȧ2
bȧ

]︄
=
∂o

∂a
+
∂2W e

∂a∂ε
· ∇ξ + bȧ

(︃
∂2W e

∂a2
+

Gc
4cwℓ

∂2wa

∂a2

)︃
+ bȧd′′

(︃
W p +

∫︂ t

0

g∗dτ

)︃
−∇ ·

(︃
Gcℓ

2cw
∇(bȧ)

)︃
on Ω, (14d)

ξ|t=T = 0, ξ̇|t=T = 0, γ|t=T = 0, µ|t=T = 0, b|t=T = 0,

where

Da =
∂W e

∂a
+
∂d

∂a

(︃
W p +

∫︂ t

0

g∗ dτ

)︃
−∇ ·

(︃
Gcℓ

2cw
∇a
)︃
+

Gc
4ℓcw

∂wa

∂a
+
∂ψ̄

∗

∂ȧ
. (15)

These are dependent on the forward problem solution and must be solved backwards in time. Once the
forward problem is solved in time for u(t), a(t), q(t), and εp(t), they can be used to solve the adjoint problem
backwards in time for ξ(t), b(t), γ(t), and µ(t). The sensitivities can then be computed from (13). Details of
the numerical methods to solve the forward and adjoint problem are discussed in the proceeding section.

It should be noted that both the adjoint problem and expression for the sensitivities may have issues
with well-posedness. As we have used an elastic energy function which remains strongly convex, the Hessian
which appears above is well defined. However, for a different choice of elastic energy this may not be the
case. Furthermore, the convexity of the adjoint problem with respect to the entire variable set {ξ, γ, µ, b}
is not established, which may lead to an ill-posed problem. While inertia is thought to provide some
temporal regularity, the reader is nontheless cautioned in this regard. Additionally, issues may arise from
the possible temporal discontinuities of the damage field discussed previously in Section 2.1. Thus, the ȧ
found in the adjoint relations may not be well-defined. A rigorous investigation into these matter would
be quite worthwhile. However, after discretization we find that the presented formulation is sufficient in
practice, perhaps providing the required regularity.

3. Numerics

3.1. Forward Problem

We discuss the details for the numerical evolution of the forward dynamics. First we introduce an
augmented Lagrangian formulation to split the nonlinear and non-local operator coupling in the damage
field equilibrium. Then, using a finite element discretization, we discuss the computational procedure for
updating the displacements, plasticity and damage variables. Finally, we study the accuracy and efficiency
of our formulation by studying the solution behavior for varying mesh sizes.
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3.1.1. Augmented Lagrangian

The differential inclusion and gradient terms in the damage evolution of (10d) result in a nonlinear and
non-local state equation for the damage updates. While there exist methods to directly solve these non-
local constrained problems, they result in expensive computations that would be required at every timestep.
Thus, we consider an augmented Lagrangian formulation to split this operator, and solve the system using
an alternating direction method of multipliers (ADMM) [39, 40]. This method has been used to efficiently
solve non-linear elasticity problems with internal variable evolution [41]. We introduce the auxiliary field
α ∈ L2(Ω) and constrain a = α weakly for all time with the Lagrange multiplier λ ∈ L2(Ω) and penalty
factor r. Thus, we consider the modified incremental energy

E =

∫︂
Ω

{︄
W e(ε, εp, α, η) + d(α)

[︃
W p(q, η) +

∫︂ t

0

g∗(q̇, η) dt

]︃

+
Gc(η)

4cw

[︃
wa(α, η)

ℓ(η)
+ ℓ(η)∥∇a∥2

]︃
+

∫︂ t

0

ψ∗(α̇, η)dt+
r

2
(a− α)2 + λ(a− α)

}︄
dΩ.

(16)

Stationarity of the action integral using this augmented energy results in the equilibrium relations identical
to that of (10), with the exception that (10d) be replaced by

λ+ r(a− α)− ∂W e

∂α
− d′(α)

[︃
W p(q) +

∫︂ t

0

g∗(q̇) dt

]︃
− Gc

4cwℓ

∂wa

∂α
∈ ∂ψ∗ (α̇) on Ω, (17a)

0 =

∫︂
Ω

[︃
Gcℓ

2cw
∇a · ∇δa+ r(a− α)δa+ λδa

]︃
dΩ ∀δa ∈ A, (17b)

0 =

∫︂
Ω

(a− α)δλ dΩ ∀δλ ∈ L2(Ω), (17c)

where
A = {a ∈ H1(Ω), a = 0 on ∂uΩ}. (18)

With α as the unknown, (17a) is a nonlinear local problem. Correspondingly, the second line (17b) is a linear
global problem for a. The de-coupling of nonlinearity and non-locality allows for the efficient computation
of the damage evolution, which we discuss with the numerical implementation.

3.1.2. Discretization and Solution Procedure

We discretize the system with standard p = 1 Lagrange finite elements for the displacement field u and
the damage field a as

u =

nu∑︂
i=1

uiN
u
i (x), a =

na∑︂
i=1

aiN
a
i (x), (19)

where Nu
i : Ω ↦→ Rn and Na

i : Ω ↦→ R are standard vector and scalar valued first-order shape functions with
compact support. The fields α, q, and εp are discretized at quadrature points

α(xg) = αg, q(xg) = qg, εp(xg) = εpg, (20)

for some Gauss point xg. The Lagrange multiplier field λ is discretized in the same finite element space we
use for a as

λ =

na∑︂
i=1

λiN
a
i (x). (21)

Finally, the design field η is assumed constant on each element.
We start with an explicit central difference scheme to update the displacement field. Because the plasticity

updates do not depend on the damage field, q and εp are next computed implicitly with a backwards Euler
update. Finally, the damage field is updated implicitly by iterating between a nonlinear local problem for
α by solving (17a), a linear global problem for a through (17b), and a Lagrange multiplier update for λ
until convergence. Since the operator for the global problem remains identical between iterations, we need
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only construct the system matrix and perform the sparse LU decomposition once, where subsequent solves
involve only a right-hand side assembly and back-substitution. For the n to n+1 time-step the displacement
updates are

üni =M−1
ij F

n
j (u

n, εp,n, αn, tn),

u̇
n+1/2
i = u̇

n−1/2
i +∆tn üni ,

un+1
i = uni +∆tn+1/2 u̇

n+1/2
i ,

(22)

where

Mij =

∫︂
Ω

ρ(x)Nu
i ·Nu

i dΩ, Fnj =

∫︂
Ω

[︃
−∂W

e

∂ε
· ∇Nu

j + fb ·Nu
j

]︃
dΩ−

∫︂
∂fΩ

f ·Nu
j dΩ. (23)

In standard fashion, these integrals are approximated with Gauss quadrature. Again, since the plastic
evolution does not depend on the damage field, we update the plasticity variables through an implicit
backwards Euler discretization. For this, we employ a predictor-corrector scheme [30] to solve point-wise at
each quadrature point,

0 ∈ σ̄M (εn+1|xg
, εp,(n+1)
g , η(xg))− σ0(q

n+1
g , η(xg))− ∂g∗

(︄
qn+1
g − qng

∆t
, η(xg)

)︄
,

εp,(n+1)
g = εp,ng +∆qM(εn+1

g , εp,(n+1)
g ).

