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Abstract

It has been recognized recently that the considerable difference between photon-

correlation (PCS) and dielectric (BDS) susceptibility spectra arises from their respec-

tive association with single-particle and collective dynamics. This work presents a

model that captures the narrower width and shifted peak position of collective dynam-

ics (BDS), given the single-particle susceptibility derived from PCS studies. Only one

adjustable parameter is required to connect the spectra of collective and single-particle

dynamics. This constant accounts for cross-correlations between molecular angular ve-

locities and the ratio of the first-rank and second-rank single-particle relaxation times.

The model is tested for three supercooled liquids, glycerol, propylene glycol, and trib-

utyl phosphate, and is shown to provide a good account of the difference between BDS

and PCS spectra. Since PCS spectra appear to be rather universal across a range

of supercooled liquids, this model provides a first step toward rationalizing the more

material specific dielectric loss profiles.
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The dynamics of supercooled liquids has been the subject of intense research for over

a century. Common observations regarding these glass-forming liquids are their super-

Arrhenius temperature dependence of viscosity and relaxation time constants as well as

non-exponential decays correlation of the corresponding time correlation functions associated

with structural relaxation, equivalent to asymmetrically broadened susceptibility profiles in

the frequency domain.1 However, the extend of broadening and shape of these profiles are

material specific, which complicates a unified description of structural relaxation in viscous

materials.

A common experimental approach to the dynamics of supercooled liquids is by broadband

dielectric spectroscopy (BDS), providing access to the permittivity ε̃(ω) = ε′(ω) + iε′′(ω),

also denoted ε∗(ω).2 The widths of such dielectric loss spectra, ε′′(ω), vary with tempera-

ture, and are material specific even if compared at a common loss peak frequency (ωmax) or

average relaxation time. In fact, a recent study has shown that the loss peak width near the

glass transition temperature, Tg, narrows systematically with increasing dielectric constant,

εs.3 This feature is not observed in all experimental approaches to the dynamics of structural

relaxation. Recent experiments have demonstrated that the susceptibility spectra, χ′′(ω),

derived from photon correlation spectroscopy (PCS) display a rather universal appearance,

even across those liquids for which the dielectric ε′′(ω) profiles vary considerably.4 For fre-

quencies not too far from ωmax, the PCS results can be approximated by a Cole-Davidson

type function, χ′′(ω) ∝ Im [(1− iωτCD)
−γ ] , with γ ≈ 0.5.

The two experimental approaches to rotational dynamics differ in the rank of the reported

relaxation time: BDS reports the dynamics of the first-order Legendre polynomial ⟨P1(û · ê)⟩

for the projection of the unit dipole vector û on the field direction ê versus the second-order

Legendre polynomial ⟨P2(û· ê)⟩ reported by PCS. Because rotation in viscous liquids involves

large jump angles,5 the ratio κ = τ
(1)
s /τ

(2)
s of first-rank, τ (1)s , to second-rank, τ (2)s , rotational

relaxation times falls below the diffusive limit of κ = 3 reaching the value of κ ≃ 1.57 for

large-amplitude rotational jumps.6 The more significant and qualitative difference between
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χ′′
PCS(ω) and ε′′BDS(ω) has been rationalized by the PCS technique being mostly sensitive to 

single particle dynamics, whereas ε̃(ω) derived from the BDS approach is associated with 

collective dynamics.7,8 As may be expected, the difference between PCS and BDS spectral

shapes disappears for weakly polar liquids (dielectric increment ≲ 0.2).4

Based on approximations detailed below, Keyes9 derived the relation

τM = gKτs (1)

which connects the average collective relaxation time, τM , of the macroscopic dipole moment

M to its single-particle counterpart, τs = τ
(1)
s , via the Kirkwood correlation factor gK. Com-

paring τM from BDS with τ (2)s from PCS reveals that the ratio τM/τ
(2)
s near Tg exceeds gK by

far, assuming values of up to 20 reported for propylene glycol.10 Moreover, the temperature

dependence of τM and τ (2)s differ by more than can be explained by gK(T ) alone. Therefore,

Keyes’s approximation in eq 1 does not correctly capture the difference between collective

and single-particle dynamics in viscous liquids.

