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ABSTRACT
We focus on two emerging key-management issues in the blockchain

space: (i) allowing a blockchain system to airdrop/send tokens to a

potential client Bob, who is yet to set up the required cryptographic

key, and (ii) creating a cross-chain bridge that allows users to se-

curely send tokens from one blockchain to another. The existing

solutions for the first problem need Bob to either generate and

maintain public-private key pairs locally for the first time in his

life—a usability bottleneck—or place trust in third-party custodial

services—a privacy and censorship nightmare. Whereas, most ex-

isting solutions for the second require the users to trust a custodial

service to realize the bridge with their keys. Towards solving this

issue of trust via decentralization, distributed key generation (DKG)

based solutions are being actively considered; here, a set of servers

generate the discrete log keys in a distributed manner and link them

to the users/accounts. Nevertheless, these solutions introduce com-

putation and communication overhead that is linear in the number

of generated account keys and do not scale well even for a million

keys, especially as the set of DKG servers evolves.

We present a Keys-On-Demand (D-KODE)
1
distributed protocol

suite that lets a set of servers compute discrete-log private/public

keys on the fly through distributed pseudo-random function (PRF)

evaluations on the queried public string/tag. Using the key homo-

morphic properties of the employed PRF function and black-box

secret-sharing based DKG, D-KODE also introduces a proactive

security mechanism against a mobile adversary towards maintain-

ing the system’s longitudinal security. D-KODE scales well for a

high number of account-keys as its communication and computa-

tion complexity is independent of the number of account-keys. Our

experimental analysis demonstrates that, for a 20-node network

with 2/3 honest majority, D-KODE starts to outperform the state

of the art as the number of keys reaches 94K. D-KODE is prac-

tical as it takes less than 100msec to generate a secret key for a

single-threaded server in a 20-node setup and can generate ∼ 20

threshold BLS signatures per second. As the number of blockchain
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D in D-KODE is to indicate ‘discrete-logarithm’ keys employed by blockchains for

ECDSA, EdDSA, and BLS signatures among other things.
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accounts/wallets sprints to a billion, D-KODE addresses the crucial

scalability problem.
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1 INTRODUCTION
As blockchain systems proliferate, we increasingly tokenize finan-

cial and supply-chain assets using cryptographic (private/signing)

keys. The total number of keys generated in cryptocurrency sys-

tems is increasing rapidly. According to a recent report [13], in the

year 2021, roughly 500, 000 Bitcoin keys have been generated per

day, amounting to around 88 million keys in the first half of the

year 2021 for Bitcoin alone. This extensive use of cryptographic

keys brings interesting security and scalability challenges that need

immediate attention. For example, if a user loses their private key,

they lose the associated assets—there is no simple recovery mecha-

nism as with the typical password-based authentication. Either the

keys are lost or the users need to go through a complex recovery

procedure requiring long-term storage of passphrases etc. Given

the general lack of familiarity with the technical aspects of crypto-

graphic key management and maintenance, most first-time users

choose custodial wallets [3, 8, 15], where a third party controls

their keys. However, these third parties become single points of

failure for large-scale thefts [12, 25, 26], financial surveillance, and

censorship. In general, this key management problem, combined

with a lack of simpler tools for secure key setup, is a hurdle in

blockchain adoption. In this work, we focus on the following two

particularly challenging scenarios.

1. Airdrops. In the airdrop scenario [1, 7, 9], a new firm operating

cryptocurrencies wishes to send some funds to Bob, who does not

have a public key address on their system yet. This can be because

Bob either has never generated a key pair and is not available to

engage immediately, or Bob is offline with his already generated

public key not being available. The firm should be able to compute

the public key corresponding to Bob’s public string (identity) such
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that Bob can later use the same string to generate the related private

key and claim funds sent to the public key at any time in the future.

2. Cross-chain Bridges. Allowing communication between two

or more blockchains (or blockchain interoperability) brings fur-

ther challenges. Consider the scenario in which a user deposits

a payment on Blockchain-1 and wishes to retrieve an equivalent

value on Blockchain-2. Today, this is typically achieved through

a combination of smart contracts and custodial services called

“bridges”. The user forwards a certain transaction to the smart

contract on Blockchain-1; the servers acting as cross-chain bridge

read the user’s Blockchain-1 transaction, (threshold-)sign, and post

the equivalent transaction on Blockchain-2. Firms offering such

services include Binance [3], OrbitBridge [18], LiFinance [16], Any

Swap [2], etc. To perform the signing, the servers store the account-

keys or shares. If the servers have access to the account-keys, they

need to be trusted and are ideal targets for the adversary. On the

other hand, supporting the process of threshold signing transac-

tions at scale involves maintaining a large number of account-keys

and becomes especially challenging against a mobile adversary as

the employed servers change.

Existing distributed key generation (DKG) approaches. Cur-
rent solutions [19, 21] off-load the account-key generation and

storage to a set of 𝑛 servers while preserving their secrecy against

any 𝑡 compromised servers. The servers generate key shares in a dis-

tributed form by running a distributed key generation (DKG) [54]

instance for each user identity and providing the secret key or public

key shares for the identity as required (throughout the paper, we

call this approach the Plain-DKG approach). Both scenarios require

securely generating and efficiently maintaining a huge number

of account-keys. The Plain-DKG approach does not scale well as

the servers have to perform several DKG instances to generate

the key shares for all the account-keys resulting in high computa-

tional and communication overhead. More importantly, the over-

head further amplifies if the system, over longer terms, attempts to

provide proactive security [59] against mobile adversary [73]: All

the millions of user-key shares need to be refreshed periodically,

even giving rise to issues of availability while the computation and

communication-intensive refreshing process are in progress.

Start-ups such as Torus [21], Keep Network [14], and Chain-

link [5] are developing similar threshold cryptographic solutions

towards maintaining secrecy and availability of the account-keys;

the motivating factor for this work is that their current approaches

do not scale well with the number of account-keys and bridges.

This work aims to provide a scalable key management system to

generate keys on-the-fly for the rapid proliferation of blockchains

to millions of users and bridges amounting to millions or even

billions of keys.

Employing distributed PRF. In this work, we generate keys on-

the-fly as pseudo-random function (PRF) [30, 56, 70] evaluations. A

PRF is a deterministic function of amaster (private) key and an input

tag indistinguishable from a truly random function of the input.

We plan to use the PRF output as a private/signing key. As a single

node holding a master key 𝐾 introduces a key escrow and a single-

point-of-failure for PRFs, we distribute the trust using a distributed

PRF (DPRF) such that a set of servers holds the master key 𝐾 in

a secret shared fashion and generates shares of the user’s private

keys as partial PRF evaluations. Indeed, generating private keys

using DPRFs [37, 42, 69] is considered in the literature; however,

none of the existing solutions is suitable for the scenario involving

any Alice obtaining public keys of an offline Bob.

As an illustrative example, consider private key generation for an

identity (tag) ID𝐴 using the well-known PRF by Naor et al. [42, 69].
This involves computing 𝑠𝑘𝐴 = 𝐻2

(
𝐹 (𝐾, ID𝐴)

)
= 𝐻2

(
𝐻1 (ID𝐴)𝐾

)
,

where hash functions𝐻1 (·) and𝐻2 (·) map to a multiplicative group

(of elliptic curve points) G and a scalar additive group Z𝑝 respec-

tively.When the key𝐾 is shared amongmultiple servers, computing

her secret key 𝑠𝑘𝐴 from partial evaluations is straightforward for

Alice: she first computes 𝐻1 (ID𝐴)𝐾 using Lagrange interpolations

and then applies𝐻2 to the output locally. The airdrop scenario, how-

ever, asks to securely provide Alice the public key 𝑝𝑘𝐵 of an offline

party Bob with identity ID𝐵 . To ensure that Alice cannot determine

𝑠𝑘𝐵 , computation of 𝑝𝑘𝐵 = 𝑔𝐻2 (𝐹 (𝐾,ID𝐵 ) )
involves computing hash

function 𝐻2 (·) through multi-party computation (MPC)—a highly

expensive process in the threshold setting [27, 57].

To generate the public keys efficiently, we require a PRF whose

output is a scalar value in Z𝑝 and does not involve 𝐻2 (·) hash
computations in the multi-party setting. We observe that most

existing distributed PRFs [49, 71, 72], key-distribution schemes,

[4, 52, 63], identity-based signature (IBS) schemes [43, 60] and

easy-to-distribute key-homomorphic PRF constructions [48] do

not satisfy this requirement. Essentially, we need an efficient key-
homomorphic distributed PRF with output in Z𝑝 , without requiring a
hash computation in a multi-party computation setting.
Our Approach. We observe that a lattice-based almost key ho-

momorphic PRF [37] is the most suitable for generating keys in a

distributed fashion. For string/tag 𝑋 and a scalar key vector k, this
PRF [37] of the form 𝐹 (𝑋,k) =

⌊
𝐻 (𝑋 ) · k

⌋
𝑝
∈ Z𝑝 ,k ∈ Z𝑢𝑞 , 𝐻 (·) ∈

Z𝑢𝑞 , 𝑝 < 𝑞, (·) is the inner product operation on two vectors and

⌊𝑎⌋𝑝 with 𝑎 ∈ Z𝑞 is defined as

⌊
𝑎 · 𝑝𝑞

⌋
∈ Z𝑝 . 𝐹 (𝑋,k) is almost

key-homomorphic, with an induced error {0, 1} in the evaluation

for every additive term. The (master) key vector k is threshold-

shared among the servers. However, unlike standard threshold

designs [21, 24], we cannot employ Shamir secret sharing (SSS) [75]

for sharing k in this almost key homomorphic PRF. This is be-

cause, while reconstructing the PRF output from the partial evalu-

ations, the large reconstruction (Lagrange) coefficients
2
blow up

the induced error (and error combinations) from the additive terms

making it impossible to reconstruct any consistent PRF output; a

different set of servers will compute different output. To overcome

this blowup of error, another common secret sharing mechanism

replicated secret sharing (RSS) [44, 62] may be employed. The RSS

shares need to be simply added to compute the output, which en-

sures that the error remains bounded within the range [−𝑛, 𝑛] for
𝑛 servers. However, the number of RSS shares grows exponen-

tially as

(𝑛−1
𝑡

)
for an (𝑛, 𝑡) threshold structure among servers with

𝑡 = 𝑂 (𝑛); this has a high share-refreshing computation overhead

and RSS-based distributed PRF can only be applied to settings with

very few servers (typically < 10, see Section 9). However, solving

our distributed PRF problem requires going beyond the commonly

employed SSS and RSS schemes.

2
The reconstruction of the output is an inner product between the partial evaluations

vector and the reconstruction coefficient vector.
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In this work, we demonstrate that the black-box secret sharing

(BBSS) approach [45] can be made practical towards catering to a

higher number of servers and employ it for sharing the master key

among the servers; in fact, this is the first effort that realizes its util-

ity in practice. We propose the D-KODE protocol, which generates

discrete-log private and public keys using almost key homomorphic

PRF evaluations, where the master key is shared among servers

through BBSS. Our BBSS instantiation ensures that the reconstruc-

tion coefficients are in the set {−1, 0, 1}. In the scenario where Alice

to pays to a new Bob, the small reconstruction coefficients help Bob

efficiently compute the private key of the public key to which Alice

paid.