(24)

The update for α uses an implicit backwards Euler method, coupled with ADMM for the fields a and λ. This
reduces to iterations between a nonlinear point-wise problem for the updates of α, a linear global problem
for a, and an update for λ.

We summarize these operations for the n to n + 1 time-step. Given un+1, qn+1, εp,(n+1), we initialize

values λ̃
0
= λn, ã0 = an, and iterate over i:

• Step 1: Non-linear local problem. Update α̃i+1 by solving at each xg

−∂W
e

∂α

(︁
εn+1|xg , α̃

i+1
g , η(xg)

)︁
− d′(α̃i+1

g )

[︃
W p(qn+1

g , η(xg)) +

∫︂ t

0

g∗(q̇g, η(xg)) dt

]︃
− Gc(η(xg))

4cwℓ(η(xg))

∂wa

∂α

(︁
α̃i+1
g , η(xg)

)︁
+ λ̃

i
|xq

+ r
(︁
ãi|xg

− α̃i+1
g

)︁
∈ ∂ψ∗

(︄
α̃i+1
q − αnq
∆tn

, η(xq)

)︄
.

(25)

• Step 2: Linear global problem. Update ãi+1 by solving

Kpj ã
i+1
j = Vp(α̃

i+1, λ̃
i
), (26)

where

Kpq =

∫︂
Ω

[︃
Gc(η)ℓ(η)

2cw
∇Na

p · ∇Na
q + rNa

pN
a
q

]︃
dΩ, Vp(α, λ) =

∫︂
Ω

(rα− λ)Na
p dΩ. (27)

• Step 3: Update Lagrange multiplier. Update λ̃
i+1

by

λ̃
i+1

j = λ̃
i

j + r(ãi+1
j − S−1

jk α̂
i+1
k ), (28)

where

Sjk =

∫︂
Ω

Na
j N

a
k dΩ, α̂i+1

k =

∫︂
Ω

α̃i+1Na
k dΩ. (29)

Note: this is the weak form of the update ∆λ = r(a− α).
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Figure 1: The model problem we use to study the accuracy and efficiency of our formulation. We consider a rectangular geometry
with a impulse Gaussian loading profile (a). Additionally, deformed configurations with accumulated plasticity (b)
and damage fields (c) are shown at the final time-step computed on a 200×50 mesh.

• Step 4: Check for convergence. Check both primal and dual feasibility

rp :=
⃦⃦
āi+1 − α̂i+1

⃦⃦
l2
≤ 1

√
na
rtolabs + rtolrelmax

(︁⃦⃦
α̂i+1

⃦⃦
l2
,
⃦⃦
āi+1

⃦⃦
l2

)︁
,

rd := r
⃦⃦
āi+1 − āi

⃦⃦
l2
≤ 1

√
na
rtolabs + rtolrel

⃦⃦⃦
λ̄
i+1
⃦⃦⃦
,

(30)

where
āi+1
j = Sjkã

i+1
k , λ̄

i+1
j = Sjkλ̃j . (31)

In the above, we use the vector l2 norm

∥ā∥2l2 =

na∑︂
i=1

ā2i . (32)

until convergence, and update αn+1 = α̃i, an+1 = ãi, and λn+1 = λ̃
i
. For faster convergence, we update

the penalty value r between iterations. As larger values of r improve primal feasibility convergence while
slowing the dual feasibility convergence (and vice-versa), adapting the value of r based on these feasibility
values can lead to few iterations [41, 42]. Thus, we consider the following scheme

r =

⎧⎪⎨⎪⎩
min(γrr, rmax) if rp/rd > τ

max(r/γr, rmin) if rd/rp > τ

r else

. (33)

In our study, we choose τ = 10, and take γr = 2.

3.1.3. Accuracy and Efficiency

To analyze the efficiency and efficacy of the above formulation, we study a model problem. We consider
a clamped bar undergoing dynamic loading on its top surface, as shown in Figure 1a. The loading is chosen
such that the structure undergoes both plastic and damage evolution along its trajectory. Table 1 shows
the geometric, loading, and material parameters used for this study. Figure 1b and 1c show the plasticity
and damage fields at the final time. We investigate the solution convergence and time-scaling for uniform
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Parameter Value Used Description
Parameters for Accuracy and Scaling Tests

H/L 0.25 Aspect ratio of domain
ν 0.3 Poisson ratio
σy0/E 1.0× 10−2 Yield strength
εp0 0.13 Reference plastic strain
n 10 Isotropic hardening power

ε̇p0L/
√︁
E/ρ 0.32 Reference plastic strain rate

m 6 Rate sensitivity power
ℓ/L 0.02 Damage length scale
Gc0/(ℓE) 1.5× 10−2 Toughness
d1 0.01 Relative stiffness when fully damaged
w1 0.95 Damage hardening parameter
f0d/E 1.04× 10−2 Loading peak magnitude
Lf/L 0.1 Half width of truncated Gaussian loading profile
σf/L 0.05 Standard Deviation of Gaussian loading profile

t̄
√︁
E/ρ/L 1.26 Duration of loading

T
√︁
E/ρ/L 11.3 Simulation time

Table 1: Non-dimensional geometric, loading, and material parameters used numerical accuracy and efficiency validation.

meshes varying from 60×15 to 600×150 for a constant 18,000 time-steps. Each of the simulations are run
on 6 CPU cores using shared memory. The absolute and relative ADMM tolerance is set to a constant
rtolabs = rtolrel = 10−7.