In an extension of Keyes’s approach, Kivelson and Madden added a dynamical correlation

parameter11,12 JK resulting in the Keyes-Kivelson-Madden (KKM) relation9,13–15

τM = (gK/JK)τs = (gK/JK)κτ
(2)
s (2)

The dynamical correction parameter JK is often found to be close to unity for high-temperature

liquids,12,16–19 thus yielding the simplified result of eq 1. However, we show below that

adopting JK/κ ̸= 1 is essential for translating single-particle into collective loss spectra,

i.e., χ′′
PCS(ω) → ε′′BDS(ω), which is the aim of the present work. Calculations based on ex-

perimental PCS spectra will then be shown to compare favorably with measured BDS loss

profiles. Moreover, experimental evidence shows larger separations between single-particle

and collective relaxation times at lower temperatures, consistent with JK/κ decreasing with

reducing the temperature.
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The dielectric function for polar materials with ε̃(ω) ≫ ϵ∞ is determined by the equa-

tion20,21

ε̃(ω)− ε∞ = ∆ε
[
1 + iωϕ̃M(ω)

]
(3)

where ∆ε = εs − ε∞ is the dielectric increment, i.e., the difference between low and high

frequency limits of permittivity. Functions with tildes are used to denote Laplace-Fourier

transforms of time correlation functions22

ϕ̃a(ω) =

∫ ∞

0

dteiωtϕa(t) (4)

where a = M, s specifies either the normalized time autocorrelation function of the total

dipole moment M(t) (a = M) or of single-particle dipole orientations (a = s, see below). The

dipole moment autocorrelation function entering eq 3 is given as

ϕM(t) =
⟨M(t) · M⟩
⟨M · M⟩

(5)

Here, the angular brackets denote an equilibrium ensemble average and the deviation from

the average dipole δM(t) = M(t)−⟨M⟩ is dropped in eq 5 given that ⟨M⟩ = 0 in an isotropic

material. Equation 5 also utilizes the notation M(0) = M and we do not specify t = 0 for

all dynamic variables used below, e.g., A(0) = A. The time correlation function allows one

to define the collective average (integral) relaxation times in eqs 1 and 2

τa =

∫ ∞

0

dtϕa(t) (6)

with a = M, s. For both cases, τM and τs, this relaxation time is the ω = 0 value of the

corresponding ϕ̃a(ω) of eq 4.

The rotational relaxation time of a single dipole in the liquid is associated with the time

autocorrelation function of the molecular dipole moment µ(t). By defining the unit vector
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specifying the dipole orientation û(t) = µ(t)/µ, one obtains

ϕs(t) = ⟨û(t) · û⟩ (7)

The average (integral) single-particle relaxation time in eqs 1 and 2 follows from the time

integral of ϕs(t) in eq 6, for which τs = ϕ̃s(0) holds.

In order to build a connection between the correlation functions ϕM(t) and ϕs(t), we make

use of the corresponding memory functions. The time correlation functions ϕa(t), a = M, s,

satisfy the memory equation23 with the memory function Ka(t)

ϕ̇a(t) +

∫ t

0

dτKa(t− τ)ϕa(τ) = 0 (8)

These memory functions describe the dynamics of local, microscopic interactions (collisions

in the gas phase) which add up through the time convolution integral in eq 8 to produce

the dynamics represented by the time correlation function. The memory integral equation

becomes a linear algebraic equation upon Laplace-Fourier transform

ϕ̃a(ω) = [−iω + K̃a(ω)]
−1 (9)

The time-domain memory functions satisfy the following equations19,23

KM(t) =
⟨Ṁ · Ṁ⟩
⟨M · M⟩

fM(t) (10)

and

Ks(t) = ⟨ ˙̂u · ˙̂u⟩fs(t) (11)

where ⟨ ˙̂u · ˙̂u⟩ = ω2
s = −ϕ̈s(0). The normalized functions fM(t) and fs(t) with fM(0) =

fs(0) = 1 are the time-dependent components of the corresponding memory functions. The

variance of the sample dipole moment ⟨M · M⟩ = gKµ
2N in the denominator in eq 10 is
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the product of the squared molecular dipole µ, number of dipoles N in the sample, and the

Kirkwood factor

gK = 1 +
∑
i ̸=1

⟨û1 · ûi⟩ (12)

where ûi is the unit directional vector of dipole moment i.