For share refreshing, in D-KODE, we refresh the shares of the

master key instead of (all the millions of) account-keys. This makes

share refreshing using proactive secret sharing independent of the
number of account-keys resulting in only constant overhead. Fur-

ther, while computing the account-keys from PRF evaluations, we

use a verifiability mechanism for the PRF to allow the clients to

verify the evaluations. Our prototype implementation provides D-

KODE protocol with BBSS-DKG mechanism for network size up

to 50 servers. We observe that D-KODE starts to outperform the

state of the art at 94K keys for a 20-server system. Using D-KODE,

a server supports generating up to ten secp256k1 keys per second

per thread. D-KODE also supports generating ∼ 20 threshold BLS

signatures [35, 38] per second.

Other Applications. Our solution can be used in any scenario

where either Alice or Bob or both do not have a cryptographic

setup and wish to transact cryptocurrencies. The realization of

BBSS-based distributed PRF has further practical applications in-

cluding efficiently generating a large number of threshold random

values for threshold signatures schemes like threshold-ECDSA [50].

Our practical BBSS can also be used to generate threshold shares

for threshold-FHE to realize the Thresholdizer protocol [36] in a

practical setting.

In summary,

• We propose a solution D-KODE that efficiently generates and

maintains a large number of account-keys. It also makes airdrops

of crypto funds possible for users who are not yet in the system.

D-KODE helps generate keys where two parties like to transact

when either or both parties do not have mechanisms for locally

generating keys; even when one of them is offline and the other

party only knows his verifiable identity. D-KODE solution also

achieves cross-chain bridges where a client can request a group of

servers to sign transactions on their behalf.

• As a key step in D-KODE, we propose efficient approaches to

realize black box secret sharing (BBSS) for practical setting, which

can be of independent interest to threshold cryptography [17] com-

munity.

• We instantiate the first DKG mechanism using BBSS scheme

and provide a dynamic committee proactive secret sharing scheme.

Our scheme offers constant computational overhead and hence

scales well with a large number of account-keys in the system.

2 SYSTEM SETUP AND SOLUTION OVERVIEW
2.1 System Setup
Consider a system of 𝑛 servers {𝑃1, 𝑃2, · · · , 𝑃𝑛} that share a master

secret vector k3 through a (𝑛, 𝑡)-threshold scheme. The servers

interact with clients who join and leave the network anytime. All

the servers have access to a broadcast channel and the network

is bounded-synchronous [51]. We consider a 𝑡−bounded static ad-

versary that corrupts up-to 𝑡 servers at the start of the protocol.

Corrupted servers remain so throughout the protocol run. Each

pair of servers is connected through a secure channel that provides

secrecy and authenticity; this is typically achieved through TLS

channels [22] which mitigate any man-in-the-middle attacks. While

we consider a static adversary model for the distributed key gen-

eration mechanism, we extend it to a mobile adversary model for

the proactive secret sharing mechanism discussed in Section 8. The

secrecy/confidentiality of the secret key in D-KODE is based on

the discrete logarithm (DLog) and Learning-with-rounding (LWR)

assumptions.

Definition 1. The Discrete Logarithm (DLog) assumption [68]:

For a generator 𝑔 ∈ G and 𝑎
$←− Z𝑞 , given the value 𝑔𝑎 , the probability

of a ppt algorithmADLog to output the value 𝑎, Pr[ADLog (𝑔,𝑔𝑎) = 𝑎]
is negligible.

Definition 2. The Learning-with-rounding (LWR) [66] problem
consists of distinguishing the distribution (A, ⌊As⌋𝑝 ) where A ∼
𝑈 (Zm×n𝑞 ), s ∼ 𝑈 (Zn𝑞) and the uniform distribution 𝑈 (Zm×n𝑞 × Zm𝑝 );
𝑞 ≥ 2. We say that the LWR(𝑞,m,n) is hard if for all ppt algorithmA,
the advantage𝑨𝒅𝒗LWR

𝑞,m,n (A) = |Pr[A(A, ⌊As⌋𝑝 ) = 1]−Pr[A(A,u) =
1] | is negligible, with the probabilities taken over A ∼ 𝑈 (Zm×n𝑞 ), s ∼
𝑈 (Zn𝑞), and u ∼ 𝑈 (Zm𝑝 ).

2.2 Design Overview
In the D-KODE protocol, a master key k is (𝑛, 𝑡)-threshold secret-

shared among 𝑛 servers and the client private key is computed

as the almost key homomorphic PRF [37] evaluation 𝐹 (𝑋,k) =⌊
𝐻 (𝑋 ) · k

⌋
𝑝
∈ Z𝑝 , for 𝑋 ∈ X where X is the client-input space,

k ∈ Z𝑢𝑞 the server key and 𝐻 : {0, 1}∗ → Z𝑢𝑞 a cryptographic hash

function. (·) indicates the vector dot product computation. Here,

for 𝑥 ∈ Z𝑞, ⌊𝑥⌋𝑝 is defined as ⌊𝑥 · 𝑝𝑞 ⌋ ∈ Z𝑝 . The group orders

𝑝, 𝑞 and the vector length 𝑢 are chosen to realize 128 bit security

(see Section 9 for details). The master key vector k is BBSS-shared

among the servers with each server 𝑃𝑖 obtaining the share matrix

K𝑖 . The shares K𝑖 are generated in a distributed manner using

distributed key generation (DKG) involving a verifiable black box

secret sharing (BBSS) scheme (elaborated in Section 3.2). The BBSS

scheme involves a distribution matrix that is constructed such that

the reconstruction coefficients for the shares are in the set {−1, 0, 1}.
It is done by realizing the (𝑛, 𝑡)-threshold access structure as a

threshold circuit and expressing it as a monotone boolean function.

This function is then converted to a distribution matrix using [32]

construction (recalled in Appendix B).

3
We denote all vectors in bold font small and matrices in bold font capital letters.
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Alice

(a) Scenario 1a: Alice uses her public string ID𝐴 , obtains evaluations
and reconstructs private key 𝑠𝑘𝐴 after authentication

Alice

 Transaction T, 

Signature
request

(b) Scenario 1b: Alice uses her public string ID𝐴 , sends a transaction
𝑇 and requests the servers for a (threshold) signature on 𝑇 after
authentication

Figure 1: Private key and signature generation using servers
with shares k𝑖 of a master key K shared with a linear thresh-
old scheme.

Let each server 𝑃𝑖 be associated with a set 𝑇𝑖 such that 𝑃𝑖 re-

ceives the matrix K𝑖 = {k𝑗 , 𝑗 ∈ 𝑇𝑖 },k𝑗 ∈ Z𝑢𝑞 . The partial eval-

uations of server 𝑃𝑖 upon client input 𝑋 is a vector of evalua-

tions {𝐹 (𝑋,k𝑗 ), 𝑗 ∈ 𝑇𝑖 }. To compute the required keys, the client

forwards the public string 𝑋 , obtains partial evaluations, and re-

constructs the corresponding keys. Let 𝑦 = 𝐹 (𝑋,k) and 𝑦ℓ =

𝐹 (𝑋,kℓ ), ℓ ∈ ∪𝑖𝑇𝑖 be the set of all partial evaluations received

by the client from the servers. To generate the private key the

client obtains a linear combination 𝑦 =
∑
𝑖∈𝑆 𝜆𝑖 · 𝑦𝑖 where each

𝜆𝑖 ∈ {0, 1,−1}. 𝑦 differs from 𝑦 by a small error 𝜃 <
∑
𝑖 |𝑇𝑖 | depend-

ing on the evaluations used for the computation.

(Scenario 1a) Private key generation. Alice securely authenti-

cates herself to the servers (using email-login, OAuth tokens etc.)

and forwards her public string ID𝐴 (for example, her email ID),

obtains the partial evaluations 𝑦ℓ = 𝐹 (ID𝐴,kℓ ) from servers and

computes the private key as 𝑠𝑘𝐴 =
∑
𝑖 𝜆𝑖 ·𝑦𝑖 as depicted in Figure 1a.

The values 𝜆𝑖 are determined by the qualified set of servers whose

evaluations are used in the reconstruction (refer Section 3.2). From

the private key 𝑠𝑘𝐴 , she can compute the public key as 𝑝𝑘𝐴 = 𝑔𝑠𝑘𝐴 .

Alice

Figure 2: Scenario 2: Alice uses Bob’s public string ID𝐵 to
obtain his public key shares and compute the public key 𝑝𝑘𝐵

With the key pair (𝑠𝑘𝐴, 𝑝𝑘𝐴), she can perform any required trans-

action.

(Scenario 1b) Partial signature generation. Instead of request-

ing the secret key shares to reconstruct the secret key, Alice can

request the servers to generate shares and generate a signature on

a transaction on her behalf. Upon request, the servers can generate

secret key shares and generate partial signatures using the secret

key shares (see Figure 1b). These partial signatures from different

servers are threshold-combined [38] to generate valid signature

and authenticate any transaction. Alice forwards an identity string

and a formed transaction to the servers, similar to the previous

scenario. The servers generate the partial signature using the iden-

tity and sign the transaction. This scenario occurs in cross-chain

bridges where servers generate signature on behalf of the user. The

servers also publish the public key corresponding to the secret key

generated.

When a party wishes to verify the transaction by generating

Alice’s public key on the fly, the generated public key will have a

slight ‘error’ of 2𝜃 . Hence the verifying party generates a list of 4𝜃

public keys and confirms the transaction if at least one matches the

published public key and verifies the signature.

(Scenario 2) Public key of an offline Bob. When Alice tries to

pay Bob, she forwards Bob’s public string ID𝐵 to the servers and

obtains the evaluations 𝑧ℓ = 𝑔
𝑦′ℓ where 𝑦′

ℓ
= 𝐹 (ID𝐵,kℓ ) as depicted

in Figure 2. She computes a public key of Bob as 𝑝𝑘𝐵 =
∏
𝑖 (𝑧𝑖 )𝜆𝑖

and proceeds to pay Bob.

When Bob tries to compute his private key later corresponding

to this public key 𝑝𝑘𝐵 , he authenticates to the servers and obtains

a private key 𝑠𝑘′
𝐵
which differs from the private key 𝑠𝑘𝐵 (corre-

sponding to the public key 𝑝𝑘𝐵 ), by a maximum of 2𝜃 . He simply

computes all the private keys in the range [𝑠𝑘′
𝐵
− 2𝜃, 𝑠𝑘′

𝐵
+ 2𝜃 ],

obtains the corresponding public keys [𝑔𝑠𝑘 ′𝐵−2𝜃 , 𝑔𝑠𝑘 ′𝐵+2𝜃 ]. For ex-
ample, for twenty servers, 𝜃 is distributed among [−216, 216] and
highly concentrated around 0; each of the key can be generated

by one multiplication from 𝑝𝑘′
𝐵
. 𝑝𝑘B will be in that set of 4𝜃 keys,

and since he has private keys corresponding to all of them, he can

utilize the funds transferred by Alice to 𝑝𝑘B. Note that only Bob

owns these secret keys. Computing these keys is a highly efficient
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process as it involves either 4𝜃 additions or multiplications. It takes

the client < 12 msec on a 4-core machine even for a 50 server setup.

Thus Alice can airdrop cryptocurrency to Bob by computing 𝑝𝑘𝐵 .