To study the solution convergence, we consider the L2 norm in time of the H1 norm in space, which we
denote as ∥∥ · ∥∥ := ∥

(︁
∥ · ∥H1(Ω)

)︁
∥L2(0,T ). We investigate ∥∥u∥∥ for the varying meshes. As an analytical

solution does not exist, we consider the solution on the 600 × 150 mesh as the reference, ū. Figure 2a
shows the convergence of the displacement norm for varying characteristic mesh size h. A linear fit yields
a convergence rate of 1.31, demonstrating super-linear convergence even while undergoing large plastic and
damage evolution. Next, we study the time-scaling for varying mesh sizes. For meshes varying from 900 to
90,000 elements, we see a growth rate with wall time of 1.26. This exceptional scaling may be attributed
to the ADMM algorithm for computing the damage evolution. As the linear global problem has a constant
operator for each penalty value r, these matrices may be pre-computed and treated with an LU decomposition
in set-up. Then, each of the linear solves may be executed through efficient back-substitution. It is expected
that this scaling breaks down if the number of elements increases significantly, as the solution time is then
dominated by the more inefficient LU decomposition. Finally, Appendix C presents a convergence study
with respect to temporal resolution, and we see convergence in this regard as well.

3.2. Adjoint Problem

We now turn to the details of the numerical evolution of the adjoint problem, which must be solved
backwards in time using the solution to the forward problem. For efficiency, we employ another augmented
Lagrangian formulation for the adjoint damage variable update. Then, we discretize with finite elements
and describe the solution procedure.

3.2.1. Augmented Lagrangian

The adjoint damage evolution for b in (14d) is challenging to efficiently solve. While the equation itself is
linear, the ȧ dependence makes the discretized operator dependent on the time-step. Therefore, we look to
apply an augmented Lagrangian to cast this as a constant-operator global problem and a time-step dependent
local problem. We introduce the auxillary field z ∈ A, and constrain z = ȧb weakly through the Lagrange
multiplier field χ ∈ L2(Ω). By writing the adjoint damage update as a minimization problem, we apply
another augmented Lagrangian through the penalty parameter r (See Appendix B). This gives the adjoint
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(a)
(b)

Figure 2: Solution convergence and time-scaling plots for varying mesh sizes. The solution norm ∥∥u∥∥ is studied relative to
the characteristic mesh size h (a). For time-scaling, we consider the wall time v.s. the number of element, NE (b).
The black dots represent data for each of the simulations, while the red lines show the linear fits, with the first order
coefficients denoted on the triangles.

damage evolution as

0 =

∫︂
Ω

[︃
(r(z − ȧb) + χ) δz +

Gcℓ

2cw
∇z · ∇δz

]︃
dΩ ∀δz ∈ A, (34a)

d

dt

[︂
bDa + ψ̄

∗′′
ȧb
]︂
=
∂o

∂a
+
∂2W e

∂a∂ε
· ∇ξ + ȧb

(︃
∂2W e

∂a2
+

Gc
4ℓcw

∂2wa

∂a2

)︃
+ ȧbd′′

[︃
W p +

∫︂ t

0

g∗dτ

]︃
− r(z − ȧb)− χ on Ω, (34b)

0 =

∫︂
Ω

(z − ȧb) δχ dΩ ∀δχ ∈ L2(Ω). (34c)

The first line (34a) is linear constant-operator global problem for z. (34b) is a linear local problem for b.
Finally, the last line (34c) is the constraint that z = ȧb weakly. We discuss the iterative method of solving
this in the next section.

3.2.2. Discretization and Solution Procedure

The adjoint variables are discretized in the same manner as their forward counterparts. The adjoint
displacement field ξ, the adjoint damage field z, and adjoint Lagrange multiplier fields are then

ξ =

nu∑︂
i=1

ξiN
u
i (x), z =

na∑︂
i=1

ziN
a
i (x), χ =

na∑︂
i=1

χiN
a
i (x). (35)

The fields b, γ, and µ are discretized at quadrature points:

b(xg) = bg, γ(xg) = γg, µ(xg) = µg, (36)

for some Gauss point xg. The adjoint problem must be solved backwards in time. Similar to the forward
problem, we use an explicit central difference scheme for the adjoint displacement variable. Then, we
implicitly update the adjoint damage variables through an alternating direction method of multipliers. After
these converge, the adjoint plastic variables are updated implicitly. For the n + 1 to the n time-step the
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displacement updates are

ξ̈
n+1

i =M−1
ij H

n+1
j (un+1, εp,n+1, αn+1, ξn+1, bn+1, γn+1, µn+1),

ξ̇
n+1/2

i = ξ̇
n+3/2

i −∆tn+1 ξ̈
n+1

i ,

ξni = ξn+1
i −∆tn+1/2 ξ̇

n+1/2

i ,

(37)

where

Hn
j =

∫︂
Ω

[︃(︃
−∇ξn · ∂

2W e

∂ε∂ε
− α̇nbn

∂2W e

∂ε∂α
− γnq̇n

∂σ̄M
∂ε

+ q̇nµn · ∂M
∂ε

)︃
· ∇Nu

j − ∂o

∂u
·Nu

j

]︃
dΩ. (38)

The update for b uses an implicit forward Euler method, coupled ADMM for fields z and χ. This results in
iterations between a point-wise linear problem for b, a constant-matrix linear global problem for z, and an
update for χ.

We describe this for the n + 1 to n time-step. Given ξn, intialize χ̃0 = χn+1, z̃0 = zn+1, and iterate
over i:

• Step 1: Linear local problem. Update b̃
i+1

by solving at each xg

b̃
i+1

g =

α̇n+1
g bn+1

g ψ̄
∗′′
⃓⃓⃓
tn+1

+ bn+1
g D̃

n+1

a,g +∆t

(︃
rz̃i(xg) + χ̃i(xg)− ∂o

∂a

⃓⃓
tn

− ∂2W e

∂α∂ε

⃓⃓⃓
tn

· ∇ξn
)︃

α̇ng ψ̄
∗′′
⃓⃓⃓
tn

+ D̃
n

a,g + α̇ng

(︃[︂
∂2W e

∂α2 + Gc

4ℓcw
∂2wa

∂a2

]︂
tn

+ d′′
[︂
W p +

∫︁ t
0
g∗dτ

]︂
tn

+ r

)︃ , (39)

where

D̃
n

a,g =

[︄
∂W e

∂α
+

Gc
4ℓcw

∂wa

∂α
+
∂d

∂α

(︃
W p +

∫︂ t

0

g∗ dτ

)︃
+
∂ψ̄

∗

∂α̇

]︄
xg,tn

− r(an|xg
− αng )− λn|xg

. (40)

• Step 2: Linear global problem. Update z̃i+1 by solving

Kpj z̃
i+1
j = Up(b̃

i+1
, χ̃i), (41)

where

Up(b, χ) =

∫︂
Ω

(rα̇nb− χ)Na
p dΩ. (42)

• Step 3: Update Lagrange multiplier. Update χ̃i+1 by

χ̃i+1
j = χ̃ij + r(z̃i+1

j − S−1
jk ẑ

i+1
k ), (43)

where

ẑi+1
k =

∫︂
Ω

α̇nb̃
i+1

Na
k dΩ. (44)

Note: this is the weak form of the update ∆χ = r(z − α̇b).

