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Abstract

It has been recognized recently that the considerable difference between photon-
correlation (PCS) and dielectric (BDS) susceptibility spectra arises from their respec-
tive association with single-particle and collective dynamics. This work presents a
model that captures the narrower width and shifted peak position of collective dynam-
ics (BDS), given the single-particle susceptibility derived from PCS studies. Only one
adjustable parameter is required to connect the spectra of collective and single-particle
dynamics. This constant accounts for cross-correlations between molecular angular ve-
locities and the ratio of the first-rank and second-rank single-particle relaxation times.
The model is tested for three supercooled liquids, glycerol, propylene glycol, and trib-
utyl phosphate, and is shown to provide a good account of the difference between BDS
and PCS spectra. Since PCS spectra appear to be rather universal across a range
of supercooled liquids, this model provides a first step toward rationalizing the more

material specific dielectric loss profiles.
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The dynamics of supercooled liquids has been the subject of intense research for over
a century. Common observations regarding these glass-forming liquids are their super-
Arrhenius temperature dependence of viscosity and relaxation time constants as well as
non-exponential decays correlation of the corresponding time correlation functions associated
with structural relaxation, equivalent to asymmetrically broadened susceptibility profiles in
the frequency domain.! However, the extend of broadening and shape of these profiles are
material specific, which complicates a unified description of structural relaxation in viscous
materials.

A common experimental approach to the dynamics of supercooled liquids is by broadband
dielectric spectroscopy (BDS), providing access to the permittivity é(w) = &'(w) + ie” (w),
also denoted £*(w).? The widths of such dielectric loss spectra, £”(w), vary with tempera-
ture, and are material specific even if compared at a common loss peak frequency (wpax) or
average relaxation time. In fact, a recent study has shown that the loss peak width near the
glass transition temperature, 7,, narrows systematically with increasing dielectric constant,
£,.% This feature is not observed in all experimental approaches to the dynamics of structural
relaxation. Recent experiments have demonstrated that the susceptibility spectra, x”(w),
derived from photon correlation spectroscopy (PCS) display a rather universal appearance,
even across those liquids for which the dielectric €”(w) profiles vary considerably.* For fre-
quencies not too far from wy,.y, the PCS results can be approximated by a Cole-Davidson
type function, x”(w) o< Im [(1 — iwTep) ] , with v ~ 0.5.

The two experimental approaches to rotational dynamics differ in the rank of the reported
relaxation time: BDS reports the dynamics of the first-order Legendre polynomial (P;(u-¢))
for the projection of the unit dipole vector u on the field direction e versus the second-order
Legendre polynomial (Py(u-e)) reported by PCS. Because rotation in viscous liquids involves

ey ) 2)

large jump angles,® the ratio xk = 7'3(1)/ of first-rank, 7'5(1 , to second-rank, 7'5( , rotational

relaxation times falls below the diffusive limit of kK = 3 reaching the value of x ~ 1.57 for

large-amplitude rotational jumps.® The more significant and qualitative difference between



Xpos(w) and efpg(w) has been rationalized by the PCS technique being mostly sensitive to
single particle dynamics, whereas &(w) derived from the BDS approach is associated with
collective dynamics. ® As may be expected, the difference between PCS and BDS spectral

shapes disappears for weakly polar liquids (dielectric increment < 0.2).4

Based on approximations detailed below, Keyes? derived the relation

™ = 9KTs (1>

which connects the average collective relaxation time, 7,;, of the macroscopic dipole moment
M to its single-particle counterpart, 7, = 7'3(1), via the Kirkwood correlation factor gx. Com-
paring 7, from BDS with 7 from PCS reveals that the ratio ™/ 7@ near T, y exceeds gk by
far, assuming values of up to 20 reported for propylene glycol.'® Moreover, the temperature
dependence of 7, and 7% differ by more than can be explained by gk(7') alone. Therefore,
Keyes’s approximation in eq 1 does not correctly capture the difference between collective
and single-particle dynamics in viscous liquids.

