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ABSTRACT

We focus on two emerging key-management issues in the blockchain
space: (i) allowing a blockchain system to airdrop/send tokens to a
potential client Bob, who is yet to set up the required cryptographic
key, and (ii) creating a cross-chain bridge that allows users to se-
curely send tokens from one blockchain to another. The existing
solutions for the first problem need Bob to either generate and
maintain public-private key pairs locally for the first time in his
life—a usability bottleneck—or place trust in third-party custodial
services—a privacy and censorship nightmare. Whereas, most ex-
isting solutions for the second require the users to trust a custodial
service to realize the bridge with their keys. Towards solving this
issue of trust via decentralization, distributed key generation (DKG)
based solutions are being actively considered; here, a set of servers
generate the discrete log keys in a distributed manner and link them
to the users/accounts. Nevertheless, these solutions introduce com-
putation and communication overhead that is linear in the number
of generated account keys and do not scale well even for a million
keys, especially as the set of DKG servers evolves.

We present a Keys-On-Demand (D-KODE)! distributed protocol
suite that lets a set of servers compute discrete-log private/public
keys on the fly through distributed pseudo-random function (PRF)
evaluations on the queried public string/tag. Using the key homo-
morphic properties of the employed PRF function and black-box
secret-sharing based DKG, D-KODE also introduces a proactive
security mechanism against a mobile adversary towards maintain-
ing the system’s longitudinal security. D-KODE scales well for a
high number of account-keys as its communication and computa-
tion complexity is independent of the number of account-keys. Our
experimental analysis demonstrates that, for a 20-node network
with 2/3 honest majority, D-KODE starts to outperform the state
of the art as the number of keys reaches 94K. D-KODE is prac-
tical as it takes less than 100msec to generate a secret key for a
single-threaded server in a 20-node setup and can generate ~ 20
threshold BLS signatures per second. As the number of blockchain

“This work was conducted during the author’s time as a student at Purdue University.
D in D-KODE is to indicate ‘discrete-logarithm’ keys employed by blockchains for
ECDSA, EdDSA, and BLS signatures among other things.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

AFT °22, September 19-21, 2022, Cambridge, MA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9861-9/22/09...$15.00
https://doi.org/10.1145/3558535.3559788

308

Aniket Kate
aniket@purdue.edu
Purdue University
USA

accounts/wallets sprints to a billion, D-KODE addresses the crucial
scalability problem.
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1 INTRODUCTION

As blockchain systems proliferate, we increasingly tokenize finan-
cial and supply-chain assets using cryptographic (private/signing)
keys. The total number of keys generated in cryptocurrency sys-
tems is increasing rapidly. According to a recent report [13], in the
year 2021, roughly 500, 000 Bitcoin keys have been generated per
day, amounting to around 88 million keys in the first half of the
year 2021 for Bitcoin alone. This extensive use of cryptographic
keys brings interesting security and scalability challenges that need
immediate attention. For example, if a user loses their private key,
they lose the associated assets—there is no simple recovery mecha-
nism as with the typical password-based authentication. Either the
keys are lost or the users need to go through a complex recovery
procedure requiring long-term storage of passphrases etc. Given
the general lack of familiarity with the technical aspects of crypto-
graphic key management and maintenance, most first-time users
choose custodial wallets [3, 8, 15], where a third party controls
their keys. However, these third parties become single points of
failure for large-scale thefts [12, 25, 26], financial surveillance, and
censorship. In general, this key management problem, combined
with a lack of simpler tools for secure key setup, is a hurdle in
blockchain adoption. In this work, we focus on the following two
particularly challenging scenarios.

1. Airdrops. In the airdrop scenario [1, 7, 9], a new firm operating
cryptocurrencies wishes to send some funds to Bob, who does not
have a public key address on their system yet. This can be because
Bob either has never generated a key pair and is not available to
engage immediately, or Bob is offline with his already generated
public key not being available. The firm should be able to compute
the public key corresponding to Bob’s public string (identity) such
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that Bob can later use the same string to generate the related private
key and claim funds sent to the public key at any time in the future.
2. Cross-chain Bridges. Allowing communication between two
or more blockchains (or blockchain interoperability) brings fur-
ther challenges. Consider the scenario in which a user deposits
a payment on Blockchain-1 and wishes to retrieve an equivalent
value on Blockchain-2. Today, this is typically achieved through
a combination of smart contracts and custodial services called
“bridges”. The user forwards a certain transaction to the smart
contract on Blockchain-1; the servers acting as cross-chain bridge
read the user’s Blockchain-1 transaction, (threshold-)sign, and post
the equivalent transaction on Blockchain-2. Firms offering such
services include Binance [3], OrbitBridge [18], LiFinance [16], Any
Swap [2], etc. To perform the signing, the servers store the account-
keys or shares. If the servers have access to the account-keys, they
need to be trusted and are ideal targets for the adversary. On the
other hand, supporting the process of threshold signing transac-
tions at scale involves maintaining a large number of account-keys
and becomes especially challenging against a mobile adversary as
the employed servers change.
Existing distributed key generation (DKG) approaches. Cur-
rent solutions [19, 21] off-load the account-key generation and
storage to a set of n servers while preserving their secrecy against
any ¢ compromised servers. The servers generate key shares in a dis-
tributed form by running a distributed key generation (DKG) [54]
instance for each user identity and providing the secret key or public
key shares for the identity as required (throughout the paper, we
call this approach the Plain-DKG approach). Both scenarios require
securely generating and efficiently maintaining a huge number
of account-keys. The Plain-DKG approach does not scale well as
the servers have to perform several DKG instances to generate
the key shares for all the account-keys resulting in high computa-
tional and communication overhead. More importantly, the over-
head further amplifies if the system, over longer terms, attempts to
provide proactive security [59] against mobile adversary [73]: All
the millions of user-key shares need to be refreshed periodically,
even giving rise to issues of availability while the computation and
communication-intensive refreshing process are in progress.
Start-ups such as Torus [21], Keep Network [14], and Chain-
link [5] are developing similar threshold cryptographic solutions
towards maintaining secrecy and availability of the account-keys;
the motivating factor for this work is that their current approaches
do not scale well with the number of account-keys and bridges.
This work aims to provide a scalable key management system to
generate keys on-the-fly for the rapid proliferation of blockchains
to millions of users and bridges amounting to millions or even
billions of keys.
Employing distributed PRF. In this work, we generate keys on-
the-fly as pseudo-random function (PRF) [30, 56, 70] evaluations. A
PRF is a deterministic function of a master (private) key and an input
tag indistinguishable from a truly random function of the input.
We plan to use the PRF output as a private/signing key. As a single
node holding a master key K introduces a key escrow and a single-
point-of-failure for PRFs, we distribute the trust using a distributed
PRF (DPRF) such that a set of servers holds the master key K in
a secret shared fashion and generates shares of the user’s private
keys as partial PRF evaluations. Indeed, generating private keys
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using DPRFs [37, 42, 69] is considered in the literature; however,
none of the existing solutions is suitable for the scenario involving
any Alice obtaining public keys of an offline Bob.

As an illustrative example, consider private key generation for an
identity (tag) 1D 4 using the well-known PRF by Naor et al. [42, 69].
This involves computing sk = Hz(F(K, D)) = Hy(H; (1D4)X),
where hash functions H; (-) and Hy(-) map to a multiplicative group
(of elliptic curve points) G and a scalar additive group Z, respec-
tively. When the key K is shared among multiple servers, computing
her secret key sk4 from partial evaluations is straightforward for
Alice: she first computes Hy (ID4)X using Lagrange interpolations
and then applies Hy to the output locally. The airdrop scenario, how-
ever, asks to securely provide Alice the public key pkp of an offline
party Bob with identity IDg. To ensure that Alice cannot determine
skg, computation of pkp = g2 (F(K.IDB)) involves computing hash
function Hy(-) through multi-party computation (MPC)—a highly
expensive process in the threshold setting [27, 57].

To generate the public keys efficiently, we require a PRF whose
output is a scalar value in Z, and does not involve Hy(-) hash
computations in the multi-party setting. We observe that most
existing distributed PRFs [49, 71, 72], key-distribution schemes,
[4, 52, 63], identity-based signature (IBS) schemes [43, 60] and
easy-to-distribute key-homomorphic PRF constructions [48] do
not satisfy this requirement. Essentially, we need an efficient key-
homomorphic distributed PRF with output in Zp,, without requiring a
hash computation in a multi-party computation setting.

Our Approach. We observe that a lattice-based almost key ho-
momorphic PRF [37] is the most suitable for generating keys in a
distributed fashion. For string/tag X and a scalar key vector Kk, this

PRF [37] of the form F(X, k) = {H(X) : kJ € Zpk e ZLH() €
p
Zgp < g, (*) is the inner product operation on two vectors and

Llalp with a € Zg is defined as |_a . %J € Zp. F(X,k) is almost
key-homomorphic, with an induced error {0, 1} in the evaluation
for every additive term. The (master) key vector k is threshold-
shared among the servers. However, unlike standard threshold
designs [21, 24], we cannot employ Shamir secret sharing (SSS) [75]
for sharing k in this almost key homomorphic PRF. This is be-
cause, while reconstructing the PRF output from the partial evalu-
ations, the large reconstruction (Lagrange) coefficients® blow up
the induced error (and error combinations) from the additive terms
making it impossible to reconstruct any consistent PRF output; a
different set of servers will compute different output. To overcome
this blowup of error, another common secret sharing mechanism
replicated secret sharing (RSS) [44, 62] may be employed. The RSS
shares need to be simply added to compute the output, which en-
sures that the error remains bounded within the range [—n, n] for
n servers. However, the number of RSS shares grows exponen-
tially as (";1) for an (n, t) threshold structure among servers with
t = O(n); this has a high share-refreshing computation overhead
and RSS-based distributed PRF can only be applied to settings with
very few servers (typically < 10, see Section 9). However, solving
our distributed PRF problem requires going beyond the commonly
employed SSS and RSS schemes.

The reconstruction of the output is an inner product between the partial evaluations
vector and the reconstruction coefficient vector.
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In this work, we demonstrate that the black-box secret sharing
(BBSS) approach [45] can be made practical towards catering to a
higher number of servers and employ it for sharing the master key
among the servers; in fact, this is the first effort that realizes its util-
ity in practice. We propose the D-KODE protocol, which generates
discrete-log private and public keys using almost key homomorphic
PRF evaluations, where the master key is shared among servers
through BBSS. Our BBSS instantiation ensures that the reconstruc-
tion coefficients are in the set {—1, 0, 1}. In the scenario where Alice
to pays to a new Bob, the small reconstruction coefficients help Bob
efficiently compute the private key of the public key to which Alice
paid.