• Step 4: Check for convergence. Check both primal and dual feasibility,

rp :=
⃦⃦
z̄i+1 − ẑi+1

⃦⃦
l2
≤ 1

√
na
rtolabs + rtolrelmax

(︁⃦⃦
ẑi+1

⃦⃦
l2
,
⃦⃦
z̄i+1

⃦⃦
l2

)︁
,

rd := r
⃦⃦
z̄i+1 − z̄i

⃦⃦
l2
≤ 1

√
na
rtolabs + rtolrel

⃦⃦
χ̄i+1

⃦⃦
,

(45)

where
z̄i+1
j = Sjkz̃

i+1
k , χ̄i+1

j = Sjkχ̃
i+1
k . (46)
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until convergence, and set bn = b̃
i
, zn = z̃i, and χn = χ̃i. We adapt the penalty value r similarly to the

forward problem in (33).
Finally, the adjoint plastic variables γng and µng are implicity updated by solving at each quadrature point:[︄

γ

(︃
σ̄M − σ0 −

∂ḡ∗

∂q̇

)︃
− γq̇

∂2ḡ∗

∂q̇2
+
∂ḡ∗

∂q̇

(︄∫︂ T

t

bα̇d′(α)dτ

)︄
− µ ·M

]︄
t=tn+1
x=xg

−

[︄
γ

(︃
σ̄M − σ0 −

∂ḡ∗

∂q̇

)︃
− γq̇

∂2ḡ∗

∂q̇2
+
∂ḡ∗

∂q̇

(︄∫︂ T

t

bα̇d′(α)dτ

)︄
− µ ·M

]︄
t=tn
x=xg

= ∆t

⎛⎝ ∂o

∂q

⃓⃓⃓⃓
t=tn
x=xg

+ bng α̇
n
gd

′(αng )
∂W p

∂q

⃓⃓⃓⃓
t=tn
x=xg

− γng q̇
n
g

∂σ0
∂q

⃓⃓⃓⃓
t=tn
x=xg

⎞⎠ ,

µn+1
g − µng = ∆t

⎛⎝ ∂o

∂εp

⃓⃓⃓⃓
t=tn
x=xg

+∇ξn · ∂
2W e

∂ε∂εp

⃓⃓⃓⃓
t=tn
x=xg

+bng α̇
n
g

∂2W e

∂α∂εp

⃓⃓⃓⃓
t=tn
x=xg

+ γq̇ng
∂σ̄M
∂εp

⃓⃓⃓⃓
t=tn
x=xg

− q̇ngµ
n
g · ∂M

∂εp

⃓⃓⃓⃓
t=tn
x=xg

⎞⎠ .

(47)

This is a linear system of equations which may be solved by direct inversion.

3.3. Sensitivities and Design Updates

Optimal design problems in structural mechanics often lead to ill-posed minimization problems, where
minimizing sequences develop fine scale oscillations [43, 44]. To recover a well-posed problem, we filter the
design variable η. These density-based filtering methods have been shown to lead to well-posed problems
for linear, static compliance optimization. We consider η constant on each element, and adopt a discrete
re-normalized filter with a linear weight function [45]. Sensitivities, accounting for the filtering, are then
computed from (13). These are used to update η using the gradient-based method of moving asymp-
totes (MMA) [46]. This process is continued until convergence. Figure 3 shows a flow diagram of the entire
computational process.

4. Material Interpolation

In the preceding section, we developed a computational method for evolving the forward and adjoint
problem to compute sensitivities. However, we still must define how the material parameters depend on the
design parameter η. That is, we must determine how the material density, elastic energy, plastic potential
and dissipation, and also the damage parameters depend on η. In this section, we discuss interpolation
schemes for both solid-void designs, as well as designs composed of two materials of differing parameters.

The approach that we take implicitly penalizes intermediate densities, as is done by Solid Isotropic
Material with Penalization (SIMP) methods used in static linear elastic compliance minimization [47]. Thus,
we interpolate the material properties for intermediate densities while maintaining desired properties of
each of the full material species. However, as there are multiple material parameters, rather than just the
elastic modulus of SIMP, this leads to a complicated procedure which we describe below. Additionally, as
SIMP in the linear elastic setting is specialized for compliance minimization, our method is specialized for
failure resistance. Other objective functions would require a different interpolation scheme, as to render
the intermediate densities unfavorable. Finally, sharp interface methods do not require interpolation [48].
However, the behavior of the full material species which we present would still be valid, and other issues
might arise when computing the shape derivative.

4.1. Solid-Void Designs

We consider η as differentiating between void at η = ηmin << 1 and solid at η = 1. Usually ηmin ≈ 0.01.
Similar to traditional topology optimization, we would like to penalize intermediate densities so converged
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Figure 3: Diagram of the computational method for gradient-based topology optimization over the dynamic trajectory with
plasticity and damage.

designs are dominated by regions of completely solid or void. In the following, the subscript 0 denotes
parameters for the completely solid material. We propose the following interpolation scheme:

Material density. We consider η a density variable, and assume the material density varies linearly:

ρ(η) = ηρ0. (48)

Elastic Energy. For simplicity, we consider a separable dependence for the elastic energy through a Bezier
curve interpolation. This ensures that the ratio of stiffness to density does not go to zero in the limit of
small η. This mitigates spurious dynamical modes which could arise from artificial acoustic properties of the
voids [47]. We consider

W e(ε, εp, a, η) = Be(η)W
e
0 (ε, ε

p, a), (49)

where W e
0 is the elastic energy of the solid and Be(η) is defined through

η =
1− k2
k1 − k2

(3v − 3v2) + v3,

Be = k1
1− k2
k1 − k2

(3v − 3v2) + v3.

(50)

Given η, the top equation may be solved for v, which is then used to compute Be in the second equation.
k1 and k2 are the derivative values dB

dη at η = 0 and η = 1, respectively. Typical values for these slopes are
k1 ≈ 0.2, k2 ≈ 5.