In an extension of Keyes’s approach, Kivelson and Madden added a dynamical correlation

parameter 1?2 Ji resulting in the Keyes-Kivelson-Madden (KKM) relation 315

i = (g /)7 = (9x /) w7 (2)

The dynamical correction parameter Jg is often found to be close to unity for high-temperature
liquids, 21719 thus yielding the simplified result of eq 1. However, we show below that
adopting Jx/k # 1 is essential for translating single-particle into collective loss spectra,
i.e., Xpeg(w) = efpg(w), which is the aim of the present work. Calculations based on ex-
perimental PCS spectra will then be shown to compare favorably with measured BDS loss
profiles. Moreover, experimental evidence shows larger separations between single-particle
and collective relaxation times at lower temperatures, consistent with Jx /k decreasing with

reducing the temperature.



The dielectric function for polar materials with £(w) > €, is determined by the equa-
tion 20,21

dw)—sm::A5[1+iw$MQ®] (3)

where Ae = e, — €, is the dielectric increment, i.e., the difference between low and high
frequency limits of permittivity. Functions with tildes are used to denote Laplace-Fourier

transforms of time correlation functions??

Fal) = / " dte o, (1) (4)

0

where a = M, s specifies either the normalized time autocorrelation function of the total
dipole moment M(t) (a = M) or of single-particle dipole orientations (a = s, see below). The

dipole moment autocorrelation function entering eq 3 is given as

onr(t) = M (5)

Here, the angular brackets denote an equilibrium ensemble average and the deviation from
the average dipole dM(t) = M(t) — (M) is dropped in eq 5 given that (M) = 0 in an isotropic
material. Equation 5 also utilizes the notation M(0) = M and we do not specify ¢ = 0 for
all dynamic variables used below, e.g., A(0) = A. The time correlation function allows one

to define the collective average (integral) relaxation times in eqs 1 and 2

R:Awﬁ%@ (6)

with a = M,s. For both cases, 7); and 7, this relaxation time is the w = 0 value of the
corresponding ¢, (w) of eq 4.
The rotational relaxation time of a single dipole in the liquid is associated with the time

autocorrelation function of the molecular dipole moment p(t). By defining the unit vector



specifying the dipole orientation u(t) = p(t)/u, one obtains

¢s(t) = (u(t) - w) (7)

The average (integral) single-particle relaxation time in eqs 1 and 2 follows from the time
integral of ¢,(t) in eq 6, for which 7, = ¢,(0) holds.

In order to build a connection between the correlation functions ¢ (t) and ¢4(t), we make
use of the corresponding memory functions. The time correlation functions ¢,(t), a = M, s,

satisfy the memory equation? with the memory function K,(t)

da(t) + /0 t ATKo(t — T)¢a(7) = 0 (8)

These memory functions describe the dynamics of local, microscopic interactions (collisions
in the gas phase) which add up through the time convolution integral in eq 8 to produce
the dynamics represented by the time correlation function. The memory integral equation

becomes a linear algebraic equation upon Laplace-Fourier transform

Pa(w) = [—iw + Kq(w)] ™! (9)
The time-domain memory functions satisfy the following equations!®23
(M- M)
Kyt) = —— t 1
() = R A0 (10
and
Ky(t) = (- u) f(t) (11)

where (- 1) = w? = —@,(0). The normalized functions fu(¢) and f,(t) with f,(0) =
fs(0) = 1 are the time-dependent components of the corresponding memory functions. The

variance of the sample dipole moment (M - M) = ggu®N in the denominator in eq 10 is



the product of the squared molecular dipole p, number of dipoles N in the sample, and the

Kirkwood factor

gk =1+ (b - 1y) (12)

i#1
where 1, is the unit directional vector of dipole moment i.
The variance of the time derivative of the sample dipole moment in the numerator of eq

10 becomes

(M- M) = Np2w?J (13)

where the angular velocity cross-correlations vanish in the canonical ensemble, i.e.,

