
IEEE TRANSACTIONS ON COMPUTERS, SPECIAL ISSUE ON HARDWARE SECURITY, FEBRUARY 2023 1

High-Speed Hardware Architectures
and FPGA Benchmarking of

CRYSTALS-Kyber, NTRU, and Saber
Viet Ba Dang, Kamyar Mohajerani, and Kris Gaj

Abstract—Post-Quantum Cryptography (PQC) has emerged as a response of the cryptographic community to the danger of attacks
performed using quantum computers. All PQC schemes can be implemented in software and hardware using conventional
(non-quantum) computing systems. PQC is the biggest revolution in cryptography since the invention of public-key schemes in the
mid-1970s. Lattice-based key exchange schemes have emerged as leading candidates in the NIST PQC standardization process due
to their relatively short public keys and ciphertexts. This paper presents novel high-speed hardware architectures for four lattice-based
Key Encapsulation Mechanisms (KEMs) representing three NIST PQC finalists: NTRU (with two distinct variants, NTRU-HPS and
NTRU-HRSS), CRYSTALS-Kyber, and Saber. We benchmark these candidates in terms of their performance and resource utilization in
today’s FPGAs. Our best architectures outperform the best designs from other groups reported to date in terms of the area-time
product by factors ranging from 1.01 to 2.88, depending on the algorithm and security level. Additionally, our study demonstrates that
CRYSTALS-Kyber and Saber have very similar hardware performance. Both outperform NTRU in terms of execution time by a factor
36-62 for key generation and 3-7 for decapsulation, assuming the same security level.

Index Terms—Post-Quantum Cryptography, Lattice-based, Key Encapsulation Mechanism, Hardware, FPGA, High-speed.

✦

1 INTRODUCTION

POST-Quantum Cryptography (PQC) refers to a class of
cryptographic algorithms that are resistant against all

known attacks using quantum computers and can be imple-
mented on traditional non-quantum computing platforms.
These platforms include microprocessors, microcontrollers,
graphics processing units (GPUs), Field Programmable Gate
Arrays (FPGAs), Application-Specific Integrated Circuits
(ASICs), and many others. The main goal of PQC is to re-
place the existing public-key cryptography standards based
on RSA and Elliptic Curve Cryptography. These standards
seem to be most vulnerable to quantum computing and
impossible to defend using traditional approaches such as
gradually increasing key sizes [1], [2].

To initiate a timely transition to a new class of crypto-
graphic schemes, in December 2016, NIST launched its PQC
standardization process with the release of a call for public-
key post-quantum cryptographic algorithms [3]. Sixty-nine
submissions were judged complete and accepted for Round
1, and 26 of them qualified for Round 2.

On July 22, 2020, NIST announced 15 candidates quali-
fied for Round 3 of the standardization process, including
7 finalists and 8 alternate candidates. There have been only
four KEM PQC finalists. Since the NIST announcement, it
has become urgent to compare them against each other.
The excellent implementation of Classic McEliece was re-
ported in 2017-2018 [4]. Thus, the efficient implementations
of the remaining three KEM finalists have been of utmost
importance. Consequently, in this work, we aimed at eval-
uating and contrasting the hardware efficiency of NTRU,
CRYSTALS-Kyber, and Saber.

The preliminary results of our study were presented at
the Third PQC Standardization Conference in June 2021. The
extended version of this paper was posted at the Cryptology

ePrint Archive in November 2021. Consequently, this work
has already contributed to the comprehensive evaluation
of the NIST Round 3 finalists in the category of KEMs,
leading to the NIST end-of-Round-3 announcement and the
corresponding report, published on July 5, 2022. In relation
to this study, NIST selected only one KEM, CRYSTALS-
Kyber, to be standardized in the near future. This paper
serves as an archival version of our earlier informal reports.
Additionally, NIST, in its report, indicated that it is still in
the process of negotiating agreements with several third
parties to overcome potential adoption challenges posed by
third-party patents. If these agreements are not executed by
the end of 2022, NIST may still consider selecting NTRU
instead of Kyber. Our study clearly quantifies the disad-
vantages of such a decision from the point of view of the
performance of the future KEM standard in hardware.

In terms of the exact algorithm types, we focus on KEMs
with indistinguishability under a chosen-ciphertext attack
(IND-CCA). Our primary goal was to implement all lattice-
based IND-CCA secure KEMs described in the specifications
of PQC finalists. The submission package of NTRU de-
scribes two substantially different KEMs: NTRU-HRSS and
NTRU-HPS. As a result, we have implemented four KEMs
representing three PQC finalists. For each implemented
KEM, we generated results for all supported security levels.

Our Contributions. The main contributions of this paper
are summarized below:
a) We have proposed, documented, and developed the first
complete hardware architectures of two variants of NTRU
KEM (NTRU-HRSS and NTRU-HPS), as defined in the
submissions to Rounds 2 and 3 of the NIST PQC standard-
ization process.
b) We have developed a new hardware architecture of

IEEE TRANSACTIONS ON COMPUTERS, SPECIAL ISSUE ON HARDWARE SECURITY, FEBRUARY 2023 2

CRYSTALS-Kyber that achieves the best product latency ×
#LUTs for all security levels.
c) We have developed three new hardware architectures
of Saber. For security level 3, two of them outperform the
best previous design in terms of speed and one in terms of
resource utilization. Our Saber implementations achieve the
best product latency × #LUTs for all security levels.
d) We benchmarked all mentioned above designs using
two FPGA families, Zynq UltraScale+ and Artix-7, and
compared them with the fastest earlier reported FPGA im-
plementations of CRYSTALS-Kyber and Saber.
e) To the best of our knowledge, this is the first paper
that describes pure hardware Register-Transfer Level imple-
mentations (rather than software/hardware or High-Level
Synthesis-based implementations) of more than one PQC
candidate by members of the same team. As a result, the
underlying assumptions, designer skills, and optimization
effort have been very comparable for all designs. All de-
signs reported in this paper are fully reproducible, and, for
the purpose of full transparency, their source code will be
released as open-source after the acceptance of this paper.

2 PREVIOUS WORK

We are unaware of any complete hardware implementations
of either the NTRU-HPS or NTRU-HRSS KEMs as defined
during Rounds 2 and 3 of the PQC standardization pro-
cess. Ref. [5] presents a hardware implementation of the
public-key encryption and decryption in NTRU-HPS using
the schoolbook polynomial multiplier. This implementation
does not support key generation and major functions of
encapsulation and decapsulation, such as ternary sampling,
SHA-3, etc. Earlier versions of NTRU were significantly
different. Therefore, all major building blocks, a top-level
block diagram, a scheduling scheme, and the corresponding
control unit had to be designed from scratch.

The most relevant hardware implementations of
CRYSTALS-Kyber are described in [6] and [7].

The third pure hardware implementation, reported
in [8], supports only encapsulation and decapsulation and
is about an order of magnitude less efficient. An instruction-
set coprocessor for Kyber was proposed in [9]. Earlier
implementations of Kyber were of the software/hardware
type, and many of them concerned a substantially different
Round 1 version of this candidate.

The most relevant FPGA implementations of Saber are
described in [10] and [11]. Both designs follow a unified
architecture approach that supports selecting parameter sets
at run time. The first design, [10], employs a schoolbook-
based multiplier. Meanwhile, [11] proposes to use a hier-
archical 8-level Karatsuba multiplier. The later paper, [12],
improves area consumption of the high-speed multiplier
from [10] and introduces a new lightweight architecture.

There are multiple implementations of Kyber and Saber
in ASICs, including [13], [14], [15]. Developing side-channel-
resistant implementations of PQC algorithms is an interest-
ing field of research. However, it is outside of the scope of
this work.

3 BACKGROUND

Selected features of all implemented KEMs and their pa-
rameter sets are summarized in Tables 1 and 2, respectively.
From the implementation point of view, Kyber is designed
specifically with the idea of performing all multiplications
using the Number-Theoretic Transform (NTT). Saber and
NTRU are not. NTRU and Saber avoid using modular
reduction after each partial multiplication, as all operations
are performed modulo a power of 2. Kyber requires a re-
duction modulo a prime. NTRU uses polynomial inversion,
which is typically much more complex than polynomial
multiplication. Kyber and Saber do not.

3.1 NTRU
From the implementation point of view, all major operations
in NTRU are polynomial operations over the quotient rings
Rq , Sq and Sp where Rq : Zq[x]/Φ1Φn, Sq : Zq[x]/Φn,
and Sp : Zp[x]/Φn. Φ1 is (x − 1). Φn is (xn − 1)/Φ1 =
xn−1 + xn−2 + . . . + x + 1. Parameter p is fixed to 3 in
all parameter sets of NTRU. Thus, polynomials in Sp are
in ternary form, i.e., have their coefficients in {−1, 0, 1}.
In this paper, for NTRU, we use the notation Sp and S3

interchangeably. Coefficients of polynomials in Rq and Sq

have bit-widths of ϵq = log2q and those of polynomials in
Sp have bit-widths of ϵp = ⌈log2p⌉.

In NTRU-HRSS, polynomial f , which is a part of the
secret key is required to have non-negative correlation
property,

∑︁
i fifi+1 ≥ 0. Intermediate polynomial g used

in key generation also has the same property. In NTRU-
HPS, polynomial m in Sp has the fixed-weight property,
consisting of d/2 coefficients equal to 1 and d/2 coefficients
equal to −1, with d = q/8 − 2. Having the fixed-weight
property of m ensures that the ciphertext c ≡ 0 (mod
(q,Φ1)) in NTRU-HPS. In NTRU-HRSS, in order to achieve
the same property of c, m is lifted from S3 to Rq by the map
m ↦→ Φ1 · S3(m/Φ1).

3.2 CRYSTALS-Kyber
A basic operation of CRYSTALS-Kyber is the multiplication
of two polynomials. In Kyber the polynomials are elements
of Rq = Zq[x]/(x

n + 1).
Thus, for all security levels, polynomials are of the same

degree n = 256, and their coefficients are members of the
base prime field Zq , where q = 3329. However, a different
number of polynomials is required for each security level.
These polynomials are treated as a vector. The size of this
vector is specified using the parameter k. k is 2, 3, and 4
for security levels 1, 3, and 5, respectively. Secret noise poly-
nomials are sampled from a Centered Binomial Distribution
(CBD), where η is either 2 or 3.