Plastic potentials. For the plastic potentials, we will again consider a separable dependence

W p(q, η) = Bp(η)W
p
0 (q), g∗(q̇, η) = Bp(η)g

∗
0(q̇). (51)

However, care must be taken in choosing Bp(η), as we require this interpolation to satisfy certain properties:
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• Strong voids : The yield stress should be sufficiently high as to reduce excessive permanent deformation
in the void regions. Additionally, we do not want to waste computational effort on plastic updates in
the voids. This requires

1 <
Bp(ηmin)

Be(ηmin)
. (52)

• Unfavorable intermediate densities : The interpolation of the plastic potential should ensure that the
relative yield stress is not excessively high in regions of intermediate density, so optimal solutions are
dominated by regions of either completely solid or void. This requires

Bp(η)

Be(η)
< τp ∀η ∈ [η1, η2], (53)

where ηmin < η1 < η2 < 1 and τp ∼ 1.

We may accomplish both of these by considering a shifted Bezier curve interpolation as

Bp(η) =
Be(η) + δp
1 + δp

, (54)

where Be(ηmin) < δp << 1.

Damage parameters. We now discuss the interpolation for the damage behavior. For simplicity, we assume
that the normalized damage potential wa(a) is independent of the density. The damage length scale will
also be considered constant with density

ℓ(η) = ℓ0. (55)

This allows the same computational mesh to resolve damage in both the solid and void regions. Then, we
must only prescribe the interpolation on the toughness Gc. We assume a separable dependency

Gc(η) = Ba(η)Gc0, (56)

where the interpolation function Ba must satisfy the following:

• Boundary condition preservation : The behavior at the solid-void interface should be nearly equivalent
to the natural boundary conditions. This ensures that the voids behave similarly to free boundaries
and do not add artificial toughness. This requires

Ba(ηmin) << Ba(1). (57)

• Tough voids: We require that the damage not propagate through the void regions, which could result
in damage ”jumping” from one solid region to another by moving through voids. This requires

1 <
Bp(ηmin)

Be(ηmin)
<<

Ba(ηmin)

Be(ηmin)
, (58)

ensuring that the relative toughness of the voids is much larger than that of the solid.

• Unfavorable intermediate densities : The damage interpolation should ensure that the relative tough-
ness is not excessively high in regions of intermediate density, so optimal solutions are dominated by
regions of either completely solid or void. This requires

Ba(η)

Be(η)
< τa ∀η ∈ [η1, η2], (59)

where ηmin < η1 < η2 < 1 and τa ∼ 1.
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Figure 4: Plot of the interpolation functions for the elasticity (Be), plasticity (Bp), and damage (Ba) for parameters k1 = 0.2,
k2 = 5.0, δp = k1ηmin, and δa = 9k1ηmin. Here, ηmin = 0.01.

We may again accomplish these through a shifted Bezier curve,

Ba(η) =
Be(η) + δa
1 + δa

, (60)

where Be(ηmin) << δp < δa << 1.
For our investigation, we choose a value of δp = k1ηmin, δa = 9k1ηmin. Thus, the yield strain of the void

regions is roughly twice that of the solid. Additionally, the voids have around 10 times the relative toughness
of the solid regions. Figure 4 shows these interpolation functions plotted for typical values.

4.2. Two-Material Design

We now consider designs composed of two materials, where η = 0 and η = 1 represents solids of either
species. We propose to interpolate the majority of these parameters through standard power-law functions.
These penalize regions of intermediate densities, while also being efficient and simple to implement. We
discuss this further in Section 5.2 where we consider a specific example.

5. Examples

We now demonstrate the methodology using two examples which are of independent interest for the
insights they offer on damage resistant structures. The first is a solid-void design to resist impulse loading.
The second example explores the trade-offs between strength and toughness in a spall-resistant structure
composed of two different materials undergoing dynamic impact. The forward dynamics, adjoint problem,
sensitivity calculation, and MMA update schemes are implemented using the deal.II C++ finite element
library [49].

5.1. Solid-Void for Blast Loading

We consider η as a density variable distinguishing between solid material and void. To model blast loading,
we assume a fixed loading prescribed on the boundary. Thus, we consider a rectangular 2D geometry and
impulse loading as shown in Figure 5. We look to minimize a sum of the time-space norm of the displacements,
plastic dissipation, and damage dissipation

O =
σy0L

T 1/s
∥
(︁
∥u∥H1(Ω)

)︁
∥Ls(0,T ) + cpDp + caDa, (61)

where cp and ca are weights, and Dp and Da are measures of the dissipated energy to plasticity and damage,

Dp =

∫︂
Ω

d(a(T ))

(︄
W̃

p
⃓⃓⃓
t=T

+

∫︂ T

0

g̃∗ dt

)︄
dΩ, Da =

∫︂
Ω

[︄
G̃cw

a(a(T ))

4cwℓ
+

∫︂ T

0

ψ̃
∗
dt

]︄
dΩ. (62)
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Parameter Value Used AL2014-T6 Description
Geometric and Material Parameters

H/L 0.25 N/A Aspect ratio of domain
ν 0.3 0.33 Poisson ratio
σy0/E 1.0× 10−2 0.71× 10−2 Yield strength
εp0 0.13 0.7 Reference plastic strain
n 10 1.48 Isotropic hardening power

ε̇p0L/
√︁
E/ρ 0.32 0.33 Reference plastic strain rate

m 6 3.3 Rate sensitivity power
ℓ/L 0.02 N/A Damage length scale
Gc0/(ℓE) 1.5× 10−2 0.61× 10−2 Toughness
d1 0.01 N/A Relative stiffness when fully damaged
w1 0.95 N/A Damage hardening parameter

Table 2: Non-dimensional geometric and material parameters used for the solid-void structures. Where applicable, approximate
values for a Al2014-T6 specimen of length L = 1m are included to illustrate the typical value ranges [50].

We use a modified interpolation scheme in the objective to penalize intermediate densities. That is, we choose

W̃
p
, g̃∗, G̃c, and ψ̃

∗
to remain relatively large for intermediate η. Thus, we consider a concave power-law

interpolation

W̃
p
(q, η) = P (η)W p

0 (q), g∗(q̇, η) = P (η)g∗0(q), G̃c(η) = P (η)Gc0, ψ∗(q̇, η) = P (η)ψ∗
0(q), (63)

where
P (η) = 1− (1− η)pO . (64)

Here, pO is a growth factor parameter. s is the power for the norm in time. Because we intend to minimize
the largest displacements, we choose s = 4 for the following studies. Additionally, we choose a value of
pO = 8.