J=1+w?) (i @) =1 (14)
i#£1

Combining these results in eq 10, one obtains
w2
Ky (t) = = fu(t) (15)
gK

In contrast to J in eq 14, the dynamic correlation factor in the KKM equation does not

reduce to a trivial value. Tt is given as'!* (see Supporting Information (SI) for derivation)
X dta(t

JK:1+—f00o beld) (16)
fO dtws(t)

where 1.(t) describes cross-correlations of angular rotational velocities of distinct molecules
ve(t) = (- uy(0))! (17)
i#1

Here, (...)T denotes the correlation function propagated in the orthogonal space of Mori’s?
projection operator technique, 2% (1, - ;(¢))" = (i - /0~ P)E ;) with £ being the Liouville

operator and P the projection operator. In contrast, 1,(t) is the single-particle correlation



function of angular velocities,

Ws(t) = (u- (1)) (18)

satisfying the initial condition 1,(0) = w? = 2kgT/I for a symmetric top with the moment
of inertia [I.

The derivation so far does not involve any approximations and can be viewed as the
definition of the unknown time-dependent functions fy/(t) and fs(t). Given that they specify
the time decay of the corresponding memory functions, they are expected to relax faster 2326
than the respective correlation functions, ¢y (t) and ¢,(t). Following Keyes,? one can adopt

a simple approximation assuming that the integral relaxation times of the memory functions

Ky (t) and K,(t) are equal to a common value 7k, which implies

7ic = fa(0) = £4(0) (19)

This approximation, used for the w = 0 limit in eq 9, leads to eq 1.

In what follows, the constraint of eq 19 will be dropped, thus allowing for distinct in-
tegral relaxation times of the two memory functions, Kj/(t) and K,(t). Equation 19 puts
a single-value constraint on the w = 0 values of fy(w) and fs(w), but does not specify
these two functions. An approximation consistent with the first relation in eq 2 is to as-
sume fu(w) = Ji fs(w). This approximation leads to the following connection between the

memory functions

Kyr(w) = (9x/ i) " K () (20)

To account for the second rank of PCS, we replace the retardation parameter gk /Jx with

(k that follows from the second KKM relation in eq 2

Gk = (gic/ TR (21)

Given that ¢ (w) and ¢,(w) are now related through the corresponding f,(w) functions,



one obtains the equation for the dielectric permittivity £(w) in terms of the single-particle
correlation function <;~5$(w) and the retardation parameter (x
€ (w) —Es iWCK

A - GO+ @) .

We note that simple proportionality between fy(w) and f,(w) cannot be correct in the whole
range of frequencies since it would violate the normalization condition fy,(0) = f5(0) = 1
upon inverse Laplace-Fourier transform. It should instead be viewed as an approximation
applied to the range of frequencies near the peaks of dielectric and single-particle loss spec-
tra. For instance, if fy(w) and fy(w) are Debye functions with the relaxation times 72, one

@ and Tiw < 1 in the frequency range applicable

would anticipate ¥ = Jxms = JxkTy
to experimental conditions. Both static and dynamic cross-correlations affect t he relation
between the single-particle and collective dynamics, but they both can be reduced to numer-

ical scaling factors at su iciently small peak frequencies characteristic of low-temperature

(supercooled) liquids.
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Figure 1: Experimental results for the dielectric loss spectrum &”(w) (BDS, diamonds) and
the photon-correlation susceptibility x”(w) (PCS, circles) of glycerol at T" = 210 K, taken
from Gabriel et al.'® The orange dotted line is a fit to the PCS data, the red solid line is
based on eq 22 with Jx/k = 1.00, using gk = 2.49 calculated from Wertheim’s theory (Table

1).