Bob can later compute the corresponding key 𝑠𝑘𝐵 and retrieve the

funds whenever necessary. This solution does not involve any in-

teraction between the servers for the computation of account-keys,

since the server just evaluate 𝑦′
𝑖
= 𝐹 (ID𝐵,k𝑖 ) and forward 𝑔𝑦

′
𝑖 to

the client non-interactively. In summary, the proposed solution for

the two scenarios consists of the following steps:

• The servers 𝑃𝑖 , 𝑖 ∈ [𝑛] participate in a (BBSS-)DKG and obtain

shares K𝑖 = {k𝑗 , 𝑗 ∈ 𝑇𝑖 } of a master key k.
• For Scenario 1: The servers generate partial evaluations 𝑧ℓ =

𝐹 (𝑋,kℓ ) using the server key shares K𝑖 and public input string

input 𝑋 from the client. The client combines these 𝑧ℓ to compute

the private key as 𝑧 = 𝐹 (𝑋,k).
• For Scenario 2: The servers evaluate 𝑧′

𝑖
= 𝐹 (𝑋 ′,k𝑖 ) and for-

ward 𝑔𝑧
′
𝑖 for the evaluation of public key 𝑦 = 𝑔𝑧

′
for the input 𝑋 ′

from any client.

Since we envisage a full-fledged deployment where the servers

are used to evaluate keys for a large number of clients over a long

period, we propose a proactive secret sharing mechanism for BBSS.

The servers store only one set of key shares corresponding to the

master key k and perform share-refreshing periodically using the

proposed Proactive BBSS scheme (refer Section 8). For share re-

freshing, the servers re-share each of their share elements to the

set of servers in the next period. The servers then compute the new

shares from the shares of the share elements.

We implement the full protocol and extract many interesting

aspects of BBSS scheme in the practical regime. While the exist-

ing works discussing BBSS and related Linear Integer secret shar-

ing [47, 66] have shown that the circuit size for the construction of

distribution matrix varies from 𝑂 (𝑛5.3) −𝑂 (𝑛2.414), we show that

for certain threshold access structures, efficient construction can

be achieved bringing the sharing scheme into a practical regime.

3 PRELIMINARIES: SECRET SHARING
SCHEMES

In secret sharing [31, 33, 34, 75], a designated dealer shares a secret
among a set of parties such that a certain subset of parties can

interact to reconstruct the secret. All the subsets designated to

reconstruct the secret are qualified sets, and the set of all qualified

sets is called an access structure. The threshold-𝑡 access structure

𝑇(𝑛,𝑡 ) is the collection of subsets of parties of cardinality greater

than 𝑡 . Any subset of parties outside the access structure has no

information about the secret. When the total number of parties is

𝑛, we denote such a scheme as (𝑛, 𝑡)-secret sharing, where at least
𝑡 + 1 parties are needed for reconstruction.

3.1 Replicated Secret Sharing
Replicated secret sharing [44] for a monotone access structure Γ
and its maximal unqualified sets T , the shares of secret 𝑠 ∈ Z𝑞
are generated as follows: the dealer first generates |T | number

of additive shares of 𝑠 , each labeled by a unique set in T . Let the
shares be {𝑟𝑇 ∈ Z𝑞,𝑇 ∈ T }, each player 𝑃𝑖 is given the vector of

shares 𝑟𝑇 such that 𝑖 ∉ 𝑇 . Parties of every maximal unqualified set

𝑇 ∈ T jointly do not have access to exactly one share element 𝑟𝑇 .

Parties of every qualified set jointly own all the share elements and

thus additively reconstruct the secret 𝑠 . For a (𝑛, 𝑡) threshold access
structure, each party is given

(𝑛
𝑡

)
share elements.

3.2 Black Box Secret Sharing
A black-box secret sharing (BBSS) scheme [45, 46] is a linear secret

sharing scheme over a finite Abelian group; it can be instantiated

with just black-box access to group operations and random group

elements i.e., the order of the group need not be known beforehand

for secret sharing (hence ‘blackbox’). The secret generation and

reconstruction mechanisms are independent of the group used for

the secret sharing. We use a construction [32, 47] of the black-box

secret sharing scheme such that the reconstruction coefficients lie

in the set {−1, 0, 1}. In black-box secret sharing [45, 46], the dealer

shares an element of an Abelian group (e.g., Z𝑞 with publicly known
𝑞) where the share elements are computed as a linear combination

of the secret value and random elements chosen by the dealer. They

are computed by multiplication of a distribution matrix M and the

random element vector 𝝆. Any set of parties from the qualified set

can reconstruct the secret as a linear combination of their shares.

Share generation. Consider a dealer sharing a secret 𝑠 ∈ Z𝑞 with a
set of parties over the (monotone) access structure denoted by Γ. To
generate shares for the parties in BBSS, the dealer uses a distribution

matrix M ∈ Z𝑑×𝑒 and a distribution vector 𝝆 = (𝑠, 𝜌2, 𝜌3, · · · , 𝜌𝑒 )𝑇
with secret 𝑠 , {𝜌𝑖 }𝑒𝑖=2 uniform randomly chosen from Z𝑞 . The vector

of share elements s = (𝑠1, 𝑠2, · · · , 𝑠𝑑 )𝑇 is computed as s = M · 𝝆.
Each party 𝑃𝑖 , 𝑖 ∈ {1, 2, · · · , 𝑛} is assigned a set of share elements

using a surjective function𝜓 : {1, · · · , 𝑑} → {1, · · · , 𝑛}, 𝑑 > 𝑛. The

𝑖th share element 𝑠𝑖 is assigned to the party 𝜓 (𝑖) who is said to

own the 𝑖th row of the matrixM. Here row 𝑖 is said to be labelled

by𝜓 (·) as the party𝜓 (𝑖). For any subset of shareholders 𝐴,M𝐴 ∈
Z𝑑𝐴×𝑒 , s𝐴 ∈ Z𝑑𝐴 denote the set of rows of M and elements of s
jointly owned by the parties in 𝐴. We let 𝑇𝑗 = 𝜓

−1 ( 𝑗) be the set
of all row indices held by party 𝑃 𝑗 . Any set 𝐴 ∈ Γ is a qualified

set and sets 𝐴 ∉ Γ are forbidden sets. The 𝑗 th shareholder holds

𝑑 𝑗 = |𝜓−1 ( 𝑗) | number of share-units.

The tupleM = (M,𝜓, 𝜖) is called an Integer span program (ISP)

when M ∈ Z𝑑×𝑒 and the rows of M are labelled by the surjective

function𝜓 . 𝜺 = {1, 0, · · · , 0} ∈ Z𝑒 is called the target vector. When

M is an ISP for Γ, the conditions specified by Definition 3 hold

and M can be used as a distribution matrix to realize the access

structure. This defines a reconstruction vector, which is used to

reconstruct the secret whenM is used as a distribution matrix to

share the secret value.

Definition 3. An integer span program (ISP) [45, 47]M = (𝑀,𝜓, 𝜖)
is an ISP of the access structure Γ if for all𝐴 ∈ {1, 2, · · · , 𝑛} the follow-
ing holds: If𝐴 ∈ Γ, then there exists a reconstruction vector 𝝀𝐴 ∈ Z𝑑𝐴
such that M⊤

𝐴
𝝀𝐴 = 𝜺, where 𝜺 = {1, 0, · · · , 0}. If 𝐴 ∉ Γ, there exists a

sweeping vector k = (𝑘1, 𝑘2, · · · , 𝑘𝑒 ) ∈ Z𝑒 such thatM𝐴k = 0 ∈ Z𝑑
with k⊤ · 𝜺 = 1.

The first condition states that for every qualified set, there exists

a reconstruction vector, thereby making the reconstruction of the

shared secret possible.

Reconstruction. For a qualified set 𝐴, the secret value 𝑠 is recon-

structed as 𝑠 = s⊤
𝐴
· 𝝀𝐴 . Here s𝐴 is the vector of all share elements
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(a subset of vector s) held by the parties in the set 𝐴 and 𝝀𝐴 is the

corresponding reconstruction vector.

To realize a threshold access structure, one needs to compute the

corresponding distribution matrixM. For that, we use the Benaloh-

Leichter (BL) secret sharing construction [32, 47] where the ac-

cess structure is expressed as monotone boolean formulae. The

BBSS scheme using the BL construction ensures that elements of

the reconstruction vector 𝝀 are small and in {−1, 0, 1}. We recall

the BL construction of generating a distribution matrix from a

monotone boolean formula representation of threshold structure

in Appendix B of the full version [10] of the document owing to

space constraints. The more recent construction by Cramer et al.
[46] involves a smaller distribution matrix with non-binary entries

which result in large reconstruction coefficients, hence we use the

BL construction.

Verifiable BBSS. Verifiability of a secret sharing scheme [53, 74,

76] is the property that lets the parties receiving the shares from a

dealer verify the shares’ validity. Here we discuss the verifiability

of the BBSS scheme [77].

After generating the share elements by performing s = M · 𝝆,
for a public distribution matrix M = 𝑚𝑖, 𝑗 , 𝑖 ∈ [𝑑], 𝑗 ∈ [𝑒] and a

random vector 𝝆 = {𝜌1, 𝜌2, · · · , 𝜌𝑒 } ∈ Z𝑒𝑞 , the dealer commits to

each element of the vector 𝝆 and forwards the commitments to all

the parties receiving the shares. The dealer generates a commitment

vector c consisting of commitments 𝑐𝑙 , 𝑙 ∈ [𝑒] to each element of the

vector 𝝆. The element 𝜌𝑙 is committed using Pedersen commitment

as 𝑐𝑙 = 𝑔
𝜌𝑙ℎ𝜌

′
𝑙 using random 𝜌′

𝑙
∈ Z𝑞 . The dealer also computes the

vector s′ = M ·𝝆′ where 𝝆′ = (𝜌′
1
, 𝜌′

2
, · · · , 𝜌′𝑒 ) and s′ = {𝑠′𝑖 }, 𝑖 ∈ [𝑑].

The dealer forwards the share vectors s𝑖 = {𝑠 𝑗 }, s′𝑖 = {𝑠
′
𝑗
}, 𝑗 ∈ 𝑇𝑖

to party 𝑃𝑖 where 𝑇𝑖 is the set of all row indices owned by party

𝑃𝑖 . The dealer also broadcasts the commitment vector c to all the

parties.

Verification. Each party 𝑃𝑖 receives the share vector s𝑖 and the

broadcast commitment vector c. The parties verify each of the

received share elements as follows: let the 𝑗 th row of the matrix

M be (𝑚 𝑗1,𝑚 𝑗2, · · · ,𝑚 𝑗𝑒 ), the party with share element 𝑠 𝑗 (and

𝑠′
𝑗
) verifies the share using the following verification: 𝑔𝑠 𝑗ℎ

𝑠′𝑗 =∏𝑒
𝑙=1

𝑐
𝑚 𝑗𝑙

𝑙
. We have,

𝑒∏
𝑙=1

𝑐
𝑚 𝑗,𝑙

𝑙
=

𝑒∏
𝑙=1

(
𝑔𝜌𝑙ℎ𝜌

′
𝑙

)𝑚 𝑗,𝑙

=

𝑒∏
𝑙=1

(
𝑔𝜌𝑙𝑚 𝑗,𝑙

) (
ℎ𝜌
′
𝑙
𝑚 𝑗,𝑙

)
= 𝑔

∑𝑒
𝑙=1

𝜌𝑙𝑚 𝑗,𝑙ℎ
∑𝑒

𝑙=1
𝜌 ′
𝑙
𝑚 𝑗,𝑙 = 𝑔𝑠 𝑗ℎ

𝑠′𝑗

If the verification does not hold, the party with the share element

𝑠𝑖 broadcasts a complaint along with the share elements (𝑠𝑖 , 𝑠′𝑖 ). If
more than 𝑡 + 1 complaints are broadcast in the system, the dealer

is deemed malicious; else the dealer responds to the complaint by

broadcasting the share forwarded to the party.