For share refreshing, in D-KODE, we refresh the shares of the

master key instead of (all the millions of) account-keys. This makes
share refreshing using proactive secret sharing independent of the
number of account-keys resulting in only constant overhead. Fur-
ther, while computing the account-keys from PRF evaluations, we
use a verifiability mechanism for the PRF to allow the clients to
verify the evaluations. Our prototype implementation provides D-
KODE protocol with BBSS-DKG mechanism for network size up
to 50 servers. We observe that D-KODE starts to outperform the
state of the art at 94K keys for a 20-server system. Using D-KODE,
a server supports generating up to ten secp256k1 keys per second
per thread. D-KODE also supports generating ~ 20 threshold BLS
signatures [35, 38] per second.
Other Applications. Our solution can be used in any scenario
where either Alice or Bob or both do not have a cryptographic
setup and wish to transact cryptocurrencies. The realization of
BBSS-based distributed PRF has further practical applications in-
cluding efficiently generating a large number of threshold random
values for threshold signatures schemes like threshold-ECDSA [50].
Our practical BBSS can also be used to generate threshold shares
for threshold-FHE to realize the Thresholdizer protocol [36] in a
practical setting.

In summary,

e We propose a solution D-KODE that efficiently generates and
maintains a large number of account-keys. It also makes airdrops
of crypto funds possible for users who are not yet in the system.
D-KODE helps generate keys where two parties like to transact
when either or both parties do not have mechanisms for locally
generating keys; even when one of them is offline and the other
party only knows his verifiable identity. D-KODE solution also
achieves cross-chain bridges where a client can request a group of
servers to sign transactions on their behalf.

o As a key step in D-KODE, we propose efficient approaches to
realize black box secret sharing (BBSS) for practical setting, which
can be of independent interest to threshold cryptography [17] com-
munity.

e We instantiate the first DKG mechanism using BBSS scheme
and provide a dynamic committee proactive secret sharing scheme.
Our scheme offers constant computational overhead and hence
scales well with a large number of account-keys in the system.
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2 SYSTEM SETUP AND SOLUTION OVERVIEW
2.1 System Setup

Consider a system of n servers {Py, Py, - - - , P, } that share a master
secret vector k? through a (n, t)-threshold scheme. The servers
interact with clients who join and leave the network anytime. All
the servers have access to a broadcast channel and the network
is bounded-synchronous [51]. We consider a t—bounded static ad-
versary that corrupts up-to t servers at the start of the protocol.
Corrupted servers remain so throughout the protocol run. Each
pair of servers is connected through a secure channel that provides
secrecy and authenticity; this is typically achieved through TLS
channels [22] which mitigate any man-in-the-middle attacks. While
we consider a static adversary model for the distributed key gen-
eration mechanism, we extend it to a mobile adversary model for
the proactive secret sharing mechanism discussed in Section 8. The
secrecy/confidentiality of the secret key in D-KODE is based on
the discrete logarithm (DLog) and Learning-with-rounding (LWR)
assumptions.

DEFINITION 1. The Discrete Logarithm (DLog) assumption [68]:

For a generatorg € G and a & Zg, given the value g%, the probability
of a ppt algorithm Apy g to output the value a, Pr{Aprog(g, 9%) = a]
is negligible.

DEFINITION 2. The Learning-with-rounding (LWR) [66] problem
consists of distinguishing the distribution (A, | As]p) where A ~
U(Zg™"),s ~ U(Zg) and the uniform distribution U(Zg™" x Z}));
q > 2. We say that the LWR (g ) is hard if for all ppt algorithm A,
the advantageAduLWR (A) = |Pr[A(A, | As]p) = 1]-Pr[A(Au) =

q.m,n

1]| is negligible, with the probabilities taken over A ~ U(ng”), s~
U(Z";), and u ~ U(Zj’f).

2.2 Design Overview

In the D-KODE protocol, a master key k is (n, t)-threshold secret-
shared among n servers and the client private key is computed
as the almost key homomorphic PRF [37] evaluation F(X, k) =

lH X) - kJ € Zp, for X € X where X is the client-input space,
P

k € Zj the server key and H : {0, 1} - Zg a cryptographic hash
function. (-) indicates the vector dot product computation. Here,
for x € Zg, |x]p is defined as |x - %JJ € Zp. The group orders
p, q and the vector length u are chosen to realize 128 bit security
(see Section 9 for details). The master key vector k is BBSS-shared
among the servers with each server P; obtaining the share matrix
K;. The shares K; are generated in a distributed manner using
distributed key generation (DKG) involving a verifiable black box
secret sharing (BBSS) scheme (elaborated in Section 3.2). The BBSS
scheme involves a distribution matrix that is constructed such that
the reconstruction coefficients for the shares are in the set {-1,0, 1}.
It is done by realizing the (n, t)-threshold access structure as a
threshold circuit and expressing it as a monotone boolean function.
This function is then converted to a distribution matrix using [32]
construction (recalled in Appendix B).

3We denote all vectors in bold font small and matrices in bold font capital letters.



AFT 22, September 19-21, 2022, Cambridge, MA, USA

ko kl kz kn—l
sk, : share; sky : shares ska : share, i

N

Alice

sk4 : shareg

sk4 = Recon(sky : sharey,- - sky : share,_1)
pka=g

sky

(a) Scenario 1a: Alice uses her public string ID 4, obtains evaluations

ko k; k; kn_1

i sk :sharey sky : share; sky : sharey ska : share,_;

ransaction T,
Signature
request

(b) Scenario 1b: Alice uses her public string ID 4, sends a transaction
T and requests the servers for a (threshold) signature on T after
authentication

Figure 1: Private key and signature generation using servers
with shares k; of a master key K shared with a linear thresh-
old scheme.

Let each server P; be associated with a set T; such that P; re-
ceives the matrix K; = {kj,j € Ti},k; € Zg. The partial eval-
uations of server P; upon client input X is a vector of evalua-
tions {F(X,k;), j € T;}. To compute the required keys, the client
forwards the public string X, obtains partial evaluations, and re-
constructs the corresponding keys. Let y = F(X,k) and y,
F(X,k¢),t € U;T; be the set of all partial evaluations received
by the client from the servers. To generate the private key the
client obtains a linear combination § = }};cs A; - y; where each
Ai € {0,1,-1}. g differs from y by a small error 8 < }; |T;| depend-
ing on the evaluations used for the computation.

(Scenario 1a) Private key generation. Alice securely authenti-
cates herself to the servers (using email-login, OAuth tokens etc.)
and forwards her public string ID4 (for example, her email ID),
obtains the partial evaluations yp = F(ID4, ky) from servers and
computes the private key as sk4 = >; A; -y; as depicted in Figure 1a.
The values A; are determined by the qualified set of servers whose

evaluations are used in the reconstruction (refer Section 3.2). From
SkA

the private key sk, she can compute the public key as pky =g
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ko k1 k2 kn,1
pkp : share, 1

pkp : share; pkp : sharey

N\

Alice

pkp : sharey

pkp = Recon(pkp : shareg,- - -, pkp : share,_1)

Figure 2: Scenario 2: Alice uses Bob’s public string IDp to
obtain his public key shares and compute the public key pkp

With the key pair (ska, pka), she can perform any required trans-
action.

(Scenario 1b) Partial signature generation. Instead of request-
ing the secret key shares to reconstruct the secret key, Alice can
request the servers to generate shares and generate a signature on
a transaction on her behalf. Upon request, the servers can generate
secret key shares and generate partial signatures using the secret
key shares (see Figure 1b). These partial signatures from different
servers are threshold-combined [38] to generate valid signature
and authenticate any transaction. Alice forwards an identity string
and a formed transaction to the servers, similar to the previous
scenario. The servers generate the partial signature using the iden-
tity and sign the transaction. This scenario occurs in cross-chain
bridges where servers generate signature on behalf of the user. The
servers also publish the public key corresponding to the secret key
generated.

When a party wishes to verify the transaction by generating

Alice’s public key on the fly, the generated public key will have a
slight ‘error’ of 26. Hence the verifying party generates a list of 46
public keys and confirms the transaction if at least one matches the
published public key and verifies the signature.
(Scenario 2) Public key of an offline Bob. When Alice tries to
pay Bob, she forwards Bob’s public string IDp to the servers and
obtains the evaluations z; = g¥% where y; = F(IDp, k¢) as depicted
in Figure 2. She computes a public key of Bob as pkg = Hi(zi)’li
and proceeds to pay Bob.

When Bob tries to compute his private key later corresponding
to this public key pkp, he authenticates to the servers and obtains
a private key skj, which differs from the private key skp (corre-
sponding to the public key pkp), by a maximum of 26. He simply
computes all the private keys in the range [skj — 20, sk} + 20],

obtains the corresponding public keys [g°%87%, g°*5+29]  For ex-
ample, for twenty servers, 0 is distributed among [-216,216] and
highly concentrated around 0; each of the key can be generated
by one multiplication from pky,. pkg will be in that set of 40 keys,
and since he has private keys corresponding to all of them, he can
utilize the funds transferred by Alice to pkp. Note that only Bob
owns these secret keys. Computing these keys is a highly efficient
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process as it involves either 46 additions or multiplications. It takes
the client < 12 msec on a 4-core machine even for a 50 server setup.

Thus Alice can airdrop cryptocurrency to Bob by computing pkp.
Bob can later compute the corresponding key skp and retrieve the
funds whenever necessary. This solution does not involve any in-
teraction between the servers for the computation of account-keys,
since the server just evaluate y; = F(IDp, k;) and forward ng to
the client non-interactively. In summary, the proposed solution for
the two scenarios consists of the following steps:

o The servers P;, i € [n] participate in a (BBSS-)DKG and obtain
shares K; = {kj, j € T;} of a master key k.

e For Scenario 1: The servers generate partial evaluations zp =
F(X,ke) using the server key shares K; and public input string
input X from the client. The client combines these z; to compute
the private key as z = F(X, k).

e For Scenario 2: The servers evaluate z; = F(X’,k;) and for-
ward gzi' for the evaluation of public key y = gz’ for the input X’
from any client.

Since we envisage a full-fledged deployment where the servers
are used to evaluate keys for a large number of clients over a long
period, we propose a proactive secret sharing mechanism for BBSS.
The servers store only one set of key shares corresponding to the
master key k and perform share-refreshing periodically using the
proposed Proactive BBSS scheme (refer Section 8). For share re-
freshing, the servers re-share each of their share elements to the
set of servers in the next period. The servers then compute the new
shares from the shares of the share elements.

We implement the full protocol and extract many interesting
aspects of BBSS scheme in the practical regime. While the exist-
ing works discussing BBSS and related Linear Integer secret shar-
ing [47, 66] have shown that the circuit size for the construction of
distribution matrix varies from O(n°-3) — O(n®*1%), we show that
for certain threshold access structures, efficient construction can
be achieved bringing the sharing scheme into a practical regime.

3 PRELIMINARIES: SECRET SHARING
SCHEMES

In secret sharing [31, 33, 34, 75], a designated dealer shares a secret
among a set of parties such that a certain subset of parties can
interact to reconstruct the secret. All the subsets designated to
reconstruct the secret are qualified sets, and the set of all qualified
sets is called an access structure. The threshold-t access structure
T(n,t) is the collection of subsets of parties of cardinality greater
than t. Any subset of parties outside the access structure has no
information about the secret. When the total number of parties is
n, we denote such a scheme as (n, t)-secret sharing, where at least
t + 1 parties are needed for reconstruction.