An efficient method for polynomial multiplication in
Rq is through the use of the Number-Theoretic Transform
(NTT) [16], which is a generalization of the Discrete Fourier
Transform (DFT) to the finite ring Zq . In Rounds 2 and 3 of
the NIST PQC standardization process, Kyber uses n = 256
and q = 3329 = 13 · 28 + 1, where 2n ∤ (q − 1). To
make efficient NTT multiplication possible, a new definition
of NTT was provided, which transforms a polynomial of
degree 256 to a polynomial of degree 128 made up of degree
one polynomials as its coefficients.

IEEE TRANSACTIONS ON COMPUTERS, SPECIAL ISSUE ON HARDWARE SECURITY, FEBRUARY 2023 3
TABLE 1: Features of lattice-based NIST Round 3 finalists in the category of KEMs

Feature CRYSTALS-Kyber Saber NTRU-HPS NTRU-HRSS

Underlying
problem

Mod-LWE:
Module Learning

with Errors

Mod-LWR:
Module Learning
with Rounding

SVP: Shortest Vector
Problem

SVP: Shortest Vector
Problem

Sampling

Integers are sampled
from a centered

binomial distribution
(CBD)

Integers are sampled
from a centered

binomial distribution
(CBD)

Fixed-weight and variable
-weight polynomials are

sampled from a
uniform distribution

Variable-weight
polynomials are sampled

from a uniform
distribution

Degree n Power of 2 Power of 2 Prime Prime

Modulus q Prime Power of 2 Power of 2
with q/8− 2 ≤ 2n/3

Power of 2
with q > 8

√
2(n+ 1)

Other major
parameters

k: number of
polynomials per vector,
η: parameter of CBD

p, T : other moduli,
l: number of

polynomials per vector,
µ: parameter of CBD

d: Fixed weight
for g and m

Lift(m): Identity m ↦→ m

f, g: Non-negative
correlation
Lift(m):

m ↦→ Φ1 · S3(m/Φ1)

Hash-based
functions

SHA3-256,
SHA3-512,

SHAKE128,
SHAKE256

SHA3-256,
SHA3-512,
SHAKE128

SHA3-256,
SHAKE128

SHA3-256,
SHAKE128

Polynomial Rings Zq [x]/(xn + 1) Zq [x]/(xn + 1)
Rq : Zq [x]/(xn − 1)
Sq : Zq [x]/(Φn)∗

S3: Z3[x]/(Φn)∗

Rq : Zq [x]/(xn − 1)
S3: Z3[x]/(Φn)∗

∗ Φn = (xn − 1)/(x− 1) irreducible in Zq[x]

TABLE 2: Parameter sets of investigated algorithms.

Algorithm Parameter
Set

Security
Level

Degree
n

Modulus
q

Kyber Kyber512 1 256 3329
NTRU-HPS ntruhps2048677 1* 677 211

NTRU-HRSS ntruhrss701 1* 701 213

Saber LightSaber-KEM 1 256 213

Kyber Kyber768 3 256 3329
NTRU-HPS ntruhps4096821 3* 821 212

Saber Saber-KEM 3 256 213

Kyber Kyber1024 5 256 3329
Saber FireSaber-KEM 5 256 213

∗ assuming non-local computational models, implicitly used by
submitters of other investigated algorithms.

3.3 Saber
A distinctive feature of Saber is that rounding operations are
used to avoid the noise addition step and reduce the amount
of randomness required. Additionally, by using only moduli
that are powers of 2, modular reduction does not require any
hardware resources, and rejection sampling is eliminated.
Apart from q, other moduli in Saber include fixed p = 210

and T = 23, 24, and 26 in parameter sets corresponding to
Level 1, 3, and 5, respectively.

Saber involves operations on matrices and vectors of
polynomials over the quotient rings Rq : Zq[x]/(x

n+1) with
fixed n = 256. Polynomials in Saber are sampled from the
uniform distribution or centered binomial distribution. βµ

denotes a centered binomial distribution with the parameter
µ and the values of samples in the range [−µ/2;µ/2]. The
module dimension l defines the size of vectors and matrices
of polynomials as l × 1 and l × l, respectively. We denote
Rl×l

q and Rl×1
q as a matrix and vector of polynomials in Rq .

The rounding operation includes coefficient-wise addition
of a constant factor followed by bit shifting.

4 HARDWARE DESIGNS

Our primary design goal is the minimum latency of three
major operations – Key Generation, Encapsulation, and De-

capsulation – expressed in time units. However, paralleliza-
tion is pursued only until it gives a substantial reduction
in latency as compared to the area increase in LUTs. For
our target platforms, we chose representative devices of
two different FPGA families: Zynq UltraScale+ and Artix-7.
Specifically, we selected the largest devices of both families
supported by free versions of Xilinx tools, Zynq UltraScale+
ZU7EV-3 and Artix-7 XC7A200T-3. Both FPGA families have
been widely adopted in previous implementations, and us-
ing the same platforms enables fair comparison with state-
of-the-art. For these devices, the percentage utilization of
BRAMs and DSP units remains well below the percentage
utilization of LUTs in all our designs. Therefore, for the
purpose of design-space exploration, we use the number of
LUTs as a measure of the circuit Area. In the Zynq devices,
all computations are performed using Programmable Logic
(FPGA fabric), without any contributions from the Process-
ing System.

4.1 Choice of a Multiplier Type
Major features of investigated algorithms and their pa-
rameter sets affecting the choice of a multiplier type are
summarized in Table 3. All four candidates involve multi-
plication of a polynomial with so-called ”small” coefficients,
belonging to the range listed in the second column of
Table 3, by a polynomial with ”large” coefficients, in the
range [0..q-1], where q is given in Table 2. Out of several
major polynomial multiplier types, only the Schoolbook
multiplier can take full advantage of the feature that ”small”
coefficients have significantly fewer bits than ”large” coef-
ficients. This multiplier has a very regular structure and, in
each clock cycle, allows the multiplication of u coefficients
of one operand by all coefficients of the second operand.
The parameter u is an unrolling factor, typically set to 1, 2,
4, etc. Consequently, the execution time of this multiplier
is approximately equal to n/u clock cycles, and its area in
LUTs is proportional to n ·u. Since ”small” coefficients have
from 2 to 4 bits, multiplication by them can be accomplished
using ANDs, shifts, and additions. These operations can

IEEE TRANSACTIONS ON COMPUTERS, SPECIAL ISSUE ON HARDWARE SECURITY, FEBRUARY 2023 4
TABLE 3: Features of algorithms and parameter sets affecting the choice of a multiplier type

Small
Coefficient

Range

Number
of

coefficients

NTT
friendly

ring

One
Operand
in NTT
domain

”Small” × ”Large”
Polynomial

Multiplication in
KeyGen/Encaps/Decaps

”Large” × ”Large”
Polynomial

Multiplication in
KeyGen/Encaps/Decaps

ntruhrss701
[-1..1]

701
N N

5/1/3 8∗/–/1
ntruhps2048677 677 5/1/3 8∗/–/1
ntruhps4096821 821 5/1/3 8∗/–/1

Kyber512 [-3..3], [-2..2]
256 Y Y

4/6/8 –/–/–
Kyber768 [-2..2] 9/12/15 –/–/–
Kyber1024 [-2..2] 16/20/24 –/–/–

LightSaber-KEM [-5..5]
256 N N

4/6/8 –/–/–
Saber-KEM [-4..4] 9/12/15 –/–/–
FireSaber-KEM [-3..3] 16/20/24 –/–/–

∗ Performed in polynomial inversion in Sq

be efficiently implemented using LUTs and a special fast
carry logic of Xilinx FPGAs, without the need for DSP units.
Consequently, all polynomial multiplications in Saber and
the majority of multiplications in NTRU can be efficiently
implemented using the Schoolbook multiplier. The disad-
vantage is a relatively large area, even for the smallest value
of the unrolling factor u=1.

An NTT-based multiplier has a much smaller area, in-
dependent of n, and the execution time proportional to
n · lg2(n). It can be sped up using a small number of
DSP units. As a result, it is practical to instantiate several
such multipliers within the same design without reaching
the area threshold. The improvement in execution time
depends on data dependencies and the relative speed of
units producing inputs to the multipliers. An additional
speed-up can be accomplished by defining and/or storing
some inputs in the NTT domain. This way, the conversion
from the regular to NTT domain may be skipped for one
operand. Among the investigated algorithms, only Kyber is
defined this way. NTT-based multipliers do not offer any
advantage in terms of execution time for the case when one
operand has small coefficients. They also impose specific
requirements on the dependence between the number of
coefficients in each operand, n, and the modulus q. If these
dependencies do not hold, NTT may still be possible, but it
requires extra computations, increasing the multiplier’s area
and possibly complicating control. Taking all these features
into account, an NTT-based multiplier is an obvious choice
only for CRYSTALS-Kyber.

As shown in Table 3, NTRU-HPS and NTRU-HRSS are
the only investigated candidates that require multiplying
two polynomials with ”large” coefficients. Values of n and
q do not fulfill the requirements of NTT. None of the
operands is stored in the NTT domain. As a result, using a
Toom-Cook multiplier appears to be the best choice. These
multipliers have an area smaller than the Schoolbook and
larger than NTT types. Similar to the NTT-based multipliers,
the Toom-Cook multiplier requires using DSP units for
integer multiplications. In NTRU, these multiplications can
be sped up using a relatively moderate number of DSP
units. Consequently, they appear to be the natural choice
for the implementation of the ”large” by ”large” polyno-
mial multiplication in the key generation and decapsulation
operations of NTRU.

4.2 NTRU

The top-level diagram of NTRU is shown in Fig. 1. Below we
describe the way of performing major operations of NTRU-
HRSS and NTRU-HPS using this circuit.