4 DISTRIBUTION MATRIX FROM
THRESHOLD FUNCTION

To generate the distribution matrixM for a (𝑛, 𝑡) threshold BBSS

scheme used in the DKG mechanism, we realize the (𝑛, 𝑡) threshold
access structure as a threshold circuit of sufficient depth. We con-

vert the monotone boolean function representation of the circuit

to the distribution matrix using the Benaloh-Leichter (BL) [32, 47]

Table 1:𝑚 values obtained through threshold circuit for dif-
ferent 𝑛, p values and error margins

𝑛
e = 2

−𝑛 e = 2
− 𝑛

4

p = 0.5 p = 0.66 p = 0.5 p = 0.66

5 81 9 9 9

10 2187 81 81 27

20 59049 729 2187 27

30 177147 2187 19683 81

Table 2: Distribution matrix M Dimensions for different𝑚

𝑚 Rows Columns

3 6 4

9 36 22

27 216 130

81 1296 778

243 7776 4666

construction (recalled in Appendix B). Much of the previous works

[39, 47, 79] suggest realizing the threshold access structure us-

ing a majority circuit [79] of size 𝑂 (𝑛5.3) [79] to 𝑂 (𝑛1+
√
2) [61] .

Valiant[79] suggested realizing threshold function using majority

circuit of 2𝑛 variables
4
which was adapted by other works like

Damgard et al. [47] following similar approach. Also, the proposed

probabilistic constructions [61, 79] compute the depth of the cir-

cuits such that the probability with which the circuit outputs 1, on

a majority in the 𝑛 input variables, is 1 − e where e = 2
−𝑛

. This

work computes the required threshold circuit directly instead of

realizing the threshold circuit using the majority circuit. Also, we

report that choosing e = 2
−𝑛

is indeed an overkill increasing the

depth of the circuit. Larger e > 2
−𝑛

is sufficient to realize the re-

quired access structure in the practical system profiles considered.

Essentially, we relax the error to achieve efficient implementation

while still reconstructing the secret for all the qualified sets of the

access structure.

We adapt the construction provided by Goldreich [55] for the

majority circuit construction that uses a MAJ3 probability amplifier

node
5
(Refer Appendix A for a brief description of Goldreich’s [55]

construction and analysis of the majority circuit) The construction

as depicted in Figure 3 consists of 𝑛 variables 𝑥𝑖 , 𝑖 ∈ [𝑛] (indicating
𝑛 parties in the access structure) and𝑚 variables 𝑦 𝑗 , 𝑗 ∈ [𝑚] are
assigned as follows: choose random indices 𝑖 uniformly between

1 and 𝑛 and assign the corresponding 𝑥𝑖 to each 𝑦 𝑗 , 𝑗 ∈ [𝑚] se-
quentially. Here the aim is to choose the total number of leaves𝑚

such that the circuit outputs 1 for a valid access structure with a

high probability. Construct a 3-ary tree of MAJ3 nodes with 𝑦 𝑗 as

leaves. The probability p = Pr(𝑦 𝑗 = 1) is taken as 0.5 for designing

a majority circuit.

We choose the value of p as
𝑡
𝑛 for the threshold access structure

(𝑛, 𝑡), we also compute depth with e> 2
− 𝑛

4 . To see why this is

significant, we first present how the dimensions of the distribution

4
For (𝑛, 𝑡 ) threshold function, take 𝑛 extra variables (total 2𝑛 variables), fix 𝑛 − 𝑡 of
them to be 1 and the rest 𝑡 to 0; whenever there are more than 𝑡 1s in the original 𝑛

variables, the majority function outputs 1.

5
The MAJ3 node realizes majority of 3 variables (𝑥1, 𝑥2, 𝑥3 ) as 𝑥1𝑥2 + 𝑥2𝑥3 + 𝑥1𝑥3
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Figure 3: Majority circuit realization using MAJ3 nodes. The
variables 𝑥𝑖 , 𝑖 ≤ 𝑛 are mapped to 𝑦 𝑗 , 𝑗 ≤ 𝑚 uniformly ran-
domly. MAJ3 tree is formed from 𝑦 𝑗 . Here 𝑛 is the total num-
ber of parties in the access structure; The number of leaves
𝑚 is chosen to achieve sufficient depth.

matrix M are related to the value𝑚, the number of leaves in the

circuit. Table 2 presents𝑚 values and the dimensions ofM when

the circuit is constructed using MAJ3 nodes, and the distribution

matrix is constructed by BL construction [32, 47] from the mono-

tone boolean formula representation of the circuit. With the above

construction, the number of rows of matrix M grow as 6
log

3
(𝑚)

.

Table 1 depicts the value of𝑚 needed to represent the threshold

access structure for different values of p and e. For instance, from
Table 2 for 𝑚 = 243, the number of rows of M is 7776. Observe

from Table 1 that for (𝑛, p, e) = (20, 0.5, 2−𝑛), the value𝑚 = 59049.

For𝑚 = 243 itself, the number of rows is 7776, for𝑚 = 59049 the

number of rows (60466176) make it impossible to perform the secret

sharing on a laptop or a phone using a majority circuit implemen-

tation (p = 0.5) with e = 2
−𝑛

. However, by exhaustively computing

different qualified sets, we find that e ≥ 2
− 𝑛

4 is indeed sufficient

to successfully reconstruct the secret for the qualified sets up to

𝑛 = 50.

In this workwe consider the (𝑛, ⌊ 2𝑛
3
⌋) access structure and gener-

ate the matrixM with depth analysed using p = 2

3
. The distribution

matrix size is dependent on the computed𝑚 value rather than di-

rectly on the value 𝑛. That is to say, multiple 𝑛 values may result in

similar𝑚 value computed and hence will have similar distribution

matrix sizes. Since the designed circuit is a 3-ary tree, the𝑚 value

chosen will be a power of 3 for any given 𝑛. Table 4 in Appendix

compares the value of𝑚 needed for different 𝑛, p values using ma-

jority circuit and threshold circuits to achieve error margin e = 2

−𝑛
4 .

We provide the details of how to search for the exact distribution

matrix in Appendix C

5 DISTRIBUTED KEY GENERATION USING
BBSS

A distributed key generation (DKG) [54] protocol allows a set of

nodes to share a secret among themselves without a trusted third

party such that any qualified subset of nodes can use/reveal their

shares to compute the secret. However, any subset of nodes outside

the set of qualified sets has no information about the shared secret.

For a (𝑛, 𝑡)−DKG, any subset of 𝑡 + 1 or more nodes constitutes

the qualified subset. At the heart of any DKG is a verifiable secret

sharing (VSS) scheme. To achieve a (𝑛, 𝑡)-DKG protocol, we consider

a (𝑛, 𝑡)-VSS scheme; unlike a VSS scheme which requires a trusted

dealer, the DKG mechanism distributes the trust among the nodes

removing the requirement of a trusted party. In this work, we

consider a DKG protocol resistant to 𝑓 malicious nodes with the

total number of nodes 𝑛 = 3𝑓 + 1 in the network.

Using the verifiable BBSS scheme (refer Section 3.2), we obtain

a DKG along the lines of the scheme by Gennaro et al. [54]. The
protocol proceeds in two phases; in phase 1, each party 𝑃𝑖 performs

a verifiable secret sharing of a random value 𝑧𝑖 and every party

verifies the received shares using the broadcast commitments. After

this, every party 𝑃 𝑗 forms the qualified set of parties Q whose

shares are verified and compute its share sk𝑗 by locally adding

the verified shares. The computed shares correspond to shares of a

random secret key 𝑠𝑘 ∈ Z𝑞 . In Phase 2, the parties of the qualified

set forward the exponentiation of their shared secret 𝑧𝑖 and a zero-

knowledge proof that the forwarded Pedersen commitment in Phase

1 corresponds to the same. Every party computes the public key

𝑝𝑘 = 𝑔𝑠𝑘 after verifying the zero-knowledge proofs. See Figure 4

for the complete BBSS-DKG protocol. The proposed DKG offers the

following properties:

• Correctness: All qualified subsets of shares provided by honest

parties define the same unique secret key 𝑠𝑘 ; All honest parties

compute the same public key 𝑝𝑘 = 𝑔𝑠𝑘 value corresponding to the

secret key 𝑠𝑘

• Secrecy:No information on 𝑠𝑘 can be obtained by the 𝑡−limited

adversary except what can be inferred from the public information.

Theorem 1. Given a correct and secure (𝑛, 𝑡) verifiable BBSS
scheme, the DKG protocol (Figure 4) satisfies correctness and secrecy
properties under the Dlog assumption.

We postpone all proofs to Appendix E.

6 D-KODE PROTOCOL
By D-KODE protocol we refer to the set of all algorithms for gen-

erating account-keys in a distributed fashion. These algorithms

include the generation of shares of master key k at the servers

using BBSS-DKG, PRF evaluation upon user input, and algorithms

to combine the partial evaluations to compute keys at the client.

Since BBSS-DKG and PRF are run on the server, we refer to them

as server-side algorithms and the algorithms for combining the

partial evaluations for computing keys at the client as client-side

algorithms. On the client side, we have two different versions cor-

responding to offline and online clients.

Offline clients are clients who’ve been paid and wish to retrieve

their funds by recovering the secret key associated with their iden-

tity. Online clients either recover their own secret key or recover

the public key of another client they are trying to pay.

The D-KODE protocol consists of the following algorithms. For

ease of exposition, we postpone the verifiability of the PRF evalua-

tion in Appendix 7.
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Public parameters pp: {𝑛, 𝑡, 𝑞, 𝑝,M ∈ {0, 1}𝑑×𝑒 ,𝜓 (·)}
Phase 1: Generating shares of 𝑠𝑘 ∈ Z𝑞 :

(1) Each party 𝑃𝑖 performs a Verifiable BBSS of a random value 𝑧𝑖 ∈ Z𝑞 :

(a) 𝑃𝑖 chooses two random vectors 𝝆𝑖 = {𝜌𝑖1, 𝜌𝑖2, · · · , 𝜌𝑖𝑒 } and 𝝆′
𝑖
= {𝜌′

𝑖1
, 𝜌′
𝑖2
, · · · , 𝜌′

𝑖𝑒
}; 𝝆𝑖 , 𝝆′𝑖 ∈ Z

𝑒
𝑞 . Sets the first element

𝝆𝑖1 = 𝑧𝑖 .
(b) 𝑃𝑖 computes two vectors s𝑖 = M · 𝝆𝑖 and s′𝑖 = M · 𝝆′

𝑖
, generates commitment vector c𝑖 consisting of commitments to each of

the elements of the vector 𝝆𝑖 as 𝑐𝑖𝑙 = 𝑔
𝜌𝑖𝑙ℎ𝜌

′
𝑖𝑙 ; 𝑙 ∈ [𝑒] where 𝑔, ℎ are generators of a multiplicative group G. Let the computed

vectors be s𝑖 = {𝑠𝑖1, 𝑠𝑖2, · · · , 𝑠𝑖𝑒 }, s′𝑖 = {𝑠
′
𝑖1
, 𝑠′
𝑖2
, · · · , 𝑠′

𝑖𝑒
}.