3.1 Replicated Secret Sharing

Replicated secret sharing [44] for a monotone access structure T
and its maximal unqualified sets 7, the shares of secret s € Zg4
are generated as follows: the dealer first generates |7°| number
of additive shares of s, each labeled by a unique set in 7. Let the
shares be {rr € Z4, T € T}, each player P; is given the vector of
shares rr such that i ¢ T. Parties of every maximal unqualified set
T € 7 jointly do not have access to exactly one share element rr.
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Parties of every qualified set jointly own all the share elements and
thus additively reconstruct the secret s. For a (n, t) threshold access
structure, each party is given (’;) share elements.

3.2 Black Box Secret Sharing

A black-box secret sharing (BBSS) scheme [45, 46] is a linear secret
sharing scheme over a finite Abelian group; it can be instantiated
with just black-box access to group operations and random group
elements i.e., the order of the group need not be known beforehand
for secret sharing (hence ‘blackbox’). The secret generation and
reconstruction mechanisms are independent of the group used for
the secret sharing. We use a construction [32, 47] of the black-box
secret sharing scheme such that the reconstruction coefficients lie
in the set {—1, 0, 1}. In black-box secret sharing [45, 46], the dealer
shares an element of an Abelian group (e.g., Z4 with publicly known
q) where the share elements are computed as a linear combination
of the secret value and random elements chosen by the dealer. They
are computed by multiplication of a distribution matrix M and the
random element vector p. Any set of parties from the qualified set
can reconstruct the secret as a linear combination of their shares.
Share generation. Consider a dealer sharing a secret s € Zg witha
set of parties over the (monotone) access structure denoted by I'. To
generate shares for the parties in BBSS, the dealer uses a distribution
matrix M € Z4%¢ and a distribution vector p = (s, pz, p3, - , pe)
with secret s, {p; }{_, uniform randomly chosen from Z. The vector
of share elements s = (s, s, -+ ,54)7 is computed as s = M - p.

Eachparty P;,i € {1,2,- -, n} is assigned a set of share elements
using a surjective function ¢ : {1,---,d} — {1,---,n},d > n. The
it share element s; is assigned to the party ¢(i) who is said to
own the i row of the matrix M. Here row i is said to be labelled
by ¢/(+) as the party (i). For any subset of shareholders A, M4 €
Zdﬂxe, sp € 744 denote the set of rows of M and elements of s
jointly owned by the parties in A. We let T; = ¢/~ 1(j) be the set
of all row indices held by party P;. Any set A € T is a qualified
set and sets A ¢ I are forbidden sets. The jth shareholder holds
dj = [=1(j)| number of share-units.

The tuple M = (M, ¢, €) is called an Integer span program (ISP)
when M € Z9%¢ and the rows of M are labelled by the surjective
function ¢. € = {1,0,- - - , 0} € Z° is called the target vector. When
M is an ISP for T, the conditions specified by Definition 3 hold
and M can be used as a distribution matrix to realize the access
structure. This defines a reconstruction vector, which is used to
reconstruct the secret when M is used as a distribution matrix to
share the secret value.

DEFINITION 3. An integer span program (ISP) [45,47] M = (M, €)
is an ISP of the access structureT if forall A € {1,2,-- - , n} the follow-
ing holds: If A € T, then there exists a reconstruction vector A4 € 794
such that MX/lA =¢&, wheree = {1,0,---,0}. IfA ¢ T, there exists a
sweeping vector k = (ki, kg, -+ - ,ke) € Z° such that Myk =0 € 74
with k™ - & = 1.

The first condition states that for every qualified set, there exists
a reconstruction vector, thereby making the reconstruction of the
shared secret possible.
Reconstruction. For a qualified set A, the secret value s is recon-
structed as s = s; - A 4. Here s 4 is the vector of all share elements
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(a subset of vector s) held by the parties in the set A and A4 is the
corresponding reconstruction vector.

To realize a threshold access structure, one needs to compute the

corresponding distribution matrix M. For that, we use the Benaloh-
Leichter (BL) secret sharing construction [32, 47] where the ac-
cess structure is expressed as monotone boolean formulae. The
BBSS scheme using the BL construction ensures that elements of
the reconstruction vector A are small and in {-1,0, 1}. We recall
the BL construction of generating a distribution matrix from a
monotone boolean formula representation of threshold structure
in Appendix B of the full version [10] of the document owing to
space constraints. The more recent construction by Cramer et al.
[46] involves a smaller distribution matrix with non-binary entries
which result in large reconstruction coefficients, hence we use the
BL construction.
Verifiable BBSS. Verifiability of a secret sharing scheme [53, 74,
76] is the property that lets the parties receiving the shares from a
dealer verify the shares’ validity. Here we discuss the verifiability
of the BBSS scheme [77].

After generating the share elements by performing s = M - p,
for a public distribution matrix M = m; j,i € [d],j € [e] and a
random vector p = {p1,p2,- - ,pe} € Z;, the dealer commits to
each element of the vector p and forwards the commitments to all
the parties receiving the shares. The dealer generates a commitment
vector ¢ consisting of commitments cj, [ € [e] to each element of the
vector p. The element p; is committed using Pedersen commitment
as ¢y = gPLhP g using random p; € Zgq. The dealer also computes the
vector s’ = M- p” where p’ = (p1, p5,- -+, pe) and s’ = {s},i € [d].
The dealer forwards the share vectors s; = {s;}, s} = {s}},j eT;
to party P; where T; is the set of all row indices owned by party
P;. The dealer also broadcasts the commitment vector ¢ to all the
parties.

Verification. Each party P; receives the share vector s; and the
broadcast commitment vector c. The parties verify each of the
received share elements as follows: let the j row of the matrix
M be (mj1,mj2, -+, mje), the party with share element s; (and

s;.) verifies the share using the following verification: g5 h% =
Ml We have,

e
[y
e
e 1]
=1

I=1

Y

) e
(gpthPE)mJ’l - I—[ (gpzm,—,z)(hpfmj,z)
I=1
= gZia PIMALREEL PImiL = gSi )

If the verification does not hold, the party with the share element
s; broadcasts a complaint along with the share elements (s;, s}). If
more than t + 1 complaints are broadcast in the system, the dealer
is deemed malicious; else the dealer responds to the complaint by
broadcasting the share forwarded to the party.

4 DISTRIBUTION MATRIX FROM
THRESHOLD FUNCTION

To generate the distribution matrix M for a (n, t) threshold BBSS
scheme used in the DKG mechanism, we realize the (n, t) threshold
access structure as a threshold circuit of sufficient depth. We con-
vert the monotone boolean function representation of the circuit
to the distribution matrix using the Benaloh-Leichter (BL) [32, 47]

313

Easwar Mangipudi and Aniket Kate

Table 1: m values obtained through threshold circuit for dif-
ferent n, p values and error margins

. e=27" e=2"1
p=05|p=0.66 | p=0.5| p=0.66

5 81 9 9 9

10 2187 81 81 27

20 59049 729 2187 27

30 177147 2187 19683 81

Table 2: Distribution matrix M Dimensions for different m

m | Rows | Columns
3 6 4
9 36 22
27 216 130
81 1296 778
243 | 7776 4666

construction (recalled in Appendix B). Much of the previous works
[39, 47, 79] suggest realizing the threshold access structure us-
ing a majority circuit [79] of size O(n>3) [79] to O(n”‘ﬁ) [61] .
Valiant[79] suggested realizing threshold function using majority
circuit of 2n variables ¢ which was adapted by other works like
Damgard et al. [47] following similar approach. Also, the proposed
probabilistic constructions [61, 79] compute the depth of the cir-
cuits such that the probability with which the circuit outputs 1, on
a majority in the n input variables, is 1 — e where e = 27", This
work computes the required threshold circuit directly instead of
realizing the threshold circuit using the majority circuit. Also, we
report that choosing e = 27" is indeed an overkill increasing the
depth of the circuit. Larger e > 27" is sufficient to realize the re-
quired access structure in the practical system profiles considered.
Essentially, we relax the error to achieve efficient implementation
while still reconstructing the secret for all the qualified sets of the
access structure.

We adapt the construction provided by Goldreich [55] for the
majority circuit construction that uses a MAJ3 probability amplifier
node® (Refer Appendix A for a brief description of Goldreich’s [55]
construction and analysis of the majority circuit) The construction
as depicted in Figure 3 consists of n variables x;, i € [n] (indicating
n parties in the access structure) and m variables y;, j € [m] are
assigned as follows: choose random indices i uniformly between
1 and n and assign the corresponding x; to each yj, j € [m] se-
quentially. Here the aim is to choose the total number of leaves m
such that the circuit outputs 1 for a valid access structure with a
high probability. Construct a 3-ary tree of MAJ3 nodes with y; as
leaves. The probability p = Pr(y; = 1) is taken as 0.5 for designing
a majority circuit.

We choose the value of p as % for the threshold access structure
(n,t), we also compute depth with e> 27%. To see why this is
significant, we first present how the dimensions of the distribution
“For (n, t) threshold function, take n extra variables (total 2n variables), fix n — ¢ of
them to be 1 and the rest ¢ to 0; whenever there are more than ¢ 1s in the original n

variables, the majority function outputs 1.
5The MAJ3 node realizes majority of 3 variables (x1, X, X3) as XXz + X2X3 + X1 X3
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Figure 3: Majority circuit realization using MAJ3 nodes. The
variables x;,i < n are mapped to yj, j < m uniformly ran-
domly. MAJ3 tree is formed from y;. Here n is the total num-
ber of parties in the access structure; The number of leaves
m is chosen to achieve sufficient depth.

matrix M are related to the value m, the number of leaves in the
circuit. Table 2 presents m values and the dimensions of M when
the circuit is constructed using MAJ3 nodes, and the distribution
matrix is constructed by BL construction [32, 47] from the mono-
tone boolean formula representation of the circuit. With the above
construction, the number of rows of matrix M grow as plogs (m)
Table 1 depicts the value of m needed to represent the threshold
access structure for different values of p and e. For instance, from
Table 2 for m = 243, the number of rows of M is 7776. Observe
from Table 1 that for (n, p,e) = (20,0.5,27"), the value m = 59049.
For m = 243 itself, the number of rows is 7776, for m = 59049 the
number of rows (60466176) make it impossible to perform the secret
sharing on a laptop or a phone using a majority circuit implemen-
tation (p = 0.5) with e = 27". However, by exhaustively computing
different qualified sets, we find that e > 277 is indeed sufficient
to successfully reconstruct the secret for the qualified sets up to
n = 50.