4.2.1 Ternary Sampling

For NTRU-HRSS, the generation of polynomials f and g
is performed in S3 during key generation. Random bytes
coming from SHAKE128 are reduced modulo 3 to ob-
tain the ternary coefficients stored in a first-in, first-out
(FIFO) unit. The sum of products of consecutive coefficients
s =

∑︁
i fifi+1 is computed at the same time. After finishing

generating all coefficients, if s < 0, coefficients at even
indices are signed-flipped before being transferred to the
next computational stage. Thus, the non-negative correla-
tion properties of f and g are satisfied. g is later multiplied
by x − 1, which can be carried out trivially during the
transfer. During encryption, r and m do not have either the
non-negative correlation property or fixed-weight. They can
be computed by simply reducing random data modulo 3.

For NTRU-HPS, f and r have arbitrary weight and can
be sampled in a straightforward manner. However, m and g
have fixed weight and are sampled by creating a random
permutation of a list with a fixed number of values −1,
0, and 1. One can simply perform Fisher-Yates shuffle to
have a random non-biased permutation of such a list. How-
ever, Fisher-Yates shuffle is not constant-time and creates
a risk of potential timing attacks. Given that, we adopt a
constant-time merge sorting approach for the permutation.
The merge-sort module requires n random elements. Each
element includes 30 random bits concatenated with ”01”
for the first w/2 elements, ”10” for the next d/2 elements,
and ”00” for the rest. To get a 30-bit block, a 64-bit input is
passed through a PISO, to be divided into two 32-bit blocks.
Each 32-bit block is then processed using a buffer register
and a variable shifter to get a 30-bit block. The leftover
bits are stored in the buffer register to be concatenated with
the subsequent output of PISO. After sorting, the upper 30
bits are discarded, and the lower 2 bits are converted from
{0, 1, 2} to {0, 1,−1}.
Related work: Wang et al. [4] proposed a fully pipelined
constant-time merge sort module to generate random
permutation in the Key Generation operation of Classic
McEliece. To sort a random list of n elements, the module

IEEE TRANSACTIONS ON COMPUTERS, SPECIAL ISSUE ON HARDWARE SECURITY, FEBRUARY 2023 5

 Ternary_Poly_Mult

Keccak

Ternary
Mem

di

do

Sample

infifo_data

Main
Mem

di

do

unpack_ϵp

Controller

outfifo_data

Keccak
_do

coeff_di

lf
sr
_
d
i

do

FIFO FIFOFIFO

ϵq

TC3_Poly_Mult

8*ϵq
mod

(3, Φn)
×(x-1)

unpack_ϵq

Poly Add Center_3q

Poly Sub

Main_Mem_dounpack_ϵq

do

di

p
ac

k_
ϵ p

Sample
_do

ϵq

PISO

infifo_data

p
ac

k_
ϵ q

Cn-1

check_rm

fail

Keccak
_do

fail

ϵq

8*ϵq

PISO

ϵq

ϵq

8*ϵq

8*ϵp

8*ϵp

8*ϵp

8*ϵp8*ϵp

ϵp

SIPO

ϵp

8*ϵp

8*ϵp

8*ϵp

8*ϵp

ch
e

ck
_

c

8*ϵp

ϵq

infifo_empty

infifo_read

outfifo_full

outfifo_write

1

1

1

1

infifo_data

Fig. 1: Top-level block diagrams of the Encapsulation and Decapsulation modules of NTRU. The purple and blue modules are
used only in Encapsulation and Decapsulation, respectively. All bus widths are 64 bits unless specified otherwise.

>
FIFO

1

FIFO

1

FIFO

2

FIFO

2

>
FIFO

1

FIFO

1

FIFO

2

FIFO

2

….

….

>
FIFO

1

FIFO

1

FIFO

2

FIFO

2

1 1

1

>
FIFO

3

FIFO

3

FIFO

4

FIFO

4

>
FIFO

3

FIFO

3

FIFO

4

FIFO

4

….

….

1 1

Stage 0 Stage 1 Stage 9

1
>

FIFO

1

FIFO

1

FIFO

2

FIFO

2

1

>
FIFO

3

FIFO

3

FIFO

4

FIFO

4

1

Stage 2

2 4

512
>

FIFO

1

FIFO

1

FIFO

2

FIFO

2

1

>
FIFO

3

FIFO

3

FIFO

4

FIFO

4

1

128

Stage 7

>
FIFO

1

FIFO

1

FIFO

2

FIFO

2

1

256

Stage 8

164

Fig. 2: FIFO-based merge sort module for NTRUHPS2048677.

needs log2(n) iterations, where each step requires O(n)
comparison operations. Therefore, the total cycle count is
approximately equal to nlog2(n) cycles. Marotzke [17] im-
plemented an iterative Batcher’s merge exchange sort mod-
ule for a very similar sampling function in the Streamlined
NTRU Prime. Its operation also have asymptotic complexity
of O(nlog2(n)).

To speed up this operation, we use a merge-sort mod-
ule consisting of log2(n) cascaded Sort Stages to sort the
random sequences. The FIFO-based merge-sort module for
NTRU-HPS677 is shown in Fig. 2. The inputs to each Sort
Stage are two sorted lists, and the output is a sorted list of
double input length, including all elements from the two
input lists. Each input list is stored in a separate segment
of memory. While the lower stages can be implemented by
registers, the higher stages are implemented in dual-port
memory. This approach can reduce the number of LUTs and
FFs used to construct a large FIFO in higher stages at the

cost of a small number of BRAMs. By using the dual-port
memory, the controller in each stage can write out the sorted
list to the next stage and receive other input lists from the
previous stage simultaneously. By pipelining the operation
of multiple Sort Stages, we can achieve a highly optimized
latency for sorting. Our merge-sort module requires n clock
cycles for reading n elements, roughly n cycles for sorting,
and another n cycles to write out a sorted sequence. In
particular, sampling m or g takes 2,678 and 3,343 cycles for
NTRU-HPS677 and NTRU-HPS821, respectively.

4.2.2 Polynomial Multiplication

The schoolbook multiplication has quadratic-complexity but
enables simple, parallel, easy-to-parameterize, and very fast
architecture for polynomial multiplication in NTRU. It also
can take advantage of ”small” coefficients of one of the
operands. However, for the multiplication of two polynomi-

IEEE TRANSACTIONS ON COMPUTERS, SPECIAL ISSUE ON HARDWARE SECURITY, FEBRUARY 2023 6

als with ”large” coefficients, this multiplier choice becomes
sub-optimal, as explained in Section 4.1.

Toom-Cook and Karatsuba are multiplication algorithms
with better asymptotic complexity than the schoolbok
method. Toom-Cook k-way is a generalization of Karatsuba
with k = 2. Both algorithms generally follow five steps:
splitting, evaluation, pointwise multiplication, interpola-
tion, and recomposition. The input polynomials are split
into 2k − 1 polynomials with n/k coefficients. These poly-
nomials are then evaluated at 2k − 1 points. The evaluated
polynomials are multiplied in the pointwise-multiplication
steps. The results are interpolated as the opposite of the
evaluation step. The output polynomials of the interpolation
step are finally recomposed into the final product.

Therefore, in this work, for a multiplication not involv-
ing ternary polynomial, we implement a Toom-Cook 3-
way polynomial multiplier, which splits an n-coefficient
polynomial multiplication into five multiplications with n/3
coefficients. The five multiplications are performed in paral-
lel using five Odd-Even Karatsuba multipliers.

Our design was inspired by the software/hardware co-
design from [18], in which Toom-Cook 4-way was applied
to divide polynomial multiplication of 256 coefficients into
seven multiplications with 64 coefficients. These seven mul-
tiplications were then run in parallel using seven school-
book polynomial multipliers.

Our improvements over [18] include:
a) Our hardware implementation supports splitting input
polynomials into three smaller polynomials before the Eval-
uation step. The Toom-Cook core in [18] relies on software
to do this operation.
b) Using the Odd-Even Karatsuba method significantly im-
proves the latency of the multiplication step.
c) Our core supports Recomposition, which has the output
polynomial in the ring Rq . In [18], 5 output polynomials
are transferred to software and are then recomposed into a
single polynomial.

Toom-Cook 3-way splits input polynomial A(x) into
three polynomial a0, a1 and a2 such that A(y) = a0 + a1y+
a2y, where y = x⌈n/3⌉. a0, a1 and a2 are then evaluated at
five points {0, 1,−1, 2, ∞}. The pointwise multiplications
are performed by Odd-Even Karatsuba modules. We adopt
the optimal sequence for evaluation and interpolation in the
Toom-Cook 3-way from Bodrato et al. [19]. We would like
to highlight that during evaluation, there is a division by 2,
which becomes a one-bit shift right. Therefore, the pointwise
multiplication and interpolation steps require one extra bit
for each coefficient (a bit with the weight 2−1). After inter-
polation steps, we have 5 output polynomials c0, c1, . . . c4
with 2 · ⌈n/3⌉ coefficients that need to be recomposed and
reduced modulo Φn.

The overlap-free Karatsuba splits input polynomial A(x)
into two polynomials a0 and a1 such that A(y) = a0 + a1y
where y = x. It means that a0 consists of all even coefficients
of A(x). Meanwhile, a1 consists of all odd coefficients of
A(x). The overlap-free Karatsuba scheme enables a more
efficient alignment of product coefficients compared to the
classic Karatsuba scheme.

We note that the splitting step is merged into
evaluation. The interpolation and recomposition units
work concurrently. Each splitting/evaluation or recompo-

PISO w/ PO

0

v(x) r(x)

× f0g0 -

1

·x

×

f0

dout

SIPO w/ PISIPO w/ PI

Φn

din

f(x) g(x)

× f0g0 - ÷x

8*ϵp 8*ϵp

ϵp

ϵp

8*ϵp

ϵp

Fig. 3: S2/S3 Inversion Module. All bus widths are nϵp bits
unless specified otherwise (ϵp = ⌈log2p⌉).

sition/interpolation takes ⌈2n/3⌉ cycles. The pointwise-
multiplication latency is given by (n

6×3 + 1) × (n6 + 1).
Our Toom-Cook multiplier finishes one polynomial mul-
tiplication in Rq or Sq in 5507, 5098 and 7274 cycles for
n = 701, 677 and 821, respectively.

For multiplications involving polynomial in the ternary
form {−1, 0, 1}, we use the constant-time LFSR-based poly-
nomial multiplier, proposed in [20], which has the latency
of n clock cycles.