We consider material parameters shown in Table 2. We also show material parameters for Al2014-T6,
which were approximated from [50] where applicable, to demonstrate that we are indeed studying a realistic
regime. We consider a Gaussian loading profile of standard deviation σf = L/20, truncated to a total width
of 2Lf = L/5. We use objective penalty values of cp = 5, ca = 50. Thus, we look to heavily penalize
damage. For the interpolation parameters, we linearly update the Bezier slopes from k1 = 0.5, k2 = 2.0
to k1 = 0.125, k2 = 8 from the first to the 50th iteration. This allows the structure topology to more free
change at lower iterations before intermediate densities are severely penalized, and is standard practice in
topology optimization [47]. Because the structure may not be able to withstand the loading (without severe
damage) for the early iterations, we begin with a lower loading amplitude before gradually increasing to the
final desired value. We set the loading amplitude to be 70% of the final value until iteration 60, which we
then linearly increase to the final value by iteration 100. Computations are performed on a 100× 25 mesh,
with a density filter radius of 0.021L. Additionally, we restrict the amount of material used to be no more
than half the volume of Ω. Designs are then initialized to uniform density fields equal to the total allowed
volume fraction η = 0.5. We consider designs converged when the maximum change in density variable is
less than 10−3, or after 300 iterations.

We explore optimal designs for varying applied impulse magnitude I =
∫︁ T
0

∫︁
∂fΩ

|f | dΩdt, and loading

duration t̄. Here, we consider a reference loading duration t0 = 1.47 L/cL, cL =
√︁
E/ρ, roughly the time

that it takes a longitudinal wave to traverse three half-length of the domain. For the reference impulse, we
consider I0 = 6.3 × 10−4 L2

√
Eρ. The simulation time is set to T = 19t0 with 4000 timesteps. Figure 6

shows the converged design after contour smoothing in MATLAB®. This smoothing is performed by tracing
contours along the filtered density function on the finite element mesh at a level-set value 0.5. Along each
row, the loading impulse is constant, while along each columns the loading duration is constant. Although the
structures share similar supports near the boundaries, their topologies near the loading site vary drastically.
We see that for that for longer loading duration (right column), the structure is similar to what we would
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Figure 5: Geometry and dynamic impulse loading we consider for the solid-void structure.

Figure 6: Converged solid-void designs under impulse loading following contour smoothing. Along each row, the impulse is
constant, while along the columns we vary the loading duration. Values of the objective are shown for each of the
designs. All of the designs saturated the constraint that V ≤ 0.5|Ω|.

expect from static compliance optimization: truss-like members forming triangular structures [47]. However,
for shorter loading duration, the structures have more mass congregated underneath the applied load. This
not only provides damage resistance, but the additional inertia also reduces the energy the structure absorbs
from the impulse loading. We also see more mass placed near the loading surface for large impulse magnitude.
This is likely to reduce plasticity and damage near the loading site.

5.2. Two Material Design for Impact

We now consider the design of a structure composed of two materials undergoing impact. Figure 7a
shows the stress-strain response of the two materials in a quasi-static tensile simulation. While one material
has double the strength and stiffness (red curve), the other has roughly twice the toughness (blue curve).
We represent the strong solid with η = 1, and the tough solid with η = 0. Thus, we consider,

E1 < E2, (σy0)1 < (σy0)2 , (Gc)1 > (Gc)2 , (65)

where E, Gc, and σy0 denotes the elastic modulus, fracture toughness, and yield stress. The subscripts 1
and 2 denotes properties of the tough and strong solid, respectively. For simplicity, we assume the rest of
the material properties are identical (density, hardening parameters, damage length scale). As discussed in
the previous section, we adopt a power-law interpolation for material parameters. However, to ensure that
the intermediate η remains unfavorable, we must carefully choose the concavity of each of the interpolation
functions. Since it is assumed that a larger value for each of the differing parameters is favorable, the
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Figure 7: (a) Normalized stress-strain response of the strong (red) and tough (blue) material in a uniaxial quasi-static 2D tensile
test. Damage fields are plotted on deformed configurations at a few points throughout loading. (b) Geometry and
loading for the two-material structure.

interpolation is convex for all of these:

E(η) = E1 + ηp(E2 − E1),

σy0(η) = (σy0)1 + ηp
[︁
(σy0)2 − (σy0)1

]︁
,

Gc(η) = (Gc)2 + (1− η)
p
[(Gc)1 − (Gc)2] .

(66)

Similarly to the solid-void structure, we start with a penalty value of p = 2, and linearly increase it to p = 8
by the 100th iteration and onward.

We consider the geometry as Figure 7b. Here, we consider a linear elastic flyer of density ρ0 and
elastic modulus E0 with an initial velocity of v0. We note that enforcing strict contact conditions would
complicate the adjoint sensitivity calculations, and also be computationally expense. Therefore, we consider
a relaxation by introducing a layer of asymmetric linear elastic elements between the domain Ω and the flyer.
These elements have a high bulk modulus in compression, with nearly zero resistance to shear or hydrostatic
tension. Therefore, they may support compressive contact forces, while allowing the flyer and substrate to
separate. This is consistent with the adjoint formulation we have derived, while providing the necessary
physics of contact and separation. However, we are limited to cases where the impact site is known a priori
and the impacting faces are parallel. While this regularization will give proper behavior of the traveling
elastic waves far from the impact site, the loads nearby will be somewhat reduced. This is an acceptable
compromise, as we are mainly interested in the spall phenomena occuring near the center of the structure,
as well as hinging at the boundaries. But it should be noted that the behavior near the impact site may be
inconsistent with true impact.

First, we consider the optimal design of the multi-material structure undergoing a relatively high impact
velocity of 0.110cL, where cL is the longitudinal wave speed of the strong material. Here, we consider a
simulation time of T = 6.5 L/cL. In this case, a structure composed entirely of strong material experiences
heavy damage, as shown in Figure 8a. The damage nucleates internally along a line parallel to the impact
surface, which is characteristic of spall failure. Conversely, a structure made of only the tough material has
large permanent deformation. There is regions of plasticity near the impact site as well as hinging near the
boundary, as shown in Figure 8b. We apply the optimal design approach to this loading scenario, as we
hypothesize that a mixture of both strong and tough material will yield a structure of better performance. We
consider the objective shown in (61). Since η does not have a large effect on the dissipation functions, we do
not need to modify the interpolation scheme in the objective as was done in the solid-void case. Table 3 shows
the material parameters we consider. Computations are performed on a 100 × 25 mesh for the rectangular
domain, with a 60× 16 mesh for the flyer. A filter radius of 0.021L is used. Again, we use objective weights
of cp = 5, ca = 50. The design is initialized to a uniform density field of η = 0.5. The converged optimal
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Figure 8: (a) Damage field of a domain composed entirely of the strong material shortly after impact (left), and long after
impact (right). (b) Accumulated plasticity field of a domain composed entirely of the tough material shortly after
impact (left), and long after impact (right).

design is shown in Figure 7a. Red regions are occupied by strong material, and blue regions by the tough
material. We see regions of strong (red) material near the boundaries and the impact site to mitigate large
deformations and provide strength. However, the center is occupied by tough (blue) material to control spall.
In terms of quantified performance, the converged design yields an objective value of O = 10.6× 10−4. This
is improved performance over both the completely strong structure (O = 29.7 × 10−4), and the completely
tough structure (O = 11.3× 10−4).