In this work we consider the (n, L%”J) access structure and gener-
ate the matrix M with depth analysed using p = % The distribution
matrix size is dependent on the computed m value rather than di-
rectly on the value n. That is to say, multiple n values may result in
similar m value computed and hence will have similar distribution
matrix sizes. Since the designed circuit is a 3-ary tree, the m value
chosen will be a power of 3 for any given n. Table 4 in Appendix
compares the value of m needed for different n, p values using ma-
jority circuit and threshold circuits to achieve error margin e = 2 T
We provide the details of how to search for the exact distribution
matrix in Appendix C

5 DISTRIBUTED KEY GENERATION USING
BBSS

A distributed key generation (DKG) [54] protocol allows a set of

nodes to share a secret among themselves without a trusted third

party such that any qualified subset of nodes can use/reveal their
shares to compute the secret. However, any subset of nodes outside
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the set of qualified sets has no information about the shared secret.
For a (n, t)—DKG, any subset of ¢ + 1 or more nodes constitutes
the qualified subset. At the heart of any DKG is a verifiable secret
sharing (VSS) scheme. To achieve a (n, t)-DKG protocol, we consider
a (n, t)-VSS scheme; unlike a VSS scheme which requires a trusted
dealer, the DKG mechanism distributes the trust among the nodes
removing the requirement of a trusted party. In this work, we
consider a DKG protocol resistant to f malicious nodes with the
total number of nodes n = 3f + 1 in the network.

Using the verifiable BBSS scheme (refer Section 3.2), we obtain
a DKG along the lines of the scheme by Gennaro et al. [54]. The
protocol proceeds in two phases; in phase 1, each party P; performs
a verifiable secret sharing of a random value z; and every party
verifies the received shares using the broadcast commitments. After
this, every party P; forms the qualified set of parties Q whose
shares are verified and compute its share sk; by locally adding
the verified shares. The computed shares correspond to shares of a
random secret key sk € Zg. In Phase 2, the parties of the qualified
set forward the exponentiation of their shared secret z; and a zero-
knowledge proof that the forwarded Pedersen commitment in Phase
1 corresponds to the same. Every party computes the public key
pk = g°% after verifying the zero-knowledge proofs. See Figure 4
for the complete BBSS-DKG protocol. The proposed DKG offers the
following properties:

o Correctness: All qualified subsets of shares provided by honest
parties define the same unique secret key sk; All honest parties
compute the same public key pk = gSk value corresponding to the
secret key sk

o Secrecy:No information on sk can be obtained by the t—limited
adversary except what can be inferred from the public information.

THEOREM 1. Given a correct and secure (n,t) verifiable BBSS
scheme, the DKG protocol (Figure 4) satisfies correctness and secrecy
properties under the Dlog assumption.

We postpone all proofs to Appendix E.

6 D-KODE PROTOCOL

By D-KODE protocol we refer to the set of all algorithms for gen-
erating account-keys in a distributed fashion. These algorithms
include the generation of shares of master key k at the servers
using BBSS-DKG, PRF evaluation upon user input, and algorithms
to combine the partial evaluations to compute keys at the client.
Since BBSS-DKG and PRF are run on the server, we refer to them
as server-side algorithms and the algorithms for combining the
partial evaluations for computing keys at the client as client-side
algorithms. On the client side, we have two different versions cor-
responding to offline and online clients.

Offline clients are clients who’ve been paid and wish to retrieve
their funds by recovering the secret key associated with their iden-
tity. Online clients either recover their own secret key or recover
the public key of another client they are trying to pay.

The D-KODE protocol consists of the following algorithms. For
ease of exposition, we postpone the verifiability of the PRF evalua-
tion in Appendix 7.
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— BBSS-DKG

Public parameters pp: {n,t,q, p, M € {0, 1}39%e ()}
Phase 1: Generating shares of sk € Zg:

(a) P; chooses two random vectors p; = {pj1, piz, - - -
Pi1 = Zi-

vectors be s; = {si1, Si2, "+ , Sie}, 8] = {8]1, 8], -

k € T).

Phase 2: Computing the public key g°:

from Q.
(3) Finally the public key is computed as pk = [T;cq 9°*'.

(1) Each party P; performs a Verifiable BBSS of a random value z; € Zg :
,pie} and pi = {py, piy, -+

(b) P; computes two vectors s; = M- p; and s; = M - p/, generates commitment vector ¢; consisting of commitments to each of
the elements of the vector p; as ¢;; = gPil h” il e [e] where g, h are generators of a multiplicative group G. Let the computed

sk

(c) P; forwards the shares s; ;, a subset of the vector s; to P; consisting of share elements s;, k € {T; = ¥~1(j)} and it also
forwards the corresponding s;’j, a subset of the vector s; to the Pj, j € [n].

(d) P; broadcasts its commitment vector ¢; with elements c;;, I € [e] to every other party Pj, j € [n].

(e) Pj verifies the shares it received from the other parties using the specified verification procedure. s;; (corresponding to
the row k of the vector s; of P;) received by P; from P; is verified as: g*i BSik =

If any verification fails, party P; broadcasts a complaint against party P; by broadcasting the shares (s;., slf -
(f) On receiving a compliant against self from P; for any row k, P; reveals the shares by broadcasting s;., s
(2) Every party maintains a set of parties Qualified Q, any party excluded from the set is disqualified by that particular party.
Every party P; excludes a party P; if P; either receives more than t complaints or the broadcasted shares after complaint do not
pass the verification. At the end of the complaint and verification phase, every honest party will have the same qualified set Q.
(3) Every party P; locally forms its shares of the secret key sk by adding element-wise, the shares of the vectors s; j received from
every other party P;,i € [n] i.e., each P; computes its share as sk; = {$x|k € Tj} = }; s;x for each k € T;. Share of each party

Pj is a vector sk; of share elements with cardinality d; = |Tj|.

(1) Each Pj,i € [n] broadcasts the values A;; = g”i' and a NIZKPoK ; (Refer Appendix D) proving that the value committed
zi = pj1 is same value in both A;, ¢j1 broadcast earlier to every other party Pj, j € [n].
(2) Each party verifies the broadcast NIZKPoK of every other party and anyone failing verification is disqualified and removed

Pt Py P € Zj,. Sets the first element

i c;;”" mod p. (Here row k is held by P;,

ik’

Figure 4: BBSS-DKG Protocol

6.1 Server Side Algorithms

Cryptographic Setup. Setup(A, n, t): It takes as input the security
parameter A, the threshold ¢, and the number of servers n. It outputs
the public parameters pp := {H(-),p,q,q".u, G, g,G, g, h, M, (") }.
Depending on the chosen group or curve for which the keys are
being generated different values of the parameters are chosen (see
Section 9).

Distributed Key Generation. DKG (n, t, g, u): The servers run
the BBSS-DKG mechanism among themselves using (n, t)-BBSS to
generate shares of a master key k € ZY.

The BBSS-DKG mechanism (Figure 4) provides shares correspond-
ing to a single element sk € Zg to all the servers. However, for
the PRF evaluation, F(X, k) = [H(X) - k], the key k is a vector
of length u. Hence, initially, the servers run u instances of DKG
to generate shares of elements of the vector in Zg. Let the share
element matrix obtained by each server P; be E;.

PRF evaluation. The servers run the PRF service through the Par-
SecretKeyEval and ParPubKeyEval algorithms to compute private
key or public key shares respectively for an identity forwarded by
the client.
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ParSecretKeyEval(X, E;, pp): As described in Algorithm 1, sever
P; takes the client input string X, share matrix E;, the public param-
eters pp and returns the evaluation of the PRF as the vector z;. The
matrix EiT is parsed into d; columns of u length each while input X
is hashed to a vector of length u using the hash H : {0, 1}* — Zg.
d; is the number of rows of matrix M owned by P;.

Algorithm 1 ParSecretKeyEval (X, E;, pp)

1: Parse the matrix E;'— ~ Z;xd,» as [ki|kiz| -« - |kig,]
2 for 1< j<d;do

3: zjj = \\H(X) -kiij € Zp

4 return z; = {zj1, 22, *+ , Zjq,} € Zgi

ParSig(X, E;, pp, msg): To generate a partial signature on the
message msg, the server first generates the secret key share of
the user by invoking ParSecretKeyEval(X, E;, pp). This secret key
share is used to generate a partial signature. ¢’ (msg,X,E;) =
{o(msg, zi1), 0(msg, zi2), - - -, 6(msg, z;4,) }. The partial signature
vectors (along with partial public keys) from the servers are for-
warded to an aggregator server where they are threshold combined



D-KODE: Distributed Mechanism to Manage
a Billion Discrete-log Keys

to form the final signature on the message. While publishing the ag-
gregated signature, the aggregated verification (public) key pkx is
also published. Later when a public key to verify the transaction is
generated, it is verified that it is within the set [pkx -g~2%, pkx -¢%?].

ParPubKeyEval(X’, E;, pp): Partial evaluation for public key gen-
eration (Algorithm 2) is similar to that of the secret key except that
the final vector is the exponentiated version of partial secret key
evaluation. Server P; takes the client input string X', share matrix
E;, the public parameters pp and returns a vector y;. The matrix E;'—
is parsed into d; columns of u length each while input X is hashed
to a vector of length u using H : {0,1}* — ZZ. d; is the number of
rows of matrix M owned by P;. Each of the elements of the PRF
evaluation is exponentiated resulting in a vector of elements of the
group G and of length d;.

Algorithm 2 ParPubKeyEval (X', E;, pp)

1: Parse the matrix E;r ~ ZZXd" as [ky1lkiz| - - - kg, ]
2 for 1< j<d;do
3: Zij= {H(X’)'kijJ EZP

P

4 returny; = {¢71,g%2, - -, g%idi } € G%

6.2 Client Side Algorithms

The client computes the private key by combining the partial eval-
uations using the CombSecKey algorithm and computes the public
key of identity X’ by using the CombPubKey algorithm. The offline
client after generating the private key of his identity searches for
the appropriate secret key - public key pair to which payment has
been made.

Private key generation. CombSecKey(pp, {z1,22," -,z }):
Let 7 with |[77| > t + 1 be the set of parties whose evaluations
are used for reconstruction. CombSecKey (Algorithm 3) takes-in
the partial evaluation vectors z; received from the servers P; of
the set 7~ and concatenates them to form z = {z1||zz| - - - ||z} -
Let the set of all the row indices of matrix M held by the parties
in7 beR =J; T;,P; € T.zis a vector of length |R|. The private
key is computed as the linear combination of the vector elements.
The reconstruction coefficient vector A4 is computed by solving
MJ - Aq = & M is the set of all rows of matrix M held by the
parties in 7. € = {1,0,-- - , 0}

Online client : The online client computes the private key sk and
the corresponding public key as pk = gSk and uses the key-pair
(sk, pk) to perform different transactions.

Offline client: Once the offline client computes the private key
sk corresponding to his identity, he computes 46 secret keys. 0 is
the total number of values combined by the parties in set 7~ which
is |R|. He computes them as [sk — 20, - - -, sk + 20] and obtains
the corresponding public keys [¢5¢=20, ...  gk*20] The public
key to which funds have been sent will be in this set; he uses the
corresponding secret key to transfer the funds.