4.2.3 Inversion in S3 and Sq

The inverse of polynomials in Sq and S3 plays an important
role in key generation. We need to compute fp, which is
an inverse of f in S3 for the secret key. Computation of v1,
which is an inverse of v0 in Sq , must be completed before
any later operations could proceed [21].

Inversion in S3: Inversion in S3 is done using the
constant-time extended Greatest Common Divisor (GCD)
unit proposed in [22]. The top-level diagram of our
S3_inverse module is shown in Fig. 3. At first, g(x)
is initialized with an input polynomial in reverse order,
i.e., with the zeroth coefficient entering the corresponding
Serial-In/Parallel-Out (SIPO) unit first. This unit has an ad-
ditional parallel input and therefore is denoted as SIPO w/
PI. f(x) and r(x) are initialized with Φn and 1, respectively.
v(x) is stored in a Parallel-In/Serial-Out unit with Parallel
Output (PISO w/ PO) and initialized with 0. The module
runs in exactly 2(n− 1) cycles. All coefficients of four poly-
nomials are updated simultaneously during each iteration
according to the value of δ and g0. All operations, including
addition, subtraction, and multiplication, have coefficients
of resulting polynomials reduced modulo 3. Multiply and
divide by x are performed by simple coefficient shifting.
Lastly, the inverse of input polynomial is f0× v(x). We note

IEEE TRANSACTIONS ON COMPUTERS, SPECIAL ISSUE ON HARDWARE SECURITY, FEBRUARY 2023 7
TABLE 4: Implementation results of the Extended GCD module
and comparison with related work for Streamlined NTRU
Prime in Zynq UltraScale+.

Freq. LUT FF BRAM DSP Cycles

n = 761 [17] 271 518 216 0 0 1,168,899
n = 821 [TW] 250 8,534 5,479 0 0 1,846

Algorithm 1 Polynomial Inversion in Sq [23]
Input: Polynomial a in Sq

Output: Polynomial b in Sq such that a · b = 1 mod (q,Φn)

1: v0 ← a−1 mod (2,Φn)
2: i← 1
3: while i < log2q do
4: v0 ← v0 · (2− a · v0)
5: i← 2i
6: end while
7: b← v0

that the inverse polynomials are also stored in the reverse
order. Our module also supports inversion in S2, which is
used in inversion in Sq . In Table 4, we compare our results
for NTRU-HPS821 with n = 821 with the Reciprocal in
R/3 module in the implementation of Streamlined NTRU
Prime in [17]. These results demonstrate that the extended
GCD can be implemented in an unrolled fashion, achieving
highly optimized latency.

Inversion in Sq : To compute the inverse of h in Sq , we
perform h−1 mod (2,Φn) and then apply a variant of the
Newton iteration in Sq to obtain hq ≡ h−1 mod (q,Φn) [23].
The pseudocode of inversion in Sq is given in Algorithm 1.
A similar approach is presented in [23], which finds an in-
verse mod (2,Φn) using h−1 ≡ h2n−1−2 mod (2,Φn). Given
that squaring operation in Z2[x] is particularly very efficient
in software, this approach is suitable for software implemen-
tation. In our case, we can re-use our S3_inverse module
to compute inversion in S2. All arithmetic operations are
now reduced modulo 2 instead of 3 as in inversion in S3.
Operations from lines 3 to 6 in Algorithm 1 are equivalent
to 8 polynomial multiplications, which are performed by
the Toom-Cook multiplier. Due to the long latency of the
polynomial multiplication, inversion in Sq is the most time-
consuming operation in Key Generation of NTRU.

4.2.4 Lift function

Lift function in NTRU-HPS applies a simple map to
ternary coefficients of m, converting {0, 1,−1} to {0, 1, q −
1}. This can done on-the-fly by sign extending all the
coefficients from ϵp = 3 bits to ϵq bits.

In NTRU-HRSS, the Lift function maps m from S3

to Rq by doing m ↦→ Φ1 · S3(m/Φ1) [23]. It can be per-
formed by one multiplication with z = 1/Φn, followed
by reduction modulo (3,Φn) and multiplication by Φ1.
Since z is a constant ternary polynomial, it is stored in
the memory, and the multiplication can be performed by
the Ternary_Poly_Mult in n cycles. Reduction modulo
(3,Φn) and multiplication by Φ1 = x− 1 can be performed
on the fly while transferring the result back to the memory.

4.2.5 Operation scheduling

Almost all pack and unpack operations [21] are hidden by
overlapping them with Polynomial Multiplications and/or
Sampling. In Decapsulation, the checks for the validity of r
and m are executed in parallel with packing them. The ma-
jority of the execution time of Decapsulation is taken by the
”large” × ”large” polynomial multiplication. Meanwhile, in
Key Generation, the polynomial inversion in Rq takes up to
90% of total latency.

4.3 CRYSTALS-Kyber

The proposed hardware architecture for Round 3 Kyber sup-
ports the following variants and operations: a) CPA-PKE:
Key Generation, Encryption, and Decryption, and b) CCA-
KEM: Key Generation, Encapsulation, and Decapsulation.
The top-level unit is shown in Fig. 4.

k x PVMU

HSU

PV
Mem

do
Main
Mem

di

do

Controller

in
fi
fo
_e
m
p
ty

in
fi
fo
_r
e
ad

o
u
tf
if
o
_f
u
ll

o
u
tf
if
o
_w

ri
te

in
fi
fo
_d

at
a

outfifo_data

infifo_data

Serialize

Compress
Add/Sub

HSU_out

HSU_out

infifo_data

Compare

fail

fail

Decompress
Deserialize

infifo_data

di

48
48

48

64

48

48

48

64

48

48

1 1 1 1

Fig. 4: Block diagram of the Kyber top-level datapath. All bus
widths are 64 bits unless specified otherwise.

4.3.1 Polynomial NTT and Multiplication Unit

The Polynomial-Vector Multiplication Unit (PVMU) can per-
form forward and inverse NTT operations concurrently on
up to k polynomials, where k is the security level parameter.
This unit also performs polynomial point-wise multiplica-
tion (PWM) and accumulation to compute vector-vector and
matrix-vector multiplications. The top-level block diagram
of PVMU is shown in Fig. 5. At the security level k, the
PVMU module consists of k DoubleButterfly pipelines and
k memory banks (NTT RAM), each with a single read port
and a single write port and datawidth of 4 × 12 bits (4
coefficients). On the input path, k FIFOs exist, which allow
receiving up to k polynomials while a previous operation is
underway and the main memory bank port is busy.

A DoubleButterfly pipeline consists of two merged par-
allel configurable radix-2 butterflies, which can operate in
three modes of operation: DIT (Decimation in Time) NTT,
DIF (Decimation in Frequency) iNTT, and point-wise mul-
tiplication (PWM). During the NTT/iNTT operations, each

IEEE TRANSACTIONS ON COMPUTERS, SPECIAL ISSUE ON HARDWARE SECURITY, FEBRUARY 2023 8

Double
Butterfly

0

NTT
MEM

0FIFOFIFO di

do

Twiddle
ROM

PISO

Double
Butterfly

k-1

NTT
MEM

k-1FIFOFIFO di

do

PISO

Mod
Add

…
.

…
.

….

db0_do

dbk-1_do

d
b

0
_d

o

d
b

k-
1
_d

o

Control
Unit

ad

ad

ad

…
.

…
.

…
.

FIFO

48

12

48

12

24

24

48

48

48

k x 48

48

48 48

48

48

48

48

do

48

…
.

Fig. 5: Block diagram of the Kyber Polynomial-Vector Multipli-
cation Unit (PVMU)

Tail Reorder
Head Reorder

mod

mod24

24
12

12

12

12

12

12
12

12

12
12

12 12

12
12

12

12
12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

Fig. 6: Kyber DoubleButterfly and Reordering units

DoubleButterfly pipeline carries out two radix-2 butterfly
operations in parallel for odd and even coefficients.

Depending on the butterfly operation (DIF/DIT/PWM),
a reordering of the input is performed by the Head Reorder
unit. A similar reordering of the outputs is performed by the
Tail Reorder unit. During DIF/DIT operations, the reorder
units operate as multi-path delay commutators (MDC) [24],
ensuring the correct ordering of the stored coefficients and
preventing the need for any subsequent reordering steps.

Kyber’s point-wise multiplication of polynomials a and
b is on degree 1 polynomials in the form of a2i + a2i+1X .
While straightforward formulation requires 5 modular mul-
tiplications for each pair of output coefficients, by using the
Karatsuba method, as demonstrated by Xing et al. [6], the
number of multiplications can be reduced to 4. Through
pipelining, a single DoubleButterfly unit is able to generate
2 PWM result coefficients every 2 cycles.

Design of the DoubleButterfly module along with Head
and Tail Reordering units is depicted in Figure 6. The
butterfly datapath is deeply pipelined (configurable, up to
12 stages), but pipeline registers are not shown in Figure 6
to keep the diagram uncluttered. The feedback paths, de-
picted in gray, are activated in PWM mode of operation,
circulating each set of coefficients twice through the pipeline
and performing the required multiplications, additions, and
subtractions.

The inverse NTT operation involves scaling all coeffi-
cients by 256−1. In many software and hardware implemen-

tations, the scaling step is performed separately, requiring
256 additional field multiplications for each polynomial.
By performing a division by 2 (mod q) at each layer of
inverse NTT, the scaling step can be entirely avoided. This
observation was also used by Zhang et al. [25]. In that im-
plementation, two divide-by-2 hardware units are utilized
to scale both outputs of the radix-2 iNTT butterfly. In our
implementation, we use a single divide-by-2 unit for each
butterfly, and the other output of each butterfly is scaled by
using a scaled copy of the twiddle factors during the inverse
transform. The twiddle factors are stored in a single ROM
shared by all butterfly pipelines and are mapped to BRAM-
based memory during the FPGA synthesis.

4.3.2 Barrett reduction with support for division

Coefficients of polynomials are elements of a finite field (or
ring) Zq , where q is a small constant modulus. In Kyber q
is a prime. This choice requires a modular reduction step
after most arithmetic operations to keep the bit width of the
data bounded. Variants of Barrett [26], Montgomery [27], K-
RED [28], and SAMS2 [29] reduction algorithms have been
used in software and hardware implementations of R-LWE
schemes.