Next, we study optimal designs for varying flyer velocity and allowed volume of strong material, Vs. We
again consider the objective in (61). Figure 10 shows the converged designs. For lower impact velocities,
the strong material is favored. In cases where no restrictions put on the design, the converged designs are
almost completely occupied by strong material. This can primarily be attributed to the stiffness difference
between the strong and tough material. At v0 = 0.019cL, there is almost no plasticity or damage, while at
v0 = 0.058cL there is only a small amount of plasticity. However, at v0 = 0.110cL, the converged designs
have large areas of tough material, even in the case when there is no restriction placed on the amount of
strong material. As discussed previously, this is to control spall which occurs at the higher impact velocities.
Additionally, strong material is used at the larger two velocities on the top surface underneath the sides of
the flyer. This is to mitigate the shear-dominated plugging failure.

Finally, we study optimal designs for varying yield strength and toughness values. Figure 11 shows
converged designs for a constant impact velocity of v0 = 0.096cL. We constrain Vs ≤ 0.5. The material
parameters we use are identical to that of the previous study, with the following exceptions. Moving from
the right to left column, the yield strength of the strong material is amplified by 50% from the previous
study, while moving from the top row to the bottom row has an increased toughness of the tough material
by 50%. While the designs do vary, qualitatively they all have strong material placed near the loading site
attached to struts that connect to the boundary to provide stiffness.

19



Figure 9: (a) Optimal design of the multi-material structure under impact loading following contour smoothing. The red regions
correspond to the strong material, and the blue regions are the tough material. (b) Damage field of this design shortly
after impact (left), and long after impact (right). (c) Accumulated plasticity field of this design shortly after impact
(left), and long after impact (right).

20



Figure 10: Converged multi-material designs for impact resistance following contour smoothing. Along each row the impact
velocity is constant, while along the columns the allowed amount of strong material is prescribed. cL denotes the
longitudinal wave speed of the strong material. The red regions denote the strong material, while the blue regions
are the tough material. Values of the objective as well as the volume fraction of strong material are shown for each
design.

Figure 11: Converged multi-material designs for impact resistance following contour smoothing. Here, we consider a constant
impact velocity of v0 = 0.096cL and restrict V2/V ≤ 0.5. Along each row, the the toughness of both material are
held constant, while along the columns we prescribe the yield strengths. The red regions denote the strong material,
while the blue regions are the tough material. Values of the objective are shown for each design. In all of the cases,
the designs saturate the constraint on allowed amount of strong material.
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Parameter Value Description
Geometric Parameters

H/L 0.25 Aspect ratio of domain
L0/L 0.6 Length of flyer
H0/L 0.1 Height of flyer

Elastic Material Parameters
E1/E2 0.5 Young’s modulus ratio of tough to strong material
ν 0.3 Poisson ratio of strong and tough material
E0/E2 0.3 Young’s modulus ratio of flyer to strong material
ν0 0.4 Poisson ratio of flyer
ρ0/ρ 0.4 Denstiy ratio of flyer to target

Plastic Material Parameters
(σy0)1/E2 0.5× 10−2 Yield strength of tough material
(σy0)2/E2 1.0× 10−2 Yield strength of strong material
εp0 0.22 Reference plastic strain
n 3 Isotropic hardening power

ε̇p0L/
√︁
E2/ρ 0.22 Reference plastic strain rate

m 3 Rate sensitivity power
Damage Material Parameters

(Gc0)1/(ℓE2) 1.0× 10−2 Toughness of tough material
(Gc0)2/(ℓE2) 0.5× 10−2 Toughness of strong material
ℓ/L 0.01 Damage length scale
d1 0.01 Relative stiffness when fully damaged
w1 0.95 Damage hardening parameter

Table 3: Non-dimensional geometric and material parameters for the multi-material structures.

6. Discussion and Conclusion

We have developed a formulation for the optimal design of impact resistant structures. After presenting
a novel method to accurately and efficiently simulating phase field damage and plasticity evolution in a
transient dynamic setting, we apply gradient based optimization through the adjoint method to find optimal
structures. An important issue we address is the proper interpolation scheme for material parameters
through intermediate densities. In the case of solid-void design, our formulation ensures that damage will
not propagate through the void regions while preserving the natural boundary conditions at the interface.
For the multi-material design, we assumed a power law interpolation for the material parameters. This
implicitly penalizes intermediate densities only when either higher or lower values are clearly favorable.
These would include elastic stiffness, yield stress, and fracture toughness, where higher values are almost
universally preferred. For parameters such as the damage length scale, it is unclear if a higher or lower value
is favorable. However, in our study, we only consider cases where these parameters are identical for both
materials.

We demonstrate these capabilities through the design of both a solid-void structure for blast loading, and
a multi-material structure undergoing impact. We find that the optimal designs for the solid-void case are
highly dependent on loading magnitude and duration. For the short time-scale loading, inertia plays a large
role in minimizing the energy transferred to the structure. This leads to a complex trade-off between inertia
and support, all while mitigating material failure. As for the multi-material structures, optimal designs use
a mixture of strong and tough material when the impact velocity is high. The propagation and interaction
between stress waves leads to a balance of strength and toughness throughout different parts of the domain.

We now discuss possible extensions and their challenges. As detailed in Section 2.2, there remain issues
with regularity in the adjoint and sensitivity calculation. A rigorous investigation into this matter would be
needed to give a deep understanding of the underlying mathematics of these methodologies. Another avenue
would be to reformulate this work for a sharp interface topology optimization method [48]. This would
eliminate the need for such a complex interpolation scheme, however, issues may arise from shape-derivative
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computation. Additionally, a systematic study comparing density based methods to sharp-interface methods
in the case of a complex mechanics model would be quite beneficial to the community.