Public key generation. CombPubKey(pp, {y;. ¥z, -,y }):
Let 7 with |[77| = t + 1 be the set of servers whose evaluations
are used for reconstruction. CombPubKey takes-in the vector of
partial evaluations y; received from the servers P; of the set 7~
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Algorithm 3 CombSecKey (pp, {21, 22, -, z|7})

1: Compute z = {z1]|z2|[ - - - [|z)7} € Zl,ﬂl
2. Compute Aq € {~1,0, 1} Rl such that M-,;_ “Ag=¢
3. Compute sk = )\.;} “Z€Zp
4: if Online client then
5 return sk
6: if Offline client then
7 Compute [sk — 20, -- -, sk +20],0 = |R].
8: Compute public keys pak = [gok=20 ... gsk+20]
9: Check public keys p_’k and find corresponding sk’
10: return sk’
and concatenates them to form'y = {y,|ly,||- - |ly|7}. The set

of all the row indices (of matrix M) held by the parties in 7 is
R =U;Ti, Pi € T.yis avector of length |R|. Compute the public
key as pk = [T1<j<|R| y?j, where M;'A(rz £, M:';. is the set of all
rows of matrix M held by the parties in 7, A4 = {1;,1 < j < |R|},
Y= {y.1<) < [R]}.

A client can forward the public identity of another client and
compute the public key from the obtained partial evaluations using
CombPubKey. (See Algorithm 4.)

Algorithm 4 CombPubKey (pp, {y1,y2." . ¥|7})

1: Compute 'y = {y,ly,ll -~ lly|r} € GIR|

2: Compute Aq-€ {-1,0, 1}|7‘2| such that M; “Ag=¢
3 Ar={A}y={y;j}, 1< JAS IR

4 Compute pk = [];<j<|R| yjj €eG

5: return pk

Using the ring-variant of the PRF. For the simplicity of ex-
position, we presented the whole key generation using the PRF

F(X,k) = {H(X) . ka € Zp with a single Z, element as output.

However, one can consider the ring variant of the PRF where the
two input vectors of computation H(X) and k are polynomial ring
elements. Then the inner product computation would be replaced
by polynomial ring multiplication resulting in a ring element that
can be viewed as a vector of u group elements. Thus using the ring

variant of the PRF F(X, k) = {H(X) o ka € 24 H(X),k € Ry, the

servers can generate u keys at a time for the user.

7 VERIFYING THE EVALUATION OF THE PRF

While the clients obtain shares as the PRF evaluations presented
in Section 6.1, it is imperative for the clients to verify if the values
received were generated correctly. The servers after evaluating the
PRF, forward a commitment and a zero-knowledge proof proving
that the values have been computed according to the protocol. For
ease of exposition, we present here the verifiability for one PRF
evaluation.

The PRF function employed by D-KODE protocol is F(X, k) =

{H(X)-kJ €ZpwithH: X - Zhk e ZLF: X X 78 — Z,
p
and p < q.Letk = {ay, az, -+ , oy }.
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Verification of the private key evaluation. Let z = F(X,k)
for k defined as above. To compute z, the servers compute the
inner product w = (H(X) - k) € Zg and perform the operation

z = |w]p € Zp. Hence we have, z = w~§ = pw=1zq+r

where the value r < q. To provide verifiability, it is enough for
the server to prove that the above equation has been evaluated
correctly and that the value r < g. The server uses commitments
and zero-knowledge range proof to do the same.

Server computation. For a key k = {a1, a2, -+, 2y}, and a ran-
domk’ = {f1, B2, - - , Bn}, the server initially publishes the commit-
ments ¢; = g%hPi i € [u], g, h € G are generators of multiplicative
group of order 7 > pq.

For proving the correct evaluation of z = F(X, k), the server com-
putes z’ = F(X,k’) and r = pw — gz mod 7, ¥’ = pw’ — ¢z’ mod 1;
forwards the values ¢ = grhr/ and z’ = F(X,k’) The server also
computes and forwards zero-knowledge range proof [40] 7, 7
proving that r < ¢,f < u - g such that w +fq = 3%, a;h;. Similarly,
he computes ¥'.

Thus when evaluating the PRF for an input X, the server replies
with the following: {z,z’,g"h" g gfhfl, 7, ¢ }. Note that ¢; values
are available to the client before the PRF evaluation.

Client side computation. Using the received values and the
initially published ¢; = g% h¥ values, the client computes gwhwl =
g 9th—av [T, (g% hPi)hi To verify the PRF value z, after verifying
the range proof 7, the client verifies g? Yh?" = g9%h9%’ . g"h"’
Verification of the public key evaluation. Previously for the
secret key evaluation corresponding to identity X, the server com-
puted and forwarded the value z = F(X, k). However, for public
key evaluation, the server forwards g7, for g € G a generator of a
multiplicative group of order p.

Similar to the procedure for PRF verification above, the server
forwards g"h” such that pw = zq + r;pw’ = 2/q +r’ and 7, 7
proving that r < g and f < u such that w + fq = X a;h; mod 7.
Similarly, he also computes ¥'. However, instead of values z, z’,

the server forwards g and g* h? where g, h € G are generators of
multiplicative group of order 7 > pq.

Additionally, the server sends a zero-knowledge proof of the
equality of exponents 7gqy (9%, g° h?') proving that the value z in
both the exponents (g%, g* h?') is equal. Thus the server forwards
the values {¢%, g* hzl, grhr/, gfhf/, Trs TEqQu (9%, gzhz/)} After verify-
whw’

ing the zero-knowledge proofs, the client computes g as before

and verifies g?Wh?Y' = g?%h9% . g"h"’

8 DYNAMIC-COMMITTEE PROACTIVE BBSS

System attacks are common as flaws in the software realization of
the protocols are ubiquitous. While cryptographic secrecy protects
again break-ins, its effect is limited over a longer time. This is
especially true in-case of a mobile attacker [59, 73] who can break
into systems one-by-one over a long time. Proactive secret sharing
(PSS) guards against these gradual attacks by combining distributed
trust with periodic share renewing. When systems store keys for a
long time, even when the secret information is threshold-shared, it
is imperative to refresh the shares such that the adversary does not
eventually gain all the information. In proactive security [41, 59, 73],
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the nodes modify their secret shares periodically such that the
adversary’s knowledge of secret information from any previous
period is not useful in the next. For the D-KODE protocol, we
propose proactive secret sharing for the BBSS scheme.
Adversary. We consider a computationally bounded mobile adver-
sary [59] that can corrupt any server at any point of time, however,
the adversary can corrupt no more than ¢ servers at any instant of
time. The adversary after compromising the server has full access
to the server’s secret information and communication. We consider
malicious corruption in which the adversary makes the server de-
viate arbitrarily from the protocol. The adversary has access to
the complete view of the corrupted server’s communication, how-
ever, he can neither inject, access or deny messages between any
two non-compromised nodes nor affect the broadcast channel. The
adversary corrupting the servers is removable by a reboot mecha-
nism [41], which is handled by the system management interacting
with the servers. The defined protocol provides explicit mechanism
to detect malicious behaviour, we assume a reboot is triggered as
soon as malicious behaviour is detected which is completed with in
that epoch. The system management initializes the system by estab-
lishing server to server communication and no secret information
of the protocols is available to it.

The aim of the adversary corrupting the servers is to learn the
secret information or the secret key shares involved in the proto-
col. The user or clients interacts with the servers to obtain partial
evaluations of the keys. He may try to attack the system by either
predicting the server secret key or the evaluations for other clients.
At the end of each refresh phase, the servers erase the old infor-
mation of the previous epochs. This process is assumed reliable;
when the server is compromised, the adversary does not have ac-
cess to the secret information of the previous epochs. If a server
is compromised in the refresh phase, the server is assumed to be
compromised in both the phases adjacent to that phase.
Protocol. We propose a proactive secret sharing scheme [59] for
the black box secret sharing mechanism where the size of share-
elements does not increase with each refresh. The protocol proceeds
in intervals of time called epochs, which are synchronized by the
common global clock. The parties participate in a share refresh
phase at the beginning of each epoch after which every party in
the system has access to the new shares. The adversary can corrupt
up-to t parties, if it is detected that a certain party is corrupted in
an epoch, its shares are renewed in the share renewal phase phase
of the next epoch, similarly if a node crashes during an epoch, its
shares are reconstructed in the reconstruction phase of the next
epoch. Share renewal and reconstruction are a part of the refresh
phase of each epoch.

Without loss of generality, let (n,t) be the access structure of
epoch eand (n’, t’) be the access structure of the epoch e+ 1 with a
changing (dynamic) committee. Let the access structures of epochs
e, e+ 1 correspond to the share distribution matrices M and M’.
Let sk; be the set of share elements held by the party P; for the
epoch e. In our proactive protocol, each party re-shares every share
element held by the party to all other parties of the next epoch. The
Proactive BBSS scheme is presented in Figure 9 in the Appendix.

Proactive BBSS offers the following properties [41]:

o Robustness/Correctness: The new shares computed at the end
of the share renewal phase correspond to the original secret sk
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shared among the parties i.e., any qualified set of parties (t + 1 or
more) can reconstruct the secret sk.

e Secrecy: No information about the secret sk is obtained by the
t-limited adversary in any epoch. The adversary who obtains shares
of no more than ¢ parties has no information about the secret sk in
any epoch.

o Liveness: All honest parties complete the refresh of shares (at
the beginning) in each epoch.

The proactive BBSS mechanism works in two steps: (1) Each
party P;,i € [n] does verified secret sharing of each of its shares
sk; among all the parties (2) From the obtained verified shares, each
party reconstructs their new shares sk.

Let ¢; be the vector of commitments to the vector p; by each
party P; in the previous epoch and Q be the qualified set computed
during that epoch. Each party stores a vector v of commitments
from the parties of the qualified set computed during the re-sharing
from the previous epoch for the verifiability of shares for the next
epoch. All the honest parties update the commitment vector v with
elements v; = [[p,eq c?}, ¢ € [e]. When party P; shares §;;. (while
using s’ ;) each party Pj checks if gikhS ik = [ (vp)™* where
MEAQ = A = {A,k € U;Ti, Pi € Q}. Let s,k € Tj be the
shares received by P; from party P; € Q. R’ = {U; T;, P; € Q'} is
the set of all rows held by Q’. Pj computes the new share element
Sk = Zieq Aisik- k € Tj.

THEOREM 2. For a correct and secure (n, t)-verifiable BBSS scheme,
the Proactive BBSS protocol (Figure 9 in Appendix) satisfies correctness
and secrecy properties under the DLog assumption.

THEOREM 3. If the LWR (g m,n) assumption holds,
ParSecretKeyEval(X, E, pp) is a PRF.

THEOREM 4. If the LWR (4 m ) assumption holds, CombSecKey is
a (n, t)-threshold evaluation of a PRF.

9 PERFORMANCE ANALYSIS

We evaluate the performance of D-KODE protocol using a prototype
implementation in Rust and Python for BBSS, BBSS-DKG, BBSS-
PSS, and the corresponding reference implementations of New-JF-
DKG [54] instantiated with Shamir secret sharing and replicated
secret sharing (RSS). We use the Charm crypto library [6] for the
cryptographic operations and BLS signatures by Dfinity [11].

We ran the experiments on a total of ten AWS EC2 c5a.8xlarge

instances (with 32 virtual cores) from a single region. All the nodes
are divided roughly equally on the AWS instances. We use Tender-
mint [20] to realize the broadcast channel for the verifiable secret
sharing of the DKG protocols.
Distributed Key Generation (DKG). We first implement the
DKG protocols and compare the performance for up to 50 nodes.
Figure 5 provides a logarithmic plot comparing the time taken to run
DKG to generate shares of a 256-bit key using Shamir and 283-bit
replicated (RSS) [44] and black-box (BBSS) secret sharing schemes.
Replicated secret sharing (RSS) [44, 62] is a well-known scheme
(refer crefsec:rss) to share secrets in Zg in an additive form. We
analyze the access structure for the VSS corresponding to (n, LZT”J)
threshold in all the protocols (See Figure 5).