We use an optimized variant of the Barrett reduction
algorithm. As shown by Knezevic et al. [30], by careful se-
lection of parameters α and β, only one level of conditional
subtraction will be required. The hardware generator code
creates optimized single constant multipliers (SCM) from
shift-adder trees and ternary adders based on [31].

4.3.3 Hash and Sampling Unit

Kyber uses the SHA3-256 and SHA3-512 hash functions
as well as SHAKE128 and SHAKE256 extendable-output
functions. All of them are based on the Keccak permutation.
Hash and Sampling Unit (HSU) integrates Keccak core with
centered-binomial (CBD) and uniform rejection-based sam-
plers, performing hashing operations in the FO transform
as well as generation of noise polynomials and expansion
of the public matrix A. Our Keccak implementation takes
advantage of the full-width, basic iterative architecture,
which performs 24 rounds in 24 clock cycles. The data
input and output are 64 bits wide with the valid-ready
(decoupled) interface. In Kyber, all hashed data and base
seed values (without the ”nonce” bytes) are of lengths
that are multiples of 64 bits. Based on this observation,
we efficiently generate a padding word and append it to
the input in a single cycle. The padding word includes
specific SHA3/SHAKE padding bytes as well as one nonce
byte when generating noise polynomials (CBD sampling) or
two nonce bytes during the expansion of matrix A. Keccak
output is transferred from the state registers to a PISO to
allow the next permutations to be performed while the
output is consumed.

The MultiwidthCoverter module converts 64 bits of data
from the output PISO of the Keccak code to the number
of bits required for the selected sampling operation. This
module is an improvement to the ”Bus Width Converter”
design introduced by Farahmand et al. in [32] with support
for multiple output widths.

IEEE TRANSACTIONS ON COMPUTERS, SPECIAL ISSUE ON HARDWARE SECURITY, FEBRUARY 2023 9

4.3.4 Centered Binomial Sampler
The CBD module in Kyber is responsible for performing
binomial sampling. Kyber requires 12 bits of random data
generated by the SHAKE module to generate four coeffi-
cients per clock cycle. Two CBD parameters η1 and η2 are
used. η2 = 2 for all security levels, η1 = 3 for security Level
1 and η1 = 2 for the other security levels. The samples are
calculated from formula 1.

Bη =

η∑︂
i=1

(ai − bi) (1)

Hamming weights of the input chunks of the size η are
calculated, and negative results are mapped to equivalent
mod+q positive values.

4.3.5 Rejection-based Sampler
In order to minimize the size of the public key, the public
matrix A (or its transpose AT) is generated through the
rejection-based sampling of a deterministic random source.
The uniform random is generated using SHAKE128 from
the public key seed. The output from SHAKE is partitioned
into groups of 12 bits, and the resulting unsigned value is
only accepted as a valid coefficient if it is less than q = 3329.
This gives a probability of 81.27% for a sample to be valid.
As k2 sampled polynomials need to be generated through
multiple invocations of the Keccak permutation and filtering
of coefficients, this step is one of the bottlenecks in Kyber
hardware scheduling. The rejection-based sampling of A
is inherently not constant time, but any timing variation
entirely depends on the public key seed and therefore would
not expose any secrets. Our fast and efficient implemen-
tation of the uniform rejection sampling can process five
coefficients (60 bits) in every clock cycle, requiring ≈ 106
cycles on average for the expansion of each polynomial in
the public matrix (total of ≈ 106× k2 cycles for the matrix).

4.3.6 Improvements over Previous Work

TABLE 5: Implementation results of our NTT core (TW) and
comparison with previous work on Artix-7, based on [9], Table
VI. (n = 256, q = 3, 329)

Work Freq
[MHz] LUT FF

D
SP BR

AM
Cycles

NTT INTT PWM

[7] 222 801 717 4 2.0 324 324 –
[9] 115 360 145 3 2.0 940 1,203 1,289
[9] 115 737 290 6 4.0 474 602 1,289
[6] 161 1,579 1,058 2 3.0 448 448 256

TW 229 880 999 2 1.5 448 448 256

A state-of-the-art compact hardware implementation of
Kyber is reported in [6]. Our design has been conducted in-
dependently. Both designs employ all relevant optimization
techniques reported before.

Our high-level architecture and scheduling are based
on using k DoubleButterfly units. In [6], only one pair of
butterflies is used. Our DoubleButterfly datapath has a low
area (around 726 LUTs), which allows efficient exploitation
of Kyber’s algorithm-level parallelism by employing k in-
stances of DoubleButterfly, with k set to 2, 3, and 4 for the
security levels 1, 3, and 5, respectively.

We utilize an efficient memory access scheme, reducing
the memory requirement of each DoubleButterfly unit to
a 1-read 1-write (1R1W) 64x48-bit RAM. In Xilinx FPGAs,
this memory is mapped to a single BRAM tile (36 Kb block
RAM) in the simple dual-port (SDP) mode of operation.
Efficient ”Head/Tail Re-order” units of the double-butterfly
structure perform online re-ordering of coefficients enter-
ing/exiting the butterfly pipeline in NTT/iNTT (as a Multi-
path Delay Commutator) as well as the re-ordering required
for PWM/MAC. The double-butterfly structure computes
the point-wise multiplication through the interleaved reiter-
ation of the pipeline.

Our deeply pipelined butterfly implementation, includ-
ing 12 stages, results in a higher maximum clock frequency.
The optimized control circuit can skip pipeline flushing
stalls whenever possible.

We have developed an optimized reduction unit based
on a tweaked version of Barrett’s algorithm. This unit has
been shown to be faster and more efficient than the other
implementations of modular reduction suggested in the
literature. It also computes the division by q required for
a fast and efficient implementation of the compression step.
As a bonus, our hardware generation code works perfectly
for any value of q, including the value used in CRYSTALS-
Dilithium.

Finally, unlike [6], our design is technology-independent
and does not employ any vendor-specific IPs. These features
allow for easy deployment on FPGA platforms other than
Xilinx, use of synthesis flows other than Vivado (including
open-source FPGA flows), as well as porting to ASICs.

Bisheh-Niasar et al. in [7] present an accelerator for the
NTT-based polynomial multiplication targeting Kyber. They
utilize a 2 × 2 configurable butterfly architecture, which
requires 29% fewer cycles for performing the NTT and iNTT
operations compared to our 2×1 DoubleButterfly. They use
a variation of the K-RED [28] modular reduction.

The comparison among the NTT units reported in
[7], [9], [6], and this work is summarized in Table 5. For this
work, the contribution of operations other than polynomial
multiplication to the execution time of decapsulation at
security level 3 is summarized in the rightmost column
of Table 7. The contribution of all remaining operations
is limited to about 26% of the total clock cycles due to
their overlap with the NTT-unit operations for polynomial
multiplication.

4.4 Saber
The top-level block diagram is shown in Fig. 7. Below we
describe the way of performing major operations of Saber
using this circuit.

4.4.1 Centered Binomial Sampler
For security levels 1, 3, and 5, the values of coefficients
sampled from CBD are in the range [-5..5], [-4..4], or [-
3..3], corresponding to the bit-widths w = 4, 4, 3. The 64-
bit inputs are buffered in the dual-step shift register. After
the shift register is full, chunks of data are read out and
fed through a pure combinational logic to generate the
coefficients. The output width of sampling modules is equal
to 8 · w. Therefore, we have 8 samples generated per clock
cycle.

IEEE TRANSACTIONS ON COMPUTERS, SPECIAL ISSUE ON HARDWARE SECURITY, FEBRUARY 2023 10

Poly_Mult

Keccak

S & S’
Mem

di

do

8*w

Sample

8*w

8*w

8*w

infifo_data

Main
Mem

di

do

Poly
Sub

Encode

Unpack_w

Controller

Verify

Keccak_do

Main_Mem_do

Keccak
_do

infifo_data

coeff_di

lf
sr
_
d
i

do

× P/T

Unpack_ϵpq

1

Unpack_ϵT

4*ϵp

4*ϵT

FIFO FIFOFIFO

4*ϵq

4*ϵp

4*ϵp

4*ϵp

8*w

8*w

imd_di

Padding

u*ϵq

Round_Pack

infifo_empty

infifo_read

outfifo_full

outfifo_write

1

1

1

1

infifo_data

outfifo_data

Fig. 7: Top-level block diagrams of Saber. All bus widths are 64 bits unless specified otherwise. The orange, blue modules are used
only in key generation and decapsulation, respectively (ϵq = log2q, ϵp = log2p, and ϵT = log2T).

TABLE 6: Implementation results of the Optimized Polynomial
Multiplier using optimized integer multipliers vs. the central-
ized multiplier architecture in [12]

Optimized Multiplier Centralized Multiplier

LightSaber 12,492 LUTs, 8,727 FFs 13,658 LUTs, 8,727 FFs
Saber 12,492 LUTs, 8,727 FFs 11,426 LUTs, 8,727 FFs
FireSaber 8,726 LUTs, 8,215 FFs 8,734 LUTs, 8,215 FFs

MAC

MAC

MAC

u*w

…
.

ϵq

ϵq

ϵq

ϵq

ϵq

ϵq

u*ϵq

u-step LFSR
w*n

A

B

C

Init

A

B

C

Init

A

B

C

Init

coeff_di

B
u

ff
e

rSIPO

8*w

lfsr_di

w*n

2's Complement

8*w

u*w

u*w

…
. do

u*ϵq

u*ϵq

u*ϵq

4*ϵq

imd_di
4*ϵq

Fig. 8: Schoolbook-based polynomial multiplier with unroll
factor u = 1, 2, 4.