The variance of the time derivative of the sample dipole moment in the numerator of eq

10 becomes

⟨Ṁ · Ṁ⟩ = Nµ2ω2
sJ , (13)

where the angular velocity cross-correlations vanish in the canonical ensemble, i.e.,

J = 1 + ω−2
s

∑
i ̸=1

⟨ ˙̂u1 · ˙̂ui⟩ = 1 (14)

Combining these results in eq 10, one obtains

KM(t) =
ω2
s

gK
fM(t) (15)

In contrast to J in eq 14, the dynamic correlation factor in the KKM equation does not

reduce to a trivial value. It is given as11,14 (see Supporting Information (SI) for derivation)

JK = 1 +

∫∞
0
dtψc(t)∫∞

0
dtψs(t)

(16)

where ψc(t) describes cross-correlations of angular rotational velocities of distinct molecules

ψc(t) =
∑
i ̸=1

⟨ ˙̂u1 · ˙̂ui(t)⟩† (17)

Here, ⟨. . . ⟩† denotes the correlation function propagated in the orthogonal space of Mori’s24

projection operator technique,23,25 ⟨ ˙̂u1 · ˙̂ui(t)⟩† = ⟨ ˙̂u1 ·ei(1−P̂ )Lt ˙̂ui⟩, with L being the Liouville

operator and P̂ the projection operator. In contrast, ψs(t) is the single-particle correlation
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function of angular velocities,

ψs(t) = ⟨ ˙̂u · ˙̂u(t)⟩† (18)

satisfying the initial condition ψs(0) = ω2
s = 2kBT/I for a symmetric top with the moment

of inertia I.

The derivation so far does not involve any approximations and can be viewed as the

definition of the unknown time-dependent functions fM(t) and fs(t). Given that they specify

the time decay of the corresponding memory functions, they are expected to relax faster23,26

than the respective correlation functions, ϕM(t) and ϕs(t). Following Keyes,9 one can adopt

a simple approximation assuming that the integral relaxation times of the memory functions

KM(t) and Ks(t) are equal to a common value τK, which implies

τK = f̃M(0) = f̃s(0) (19)

This approximation, used for the ω = 0 limit in eq 9, leads to eq 1.

In what follows, the constraint of eq 19 will be dropped, thus allowing for distinct in-

tegral relaxation times of the two memory functions, KM(t) and Ks(t). Equation 19 puts

a single-value constraint on the ω = 0 values of f̃M(ω) and f̃s(ω), but does not specify

these two functions. An approximation consistent with the first relation in eq 2 is to as-

sume f̃M(ω) = JKf̃s(ω). This approximation leads to the following connection between the

memory functions

K̃M(ω) = (gK/JK)
−1K̃s(ω) (20)

To account for the second rank of PCS, we replace the retardation parameter gK/JK with

ζK that follows from the second KKM relation in eq 2

ζK = (gK/JK)κ (21)

Given that ϕ̃M(ω) and ϕ̃s(ω) are now related through the corresponding f̃a(ω) functions,
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one obtains the equation for the dielectric permittivity ε̃(ω) in terms of the single-particle

correlation function ϕ̃s(ω) and the retardation parameter ζK

ε̃(ω)− εs
∆ε

=
iωζK

iω(1− ζK) + ϕ̃−1
s (ω)

(22)

We note that simple proportionality between f̃M (ω) and f̃s(ω) cannot be correct in the whole 

range of frequencies since it would violate the normalization condition fM (0) = fs(0) = 1 

upon inverse Laplace-Fourier transform. It should instead be viewed as an approximation 

applied to the range of frequencies near the peaks of dielectric and single-particle loss spec-

tra. For instance, if f̃M (ω) and f̃s(ω) are Debye functions with the relaxation times τK
a , one 

would anticipate τK
M = JKτK

s = JKκτK
s,(2) and τK

a ω ≪ 1 in the frequency range applicable 

to experimental conditions. Both static and dynamic cross-correlations affect t he relation 

between the single-particle and collective dynamics, but they both can be reduced to numer-

ical scaling factors at su iciently small peak frequencies characteristic of low-temperature 

(supercooled) liquids.