On the modeling side, we have chosen a small-strain elastic-plastic material model. While we have used
a particular form for this plasticity and damage constitutive, the procedure of both the forward solution
and optimization scheme remain general. Thus, it would be would be worthwhile and straightforward to
apply this methodology to explore other models, such as a finite plasticity, and compare the results. These
methods could also be easily applied to a local damage description. In such a case, there would be no need to
for the operator-splitting method we have used, leading to a more efficient and straightforward calculation.
Furthermore, the adjoint problem would also have a local description for the adjoint damage updates.
However, these local damage models often suffer from ill-posed mathematical structures, relying heavily on
ad-hoc update schemes. The methods presented would necessarily be reduced to such a setting. Additionally,
we have simplified the contact mechanics by using asymmetric elastic elements, while also neglecting friction
and adhesion. These would be necessary to model ballistic events. It would be beneficial to incorporate
frictional contact through efficient active set methods to preserve the computational scaling [51]. Of course,
the sensitivity and adjoint formulation would need to be modified to account for this complication. Thermal
effects and shock physics would be another key modeling addition. Currently, empirically derived models
exist for a variety of materials which could be incorporated into this framework [52].

It would also be interesting to explore other objective functionals. One might be interested in designing
energy-absorbing structures that are designed to undergo plasticity and damage, rather than the objective
which we chose to mitigate these. However, this would require a reformulation of the interpolation scheme.
We also note that the designs we obtain depend on the location of the load. It would be straightforward
to extend this work to consider multiple loading scenarios, and optimize the structure over the collective
response. Finally, our simulations were done in 2D, and were readily performed on a single machine with
shared memory. It would be natural to extend the implementation to a 3D settings, requiring distributed
memory parallelization.
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Appendix A. Adjoint Method for Sensitivities

We consider an objective of integral from

O(u, q, εp, a, η) =

∫︂ T

0

∫︂
Ω

o(u, q, εp, a, η) dΩ. (A.1)

To conduct gradient based optimization, we require the total variation of this objective with the field η(x),
which we will compute through the adjoint method. We consider adjoint fields ξ ∈ U , γ : Ω ↦→ R, µ :
Ω ↦→ Rn×n, and b : Ω ↦→ R which correspond to the displacement, plastic hardening, plastic strain, and the
damage field, respectively. As is standard for the adjoint method, we consider these fields as the variations
in their corresponding equilibrium relations, which we add to the objective. However, for the ir-reversible
damage and platicity evolution, we use the necessary Kuhn-Tucker conditions. The augmented objective is

O =

∫︂ T

0

∫︂
Ω

{︃
o+ ρü · ξ + ∂W e

∂ε
· ∇ξ − fb · ξ + γq̇
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∂ḡ∗

∂q̇
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+
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∗

∂ȧ

]︄}︃
dΩdt

+
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0

∫︂
∂Ω

(f · ξ) dS dt.

(A.2)
We then take variations with η.

O,ηδη =

∫︂ T

0

∫︂
Ω
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2ḡ∗

∂q̇2
+ γ

[︃
σM − σ0 −

∂ḡ∗
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(A.3)
where

Da =
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. (A.4)

The standard procedure would then be to integrate by parts, and enforce quiescence conditions on the adjoint
variables at time t = T . However, for the accumulated plastic dissipation term, this is not straightforward.
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However, we will re-write this as∫︂ T
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(A.5)
The boundary term in the above expression is indentically zero, thus∫︂ T
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Using this in A.3, we may integrate by parts. Enforcing initial quiescent conditions on the adjoint variables
and localizing gives the sensitivities as
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(A.7)

if the adjoint variables satisfy the evolution
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∂ḡ∗

∂q̇

(︄∫︂ T

t
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(A.8)

Appendix B. Adjoint Problem as Minimization

It is natural to employ an augmented Lagrangian formulation to efficiently solve the adjoint problem
as we have done for the forward problem. However, we first need to write the second line of (14) as a
minimization problem. Recall that this reads,

d

dt

[︄
Dab+

∂2ψ̄
∗
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bȧ
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=
∂o

∂a
+
∂2W e

∂a∂ε
· ∇ξ + bȧ
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(B.1)
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where,

Da =
∂W e

∂a
+
∂d
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. (B.2)

If ȧ > 0, then Da = 0. Otherwise, if ȧ = 0, then ∂2ψ̄
∂ȧ2

= 0. Writing this as an implicit forward-euler
discretization (as we will be solving this backwards in time) from timestep n+ 1 to n, gives,
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(B.3)

If we define
zn = ȧnbn, (B.4)

we may write the first line of (B.3) as a minimization problem

inf
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(B.5)

We now introduce another augmented Lagrangian with an auxiliary field ζ ∈ L2(Ω), and enforce ζ = z
through the Lagrange multiplier field χ ∈ L2(Ω) and penalty factor r. Thus, the previous minimization is
equivalent to finding the saddle point of

L̂(z, ζ, χ) =
∫︂
Ω

{︄
1

2∆tψ̄
∗′′|tn

[︃(︃
bn+1Da|tn+1 + ψ̄

∗′′
⃓⃓⃓
tn+1

bn+1ȧn+1
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(B.6)

subject to the constraints that ζ = 0 on Ωȧ=0. Then, conditions for stationarity are
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(B.7)
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Using ζn = ȧnbn gives
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(r(z − ȧnbn) + χ) δz +

Gcℓ

2cw
∇z · ∇δz

]︃
dΩ ∀δz ∈ A,

0 =

∫︂
Ω

(z − ȧnbn) δχ dΩ ∀δχ ∈ L2(Ω),

1

∆t

[︃(︃
bn+1Da|tn+1 + ψ̄

∗′′
⃓⃓⃓
tn+1

ȧn+1bn+1

)︃
− ψ̄

∗′′
⃓⃓⃓
tn
ȧnbn − bnDa|tn

]︃
=

∂o

∂a

⃓⃓⃓⃓
tn

+
∂2W e

∂a∂ε

⃓⃓⃓⃓
tn

· ∇ξn + ȧnbn
∂2W e

∂a2

⃓⃓⃓⃓
tn

+ ȧnbnd′′
[︃
W p +

∫︂ t

0

g∗dτ

]︃
tn

− r(z − ȧnbn)− χ on Ω.

(B.9)

Appendix C. Forward Problem Convergence with Temporal Resolution

We include a convergence study with respect to temporal resolution for the forward problem algorithm
presented in Section 3. Here, we consider identical parameters to those discussed in Section 3.1.3. However,
the number of timesteps is varied from 4.8×103 to 7.2×104 for fixed 160×40 mesh over a constant simulation
time equivalent to that presented in Section 3. Figure C.12 shows that the solution converges with respect to
temporal resolution, with a convergence rate of 1.38. As an analytical solution does not exist, the reference
solution ū is computed over 105 timesteps.

Figure C.12: Solution convergence with respect to temporal resolution. The solution norm ∥∥u∥∥ is studied relative to the
timestep size ∆t. The black dots represent the data for each simulation, while the red lines show the linear fit,
with the first order coeffcient shown on the triangle.
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