4.4.2 Polynomial Multiplication

The block diagram of the schoolbook-based polynomial
multiplier for Saber is shown in Fig. 8. Since there are
multiple multiplications involved in vector-by-vector and
matrix-by-vector multiplications, we improve the latency
of multiplication by adding input and output buffers. The
buffers are capable of pre-loading the next input polynomial
and unloading the previous product polynomial at the
same time as the current multiplication is performed. The
S&S’MEM stores all small coefficients of secret polynomials
in their unpacked form. Thus, it can provide one polyno-
mial in 32 cycles. The latencies of loading and unloading
polynomials are hidden in the multiplication latency. The
multiplier can also be unrolled by a factor u = 1, 2, or 4,
leading to the polynomial multiplication latency of 256, 128,

or 64 cycles, respectively. Instead of having simple integer
coefficient-wise multipliers, which are based on shift-add
operations, as in [33], we generated optimized integer mul-
tipliers using an open-source tool FloPoCo [34]. We also
tried the centralized coefficient-wise multiplier approach
proposed in [12]. We report the results of the two approaches
in Table 6. The centralized multipliers approach has better
area consumption in the case of security level 3 (Saber).
Thus, we use this approach for this specific parameter set.
For security levels 1 and 5 (LightSaber and FireSaber), the
optimized integer multipliers are used.

4.4.3 Operations Scheduling
During encapsulation and decapsulation, the generation of a
vector of polynomials with ”small” coefficients in CBD takes
uniform inputs from the Keccak module. Whenever a poly-
nomial is generated, it is then loaded into the polynomial
multiplier and, at the same time, stored in S&S’MEM for later
use. Multiplication can start as soon as a polynomial with
”small” coefficients is fully loaded. For each cycle during
multiplication, 1, 2, and 4 coefficients of a polynomial in A
are fetched to the multiplier with the unrolling factor u = 1,
2, and 4, respectively. The unpack_ϵpq module serializes 64-
bit data blocks into 13-bit coefficients. Since the multiplier
consumes data at a slower rate than the Keccak module,
Keccak module works intermittently when generating A. It
stops its operation when there is still data left to be read by
the multiplier. The next small noise polynomial is loaded in
parallel with the multiplication of the current polynomials.
Thus, the multiplier is always busy during vector-by-vector
and matrix-by-vector multiplication. The result polynomials
are rounded, packed, and stored into Main_Mem. During
key generation, matrix A is generated in column-major
order. The intermediate results of polynomials in vector b
have to be stored in Main_Mem.

4.4.4 Improvements over Previous Work
The Karatsuba-based multiplier in [11] can execute poly-
nomial multiplications in a very low number of clock cy-

IEEE TRANSACTIONS ON COMPUTERS, SPECIAL ISSUE ON HARDWARE SECURITY, FEBRUARY 2023 11
TABLE 7: Comparison to Saber implementation in [10] for Level
3 Decapsulation based on [10], Table 1. In our designs, some
operations have their execution time overlapping with others
in the rows above. Hence, only their non-overlapping cycles,
contributing to the total cycle count, are reported. Notation:
TW - This work.

Operations Decapsulation - CCAKEM L3

Saber [10] Saber [TW] Kyber [TW]

Polynomial multiplications 4,484 3,873 3,744
SHA3-256 303 294 449
SHA3-512 62 47 39
SHAKE128/256 1,403 51 428
CBD/Uniform Sampling 176 89 43
Remaining operations 1,606 328 330

Total Cycles 8,034 4,682 5,033

cles. By employing pipelined 8-level Karatsuba unit with
efficient scheduling, one polynomial multiplication can be
completed in 81 cycles. However, its area consumption is
much higher than that of our multiplier in terms of DSP
units (85 vs. 0) and BRAMs (6.0 vs. 1.5). Due to the recursive
nature of the algorithm, the critical path through the mul-
tiplier is longer. Consequently, the circuit can only operate
at low frequencies, 100 MHz and 160 MHz, for the unified
and Saber Level 3 architecture, respectively. By unrolling
our schoolbook-based multiplier, with the unrolling factors
equal to 2 and 4, we obtain the designs Saber x2 and Saber
x4. These designs can achieve comparable cycle counts
while having a much higher maximum clock frequency and
hence also better latency in µs. We note that the design
in [11] targets an ASIC. Thus, both the area consumption
and maximum frequency on FPGA might still be improved.

The high-speed instruction-set coprocessor in [10] offers
flexibility in supporting multiple parameter sets in a unified
architecture. The polynomial multiplier is then improved
in [12]. Area consumption is significantly reduced while
keeping the same latency in clock cycles. The coprocessor
design, however, limits exploiting parallelism between non-
data-dependent operations. In our design, many operations
can be executed in parallel with polynomial multiplications.
In Table 7, we show in detail how our efficient scheduling
of operations for Saber Level 3 can improve the overall
latency of decapsulation. The latency of polynomial mul-
tiplications is improved by 14% using buffers, allowing
loading input and unloading output in parallel with mul-
tiplications. SHAKE128 and CBD sampling are almost fully
overlapped. The remaining operations only include loading
random input and ciphertext, rounding, and packing the
final polynomial in the result vectors. Consequently, the
total cycle count for decapsulation at Level 3 is reduced by
more than 40%.

5 RESULTS

All results reported in this section have been obtained
after placing and routing using Xilinx Vivado 2020.2. In
Tables 8, 9, and 10, we report Area-Time trade-off as a
product of Total Time (Key Gen. + Encaps. + Decaps.) ×
number of LUTs. The improvements over previous work
are also included. Notation: TW - This work.

5.1 NTRU
The results of our implementations of two variants of NTRU
are summarized in Table 8. At security level 1, NTRU-HRSS
outperforms NTRU-HPS for all operations in terms of the
execution time in microseconds. NTRU-HRSS operates at a
higher clock frequency but requires more LUTs than NTRU-
HPS. With the increase in the security level, NTRU-HPS
requires more FPGA resources, except for DSP units, the
number of which remains the same.

5.2 CRYSTALS-Kyber
In Table 9, we report our results for CRYSTALS-Kyber and
compare them with previous hardware-only implementa-
tions. We omit software/hardware implementations, as they
are clearly inferior in terms of both the latency and the
product of the latency and the number of LUTs.

The implementation of Kyber presented in this work
slightly trails the implementation reported in [7] in terms of
the execution time in clock cycles and time units at security
level 1. At the same time, our design outperforms the design
reported in [7] in terms of resource utilization and the area-
time product for all security levels. The number of DSP
units in our design is consistently two times smaller. Our
implementation outperforms the design reported in [6], by
a factor greater than two in terms of the execution time
in microseconds for all major operations (key generation,
encapsulation, and decapsulation). The comparison with [6]
in terms of resource utilization is less obvious, considering
that all operations are allowed to share the same resources
in this work. In [6], the resource utilization for the server
side (executing key generation and decapsulation) and the
client side (executing encapsulation) are reported separately.
However, based on our design, extending the coverage of
operations from the server side to include encapsulation
has negligible influence on the circuit area. Thus, it seems
fair to compare our resource utilization numbers with the
corresponding numbers for the server unit in [6]. The im-
plementations reported in [9] and [8] are significantly less
efficient. Ref. [8] also does not support key generation.

5.3 Saber
The comparison between our implementations of Saber and
the best previous designs reported in [11] and [10] are
shown in Table 10. The designs with the terms x1, x2, and x4
in the name are obtained by unrolling the schoolbook poly-
nomial multiplication unit by 1, 2, and 4 times, respectively.
Based on Table 10, Saber x4 and Saber x2 are the fastest,
Saber x1 is the smallest among the compared high-speed
implementations.

5.4 Comparison of Round 3 finalists
In Figs. 9, 10, and 11, we illustrate the dependence between
the latency (in µs) of designs implemented using Zynq
UltraScale+ SoC FPGAs and their resource utilization in
LUTs. All other components of resource utilization, such
as the number of BRAMs or DSP units, are omitted for
simplicity. In terms of the percentage of the total amount
of FPGA resources, the utilization of LUTs is the highest for
all considered designs.

IEEE TRANSACTIONS ON COMPUTERS, SPECIAL ISSUE ON HARDWARE SECURITY, FEBRUARY 2023 12
TABLE 8: Implementation results of NTRU on Zynq UltraScale+. The Area-Time Product (ATP-LUT) is calculated by Total Time
(Key Gen. + Encaps + Decaps. in s) × LUT (the number of LUTs).

Design Key/Encaps/Decaps
[K Cycles]

Freq
[MHz]

Key/Encaps/Decap
[us] LUT FF Slices

D
SP BR

AM ATP-LUT

Security Level 1

NTRU-HRSS701 [TW] 51.8/2.2/8.8 300 172.7/7.4/29.4 57,301 41,124 10,617 45 2.5 12.01 (1.15)
NTRU-HPS677 [TW] 48.2/3.7/7.5 250 192.7/14.7/30.1 43,901 42,003 9,023 45 6.0 10.43 (1.00)

Security Level 3

NTRU-HPS821 [TW] 67.2/4.6/10.2 250 268.6/18.3/40.8 53,619 47,362 11,823 45 6.5 17.58 (1.00)

TABLE 9: Implementation results for different Kyber instances on various FPGAs. Notation: S/C - Server/Client, E/D -
Encapsulation/Decapsulation, Dev. - Device. The Area-Time Product (ATP-LUT) is calculated as Total Time (Key Gen. + Encaps
+ Decaps. in s) × LUT. A value in the parentheses is a ratio compared to the best design at the same security level.

Design Key/Encaps/Decaps
[K Cycles]

Freq
[MHz]

Key/Encaps/Decaps
[us] LUT FF

D
SP BR

AM ATP-LUT

D
ev

.