Shamir secret sharing allocates one share element per node,
while BBSS and RSS allocate share vectors. The vector length for
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Figure 5: Time taken to perform DKG to generate shares of
a 256-bit key for Shamir-DKG and 283-bit value for RSS and
BBSS-DKG. The values show the mean of values across nodes
for 10 runs of the protocol.

RSS grows exponentially as (";1) for (n, t)-sharing. The share vec-
tor length for a node in BBSS is determined by the distribution
matrix and the share allocation function /(). While BBSS allocates
more than one share element per user, verifying shares is efficient,
involving only multiplications instead of exponentiations since the
distribution matrix is a sparse binary matrix. This is reflected in
the slightly lesser times recorded compared to Shamir-DKG for up
to 27 nodes. The distribution matrix is of dimension 36 X 22 (with
different ¢/(-) function) when the number of nodes n € [4,9]; it is
216 X 130 and 1296 X 778 for n € [11,27] and n € [28,50] respec-
tively. Beyond 28 nodes, the time to perform BBSS-DKG shows a
jump due to the distribution matrix size change. Such a change in
matrix occurs at 10 nodes as well; however, the change in the time
taken is not too significant. With RSS, the time taken for DKG grows
exponentially owing to an exponential increase in the number of
shares per node with n. In Shamir-DKG, since each node provides
only one share element for every other node, the time taken is the
lowest for higher n. Though the time taken to perform BBSS-DKG
can be higher than Shamir-DKG, it is the number of instances of the
DKG that is significantly lesser while employing D-KODE protocol
when compared to the Plain-DKG. It should be noted that for a
number of servers n < 6, D-KODE can be used with the master key
shared with RSS rather than BBSS.

User key generation using distributed PRF. D-KODE provides
key-shares using PRF F(X, k) where k is a vector. Each element of
the vector k at the server is a share generated using BBSS-DKG. The
parameters (LWR) for computing the PRF are chosen as following:
n = 8192, q : 283-bit, p : 256-bit. The parameter ¢’ > pq used for
commitments is 571-bit with commitments on the curve secp571r1.
The servers run 8192 instances of BBSS-DKG to generate shares
for the key k. The PRF output is a 256—bit key; The corresponding
public key is computed on the secp256k1 curve. In the case of
computing the public key of another party, the servers generate
the public key share (on the curve secp256k1) and forward it to
the user. Each server takes < 200 msec to generate shares for a
user per thread, for n € [5,50] on AWS EC2 c5a.8xlarge . The
servers use the BLS signature [35, 38] and the corresponding curve



AFT 22, September 19-21, 2022, Cambridge, MA, USA

Table 3: Number of shares per server while using Plain-
DKG[54] and D-KODE with either RSS or BBSS for &
account-keys. Here, ® can be as large as 1 billion. Number
of verifiable secret sharing instances for share refreshing is
same as the average number of shares stored. The shares are
256-bit for Plain-DKG and 283-bit for BBSS.

No. of No. of Average number of shares per server

keys Plain DKG D-KODE

(@) servers (1) With RSS | With BBSS
5 o} 32768 58982.4
10 P 688,128 176,947.2

® 20 o} 22.224e+7 88,473.6

30 o} 82.016e+9 353,894.4
40 P 66.528e+12 | 265,420.8
50 o} 27.424e+15 | 212,336.64

for public keys for the threshold signatures. The parameters for
the PRF were chosen to provide at least 128-bit security, estimated
using the LWE-estimator [28].

D-KODE vs Plain-DKG. D-KODE allows clients to generate pri-
vate and public keys using partial share evaluations from different
servers. The Plain-DKG [54] approach is another way to provide
such key shares where one instance of DKG is run per user to pro-
vide the shares (private or public key shares) whenever requested.
In this, for every new user, the servers perform consensus on the
index of pre-shared keys and offer the key shares to the user. As
Shamir-DKG is efficient even for a higher number of servers as
shown in Figure 5, we consider Shamir-DKG for Plain-DKG [54]
approach. We compare D-KODE with Plain-DKG as it is the only
other major approach available currently in the industry (Torus[21],
Sepior [19], etc).

Number of key shares — storage and share-refreshing. When
the servers store keys, either own or user’s secret keys for a long-
time, proactively refreshing the shares is inevitable. This is one
of the key phases where D-KODE offers an advantage. To bring
this out, we compare the number of shares stored at each server
when using different schemes. Table 3 compares D-KODE where
the master key between servers is shared using RSS and BBSS and
Plain-DKG for the different numbers of servers and clients present
in the system. For share refreshing, each share value stored at the
server is re-shared in the next round. Thus, the number of shares
stored at each server is the same as the number of VSS sharings to
be performed in the next round.

Plain-DKG stores ¢ + 1 commitments for each (n,t) DKG [54],
and for c clients, stores ¢ - (¢ + 1) commitments per server. For
BBSS with distribution matrix of size d X e, each server stores e
commitments per shared value. Hence for a 8192-element master
key, stores 8192 - e commitments. For RSS, each server forwards
commitments to each of the shares, and the number of commitments
is 8192 - (%).

For Plain-DKG, since the number of shares is the same as the
number of clients and hence linear with, increasing the share-
refresh time with a higher number of clients. D-KODE uses a fixed
8192-element long master key vector shared among the servers.
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Figure 6: Estimated time to refresh shares through proactive
secret sharing for D-KODE and Plain-DKG for number of
account-keys ® = 100K, 1million and 10million for 10 paral-
lel instances . D-KODE re-shares shares of a fixed number of
8192 values and hence takes the same time even for a billion
keys (@ = 1 billion); Plain-DKG re-shares values equal to the
number of keys.

Only shares corresponding to the master key vector need to be re-
freshed at each round and do not change with the number of clients.
For D-KODE with RSS, the number of shares is constant with re-
spect to the users but increases exponentially with the number of
servers. The number of shares stored at the server when D-KODE
is used with BBSS is dependent on the distribution vector. Since the
actual number of share elements per server may vary depending on
the share distribution function, we provide the average number of
share elements per server. For the ranges n € [4,9], [10, 27], [28, 50],
the distribution matrix would be the same within each range. Hence
with increasing n in those ranges, the average number of shares
per server decreases. The distribution matrix would again change
at n = 82. The distribution matrices and the different data sets have
been provided at the repository [10].

Figure 8 in the Appendix shows the time to refresh one share
through proactive secret sharing (PSS). BBSS-PSS takes longer as
the number of share elements per server is higher whereas it is just
one element for Shamir secret sharing while sharing a single secret
value. The increase in time at n = 10 and n = 28 for BBSS-PSS is
due to the change in distribution matrix size. Figure 6 shows the
estimated time to refresh shares using D-KODE and Plain-DKG
for an increasing number of keys. We note that any paralleliza-
tion applied to speed-up can be applied to both schemes. Hence,
we provide an estimate of times taken by appropriately scaling
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the timing values obtained for re-sharing of single share value. D-
KODE out-performs Plain-DKG for 94K and higher keys when the
number of servers used is below 27. In the range of 28-50 servers,
D-KODE outperforms Plain-DKG from 1 million keys. D-KODE
protocol also offers the non-trivial advantages of storing shares
of 8192-element key vector versus millions of key shares and the
servers being essentially non-interactive except during the share-
refreshing phase. D-KODE is particularly suitable for large-scale
service-offering scenarios involving millions of keys.
Communication complexity. Account-key generation using D-
KODE involves no server-to-server communication. Each server
forwards the partial evaluation vector,~ 10 Zyelements per server
for 20-server setup amounting to ~ 6.7K B, and the proof of verifi-
ability (see Appendix 7). In Plain-DKG, for each account-key, the
servers run one DKG instance which is a protocol O(n?®) commu-
nication complexity. For share refreshing, D-KODE runs a fixed
number of such DKG instances with O(n®) communication com-
plexity irrespective of the number of user keys. Plain-DKG runs
DKG instances proportional to the number of account-keys. For ex-
ample for a 20 server setup with a billion account-keys, each server
in D-KODE runs ~ 89K DKG instances whereas in Plain-DKG each
server runs a billion such instances.

Threshold BLS signatures. We use BLS signatures [11, 35, 38]
on the curve BLS12-381 for generating the threshold signature of
a message for the servers acting as a cross-chain bridge. When
the client forwards the input string and a transaction, each server
generates the secret key share corresponding to the user and partial
signature on the given transaction. The partial signatures are for-
warded to an aggregator server to threshold-compute the signature.
Using D-KODE, a 20-server setup generates ~ 20 threshold BLS
signatures per second.

10 RELATED WORK

Apart from the DKG based approaches studied in this work, firms
like ZenGo [24] and Unbound [23] have proposed solutions to the
solve key-management problem. However, they store a key-share of
the secret key on the client device, requiring an explicit registration
procedure. This prevents other clients from obtaining public keys
of parties that have not registered yet.

The other approaches which are closer to the goals of the pa-
per are in the domain of identity-based encryption (IBE) with a
distributed private-key generator (PKG). An IBE scheme allows
any party to generate a public key associated with a known iden-
tity value and employs a trusted PKG node to generate the related
private key. As it is possible to distribute the trust of a PKG node
among a set of servers [65], it seems to directly fit both the scenarios
discussed in this work. However, the use of IBE presents a nuanced
cryptographic challenge: the generated IBE private keys are elliptic
curve group elements, while current blockchains employ ECDSA
or Schnorr signatures and require private keys to be scalar from Z.
While theoretically mapping the elliptic curve group elements to Z,
is possible through hashing, performing such a hash computation
in a multi-party setting is expensive in practice[27, 57].

The BBSS scheme has been proposed by Cramer et al. [45] who
provide a construction of the scheme with reconstruction coefli-
cients in Z. D-KODE uses the Benaloh-Leichter construction [32] in
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the realization of the scheme to make the reconstruction coefficients
small. Another closely related work is by Damgard et al. [47] which
proposes linear integer secret sharing (LISS) where an integer value
is shared instead of a finite group element Z,,. The work proposes
to realize the distribution matrix using the mechanism proposed
by Valiant [79] and Hooray [61]. A verifiable version of the LISS
scheme has been proposed [67, 77]. Unlike the LISS scheme, we
require the secret to be in the group Zp, hence we use the BBSS
scheme.

Distributed PRFs (DPRF) were studied in works like [37, 42, 69]
where in [69] the authors use the PRF for a secret key distribution
centre. Boneh et al. [37] study key homomorphic PRF for DPRF
computation, Libert et al. [66] propose a DPRF construction secure
against an adaptive adversary in the standard model, however,
the PRF proposed requires large groups and computing expensive
rounding-down functions in the multi-party setting.