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
-1

10
0

10
1

10
2

g
K
 = 2.49

J
K
/  = 1.00

11-exp. fit

'' B
D

S
(

) 
, 

'' P
C

S
(

)

 / Hz

glycerol

T = 210 K

PCS

BDS

Figure 1: Experimental results for the dielectric loss spectrum ε′′(ω) (BDS, diamonds) and
the photon-correlation susceptibility χ′′(ω) (PCS, circles) of glycerol at T = 210 K, taken
from Gabriel et al.10 The orange dotted line is a fit to the PCS data, the red solid line is
based on eq 22 with JK/κ = 1.00, using gK = 2.49 calculated from Wertheim’s theory (Table
1).
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The single-particle autocorrelation function ϕ̃s(ω) can be related to experimental data

reporting the imaginary part of the susceptibility function χ̃s(ω) derived from PCS measure-

ments, the connection between the two functions being provided by the standard Kubo linear

response formalism.23 Note that, like the single-particle autocorrelation function ϕs(t), the

response function χs(t) is normalized by the condition χs(0) = 1. This condition is typically

not met by experimental data reporting χ′′
s(ω) spectra in arbitrary units. In the calcula-

tions presented here, χ′′
s(ω) was fitted to a linear combination of Debye functions with the

requirement of the relaxation amplitudes summing up to unity

χ′′
s(ω) =

∑
i

ai
ωτi

1 + ω2τ 2i
,

∑
i

ai = 1 (23)

Employing eq 23 for fitting the experimental result, Kubo’s relation23

χ̃s(ω) = 1 + iωϕ̃s(ω) (24)

was used to calculate ϕ̃s(ω). This function was used to produce ε̃(ω) in eq 22 by adopting

the experimental values for ∆ε.

This procedure was applied to generate ε̃(ω) curves for glycerol at T = 210 K (Figure

1), propylene glycol (PG) at T = 190 K (Figure 2), and tributyl phosphate (TBP) at

T = 147 K (Figure 3) from corresponding loss spectra χ′′
s(ω). The Kirkwood factors for three

liquids were calculated from Wertheim’s theory27,28 (Table 1, see SI for more details). This

mean-field theory calculates the condensed-phase molecular dipole moment µ′ and molecular

polarizability α′ from the corresponding gas-phase values µ and α (Table 1). These two

parameters are used to specify the effective mean-field polarity parameter

yeff = (ρ/9ε0)
[
(µ′)2/(kBT ) + 3α′] (25)

where ε0 is the vacuum permittivity and ρ is the liquid number density. The polarity
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parameter enters the Kirkwood-Onsager equation28

(εs − 1)(2εs + 1) = 9yeffεsgK (26)

from which gK is calculated.

The ratio JK/κ in eqs 21 and 22 remains unspecified and was used to fit eq  22  to  the ex-

perimental ε′′(ω). The resulting values are listed in Table 1. The comparison between theory 

and experiment regarding ε′′(ω) in Figures 1–3 demonstrates that the present approach leads 

to a good account of the frequency dependent collective dynamics, based solely on the single-

particle dynamics and a single constant ζK that contains the Kirkwood correlation factor gK 

(eq 21). Uncertainties in the reported values of the liquid dipole moment, polarizability, and 

the hard-sphere diameter might affect the calculation of gK in Wertheim’s formalism (see SI). 

The theory, however, requires only ζK and gK is calculated here only to estimate JK/κ. While 

data for only one temperature per material have been analyzed, studies comparing BDS and 

PCS spectra reveal that the relaxation time ratio τM/τs increases with decreasing temperature. 

For instance, the value of τM/τs for propylene glycol increases by 50% when changing 

temperature from T = 190 to 175 K.29 This implies larger values for the memory function 

dynamic correlation factor JK (eq 16) at higher temperatures, consistent with the notion of JK 

≈ 1 in the fluid state.