(c) 𝑃𝑖 forwards the shares s𝑖, 𝑗 , a subset of the vector s𝑖 to 𝑃 𝑗 consisting of share elements 𝑠𝑖𝑘 , 𝑘 ∈ {𝑇𝑗 = 𝜓−1 ( 𝑗)} and it also

forwards the corresponding s′
𝑖, 𝑗
, a subset of the vector s′

𝑖
to the 𝑃 𝑗 , 𝑗 ∈ [𝑛].

(d) 𝑃𝑖 broadcasts its commitment vector c𝑖 with elements 𝑐𝑖𝑙 , 𝑙 ∈ [𝑒] to every other party 𝑃 𝑗 , 𝑗 ∈ [𝑛].
(e) 𝑃 𝑗 verifies the shares it received from the other parties using the specified verification procedure. 𝑠𝑖𝑘 (corresponding to

the row 𝑘 of the vector s𝑖 of 𝑃𝑖 ) received by 𝑃 𝑗 from 𝑃𝑖 is verified as: 𝑔𝑠𝑖𝑘ℎ𝑠
′
𝑖𝑘 =

∏𝑒
𝑙=1

𝑐
𝑚𝑘𝑙

𝑖𝑙
mod 𝑝 . (Here row 𝑘 is held by 𝑃 𝑗 ,

𝑘 ∈ 𝑇𝑗 ).
If any verification fails, party 𝑃 𝑗 broadcasts a complaint against party 𝑃𝑖 by broadcasting the shares (𝑠𝑖𝑘 , 𝑠′𝑖𝑘 ).

(f) On receiving a compliant against self from 𝑃 𝑗 for any row 𝑘 , 𝑃𝑖 reveals the shares by broadcasting 𝑠𝑖𝑘 , 𝑠
′
𝑖𝑘
.

(2) Every party maintains a set of parties Qualified Q, any party excluded from the set is disqualified by that particular party.

Every party 𝑃 𝑗 excludes a party 𝑃𝑖 if 𝑃𝑖 either receives more than 𝑡 complaints or the broadcasted shares after complaint do not

pass the verification. At the end of the complaint and verification phase, every honest party will have the same qualified set Q.
(3) Every party 𝑃 𝑗 locally forms its shares of the secret key 𝑠𝑘 by adding element-wise, the shares of the vectors s𝑖, 𝑗 received from

every other party 𝑃𝑖 , 𝑖 ∈ [𝑛] i.e., each 𝑃 𝑗 computes its share as sk𝑗 = {𝑠𝑘 |𝑘 ∈ 𝑇𝑗 } =
∑
𝑖 𝑠𝑖𝑘 for each 𝑘 ∈ 𝑇𝑗 . Share of each party

𝑃 𝑗 is a vector sk𝑗 of share elements with cardinality 𝑑 𝑗 = |𝑇𝑗 |.
Phase 2: Computing the public key 𝑔𝑠𝑘 :

(1) Each 𝑃𝑖 , 𝑖 ∈ [𝑛] broadcasts the values 𝐴𝑖1 = 𝑔𝜌𝑖1 and a NIZKPoK 𝝅𝑖 (Refer Appendix D) proving that the value committed

𝑧𝑖 = 𝜌𝑖1 is same value in both 𝐴𝑖1, 𝑐𝑖1 broadcast earlier to every other party 𝑃 𝑗 , 𝑗 ∈ [𝑛].
(2) Each party verifies the broadcast NIZKPoK of every other party and anyone failing verification is disqualified and removed

from Q.
(3) Finally the public key is computed as 𝑝𝑘 =

∏
𝑖∈Q 𝑔

𝜌𝑖1
.

BBSS-DKG

Figure 4: BBSS-DKG Protocol

6.1 Server Side Algorithms
Cryptographic Setup. Setup(𝜆, 𝑛, 𝑡): It takes as input the security
parameter 𝜆, the threshold 𝑡 , and the number of servers 𝑛. It outputs

the public parameters pp := {𝐻 (·), 𝑝, 𝑞, 𝑞′, 𝑢,G, 𝑔,G, g, h,𝑴,𝜓 (·)}.
Depending on the chosen group or curve for which the keys are

being generated different values of the parameters are chosen (see

Section 9).

Distributed Key Generation. DKG (𝑛, 𝑡, 𝑞,𝑢): The servers run
the BBSS-DKG mechanism among themselves using (𝑛, 𝑡)-BBSS to
generate shares of a master key k ∈ Z𝑢𝑞 .
The BBSS-DKG mechanism (Figure 4) provides shares correspond-

ing to a single element 𝑠𝑘 ∈ Z𝑞 to all the servers. However, for

the PRF evaluation, 𝐹 (𝑋,k) = ⌊𝐻 (𝑋 ) · k⌋𝑝 , the key k is a vector

of length 𝑢. Hence, initially, the servers run 𝑢 instances of DKG

to generate shares of elements of the vector in Z𝑢𝑞 . Let the share

element matrix obtained by each server 𝑃𝑖 be E𝑖 .
PRF evaluation. The servers run the PRF service through the Par-
SecretKeyEval and ParPubKeyEval algorithms to compute private

key or public key shares respectively for an identity forwarded by

the client.

ParSecretKeyEval(𝑋,E𝑖 , pp): As described in Algorithm 1, sever

𝑃𝑖 takes the client input string𝑋 , share matrix E𝑖 , the public param-

eters pp and returns the evaluation of the PRF as the vector 𝒛𝑖 . The
matrix E⊤

𝑖
is parsed into 𝑑𝑖 columns of 𝑢 length each while input 𝑋

is hashed to a vector of length 𝑢 using the hash 𝐻 : {0, 1}∗ → Z𝑢𝑞 .
𝑑𝑖 is the number of rows of matrix M owned by 𝑃𝑖 .

Algorithm 1 ParSecretKeyEval (𝑋,E𝑖 , pp)

1: Parse the matrix E⊤
𝑖
∼ Z𝑢×𝑑𝑖𝑞 as [k𝑖1 |k𝑖2 | · · · |k𝑖𝑑𝑖 ]

2: for 1 ≤ 𝑗 ≤ 𝑑𝑖 do
3: 𝑧𝑖 𝑗 =

⌊
𝐻 (𝑋 ) · k𝑖 𝑗

⌋
𝑝
∈ Z𝑝

4: return z𝑖 = {𝑧𝑖1, 𝑧𝑖2, · · · , 𝑧𝑖𝑑𝑖 } ∈ Z
𝑑𝑖
𝑝

ParSig(𝑋,E𝑖 , pp,msg): To generate a partial signature on the

message msg, the server first generates the secret key share of

the user by invoking ParSecretKeyEval(𝑋,E𝑖 , pp). This secret key
share is used to generate a partial signature. 𝜎′ (msg, 𝑋,E𝑖 ) =

{𝜎 (msg, 𝑧𝑖1), 𝜎 (msg, 𝑧𝑖2), · · · , 𝜎 (msg, 𝑧𝑖𝑑𝑖 )}. The partial signature
vectors (along with partial public keys) from the servers are for-

warded to an aggregator server where they are threshold combined
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to form the final signature on the message. While publishing the ag-

gregated signature, the aggregated verification (public) key 𝑝𝑘𝑋 is

also published. Later when a public key to verify the transaction is

generated, it is verified that it is within the set [𝑝𝑘𝑋 ·𝑔−2𝜃 , 𝑝𝑘𝑋 ·𝑔2𝜃 ].
ParPubKeyEval(𝑋 ′,E𝑖 , pp): Partial evaluation for public key gen-

eration (Algorithm 2) is similar to that of the secret key except that

the final vector is the exponentiated version of partial secret key

evaluation. Server 𝑃𝑖 takes the client input string 𝑋
′
, share matrix

E𝑖 , the public parameters pp and returns a vector y𝑖 . The matrix E⊤
𝑖

is parsed into 𝑑𝑖 columns of 𝑢 length each while input 𝑋 is hashed

to a vector of length 𝑢 using 𝐻 : {0, 1}∗ → Z𝑢𝑞 . 𝑑𝑖 is the number of

rows of matrix M owned by 𝑃𝑖 . Each of the elements of the PRF

evaluation is exponentiated resulting in a vector of elements of the

group G and of length 𝑑𝑖 .

Algorithm 2 ParPubKeyEval (𝑋 ′,E𝑖 , pp)

1: Parse the matrix E⊤
𝑖
∼ Z𝑢×𝑑𝑖𝑞 as [k𝑖1 |k𝑖2 | · · · |k𝑖𝑑𝑖 ]

2: for 1 ≤ 𝑗 ≤ 𝑑𝑖 do
3: 𝑧𝑖 𝑗 =

⌊
𝐻 (𝑋 ′) · k𝑖 𝑗

⌋
𝑝
∈ Z𝑝

4: return y𝑖 = {𝑔𝑧𝑖1 , 𝑔𝑧𝑖2 , · · · , 𝑔𝑧𝑖𝑑𝑖 } ∈ G𝑑𝑖

6.2 Client Side Algorithms
The client computes the private key by combining the partial eval-

uations using the CombSecKey algorithm and computes the public

key of identity𝑋 ′ by using the CombPubKey algorithm. The offline

client after generating the private key of his identity searches for

the appropriate secret key - public key pair to which payment has

been made.

Private key generation. CombSecKey(pp, {z1, z2, · · · , z | T | }):
Let T with |T | ≥ 𝑡 + 1 be the set of parties whose evaluations

are used for reconstruction. CombSecKey (Algorithm 3) takes-in

the partial evaluation vectors 𝒛𝑖 received from the servers 𝑃𝑖 of

the set T and concatenates them to form z = {z1 | |z2 | | · · · | |z | T | } .
Let the set of all the row indices of matrix M held by the parties

in T be R =
⋃
𝑖 𝑇𝑖 , 𝑃𝑖 ∈ T . z is a vector of length |R |. The private

key is computed as the linear combination of the vector elements.

The reconstruction coefficient vector 𝜆T is computed by solving

M⊤T · 𝝀T = 𝜺. M⊤T is the set of all rows of matrix M held by the

parties in T . 𝜺 = {1, 0, · · · , 0}.
Online client : The online client computes the private key 𝑠𝑘 and

the corresponding public key as 𝑝𝑘 = 𝑔𝑠𝑘 and uses the key-pair

(𝑠𝑘, 𝑝𝑘) to perform different transactions.

Offline client: Once the offline client computes the private key

𝑠𝑘 corresponding to his identity, he computes 4𝜃 secret keys. 𝜃 is

the total number of values combined by the parties in set T which

is |R |. He computes them as [𝑠𝑘 − 2𝜃, · · · , 𝑠𝑘 + 2𝜃 ] and obtains

the corresponding public keys [𝑔𝑠𝑘−2𝜃 , · · · , 𝑔𝑠𝑘+2𝜃 ]. The public

key to which funds have been sent will be in this set; he uses the

corresponding secret key to transfer the funds.