Distributed Key Generation has been well studied both by academia
and industry [54, 64]. Gennaro et al. [54] propose a DKG mechanism
that utilizes Shamir secret sharing and polynomial commitments
for verifiability. DKG for networks involving 15 — 20 servers has
been attempted in the work [29]. Recently work by Tomescu et al.
[78] has shown an efficient and fast DKG for large systems. The
authors use multi-point evaluation of polynomials to perform effi-
cient verifiable secret sharing and DKG. Another recent work on
aggregatable DKG [58] studies DKG with a more efficient transcript
size and verification time. However, the focus of the authors of
[58, 78] is to scale with the number of servers instead of clients
which we deal through the D-KODE protocol. Proactive secret shar-
ing [59] has been employed by Coca [80] which proposes an online
certificate authority with share refreshing. Zhou et al. [81] studied a
proactive secret sharing scheme for asynchronous networks using
replicated secret sharing (RSS). However, since the sharing is RSS
which provides an exponential number of shares with an increas-
ing number of servers, the scheme becomes unviable beyond ~ 12
servers.

11 CONCLUSION

D-KODE is a scalable solution for providing keys to parties who
wish to transact among themselves and do not have access to key
setup, even when one of them is offline. It facilitates scalable air-
drops and cross-chain bridges with long-term availability and secu-
rity. A set of servers with a master secret threshold shared between
them provides partial key shares as verifiable PRF evaluations to
the clients who reconstruct the desired keys. We envisage a sys-
tem where millions of clients/accounts avail the service, and the
solution scales well with the number of keys. We instantiate a dis-
tributed key generation mechanism using black-box secret sharing
and propose a proactive sharing mechanism of BBSS shared keys
to support the system over long periods of time. Our prototype
implementation shows the scalability of our solution as the number
of keys reaches 100 — 1000K depending on the number of servers.
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A MONTONE BOOLEAN FORMULA FOR
MAJORITY

Majority function [79] of n variables with values in {0, 1} is defined
as taking the value 1 if at least n/2 number of variables are 1 and
0 otherwise. Let {x;}_; be the n variables over which Majority
function Maj(+) is being computed, then

1 if Y0 > %5 x € {0,1}

Maj(xy, xp, -+, %n) = { 0 if otherwise

While the majority function of n variables can be realized using
non-monotone circuits of size O(log n), monotonicity places restric-
tions on the circuit that the circuit should only be realized using
AND and OR gates (but not NOT) gates. Valiant [79] first proved
that a polynomial-size monotone circuit is realizable for the major-
ity circuit and provided construction of size O(n*>3). Subsequent
works like one by Hoory [61] discuss majority circuits and realize
threshold structures using majority circuit. Boppanna [39] showed
that O(t*3n) is the optimal upper bound on the majority circuit
over n variables for a threshold t. Hooray [61] further improved

the size of the circuit to O(n“"rz) while keeping the circuit depth
at O(log n). Goldreich [55] provided an exposition of Valiant’s ap-
proach to the majority circuit construction, a probabilistic proof
while using a different probability amplifier (majority-3) than the
one used by Valiant.
We briefly explain the construction provided in [55]:

Let the n variables be x; € {0,1}, i € [n]. Generate m random
variables y;, j € [m] by uniform randomly sampling an index
among [n] and assigning the correspding x; value to each y; se-
quentially. When Pr(z; = 1) = p for each i € [3], the probability
that the majority function is 1 is given by Pr(MA J5(z1, z2,23)) = 1is
3(1-p)p®+p>.Ifp = 0.5+¢,€ < € < 0.5, thenp’ > 0.5+(1.5-2¢2)e.
Thus the bias of € is increased by the factor (1.5 — 263) for each
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level of the tree. When the number of ones in the initial set of
variables x; is % + 1, the bias of the variables y; at the lowest level
of the tree would be % This bias is increased in three steps: First
the bias is brought to a constant (< %) using #; layers of the tree,
then that constant is increased further to be close to 1 using £
layers, finally the probability of majority function being 1 when
there is majority in the initial value is taken arbitrarily close to 1,
in other words, the probability of function returning 0 when there
is majority is made negligibly small < 27" in another #3 layers of
the circuit. When using majority circuit, using p = 0.5 for a given
n, when MA]J3 nodes are used as probability amplifiers, this would
result in a circuit depth of #1 + 2 + £3 ~ 2.71log n. When MAJ5 is
expanded using fan-in 2 gates, we have a circuit implemented using
only gates with fan-in 2. This would result in total circuit size of
o(n>3).

B BOOLEAN FORMULA AND DISTRIBUTION
MATRIX

The circuit is represented as a boolean formula by expanding MAJ5
(21,22, 23) as (z1 Az2) V (z2 Az3) A (21 V z3), resulting in a monotone
boolean formula computing majority/threshold function. This for-
mula is then used to compute the distribution matrix of the linear
integer secret sharing scheme (LISS). The Benolah-Leichter (BL)
[32] construction of converting a monotone boolean formula is
briefly recollected here.

clc| R, 0
Mnp =
0|Cy 0 Ry
cl| R 0
Mog =
cl o R,

Figure 7: Share distribution matrix for OR and AND functions

Consider Boolean functions for = fi V f2 and fanp = fi A f2
where fi, f2 are either Boolean functions or literals. Let M, and M;,
are share distribution matrices of fi and f; respectively. The share
distribution matrices of fog, fanp are computed as Mpog, MAND
as shown in Figure 7, where C, is the first column of matrix M,
and R, is the rest of the matrix except the first column of matrix
Mj. Similarly Cy, Ry, are the first column of matrix M and the rest
of the matrix except the first column of the matrix M}, respectively.
If the function contains only one literal, it is taken just as column
i.e., for any literal fi = x;, the matrix is just [1] with C; = 1 and no
R,.

C SEARCH FOR DISTRIBUTION MATRIX

We realize the threshold circuit using MAJ3 internal nodes and
compute the distribution matrix for different values of n. To gen-
erate the matrix, different random instances of assignment of y;
values of Figure 3 from x; values are considered. A distribution ma-
trix is taken as the matrix M for the access structure if any secret
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Table 4: m values when using majority and threshold circuits
for different n values for p = 0.5,0.66,e = 274

n Majority Circuit | Threshold Circuit
p=05|p=0.66 | p=0.5|p=0.66

5 9 81 9 9

10 81 2187 81 27

20 2187 59049 2187 27

30 19683 531441 19683 81

103 F : : E

[ | —— BBSS-PSS E
1; I | —— Shamir-PSS h
g I il
3 102 £ =
w = -
S [ ]
3 | i
£
= 10! | -

B A o o o ﬁ/‘_/o ]

L | | | | [

10 20 30 40 50
Nodes

Figure 8: Time taken to refresh shares corresponding to one
scalar value using PSS. For BBSS, it corresponds to re-sharing
a total of 216 values for 10-27 nodes and 1296 283-bit values
for 28 — 50 node network. For Shamir secret sharing, each
node re-shares just one 256-bit element per key. The values
show the mean of values across nodes for 10 runs of the
protocol.

shared using the matrix M can be successfully reconstructed by
any qualified subset of nodes.

We consider a (n, LZT”J) access structure and compute the distri-
bution matrix M for different number of nodes. A random instance
of mapping from literals x;, i € [n] to literals y;, j € [m] needs to
be fixed for the computation, to do so one needs to search across
the possible random instances of mapping when each y; is assigned
a uniformly sampled x;. Since for each yj, any of the x; values
can be assigned, the size of the assignment space is ", however
the search space can be drastically reduced when considering the
number of occurrences of each literal among x;s. Each literal x;
corresponds to the node with index i, hence in an ideal scenario, all
the nodes need to occur “uniformly" among the literals y;, that is
to say, the number of occurrences/assignments of each x; to certain
y;j should be almost equal. Thus we look at only those random
instances where each literal x; occurs ~ % times, so we restrict
ourselves to those instance where each literal is assigned literals
between [L%J, M7+ 1], for each of the instance of random map-
ping, the distribution matrix is constructed and checked against all
the possible threshold combinations.

For an access structure (n, t), there are Zz: 1 (Z) qualified sets
that can reconstruct the secret value, however if the reconstruction
is successful for all the ¢ + 1 element subsets, it will be successful
for any of the subsets with more than ¢ + 1 elements. Thus a distri-
bution matrix is declared to be valid if all the ¢ + 1 element subsets
result in correct reconstruction. We find the distribution matrix
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that reconstructs the secret key for all qualified sets up to n = 18,
beyond which we use heuristics since the number of qualified sets
is large. We check reconstruction up to a million qualified sets for
higher n. When a subset 7 of nodes come together to reconstruct a
secret, they first compute the vector A4 with elements in {0, 1, -1}
such that M;./lr]- =(1,0,---,0)7T.

D ZERO-KNOWLEDGE PROOF OF EQUALITY
OF COMMITTED VALUE

The distributed key generation protocol in the Figure 4 involves
a zero-knowledge proof of the equality of values committed by
Pedersen commitment and discrete log commitment. Here we re-
produce the non-interactive zero-knowledge proof of knowledge
NIZKPoK [29]: given a discrete log commitment (DLog) commit-
ment of value s as C; = ¢° and a Pedersen commitment of the
same value s as C; = g°h” for g,h € Gands,r € Zj, the prover
proves the knowledge of (s,r) for the given (Cy,C2) using the
proof we denote by x. It is generated using the following steps:

The prover P does the following: (i) Picks values vy, v2 i Zp
and computes (V1,V2) = (g“,h*) (i) Computes the hash ¢ =
H(g, h,C1,C3, V1, V2) where (C1,C2) = (¢°,g°h") and H : G — Z,,
(iii) Computes values (u1, uz) = (v1—cs, vz —cr) (iv) Sends (¢, uz, uz)
as proof 7 along with (Cy, Cz)

The verifier V with the values (g, h, C1, Cy, ¢, u1, uz) performs
the following check: (i) Computes: (V/,V,) = (¢*1C§, h*2 (%)C)
(ii) Computes ¢’ = H(g, h,C1,C2, V{, V). (iii) Accepts the proof if
¢ = ¢’ else rejects.

Equality of exponent with different bases

To prove equality of exponent in discrete logarithm commitment
with different bases g € G, g € G, given C; = ¢g° and C = g°, the

prover P does the following: (i) Picks values v i Zp and computes
(V1,V2) = (g%, g°) (ii) Computes the hash ¢ = H(g, g, C1, Ca, V1, V2)
(iif) Computes u = v — ¢s (iv) Sends (c, u) as proof along 7gq with
(C1,C2)

The verifier V takes the values (g, g, C1, C2, ¢, u) and computes
the following (i) (V], V) = (g”Cf, g“CE) (i) ¢’ = H(g,8 C1.C2, V], V).
(iil) Accepts the proof if ¢ = ¢’ else rejects.

E SECURITY ANALYSIS
E.1 Correctness and secrecy of BBSS-DKG

THEOREM 2. Given a correct and secure (n,t)-verifiable BBSS
scheme, the Proactive BBSS protocol of Figure 9 satisfies correctness
and secrecy properties under the discrete log assumption.