The decades-long inquiry9,13–15,26 addressed here in application to BDS of low-temperature 

liquids is the relation between the collective and single-particle dynamics in liquids. Col-

lective relaxation is universally slowed down relative to single-particle dynamics and the 

common wisdom30 in the field s uggests t hat c ollective d ynamics, i nvolving d ynamic cross-

correlations, are fundamentally distinct from single-particle dynamics. The simplified form 

of the KKM equation adopting JK = 1 (eq 1) opposes this assessment. The limit JK = 1 im-

plies that slowing down of collective dynamics is achieved exclusively by accounting for local 

static correlations between the liquid dipoles in terms of the Kirkwood factor. A good per-
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Figure 2: Experimental results for the dielectric loss spectrum ε′′(ω) (BDS, diamonds) and
the photon-correlation susceptibility χ′′(ω) (PCS, circles) of propylene glycol at T = 190 K,
taken from Böhmer et al.29 The orange dotted line is a fit to the PCS data, the grey dashed
line and red solid line are based on eq 22 with JK/κ = 1.00 and JK/κ = 0.38, respectively,
using gK = 4.76 calculated from Wertheim’s theory (Table 1).

formance of this assumption for liquids at normal (opposed to supercooled) conditions12,16–19

supports this view. However, BDS of low-temperature liquids requires stronger retardation

than given solely by the Kirkwood factor and adopting JK/κ < 1 is required (Figures 2 and

3). This simple extensions has allowed us to convert the single-particle correlation function

into the collective function by utilizing a single retardation parameter ζK (eq 21).

Table 1: Liquid parameters used to calculate ε̃(ω) from ϕ̃s(ω) and Kirkwood
factors gK.

Liquid T , K µ, D σ, Åa α, Å3 ρ, g/cm3 ε∞ εs µ′, Db gK JK/κ
c

Glycerol 210 2.67 5.15 8.17 1.314 2.25 68.6 3.71 2.49 1.00
PG 190 2.0 5.12 8.81 0.998 2.17 63.7 2.55 4.76 0.38
TBP 147 2.9 7.97 27.6 1.114 2.23 20.0 3.76 1.55 0.38

aHard-sphere diameter. bCalculated from Wertheim’s theory (see SI). cAdjusted as a fitting
parameter.

As mentioned above, a simple proportionality between frequency-domain single-particle

and collective memory functions can only hold in a limited range of frequencies. Development

of practical functionalities for the single-particle memory function remains a challenge for
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Figure 3: Experimental results for the dielectric loss spectrum ε′′(ω) (BDS, diamonds) and
the photon-correlation susceptibility χ′′(ω) (PCS, circles) of tributyl phosphate at T = 147
K, taken from Pabst et al.7 The orange dotted line is a fit to the PCS data, the grey dashed
line and red solid line are based on eq 22 with JK/κ = 1.00 and JK/κ = 0.38, respectively,
using gK = 1.55 calculated from Wertheim’s theory (Table 1).

the theory development. This function is directly related to the experimentally observable

single-particle response function. One obtains by substituting eq 9 to eq 24

χ̃s(ω) =
[
1− iωK̃−1

s (ω)
]−1

(27)

It has been recently suggested that χ′′
s(ω) universally follows the scaling ∝ ω−1/2 at large

frequencies.4,31 Such a scaling requires K̃s(ω) ∝ ω1/2 in eq 27. This functionality, however,

contradicts the interpretation26 of normalized Ks(t) as the characteristic function of the

probability density P (ω)

Ks(t) = Ks(0)

∫ ∞

−∞
dωP (ω)e−iωt (28)

The power spectrum P (ω) = (πKs(0))
−1K̃ ′

s(ω) is expected to produce an infinite sequence

of spectral moments

⟨ω2n⟩ =
∫ ∞

−∞
dωω2nP (ω) (29)

It is obvious that K̃s(ω) ∝ ω1/2 does not allow any frequency moments to exist and a more
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general functional form should be sought.

In summary, the aim of this work is to provide a rationale for the relation between col-

lective (BDS) and single-particle (PCS) dynamics in supercooled liquids. Applying ideas

from the Keyes-Kivelson-Madden approach to the memory function formalism facilitates the

calculation of the frequency dependent collective dynamics from the single-particle suscepti-

bility, thus going beyond a model that relates only the integral time constants. The approach

is tested on the basis of BDS and PCS spectra reflecting the collective and single-particle

dynamics, respectively. The theory provides a good account of the collective dynamics for

three glass forming materials, each based on two constants, the Kirkwood correlation factor

gK and an adjustable parameter JK/κ (Table 1) that quantifies the retardation of the col-

lective memory function KM(t) relative to its single-particle counterpart Ks(t) and accounts

for the different ranks of BDS and PCS relaxation times. This retardation effect is negligible

for high-temperature fluids, but becomes enhanced in viscous materials as the temperature

is lowered toward the glass transition temperature Tg.
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