Public key generation. CombPubKey(pp, {y
1
, y

2
, · · · , y | T | }):

Let T with |T | ≥ 𝑡 + 1 be the set of servers whose evaluations

are used for reconstruction. CombPubKey takes-in the vector of

partial evaluations y𝑖 received from the servers 𝑃𝑖 of the set T

Algorithm 3 CombSecKey (pp, {𝒛1, 𝒛2, · · · , 𝒛 | T | })

1: Compute z = {z1 | |z2 | | · · · | |z | T | } ∈ Z
| R |
𝑝

2: Compute 𝝀T ∈ {−1, 0, 1} | R | such that M⊤T · 𝝀T = 𝜺

3: Compute 𝑠𝑘 = 𝝀⊤T · z ∈ Z𝑝
4: if Online client then
5: return 𝑠𝑘
6: if Offline client then
7: Compute [𝑠𝑘 − 2𝜃, · · · , 𝑠𝑘 + 2𝜃 ], 𝜃 = |R |.
8: Compute public keys

®𝑝𝑘 = [𝑔𝑠𝑘−2𝜃 , · · · , 𝑔𝑠𝑘+2𝜃 ]
9: Check public keys

®𝑝𝑘 and find corresponding 𝑠𝑘′

10: return 𝑠𝑘′

and concatenates them to form y = {y
1
| |y

2
| | · · · | |y | T | }. The set

of all the row indices (of matrix M) held by the parties in T is

R =
⋃
𝑖 𝑇𝑖 , 𝑃𝑖 ∈ T . y is a vector of length |R |. Compute the public

key as 𝑝𝑘 =
∏

1≤ 𝑗≤ |R | 𝑦
𝜆 𝑗
𝑗
, whereM⊤T ·𝝀T = 𝜺,M⊤T is the set of all

rows of matrixM held by the parties in T , 𝝀T = {𝜆 𝑗 , 1 ≤ 𝑗 ≤ |R|},
𝒀 = {𝑦 𝑗 , 1 ≤ 𝑗 ≤ |R|}.

A client can forward the public identity of another client and

compute the public key from the obtained partial evaluations using

CombPubKey. (See Algorithm 4.)

Algorithm 4 CombPubKey (pp, {y
1
, y

2
, · · · , y | T | })

1: Compute y = {y
1
| |y

2
| | · · · | |y | T | } ∈ G | R |

2: Compute 𝝀T ∈ {−1, 0, 1} | R | such that M⊤T · 𝝀T = 𝜺
3: 𝝀T = {𝜆 𝑗 }, y = {𝑦 𝑗 }, 1 ≤ 𝑗 ≤ |R|
4: Compute 𝑝𝑘 =

∏
1≤ 𝑗≤ |R | 𝑦

𝜆 𝑗
𝑗
∈ G

5: return 𝑝𝑘

Using the ring-variant of the PRF. For the simplicity of ex-

position, we presented the whole key generation using the PRF

𝐹 (𝑋,k) =
⌊
𝐻 (X) · k

⌋
𝑝
∈ Z𝑝 with a single Z𝑝 element as output.

However, one can consider the ring variant of the PRF where the

two input vectors of computation 𝐻 (𝑋 ) and k are polynomial ring

elements. Then the inner product computation would be replaced

by polynomial ring multiplication resulting in a ring element that

can be viewed as a vector of 𝑢 group elements. Thus using the ring

variant of the PRF 𝐹 (𝑋,k) =
⌊
𝐻 (X) ◦ k

⌋
𝑝
∈ Z𝑢𝑝 , 𝐻 (𝑋 ),k ∈ 𝑅𝑞 , the

servers can generate 𝑢 keys at a time for the user.

7 VERIFYING THE EVALUATION OF THE PRF
While the clients obtain shares as the PRF evaluations presented

in Section 6.1, it is imperative for the clients to verify if the values

received were generated correctly. The servers after evaluating the

PRF, forward a commitment and a zero-knowledge proof proving

that the values have been computed according to the protocol. For

ease of exposition, we present here the verifiability for one PRF
evaluation.

The PRF function employed by D-KODE protocol is 𝐹 (𝑋,k) =⌊
𝐻 (𝑋 ) · k

⌋
𝑝
∈ Z𝑝 with 𝐻 : X → Z𝑢𝑞 , k ∈ Z𝑢𝑞 , 𝐹 : X × Z𝑢𝑞 → Z𝑝

and 𝑝 < 𝑞. Let k = {𝛼1, 𝛼2, · · · , 𝛼𝑢 }.
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Verification of the private key evaluation. Let 𝑧 = 𝐹 (𝑋,k)
for k defined as above. To compute 𝑧, the servers compute the

inner product 𝑤 = (𝐻 (𝑋 ) · k) ∈ Z𝑞 and perform the operation

𝑧 = ⌊𝑤⌋𝑝 ∈ Z𝑝 . Hence we have, 𝑧 =

⌊
𝑤 · 𝑝𝑞

⌋
=⇒ 𝑝𝑤 = 𝑧𝑞 + 𝑟

where the value 𝑟 < 𝑞. To provide verifiability, it is enough for

the server to prove that the above equation has been evaluated

correctly and that the value 𝑟 < 𝑞. The server uses commitments

and zero-knowledge range proof to do the same.

Server computation. For a key k = {𝛼1, 𝛼2, · · · , 𝛼𝑢 }, and a ran-

domk′ = {𝛽1, 𝛽2, · · · , 𝛽𝑛}, the server initially publishes the commit-

ments 𝑐𝑖 = g𝛼𝑖h𝛽𝑖 , 𝑖 ∈ [𝑢], g, h ∈ G are generators of multiplicative

group of order 𝜏 > 𝑝𝑞.

For proving the correct evaluation of 𝑧 = 𝐹 (𝑋,k), the server com-

putes 𝑧′ = 𝐹 (𝑋,k′) and 𝑟 = 𝑝𝑤 − 𝑞𝑧 mod 𝜏 , 𝑟 ′ = 𝑝𝑤 ′ − 𝑞𝑧′ mod 𝜏 ;

forwards the values 𝑐 = g𝑟h𝑟
′
and 𝑧′ = 𝐹 (𝑋,k′) The server also

computes and forwards zero-knowledge range proof [40] 𝜋𝑟 , 𝜋𝔨
proving that 𝑟 < 𝑞, 𝔨 < 𝑢 · 𝑞 such that𝑤 + 𝔨𝑞 =

∑𝑢
𝑖=1 𝛼𝑖ℎ𝑖 . Similarly,

he computes 𝔨′.
Thus when evaluating the PRF for an input 𝑋 , the server replies

with the following: {𝑧, 𝑧′, g𝑟h𝑟 ′ , g𝔨h𝔨′ , 𝜋𝑟 , 𝜋𝔨}. Note that 𝑐𝑖 values
are available to the client before the PRF evaluation.

Client side computation. Using the received values and the

initially published 𝑐𝑖 = g𝛼𝑖h𝛽𝑖 values, the client computes g𝑤h𝑤
′
=

g−𝑞𝔨h−𝑞𝔨
′∏𝑢

𝑖=1 (g𝛼𝑖h𝛽𝑖 )ℎ𝑖 . To verify the PRF value 𝑧, after verifying
the range proof 𝜋𝑟 , the client verifies g𝑝𝑤h𝑝𝑤

′
= g𝑞𝑧h𝑞𝑧

′ · g𝑟h𝑟 ′

Verification of the public key evaluation. Previously for the

secret key evaluation corresponding to identity 𝑋 , the server com-

puted and forwarded the value 𝑧 = 𝐹 (𝑋,k). However, for public
key evaluation, the server forwards 𝑔𝑧 , for 𝑔 ∈ G a generator of a

multiplicative group of order 𝑝 .

Similar to the procedure for PRF verification above, the server

forwards g𝑟h𝑟
′
such that 𝑝𝑤 = 𝑧𝑞 + 𝑟 ;𝑝𝑤 ′ = 𝑧′𝑞 + 𝑟 ′ and 𝜋𝑟 , 𝜋𝔨

proving that 𝑟 < 𝑞 and 𝔨 < 𝑢 such that 𝑤 + 𝔨𝑞 =
∑𝑢
𝑖=1 𝛼𝑖ℎ𝑖 mod 𝜏 .

Similarly, he also computes 𝔨′. However, instead of values 𝑧, 𝑧′,
the server forwards g𝑧 and g𝑧h𝑧

′
where g, h ∈ G are generators of

multiplicative group of order 𝜏 > 𝑝𝑞.

Additionally, the server sends a zero-knowledge proof of the

equality of exponents 𝜋Equ (𝑔𝑧 , g𝑧h𝑧
′ ) proving that the value 𝑧 in

both the exponents (𝑔𝑧 , g𝑧h𝑧′ ) is equal. Thus the server forwards
the values {𝑔𝑧 , g𝑧h𝑧′ , g𝑟h𝑟 ′ , g𝔨h𝔨′ , 𝜋𝑟 , 𝜋Equ (𝑔𝑧 , g𝑧h𝑧

′ )} After verify-
ing the zero-knowledge proofs, the client computes g𝑤h𝑤

′
as before

and verifies g𝑝𝑤h𝑝𝑤
′
= g𝑞𝑧h𝑞𝑧

′ · g𝑟h𝑟 ′

8 DYNAMIC-COMMITTEE PROACTIVE BBSS
System attacks are common as flaws in the software realization of

the protocols are ubiquitous. While cryptographic secrecy protects

again break-ins, its effect is limited over a longer time. This is

especially true in-case of a mobile attacker [59, 73] who can break

into systems one-by-one over a long time. Proactive secret sharing

(PSS) guards against these gradual attacks by combining distributed

trust with periodic share renewing. When systems store keys for a

long time, even when the secret information is threshold-shared, it

is imperative to refresh the shares such that the adversary does not

eventually gain all the information. In proactive security [41, 59, 73],

the nodes modify their secret shares periodically such that the

adversary’s knowledge of secret information from any previous

period is not useful in the next. For the D-KODE protocol, we

propose proactive secret sharing for the BBSS scheme.

Adversary. We consider a computationally bounded mobile adver-
sary [59] that can corrupt any server at any point of time, however,

the adversary can corrupt no more than 𝑡 servers at any instant of

time. The adversary after compromising the server has full access

to the server’s secret information and communication. We consider

malicious corruption in which the adversary makes the server de-

viate arbitrarily from the protocol. The adversary has access to

the complete view of the corrupted server’s communication, how-

ever, he can neither inject, access or deny messages between any

two non-compromised nodes nor affect the broadcast channel. The

adversary corrupting the servers is removable by a reboot mecha-

nism [41], which is handled by the system management interacting

with the servers. The defined protocol provides explicit mechanism

to detect malicious behaviour, we assume a reboot is triggered as

soon as malicious behaviour is detected which is completed with in

that epoch. The system management initializes the system by estab-

lishing server to server communication and no secret information

of the protocols is available to it.

The aim of the adversary corrupting the servers is to learn the

secret information or the secret key shares involved in the proto-

col. The user or clients interacts with the servers to obtain partial

evaluations of the keys. He may try to attack the system by either

predicting the server secret key or the evaluations for other clients.