Proor. Correctness. InPhase 1 of the BBSS-DKG protocol from
Figure 4, all honest parties compute the same qualified set Q as the
complaint and disqualification information is broadcast to all parties.
Any party P; € Q, which shared its value z; successfully and any set
7 of t+1 or more honest parties can reconstruct the secret key value,
owing to the threshold structure of the BBSS performed. Let R =
Ui Ti, i € 7 be the set of all row indices of M held by the parties of
T .Eachz; = Yper Sik- M A7 = {Ak, k € R} such that M;}-Ar]— =¢
and z; = s-,]'—. - Aq, where s is the vector of all share elements held
by all the parties in 7. Every honest party computes its share
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vector v = (v1,02 -+ - - v¢). Share renewal:
For each k’ from above party P; performs the following:

verification fails.

Public parameters pp = {n, t,q, p, M, M, §/(-),/(-)’}. Each party P; begins with an initial verified share sk;( and sk}) consisting of
elements §; ;s ( and SA’i,k/) €240 <k <[y~ Me {0, 1}9%e M’ € {0,1}4%¢". All the honest parties begin with a commitment

(1) Performs a Verifiable-BBSS of each of the share elements among all the parties. Samples random vectors p;, p’; € Zf,' with
elements p;, p’;,1 € [¢’] and computes s; = M’ - p; and s} = M’ - p’; with p;; = §;» and p’;; = & i

(2) Let the share elements of s; and s} be s;; and s;;,1 € [¢’]. Forward the share elements s, s’ to party P,k € Tj = v=())
and commitments c¢;; = gPith® i, ] € [e’] to all the parties.

(3) P; verifies the shares and the corresponding commitments received from party Pj and broadcasts a complaint against P; if the

(4) P; computes the qualified set Q" as in Phase 1 of BBSS-DKG, at the end of which all honest parties compute the same set Q'.
(5) P; computes the new share as follows: Let M’,, be the set of rows held by the parties in the set Q’. Each party computes the

vector Ag: € {0, 1, —1}dQ’ such that M’g, - Aq’ = &. The new share of P; is sk; = EZQ, - Aqr, where §; g/ is the set of all share
elements received by party P; from the parties in the set Q’.

Figure 9: Proactive BBSS Scheme

vector skj = {$¢[Sk = Xjeq Sik- k € Tj} element-wise for each k.
Thus we have, sk = Yjcqzi = 2ieq (ZkeR Sik 'Ak) ZkeR A -

(ZieQ s,-k) = > keR Mk - Sk This holds for any set qualified set 7~
(and hence the corresponding set of rows R), thus giving a unique
sk for all such sets with ¢ + 1 or more parties. Also, each share
element $, k € T; of a party P}, can be computed and verified from
the publicly available values g%, g% = gLicaSik = [[;cq g% =
[Tica ( I7_, Agk’) which is available from Phase 2 of the protocol

of Figure 4. Thus each share (and share element) can be verified for
correctness at the time of reconstruction.

The public key pk = [];cq ¢°"* is computed from values broad-

cast in the protocol, hence the value can be obtained by all the
honest parties. It remains to be shown that pk = gSk such that sk =
2.ieq zi- For the parties against whom a complaint is generated,
the value z; is reconstructed publicly. For the other parties against
whom there was no complaint, all their values A;;, [ € [e] have been
verified using the verification step in Phase 2 of the protocol. Since
all such parties constitute the qualified set Q which is computed
by all the honest parties, the value A;; = gPil = g%i. The value pk
is computed by honest parties as pk = [];cq 9° = gZiEQ Zi = gSk.
Hence all the honest parties compute the same public key pk corre-
sponding to sk. Also since the qualified set of parties Q computed
in the phase 1 of the protocol consists of at least one honest party
who shares the value z; which is chosen randomly, the secret key
sk = Yieq #i is uniformly random.
Secrecy. We provide a simulator S in Figure 10 on the lines of
[29, 54] which simulates the adversary view of the BBSS-DKG pro-
tocol of Figure 4. Without loss of generality we assume that the
set of parties C = {Py,---, Py} are corrupted and set of rest of
the parties H = {Pp41,- -, Pn} are honest. The simulator con-
trols all the honest parties H and performs all computations and
communications with the corrupt parties on behalf of them.

The simulator follows the Phase 1 of the protocol as shown
in Figure 4 and generates share vectors s; j using random p; for
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Let C = {P;,i € {1,- - -, t'}} denote the parties controlled by the adversary
and H = {Pj,j € {t' +1,---,n}} denote the set of honest parties in the
protocol. ¢/ < t. S takes the public key y as input.

(1) The simulator S performs all the steps in the Phase 1 of the BBSS-
DKG on behalf of the parties of set H including generating and
forwarding shares and commitments, verifications of the received
shares and handling all communications with the corrupted parties
such that the following hold:

(a) The values p;, p; for P; € H are chosen at random by S.

(b) The set Q is well defined with H c Q

(c) The adversary’s view consists of (pj,p}) for P; € C, shares
(s S;,j) for P; € Qand Pj € C and commitments Cj, P; €
Q. ke [t]

(d) S has all shares and commitments of the parties in Q. For j €
Q\H, S has enough valid shares to reconstruct the vector p ;, p}..

(2) Perform:

(a) Compute A;;,1 € [e] =gPil fori € Q\n,l € [e]

(b) Set Ay = y[Tie@\n(An) " and s}, = spk = {snk. k € Tn}
where sp,;,1 € [e] is an element of the vector M - p,, item Broad-
cast the values A;; for i € H\n and A}, with [ € [e] along with
the corresponding NIZKPoK 7;

Figure 10: Simulator for BBSS-DKG

P; € H,P; € C. Similarly it generates and forwards the vectors sg,j
using random p;. Sfollows the protocol including the computation
of qualified set Q. However, in the second phase of the protocol,
it computes and broadcasts all the A;; for all the honest parties
except one party Py. For the party P, it sets the secret value A;
such that the public key obtained as [];c g A;. [ € [e] is the desired
value y. The simulator S will be able to reconstruct the vector p;
for any party P which is present in the qualified set Q but not in
the set 7{. Whenever a valid complaint is broadcast from any party
controlled by adversary, S constructs the secret value and opens
it. O
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E.2 Security of Proactive secret sharing

Correctness. Let (n,t), (n’,t") be access structures in the epochs
eand e+ 1. Without loss of generality let sk;, i € [n] be shares of
secret key sk of the n parties in epoch e and sk, i € [n’] be shares
of the n’ parties in epoch e + 1. We need to show that any set of
¢’ + 1 or more parties in epoch e + 1 reconstruct the secret key sk.

For epoch e, the share elements held by parties in qualified set
Q are §p, k € R = {U; T;, Pi € Q}. R is the set of all rows held by
the parties in Q. We know, sk = Y rc® 1Sk

However, each share element §. is verifiable secret shared in
the next epoch e + 1. Thus any qualified set Q" of t’ + 1 parties
can construct the share element $;.. Let R’ be the rows held by the

parties in Q’. Then, sk = Y;cg Ai§i = Yier Ai(ZjeR' Ajsij) =

2jer Aj ( 2ieR /hsu) =DjeRr Ajsj = sk

Secrecy. The secrecy of the secret in each phase follows from the
security properties of Verifiable BBSS scheme. Let B, 8’, | 8|, 8’| <
t be the set of servers corrupted in an epoch e and e + 1. W.lo.g let
BN B’ = ¢, from the correctness principle above, we know that
any ¢’ + 1 or more parties can construct the secret key in the epoch
e+ 1. From the security of the BBSS scheme we know that no set of
t’ or less number of parties has any information about the secret,
hence maintaining the secrecy property.

E.3 Security of PRF evaluations

Here we argue the security of the ParSecretKeyEval and ParPub-
KeyEval by providing a reduction to LWR problem instance.

THEOREM 3. If the LWR (4 mn) assumption holds, the function
ParSecretKeyEval(X, E, pp) is pseudo-random.

ProoF. Let ParSecretKeyEval(X,E, pp) be fg(X), we show that
fg is a family of pseudo-random functions. Let D be an efficient
algorithm that gets the value of fg on £ — 1 uniformly chosen inputs
X1, Xo, - -+, Xp—1 and distinguishes fg (X¢) from random with a non-
negligible advantage €. We construct an algorithm A that breaks
the LWR assumption:

On input (A, | As|p) where A ~ U(ZS“X”), s ~ U(Zg). A parses
the matrix A asrows ay, as, - - - , am and vector LAst asz’1,2'9,- -+,
2’ m. For each z’;,i < m, sample d — 1 uniformly random values
$i2:8i3s" " Sid € Zp. Letz;j =a;-sij fori <m;2<j<dNowA
invokes m instances of algorithm 9; each with the £—1 pairs of val-
ues {(H(X;), fe(X))}’Z{ and a pair {a;, [21, 212,213, . Zial)
for i < m. O; distinguishes [2’,2i2,2i3,- -+, 2z; 4] from a uni-
formly random vector with advantage €. Algorithm A distinguishes
the LWR instance from a uniformly random vector U(Zg) with an
advantage at-least e. O

THEOREM 4. If the LWRg m n assumption holds, CombSecKey is a
(n, t)-threshold evaluation of a pseudo-random function.

ProorF. Let D’ be an efficient algorithm that differentiates an
evaluation of CombSecKey from a uniformly random vector with a
non-negligible advantage € after £ — 1 queries. It takes the vectors
[z1,22, -+, zn], computes A;-z; such that the elements of the vector
Ai € {-1,0, 1} and differentiates the resultant vector sk from the
uniform vector U(ZZ) with an advantage e.
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We first consider the case when all the n servers are honest
and then consider the case when ¢t of them are corrupt. We build
an algorithm A’ with uses D’ to solve the LWR instance. On
input (A, | As],) where A ~ U(Zg‘xn),s ~ U(Zg). A parses the

- ,@m and vector | As], as z;,z’z, e
zp,. For each 2z},i < m, sample d — 1 uniformly random values
$i,2,8i3:" "> Sid € Zp. Letzij=aj-sij fori<m;2<j<d;Zi=
(2}, 212,213, - ,zig,]. Now A’ invokes j instances of algorithm
P’ each with £ — 1 vectors ZAi,j,i < ¢ — 1 and an additional input a
vector Z} = [Z},Zj+1, -+ Zj4n] for 1 < j < [71]. Each instance of

matrix A as rows ai, ay, - -

D’ distinguishes the input vector from uniformly random vector
U(Zp) with an advantage €, thus algorithm A’ distinguishes an
LWR instance from a random vector with an advantage at-least €.

In the case where ¢’ servers are corrupt, the adversary has access
to the secret key shares of the ¢’ servers. In such a case, the algo-
rithm A’ supplies only n—t element vectors to each instance of the
algorithm O’ through the vector [Z}, Zj11,- -+ Zjin—¢]. Each D’
simulates the ¢ servers by sampling t values Zjin—¢t,"+,Zjn €
Zzi. It constructs the vector ZJ’. =[Zj,Zjs1,- -+ , Zjsn], computes
skj = A; - Zj for each element of A; € {-1,0, 1}. The algorithm
P’ differentiates the vector from a uniform random vector with
an advantage €. The algorithm A’ differentiates the LWR instance
from a random vector with an advantage of at-least €. O
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