The single-particle autocorrelation function ¢, (w) can be related to experimental data
reporting the imaginary part of the susceptibility function x,(w) derived from PCS measure-
ments, the connection between the two functions being provided by the standard Kubo linear
response formalism.?? Note that, like the single-particle autocorrelation function ¢,(t), the
response function () is normalized by the condition x,(0) = 1. This condition is typically
not met by experimental data reporting x”(w) spectra in arbitrary units. In the calcula-
tions presented here, x”(w) was fitted to a linear combination of Debye functions with the

requirement of the relaxation amplitudes summing up to unity

" . WT; .
Xs (U)) - Z a; 1 + UJ2TZ'2’ Z a; = 1 (23)

i

Employing eq 23 for fitting the experimental result, Kubo’s relation?
Vs(w) = 1+ iwgy(w) (24)

was used to calculate ¢,(w). This function was used to produce &(w) in eq 22 by adopting
the experimental values for Ae.

This procedure was applied to generate £(w) curves for glycerol at T' = 210 K (Figure
1), propylene glycol (PG) at T = 190 K (Figure 2), and tributyl phosphate (TBP) at
T = 147 K (Figure 3) from corresponding loss spectra x”(w). The Kirkwood factors for three
liquids were calculated from Wertheim’s theory 2" (Table 1, see SI for more details). This
mean-field theory calculates the condensed-phase molecular dipole moment ' and molecular
polarizability o’ from the corresponding gas-phase values p and « (Table 1). These two

parameters are used to specify the effective mean-field polarity parameter

yerr = (p/9e0) [(1')?*/ (ksT) + 3c/] (25)

where ¢( is the vacuum permittivity and p is the liquid number density. The polarity

10



parameter enters the Kirkwood-Onsager equation?®

(es — 1)(2e5 + 1) = Yyenesgx (26)

from which gk is calculated.

The ratio Jx /K in eqs 21 and 22 remains unspecified and was used to fit eq 22 to the ex-
perimental €”(w). The resulting values are listed in Table 1. The comparison between theory
and experiment regarding £”(w) in Figures 1-3 demonstrates that the present approach leads
to a good account of the frequency dependent collective dynamics, based solely on the single-
particle dynamics and a single constant (k that contains the Kirkwood correlation factor gk
(eq 21). Uncertainties in the reported values of the liquid dipole moment, polarizability, and
the hard-sphere diameter might affect the calculation of gk in Wertheim’s formalism (see SI).
The theory, however, requires only (x and gk is calculated here only to estimate Ji/x. While
data for only one temperature per material have been analyzed, studies comparing BDS and
PCS spectra reveal that the relaxation time ratio 7, /7s increases with decreasing temperature.
For instance, the value of 7,,/7, for propylene glycol increases by 50% when changing
temperature from 7' = 190 to 175 K.? This implies larger values for the memory function

dynamic correlation factor Jxk (eq 16) at higher temperatures, consistent with the notion of Jx

~ 1 in the fluid state.

9:13-15,26 g ddressed here in application to BDS of low-temperature

The decades-long inquiry
liquids is the relation between the collective and single-particle dynamics in liquids. Col-
lective relaxation is universally slowed down relative to single-particle dynamics and the
common wisdom?®® in the field s uggests t hat collective d ynamics, i nvolving d ynamic cross-
correlations, are fundamentally distinct from single-particle dynamics. The simplified form
of the KKM equation adopting Jx = 1 (eq 1) opposes this assessment. The limit Jx = 1 im-

plies that slowing down of collective dynamics is achieved exclusively by accounting for local

static correlations between the liquid dipoles in terms of the Kirkwood factor. A good per-

11



102: T T T T T T

g, =4.76 propylene glycol
—J /=038 T=190K

g

§ 10 4.
= ’.

=

g ’0

- *
B K
= *
=§ 10° b ’..

w

1 |

10' Ll Ll Ll L1l PETERETIT L1l NIRRT
107 10 10° 10’ 10? 10° 10°* 10°

Figure 2: Experimental results for the dielectric loss spectrum &”(w) (BDS, diamonds) and
the photon-correlation susceptibility x”(w) (PCS, circles) of propylene glycol at 7" = 190 K,
taken from Bohmer et al.?” The orange dotted line is a fit to the PCS data, the grey dashed
line and red solid line are based on eq 22 with Jx/k = 1.00 and Jx/k = 0.38, respectively,
using gg = 4.76 calculated from Wertheim’s theory (Table 1).

formance of this assumption for liquids at normal (opposed to supercooled) conditions 21619

supports this view. However, BDS of low-temperature liquids requires stronger retardation
than given solely by the Kirkwood factor and adopting Jx/k < 1 is required (Figures 2 and
3). This simple extensions has allowed us to convert the single-particle correlation function

into the collective function by utilizing a single retardation parameter (x (eq 21).