At the end of each refresh phase, the servers erase the old infor-

mation of the previous epochs. This process is assumed reliable;

when the server is compromised, the adversary does not have ac-

cess to the secret information of the previous epochs. If a server

is compromised in the refresh phase, the server is assumed to be

compromised in both the phases adjacent to that phase.

Protocol.We propose a proactive secret sharing scheme [59] for

the black box secret sharing mechanism where the size of share-

elements does not increase with each refresh. The protocol proceeds

in intervals of time called 𝑒𝑝𝑜𝑐ℎ𝑠 , which are synchronized by the

common global clock. The parties participate in a share refresh
phase at the beginning of each epoch after which every party in

the system has access to the new shares. The adversary can corrupt

up-to 𝑡 parties, if it is detected that a certain party is corrupted in

an epoch, its shares are renewed in the share renewal phase phase
of the next epoch, similarly if a node crashes during an epoch, its

shares are reconstructed in the reconstruction phase of the next

epoch. Share renewal and reconstruction are a part of the refresh

phase of each epoch.

Without loss of generality, let (𝑛, 𝑡) be the access structure of
epoch e and (𝑛′, 𝑡 ′) be the access structure of the epoch e+ 1 with a

changing (dynamic) committee. Let the access structures of epochs

e, e + 1 correspond to the share distribution matrices M and M′.
Let sk𝑖 be the set of share elements held by the party 𝑃𝑖 for the

epoch e. In our proactive protocol, each party re-shares every share

element held by the party to all other parties of the next epoch. The

Proactive BBSS scheme is presented in Figure 9 in the Appendix.

Proactive BBSS offers the following properties [41]:

• Robustness/Correctness: The new shares computed at the end

of the share renewal phase correspond to the original secret 𝑠𝑘
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shared among the parties i.e., any qualified set of parties (𝑡 + 1 or
more) can reconstruct the secret 𝑠𝑘 .

• Secrecy: No information about the secret 𝑠𝑘 is obtained by the

𝑡-limited adversary in any epoch. The adversary who obtains shares

of no more than 𝑡 parties has no information about the secret 𝑠𝑘 in

any epoch.

• Liveness: All honest parties complete the refresh of shares (at

the beginning) in each epoch.

The proactive BBSS mechanism works in two steps: (1) Each

party 𝑃𝑖 , 𝑖 ∈ [𝑛] does verified secret sharing of each of its shares

sk𝑖 among all the parties (2) From the obtained verified shares, each

party reconstructs their new shares sk′𝑖 .
Let c𝑖 be the vector of commitments to the vector 𝝆𝑖 by each

party 𝑃𝑖 in the previous epoch and Q be the qualified set computed

during that epoch. Each party stores a vector v of commitments

from the parties of the qualified set computed during the re-sharing

from the previous epoch for the verifiability of shares for the next

epoch. All the honest parties update the commitment vector v with

elements 𝑣𝑙 =
∏
𝑃𝑖 ∈Q 𝑐

𝜆𝑖
𝑖,ℓ
, ℓ ∈ [𝑒]. When party 𝑃𝑖 shares 𝑠𝑖𝑘 (while

using
ˆ𝑠′𝑖𝑘 ), each party 𝑃 𝑗 checks if 𝑔

𝑠𝑖𝑘ℎ𝑠
′
𝑖𝑘 =

∏
𝑘 (𝑣𝑘 )𝑚𝑖𝑘

where

M⊤Q𝝀Q = 𝜀,𝝀 = {𝜆𝑘 , 𝑘 ∈
⋃
𝑖 𝑇𝑖 , 𝑃𝑖 ∈ Q}. Let 𝑠𝑖𝑘 , 𝑘 ∈ 𝑇𝑗 be the

shares received by 𝑃 𝑗 from party 𝑃𝑖 ∈ Q′. R′ = {
⋃
𝑖 𝑇𝑖 , 𝑃𝑖 ∈ Q′} is

the set of all rows held by Q′. 𝑃 𝑗 computes the new share element

𝑠𝑘 =
∑
𝑖∈Q′ 𝜆𝑖𝑠𝑖𝑘 , 𝑘 ∈ 𝑇𝑗 .

Theorem 2. For a correct and secure (𝑛, 𝑡)-verifiable BBSS scheme,
the Proactive BBSS protocol (Figure 9 in Appendix) satisfies correctness
and secrecy properties under the DLog assumption.

Theorem 3. If the LWR(𝑞,m,n) assumption holds,
ParSecretKeyEval(𝑋, E, pp) is a PRF.

Theorem 4. If the LWR(𝑞,m,n) assumption holds, CombSecKey is
a (𝑛, 𝑡)-threshold evaluation of a PRF.

9 PERFORMANCE ANALYSIS
We evaluate the performance of D-KODE protocol using a prototype

implementation in Rust and Python for BBSS, BBSS-DKG, BBSS-

PSS, and the corresponding reference implementations of New-JF-

DKG [54] instantiated with Shamir secret sharing and replicated

secret sharing (RSS). We use the Charm crypto library [6] for the

cryptographic operations and BLS signatures by Dfinity [11].

We ran the experiments on a total of ten AWS EC2 c5a.8xlarge
instances (with 32 virtual cores) from a single region. All the nodes

are divided roughly equally on the AWS instances. We use Tender-

mint [20] to realize the broadcast channel for the verifiable secret

sharing of the DKG protocols.

Distributed Key Generation (DKG). We first implement the

DKG protocols and compare the performance for up to 50 nodes.

Figure 5 provides a logarithmic plot comparing the time taken to run

DKG to generate shares of a 256-bit key using Shamir and 283-bit

replicated (RSS) [44] and black-box (BBSS) secret sharing schemes.

Replicated secret sharing (RSS) [44, 62] is a well-known scheme

(refer crefsec:rss) to share secrets in Z𝑞 in an additive form. We

analyze the access structure for the VSS corresponding to (𝑛, ⌊ 2𝑛
3
⌋)

threshold in all the protocols (See Figure 5).

Shamir secret sharing allocates one share element per node,

while BBSS and RSS allocate share vectors. The vector length for
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RSS-DKG
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Figure 5: Time taken to perform DKG to generate shares of
a 256-bit key for Shamir-DKG and 283-bit value for RSS and
BBSS-DKG. The values show the mean of values across nodes
for 10 runs of the protocol.

RSS grows exponentially as

(𝑛−1
𝑡

)
for (𝑛, 𝑡)-sharing. The share vec-

tor length for a node in BBSS is determined by the distribution

matrix and the share allocation function𝜓 (·). While BBSS allocates

more than one share element per user, verifying shares is efficient,

involving only multiplications instead of exponentiations since the

distribution matrix is a sparse binary matrix. This is reflected in

the slightly lesser times recorded compared to Shamir-DKG for up

to 27 nodes. The distribution matrix is of dimension 36 × 22 (with
different𝜓 (·) function) when the number of nodes 𝑛 ∈ [4, 9]; it is
216 × 130 and 1296 × 778 for 𝑛 ∈ [11, 27] and 𝑛 ∈ [28, 50] respec-
tively. Beyond 28 nodes, the time to perform BBSS-DKG shows a

jump due to the distribution matrix size change. Such a change in

matrix occurs at 10 nodes as well; however, the change in the time

taken is not too significant. With RSS, the time taken for DKG grows

exponentially owing to an exponential increase in the number of

shares per node with 𝑛. In Shamir-DKG, since each node provides

only one share element for every other node, the time taken is the

lowest for higher 𝑛. Though the time taken to perform BBSS-DKG

can be higher than Shamir-DKG, it is the number of instances of the
DKG that is significantly lesser while employing D-KODE protocol

when compared to the Plain-DKG. It should be noted that for a

number of servers 𝑛 < 6, D-KODE can be used with the master key

shared with RSS rather than BBSS.

User key generation using distributed PRF. D-KODE provides

key-shares using PRF 𝐹 (𝑋,k) where k is a vector. Each element of

the vector k at the server is a share generated using BBSS-DKG. The

parameters (LWR) for computing the PRF are chosen as following:

n = 8192, 𝑞 : 283-bit, 𝑝 : 256-bit. The parameter 𝑞′ > 𝑝𝑞 used for

commitments is 571-bit with commitments on the curve secp571r1.
The servers run 8192 instances of BBSS-DKG to generate shares

for the key k. The PRF output is a 256−bit key; The corresponding
public key is computed on the secp256k1 curve. In the case of

computing the public key of another party, the servers generate

the public key share (on the curve secp256k1) and forward it to

the user. Each server takes < 200 msec to generate shares for a

user per thread, for 𝑛 ∈ [5, 50] on AWS EC2 c5a.8xlarge . The

servers use the BLS signature [35, 38] and the corresponding curve

318



AFT ’22, September 19–21, 2022, Cambridge, MA, USA Easwar Mangipudi and Aniket Kate

Table 3: Number of shares per server while using Plain-
DKG[54] and D-KODE with either RSS or BBSS for Φ
account-keys. Here, Φ can be as large as 1 billion. Number
of verifiable secret sharing instances for share refreshing is
same as the average number of shares stored. The shares are
256-bit for Plain-DKG and 283-bit for BBSS.

No. of

keys

(Φ)

No. of

servers (𝑛)

Average number of shares per server

Plain DKG D-KODE

With RSS With BBSS

Φ

5 Φ 32768 58982.4

10 Φ 688,128 176,947.2

20 Φ 22.224e+7 88,473.6

30 Φ 82.016e+9 353,894.4

40 Φ 66.528e+12 265,420.8

50 Φ 27.424e+15 212,336.64

for public keys for the threshold signatures. The parameters for

the PRF were chosen to provide at least 128-bit security, estimated

using the LWE-estimator [28].

D-KODE vs Plain-DKG. D-KODE allows clients to generate pri-

vate and public keys using partial share evaluations from different

servers. The Plain-DKG [54] approach is another way to provide

such key shares where one instance of DKG is run per user to pro-

vide the shares (private or public key shares) whenever requested.

In this, for every new user, the servers perform consensus on the

index of pre-shared keys and offer the key shares to the user. As

Shamir-DKG is efficient even for a higher number of servers as

shown in Figure 5, we consider Shamir-DKG for Plain-DKG [54]

approach. We compare D-KODE with Plain-DKG as it is the only

other major approach available currently in the industry (Torus[21],

Sepior [19], etc).

Number of key shares – storage and share-refreshing. When

the servers store keys, either own or user’s secret keys for a long-

time, proactively refreshing the shares is inevitable. This is one

of the key phases where D-KODE offers an advantage. To bring

this out, we compare the number of shares stored at each server

when using different schemes. Table 3 compares D-KODE where

the master key between servers is shared using RSS and BBSS and

Plain-DKG for the different numbers of servers and clients present

in the system. For share refreshing, each share value stored at the

server is re-shared in the next round. Thus, the number of shares

stored at each server is the same as the number of VSS sharings to

be performed in the next round.

Plain-DKG stores 𝑡 + 1 commitments for each (𝑛, 𝑡) DKG [54],

and for 𝑐 clients, stores 𝑐 · (𝑡 + 1) commitments per server. For

BBSS with distribution matrix of size 𝑑 × 𝑒 , each server stores 𝑒

commitments per shared value. Hence for a 8192-element master

key, stores 8192 · 𝑒 commitments. For RSS, each server forwards

commitments to each of the shares, and the number of commitments

is 8192 ·
(𝑛
𝑡

)
.