Kyber-CCAKEM L1

Kyber R3 [TW] 2.1/3.3/4.5 220 9.7/14.8/20.3 9,347 8,186 4 6.0 0.419 (1.00) A7
Kyber R3 [7] 1.9/2.4/3.8 200 9.4/12.2/18.8 10,502 9,859 8 13.0 0.424 (1.01) A7

Kyber R3 [6] 3.8/5.1/6.7 S/C
161/167 23.4/30.5/41.3 S/C

7412/6785
S/C

4644/3981
S/C
3/3

S/C
2.0/2.0 0.65 (1.54) A7

Kyber R2 [9] 4.0/7.0/10.0 115 34.8/60.9/87.0 18,000 5,000 6 15.0 3.29 (7.84) A7

Kyber R2 [8] –/49.0/68.8 155 –/316.0/444.0 E/D
80,322/88,901 – E/D

54/354
E/D

200.5/202.0 61.04 (145.57) A7

Kyber R3 [TW] 2.1/3.3/4.5 450 4.8/7.2/9.9 9,435 8,605 4 6.0 0.21 (1.00) ZU+

Kyber-CCAKEM L3

Kyber R3 [TW] 2.7/3.9/5.0 220 12.3/17.7/22.9 10,434 9,473 6 8.5 0.55 (1.00) A7
Kyber R3 [7] 2.7/3.3/4.8 200 13.3/16.3/24.0 11,783 10,424 12 14.0 0.63 (1.15) A7

Kyber R3 [6] 6.3/7.9/10 S/C
161/167 39.2/47.6/62.3 S/C

7412/6785
S/C

4644/3981
S/C
3/3

S/C
2.0/2.0 1.01 (1.83) A7

Kyber R2 [9] 7/10/14 115 60.9/87.0/121.7 16,000 6,000 9 16.0 4.31 (7.82) A7

Kyber R2 [8] –/77.5/102.1 155 –/500.0/659.0 E/D
97,085/110,260 – E/D

36/292
E/D

200.5/202.0 112.52 (204.03) A7

Kyber R3 [TW] 2.7/3.9/5.0 450 6.0/8.6/11.2 10,512 10,105 6 8.5 0.27 (1.00) ZU+

Kyber-CCAKEM L5

Kyber R3 [TW] 3.6/4.8/6.0 220 16.3/21.8/27.1 11,527 10,767 8 10.5 0.75 (1.00) A7
Kyber R3 [7] 3.5/4.1/6.3 185 18.7/22.3/33.8 13,347 11,639 16 16.0 1.00 (1.33) A7

Kyber R3 [6] 9.4/11.3/13.9 S/C
161/167 58.2/67.9/86.2 S/C

7412/6785
S/C

4644/3981
S/C
3/3

S/C
2.0/2.0 1.44 (1.92) A7

Kyber R2 [9] 10/14/18 112 89.3/125.0/160.7 16,000 6,000 12 17.0 6.00 (7.99) A7

Kyber R2 [8] –/107.1/135.6 192 –/558.0/706.0 E/D
119,189/132,918 – E/D

36/548
E/D

200.5/202.0 150.65 (200.65) A7

Kyber R3 [TW] 3.6/4.8/6.0 450 8.0/10.6/13.2 11,598 11,606 8 10.5 0.37 (1.00) ZU+

TABLE 10: Implementation results of Saber and comparison with related works on Zynq UltraScale+ platform. The Area-Time
Product (ATP-LUT) is calculated as Total Time (Key Gen. + Encaps + Decaps. in s) × LUT (the number of LUTs). A value in the
parentheses is a ratio compared to the best design at the same security level.

Design Key/Encaps/Decaps
[K Cycles]

Freq
[MHz]

Key/Encaps/Decap
[us] LUT FF Slices

D
SP BR

AM ATP-LUT

Security Level 1

LightSaber x4 [TW] 0.9/1/1.3 310 2.9/3.3/4.2 65,890 28,230 10,404 0 1.5 0.69 (1.57)
LightSaber x2 [TW] 1.1/1.4/1.8 345 3.2/4.1/5.2 39,423 21,467 6,610 0 1.5 0.49 (1.13)
LightSaber x1 [TW] 1.6/2.2/2.8 370 4.3/5.8/7.6 24,688 14,785 4,309 0 1.5 0.44 (1.00)
Unified Saber [11] 0.6/0.9/1.1 100 6.0/8.6/10.8 34,886 9,858 — 85 6.0 0.89 (2.03)
Unified Saber [10] 2.8/4.0/5.0 150 18.4/26.9/33.6 24,979 10,732 — 0 2.0 1.97 (4.51)

Security Level 3

Saber x4 [TW] 1.3/1.5/1.9 310 4.3/4.8/6.0 48,895 27,715 7,726 0 1.5 0.74 (1.15)
Saber x2 [TW] 1.8/2.2/2.8 345 5.2/6.5/8.1 32,099 21,037 5,294 0 1.5 0.64 (1.00)
Saber [11] 1.1/1.5/1.7 160 6.7/9.1/10.6 28,169 9,504 — 85 6.0 0.74 (1.15)
Saber x1 [TW] 2.7/3.7/4.7 370 7.3/10.1/12.7 21,352 14,232 3,763 0 1.5 0.64 (1.00)
Unified Saber [11] 1.1/1.5/1.7 100 10.7/14.6/17 34,886 9,858 — 85 6.0 1.48 (2.30)
Saber [10] 5.5/6.6/8.0 250 21.8/26.5/32.1 25,079 10,750 — 0 2.0 2.02 (3.14)
Unified Saber [10] 5.5/6.6/8.0 150 36.4/44.1/53.6 24,979 10,732 — 0 2.0 3.35 (5.21)

Security Level 5

FireSaber x4 [TW] 2.0/2.1/2.6 310 6.5/6.9/8.5 38,268 27,677 6,348 0 1.5 0.84 (1.08)
FireSaber x2 [TW] 2.9/3.4/4.1 345 8.4/9.8/11.9 25,760 21,035 4,239 0 1.5 0.78 (1.00)
FireSaber x1 [TW] 4.9/5.9/7.1 370 13.2/15.9/19.3 20,383 14,239 3,408 0 1.5 0.99 (1.27)
Unified Saber [11] 1.7/2.2/2.5 100 17.2/21.9/24.8 34,886 9,858 — 85 6.0 2.23 (2.88)
Unified Saber [10] 9.0/10.3/12.3 150 60.2/68.4/82 24,979 10,732 — 0 2.0 5.26 (6.78)

IEEE TRANSACTIONS ON COMPUTERS, SPECIAL ISSUE ON HARDWARE SECURITY, FEBRUARY 2023 13

1.0

10.0

100.0

1,000.0

10 20 30 40 50 60

La
te

n
cy

 (
u

s)

LUT [x1000]
Kyber-TW Saber-TW
Saber-Tsinghua Saber-Birmingham
NTRUHPS-TW

Fig. 9: L3, KeyGen, Zynq UltraScale+

1.0

10.0

100.0

1,000.0

10 20 30 40 50 60

La
te

n
cy

 (
u

s)

LUT [x1000]
Kyber-TW Saber-TW
Saber-Tsinghua NTRUHPS-TW
Saber-Birmingham

Fig. 10: L3, Encaps, Zynq UltraScale+

1.0

10.0

100.0

1,000.0

10 20 30 40 50 60

La
te

n
cy

 (
u

s)

LUT [x1000]

Kyber-TW Saber-TW
Saber-Tsinghua Saber-Birmingham
NTRUHPS-TW

Fig. 11: L3, Decaps, Zynq UltraScale+

The exact correspondence between the names of designs
given in these figures’ legends and the related publications
is as follows: <candidate name>-TW: this work, Saber-

Tsinghua: [11], Saber-Birmingham: [10]. Due to space con-
straints, we illustrate results only for security level 3 and
Zynq UltraScale+. UltraScale+ was selected because of its
use in previous work [10], [11]. Level 3 was selected because
of the existence of the dedicated design, reported in [10],
optimized specifically for this security level.

Saber is the fastest for all three major operations. From
left to right, Saber-TW is represented by three diamonds
corresponding to the x1, x2, and x4 architectures. Saber-
TW x1 clearly outperforms Saber-Birmingham [10] in terms
of both latency and resource utilization. Saber-TW x2 out-
performs Saber-Tsinghua [11] in terms of speed, but uses
slightly greater area. Kyber-TW is slightly faster than Saber-
TW x1 and slower than Saber-TW x2 and Saber-TW x4.
However, it uses only about a half of the LUTs of Saber-
TW x1, about one-third of LUTs of Saber-TW x2, and about
one-fifth of Saber-TW x4. NTRU-HPS is about 37-62x slower
for key generation, about 3-7x slower for decapsulation, and
about 2-4x slower for encapsulation (considering designs
described in this paper). In terms of resource utilization,
NTRU-HPS takes the largest number of LUTs, exceeding the
number of LUTs for Saber-TW x4.

The performance of these candidates at security levels
1 and 5 can be determined by the analysis of data shown
in Tables 8 (NTRU), 9 (Kyber), and 10 (Saber). The primary
difference at level 1 is that NTRU can be represented by
NTRU-HRSS, which for encapsulation has a performance
matching that of Kyber. However, for key generation and
decapsulation, the difference in performance remains at
the similar level, independently whether NTRU-HRSS or
NTRU-HPS are considered.

For security level 5, Kyber-TW outperforms FireSaber x1-
TW by at least 46% in terms of the execution time in time
units. At the same time, its resource utilization in LUTs is
smaller by a factor of 1.8.

6 CONCLUSIONS

In terms of latency in time units, Saber and CRYSTALS-
Kyber outperform NTRU by a factor 36-62 for key gen-
eration and 3-7 for decapsulation at security levels 1 and
3. For encapsulation at level 1, the performance of NTRU-
HRSS is comparable to that of Kyber. For encapsulation at
level 3, NTRU-HRSS is not supported, and the performance
of NTRU-HPS lags behind that of Saber and Kyber by
approximately a factor of 2-4. The differences between the
two top candidates, Saber and Kyber, are relatively minor
and may change as a result of future optimizations.

REFERENCES

[1] D. J. Bernstein, J. Buchmann, and E. Dahmen, Eds., Post-Quantum
Cryptography. Springer, 2009.

[2] D. J. Bernstein, N. Heninger, P. Lou, and L. Valenta, “Post-quantum
RSA,” in 8th International Workshop on Post-Quantum Cryptography,
PQCrypto 2017. Cham: Springer, Jun. 2017, pp. 312–329.

[3] NIST, “Post-Quantum Cryptography: Call for Proposals,” https:
//csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-
Quantum-Cryptography-Standardization/Call-for-Proposals,
2016.