Table 1: Liquid parameters used to calculate &(w) from ¢,(w) and Kirkwood
factors gk.

Liquid 7T,K pu,D o,A* o, A% p g/em® e e p,D° gk Jg/KC
Glycerol 210 2.67 5.15 8.17 1.314 2.25 68.6 3.71 249 1.00

PG 190 2.0 5.12 881 0.998  2.17 63.7 255 4.76 0.38
TBP 147 29 797 276 1.114 223 20.0 3.76 1.55 0.38
“Hard-sphere diameter. *Calculated from Wertheim’s theory (see SI). “Adjusted as a fitting
parameter.

As mentioned above, a simple proportionality between frequency-domain single-particle
and collective memory functions can only hold in a limited range of frequencies. Development

of practical functionalities for the single-particle memory function remains a challenge for

12



102: T T T T T T

tributyl phosphate
T=147K 9¢=1.18

——J/x=0.30

€ ... 10-exp.fit

10-1 T BRI BT TTT BRI EERrA T B,
107 10 10° 10’ 10° 10°

v/ Hz

10°* 10°

Figure 3: Experimental results for the dielectric loss spectrum &”(w) (BDS, diamonds) and
the photon-correlation susceptibility x”(w) (PCS, circles) of tributyl phosphate at T' = 147
K, taken from Pabst et al.” The orange dotted line is a fit to the PCS data, the grey dashed
line and red solid line are based on eq 22 with Jx/k = 1.00 and Jx/k = 0.38, respectively,
using gg = 1.55 calculated from Wertheim’s theory (Table 1).

the theory development. This function is directly related to the experimentally observable

single-particle response function. One obtains by substituting eq 9 to eq 24

-1

To(w) = [1 WK W) (27)

1/2

It has been recently suggested that x”(w) universally follows the scaling oc w™'/% at large

431 Such a scaling requires K,(w) o< w2 in eq 27. This functionality, however,

frequencies.
contradicts the interpretation? of normalized K,(t) as the characteristic function of the
probability density P(w)

K, (t) = K,(0) / T doP(w)e (28)

The power spectrum P(w) = (7K,(0)) 'K’ (w) is expected to produce an infinite sequence

of spectral moments

(W) = /_00 dww®" P(w) (29)

o0

It is obvious that K (w) o w'/? does not allow any frequency moments to exist and a more

13



general functional form should be sought.

In summary, the aim of this work is to provide a rationale for the relation between col-
lective (BDS) and single-particle (PCS) dynamics in supercooled liquids. Applying ideas
from the Keyes-Kivelson-Madden approach to the memory function formalism facilitates the
calculation of the frequency dependent collective dynamics from the single-particle suscepti-
bility, thus going beyond a model that relates only the integral time constants. The approach
is tested on the basis of BDS and PCS spectra reflecting the collective and single-particle
dynamics, respectively. The theory provides a good account of the collective dynamics for
three glass forming materials, each based on two constants, the Kirkwood correlation factor
gk and an adjustable parameter Jx/k (Table 1) that quantifies the retardation of the col-
lective memory function K, (t) relative to its single-particle counterpart K,(t) and accounts
for the different ranks of BDS and PCS relaxation times. This retardation effect is negligible
for high-temperature fluids, but becomes enhanced in viscous materials as the temperature

is lowered toward the glass transition temperature 7Tj,.
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Derivation of the KKM equation and properties of the liquids used in the analysis and

calculations of their Kirkwood factors.
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