[4] W. Wang, J. Szefer, and R. Niederhagen, “FPGA-Based Niederre-
iter Cryptosystem Using Binary Goppa Codes,” in 9th International
Conference on Post-Quantum Cryptography, PQCrypto 2018. Fort
Lauderdale, Florida: Springer, Apr. 2018, pp. 77–98.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization/Call-for-Proposals
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization/Call-for-Proposals
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization/Call-for-Proposals

IEEE TRANSACTIONS ON COMPUTERS, SPECIAL ISSUE ON HARDWARE SECURITY, FEBRUARY 2023 14

[5] Z. Qin, R. Tong, X. Wu, G. Bai, L. Wu, and L. Su, “A Compact
Full Hardware Implementation of PQC Algorithm NTRU,” in 2021
International Conference on Communications, Information System and
Computer Engineering (CISCE). IEEE, pp. 792–797.

[6] Y. Xing and S. Li, “A Compact Hardware Implementation of CCA-
Secure Key Exchange Mechanism CRYSTALS-KYBER on FPGA,”
IACR Transactions on Cryptographic Hardware and Embedded Systems,
vol. 2021, no. 2, pp. 328–356, Feb. 2021.

[7] M. Bisheh-Niasar, R. Azarderakhsh, and M. Mozaffari-Kermani,
“High-Speed NTT-based Polynomial Multiplication Accelerator
for Post-Quantum Cryptography,” in 2021 IEEE 28th Symposium
on Computer Arithmetic (ARITH), Jun. 2021, pp. 94–101.

[8] Y. Huang, M. Huang, Z. Lei, and J. Wu, “A Pure Hardware
Implementation of CRYSTALS-KYBER PQC Algorithm through
Resource Reuse,” IEICE Electronics Express, vol. 17, 2020.

[9] M. Bisheh-Niasar, R. Azarderakhsh, and M. Mozaffari-Kermani,
“Instruction-Set Accelerated Implementation of CRYSTALS-
Kyber,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 68, no. 11, pp. 4648–4659.

[10] S. Sinha Roy and A. Basso, “High-speed Instruction-set Copro-
cessor for Lattice-based Key Encapsulation Mechanism: Saber
in Hardware,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, vol. 2020, no. 4, pp. 443–466, Aug. 2020.

[11] Y. Zhu, M. Zhu, B. Yang, W. Zhu, C. Deng, C. Chen, S. Wei,
and L. Liu, “LWRpro: An Energy-Efficient Configurable Crypto-
Processor for Module-LWR,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 68, no. 3, pp. 1146–1159, 2021.

[12] A. Basso and S. S. Roy, “Optimized Polynomial Multiplier Archi-
tectures for Post-Quantum KEM Saber,” in 58th Design Automation
Conference, DAC 2021, San Francisco, Dec. 2021.

[13] M. Bisheh-Niasar, R. Azarderakhsh, and M. Mozaffari-Kermani,
“A Monolithic Hardware Implementation of Kyber: Comparing
Apples to Apples in PQC Candidates,” in Progress in Cryptology –
LATINCRYPT 2021. Springer, pp. 108–126.

[14] M. Imran, F. Almeida, J. Raik, A. Basso, S. S. Roy, and S. Pagliarini,
“Design Space Exploration of SABER in 65nm ASIC,” in 5th
Workshop on Attacks and Solutions in Hardware Security, ASHES
2021. ACM, pp. 85–90.

[15] Aikata, A. C. Mert, D. Jacquemin, A. Das, D. Matthews,
S. Ghosh, and S. S. Roy, “A Unified Cryptoprocessor for
Lattice-based Signature and Key-exchange.” [Online]. Available:
https://eprint.iacr.org/2021/1461

[16] Dubois and Venetsanopoulos, “The Discrete Fourier Transform
Over Finite Rings with Application to Fast Convolution,” vol. C-
27, no. 7, pp. 586–593.

[17] A. Marotzke, “A Constant Time Full Hardware Implementation
of Streamlined NTRU Prime,” in 19th International Conference
on Smart Card Research and Advanced Applications, CARDIS 2020.
Springer, pp. 3–17.

[18] J. M. B. Mera, F. Turan, A. Karmakar, S. Sinha Roy, and I. Ver-
bauwhede, “Compact domain-specific co-processor for accelerat-
ing module lattice-based KEM,” in 2020 57th ACM/IEEE Design
Automation Conference (DAC). San Francisco, CA, USA: IEEE, Jul.
2020, pp. 1–6.

[19] M. Bodrato and A. Zanoni, “Integer and Polynomial Multipli-
cation: Towards Optimal Toom-Cook Matrices,” in International
Symposium on Symbolic and Algebraic Computation, ISSAC 2007, Jul.
2007, pp. 17–24.

[20] F. Farahmand, V. B. Dang, D. T. Nguyen, and K. Gaj, “Evaluating
the Potential for Hardware Acceleration of Four NTRU-Based
Key Encapsulation Mechanisms Using Software/Hardware Code-
sign,” in 10th International Conference on Post-Quantum Cryptogra-
phy, PQCrypto 2019, ser. LNCS, vol. 11505. Chongqing, China:
Springer, May 2019, pp. 23–43.

[21] C. Chen, O. Danba, J. Rijneveld, J. M. Schanck, T. Saito, P. Schwabe,
W. Whyte, K. Xagawa, T. Yamakawa, and Z. Zhang, “NTRU:
Algorithm Specifications And Supporting Documentation,” Tech.
Rep., Sep. 2020.

[22] D. J. Bernstein and B.-Y. Yang, “Fast constant-time gcd computa-
tion and modular inversion,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, vol. 2019, no. 3, pp. 340–398, May
2019.

[23] A. Hülsing, J. Rijneveld, J. Schanck, and P. Schwabe, “High-Speed
Key Encapsulation from NTRU,” in Cryptographic Hardware and
Embedded Systems – CHES 2017, W. Fischer and N. Homma, Eds.
Cham: Springer International Publishing, 2017, vol. 10529, pp.
232–252.

[24] J.-H. Ye and M.-D. Shieh, “High-performance NTT architecture
for large integer multiplication,” in 2018 International Symposium
on VLSI Design, Automation and Test (VLSI-DAT), Apr. 2018, pp.
1–4.

[25] N. Zhang, B. Yang, C. Chen, S. Yin, S. Wei, and L. Liu, “Highly
Efficient Architecture of NewHope-NIST on FPGA using Low-
Complexity NTT/INTT,” IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, pp. 49–72, Mar. 2020.

[26] P. Barrett, “Implementing the Rivest Shamir and Adleman Public
Key Encryption Algorithm on a Standard Digital Signal Proces-
sor,” in Advances in Cryptology — CRYPTO’ 86, ser. Lecture Notes
in Computer Science, A. M. Odlyzko, Ed. Berlin, Heidelberg:
Springer, 1987, pp. 311–323.

[27] P. L. Montgomery, “Modular multiplication without trial divi-
sion,” Mathematics of computation, vol. 44, no. 170, pp. 519–521,
1985.

[28] P. Longa, M. Naehrig, P. Longa, and M. Naehrig, “Speeding up
the Number Theoretic Transform for Faster Ideal Lattice-Based
Cryptography,” in Cryptology and Network Security - CANS 2016,
vol. 10052. Cham: Springer International Publishing, 2016, pp.
124–139.

[29] B. Liu and H. Wu, “Efficient architecture and implementation for
NTRUEncrypt system,” in 2015 IEEE 58th International Midwest
Symposium on Circuits and Systems, MWSCAS 2015, Fort Collins,
CO, USA, Aug. 2015.

[30] M. Knezevic, F. Vercauteren, and I. Verbauwhede, “Faster Inter-
leaved Modular Multiplication Based on Barrett and Montgomery
Reduction Methods,” IEEE Transactions on Computers, vol. 59,
no. 12, pp. 1715–1721, Dec. 2010.

[31] M. Kumm, O. Gustafsson, M. Garrido, and P. Zipf, “Optimal Sin-
gle Constant Multiplication Using Ternary Adders,” IEEE Trans-
actions on Circuits and Systems II: Express Briefs, vol. 65, no. 7, pp.
928–932, Jul. 2018.

[32] F. Farahmand, M. U. Sharif, K. Briggs, and K. Gaj, “A High-
Speed Constant-Time Hardware Implementation of NTRUEncrypt
SVES,” in 2018 International Conference on Field-Programmable Tech-
nology, FPT 2018. IEEE, pp. 190–197.

[33] S. Sinha Roy and I. Verbauwhede, Lattice-Based Public-Key Cryp-
tography in Hardware, ser. Computer Architecture and Design
Methodologies. Singapore: Springer Singapore, 2020.

[34] F. de Dinechin, “Reflections on 10 Years of FloPoCo,” in 2019 IEEE
26th Symposium on Computer Arithmetic (ARITH). Kyoto, Japan:
IEEE, Jun. 2019, pp. 187–189.

Viet Ba Dang is a Graduate Research Assistant in
the ECE Department at George Mason University. He
received his BS degree in Computer Engineering from
Danang University of Science and Technology in 2016.

Kamyar Mohajerani is a Graduate Research Assistant
in the ECE Department at George Mason University.
He received his BSc degree in Computer Engineering
from Isfahan University of Technology in 2012 and his
MSc degree in Computer Architecture from University
of Tehran in 2016.

Kris Gaj is a professor in the ECE Department at
George Mason University. He is a co-director of the
Cryptographic Engineering Research Group (CERG).
He has been involved in most previous and current
cryptographic competitions, from AES to PQC.

https://eprint.iacr.org/2021/1461

	Introduction
	Previous Work
	Background
	NTRU
	CRYSTALS-Kyber
	Saber

	Hardware Designs
	Choice of a Multiplier Type
	NTRU
	Ternary Sampling
	Polynomial Multiplication
	Inversion in S_3 and S_q
	Lift function
	Operation scheduling

	CRYSTALS-Kyber
	Polynomial NTT and Multiplication Unit
	Barrett reduction with support for division
	Hash and Sampling Unit
	Centered Binomial Sampler
	Rejection-based Sampler
	Improvements over Previous Work

	Saber
	Centered Binomial Sampler
	Polynomial Multiplication
	Operations Scheduling
	Improvements over Previous Work

	Results
	NTRU
	CRYSTALS-Kyber
	Saber
	Comparison of Round 3 finalists

	Conclusions
	References
	Biographies
	Viet Ba Dang
	Kamyar Mohajerani
	Kris Gaj