For Plain-DKG, since the number of shares is the same as the

number of clients and hence linear with, increasing the share-

refresh time with a higher number of clients. D-KODE uses a fixed

8192-element long master key vector shared among the servers.
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Plain-DKG, Φ = 100𝐾

Plain-DKG, Φ = 1 million

Plain-DKG, Φ = 10 million

Plain-DKG, Φ = 1 billion

Figure 6: Estimated time to refresh shares through proactive
secret sharing for D-KODE and Plain-DKG for number of
account-keys Φ = 100𝐾, 1million and 10million for 10 paral-
lel instances . D-KODE re-shares shares of a fixed number of
8192 values and hence takes the same time even for a billion
keys (Φ = 1 billion); Plain-DKG re-shares values equal to the
number of keys.

Only shares corresponding to the master key vector need to be re-

freshed at each round and do not change with the number of clients.

For D-KODE with RSS, the number of shares is constant with re-

spect to the users but increases exponentially with the number of

servers. The number of shares stored at the server when D-KODE

is used with BBSS is dependent on the distribution vector. Since the

actual number of share elements per server may vary depending on

the share distribution function, we provide the average number of

share elements per server. For the ranges𝑛 ∈ [4, 9], [10, 27], [28, 50],
the distribution matrix would be the same within each range. Hence

with increasing 𝑛 in those ranges, the average number of shares

per server decreases. The distribution matrix would again change

at 𝑛 = 82. The distribution matrices and the different data sets have

been provided at the repository [10].

Figure 8 in the Appendix shows the time to refresh one share

through proactive secret sharing (PSS). BBSS-PSS takes longer as

the number of share elements per server is higher whereas it is just

one element for Shamir secret sharing while sharing a single secret

value. The increase in time at 𝑛 = 10 and 𝑛 = 28 for BBSS-PSS is

due to the change in distribution matrix size. Figure 6 shows the

estimated time to refresh shares using D-KODE and Plain-DKG

for an increasing number of keys. We note that any paralleliza-

tion applied to speed-up can be applied to both schemes. Hence,

we provide an estimate of times taken by appropriately scaling
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the timing values obtained for re-sharing of single share value. D-

KODE out-performs Plain-DKG for 94K and higher keys when the

number of servers used is below 27. In the range of 28-50 servers,

D-KODE outperforms Plain-DKG from 1 million keys. D-KODE

protocol also offers the non-trivial advantages of storing shares

of 8192-element key vector versus millions of key shares and the

servers being essentially non-interactive except during the share-

refreshing phase. D-KODE is particularly suitable for large-scale

service-offering scenarios involving millions of keys.

Communication complexity. Account-key generation using D-

KODE involves no server-to-server communication. Each server

forwards the partial evaluation vector,∼ 10 Z𝑝elements per server

for 20-server setup amounting to ∼ 6.7𝐾𝐵, and the proof of verifi-

ability (see Appendix 7). In Plain-DKG, for each account-key, the

servers run one DKG instance which is a protocol 𝑂 (𝑛3) commu-

nication complexity. For share refreshing, D-KODE runs a fixed

number of such DKG instances with 𝑂 (𝑛3) communication com-

plexity irrespective of the number of user keys. Plain-DKG runs

DKG instances proportional to the number of account-keys. For ex-

ample for a 20 server setup with a billion account-keys, each server

in D-KODE runs ∼ 89𝐾 DKG instances whereas in Plain-DKG each

server runs a billion such instances.

Threshold BLS signatures. We use BLS signatures [11, 35, 38]

on the curve BLS12-381 for generating the threshold signature of

a message for the servers acting as a cross-chain bridge. When

the client forwards the input string and a transaction, each server

generates the secret key share corresponding to the user and partial

signature on the given transaction. The partial signatures are for-

warded to an aggregator server to threshold-compute the signature.

Using D-KODE, a 20-server setup generates ∼ 20 threshold BLS

signatures per second.

10 RELATEDWORK
Apart from the DKG based approaches studied in this work, firms

like ZenGo [24] and Unbound [23] have proposed solutions to the

solve key-management problem. However, they store a key-share of

the secret key on the client device, requiring an explicit registration

procedure. This prevents other clients from obtaining public keys

of parties that have not registered yet.

The other approaches which are closer to the goals of the pa-

per are in the domain of identity-based encryption (IBE) with a

distributed private-key generator (PKG). An IBE scheme allows

any party to generate a public key associated with a known iden-

tity value and employs a trusted PKG node to generate the related

private key. As it is possible to distribute the trust of a PKG node

among a set of servers [65], it seems to directly fit both the scenarios

discussed in this work. However, the use of IBE presents a nuanced

cryptographic challenge: the generated IBE private keys are elliptic

curve group elements, while current blockchains employ ECDSA

or Schnorr signatures and require private keys to be scalar from Z𝑝 .
While theoretically mapping the elliptic curve group elements to Z𝑝
is possible through hashing, performing such a hash computation

in a multi-party setting is expensive in practice[27, 57].

The BBSS scheme has been proposed by Cramer et al. [45] who
provide a construction of the scheme with reconstruction coeffi-

cients in Z. D-KODE uses the Benaloh-Leichter construction [32] in

the realization of the scheme tomake the reconstruction coefficients

small. Another closely related work is by Damgard et al. [47] which
proposes linear integer secret sharing (LISS) where an integer value

is shared instead of a finite group element Z𝑝 . The work proposes

to realize the distribution matrix using the mechanism proposed

by Valiant [79] and Hooray [61]. A verifiable version of the LISS

scheme has been proposed [67, 77]. Unlike the LISS scheme, we

require the secret to be in the group Z𝑝 , hence we use the BBSS
scheme.

Distributed PRFs (DPRF) were studied in works like [37, 42, 69]

where in [69] the authors use the PRF for a secret key distribution

centre. Boneh et al. [37] study key homomorphic PRF for DPRF

computation, Libert et al. [66] propose a DPRF construction secure

against an adaptive adversary in the standard model, however,

the PRF proposed requires large groups and computing expensive

rounding-down functions in the multi-party setting.

Distributed KeyGeneration has beenwell studied both by academia

and industry [54, 64]. Gennaro et al. [54] propose a DKGmechanism

that utilizes Shamir secret sharing and polynomial commitments

for verifiability. DKG for networks involving 15 − 20 servers has
been attempted in the work [29]. Recently work by Tomescu et al.
[78] has shown an efficient and fast DKG for large systems. The

authors use multi-point evaluation of polynomials to perform effi-

cient verifiable secret sharing and DKG. Another recent work on

aggregatable DKG [58] studies DKG with a more efficient transcript

size and verification time. However, the focus of the authors of

[58, 78] is to scale with the number of servers instead of clients

which we deal through the D-KODE protocol. Proactive secret shar-

ing [59] has been employed by Coca [80] which proposes an online

certificate authority with share refreshing. Zhou et al. [81] studied a
proactive secret sharing scheme for asynchronous networks using

replicated secret sharing (RSS). However, since the sharing is RSS

which provides an exponential number of shares with an increas-

ing number of servers, the scheme becomes unviable beyond ≈ 12

servers.

11 CONCLUSION
D-KODE is a scalable solution for providing keys to parties who

wish to transact among themselves and do not have access to key

setup, even when one of them is offline. It facilitates scalable air-

drops and cross-chain bridges with long-term availability and secu-

rity. A set of servers with a master secret threshold shared between

them provides partial key shares as verifiable PRF evaluations to

the clients who reconstruct the desired keys. We envisage a sys-

tem where millions of clients/accounts avail the service, and the

solution scales well with the number of keys. We instantiate a dis-

tributed key generation mechanism using black-box secret sharing

and propose a proactive sharing mechanism of BBSS shared keys

to support the system over long periods of time. Our prototype

implementation shows the scalability of our solution as the number

of keys reaches 100 − 1000K depending on the number of servers.
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A MONTONE BOOLEAN FORMULA FOR
MAJORITY

Majority function [79] of 𝑛 variables with values in {0, 1} is defined
as taking the value 1 if at least 𝑛/2 number of variables are 1 and

0 otherwise. Let {𝑥𝑖 }𝑛𝑖=1 be the 𝑛 variables over which Majority

function𝑀𝑎𝑗 (·) is being computed, then

𝑀𝑎𝑗 (𝑥1, 𝑥2, · · · , 𝑥𝑛) =
{

1 if

∑
𝑖 𝑥𝑖 ≥ 𝑛

2
; 𝑥𝑖 ∈ {0, 1}

0 if otherwise

While the majority function of 𝑛 variables can be realized using

non-monotone circuits of size𝑂 (log𝑛), monotonicity places restric-

tions on the circuit that the circuit should only be realized using

AND and OR gates (but not NOT) gates. Valiant [79] first proved

that a polynomial-size monotone circuit is realizable for the major-

ity circuit and provided construction of size 𝑂 (𝑛5.3). Subsequent
works like one by Hoory [61] discuss majority circuits and realize

threshold structures using majority circuit. Boppanna [39] showed

that 𝑂 (𝑡4.3𝑛) is the optimal upper bound on the majority circuit

over 𝑛 variables for a threshold 𝑡 . Hooray [61] further improved

the size of the circuit to 𝑂 (𝑛1+
√
2) while keeping the circuit depth

at 𝑂 (log𝑛). Goldreich [55] provided an exposition of Valiant’s ap-

proach to the majority circuit construction, a probabilistic proof

while using a different probability amplifier (majority-3) than the

one used by Valiant.

We briefly explain the construction provided in [55]:

Let the 𝑛 variables be 𝑥𝑖 ∈ {0, 1}, 𝑖 ∈ [𝑛]. Generate 𝑚 random

variables 𝑦 𝑗 , 𝑗 ∈ [𝑚] by uniform randomly sampling an index

among [𝑛] and assigning the correspding 𝑥𝑖 value to each 𝑦 𝑗 se-

quentially. When Pr(𝑧𝑖 = 1) = 𝑝 for each 𝑖 ∈ [3], the probability
that themajority function is 1 is given by Pr(𝑀𝐴𝐽3 (𝑧1, 𝑧2, 𝑧3)) = 1 is

3(1−𝑝)𝑝2+𝑝3. If 𝑝 = 0.5+𝜖, 𝜖 ≤ 𝜖0 < 0.5, then 𝑝′ ≥ 0.5+(1.5−2𝜖2
0
)𝜖 .

Thus the bias of 𝜖 is increased by the factor (1.5 − 2𝜖2
0
) for each

level of the tree. When the number of ones in the initial set of

variables 𝑥𝑖 is
𝑛
2
+ 1, the bias of the variables 𝑦𝑖 at the lowest level

of the tree would be
1

𝑛 . This bias is increased in three steps: First

the bias is brought to a constant (< 1

2
) using ℓ1 layers of the tree,

then that constant is increased further to be close to 1 using ℓ2
layers, finally the probability of majority function being 1 when

there is majority in the initial value is taken arbitrarily close to 1,

in other words, the probability of function returning 0 when there

is majority is made negligibly small < 2
−𝑛

in another ℓ3 layers of

the circuit. When using majority circuit, using 𝑝 = 0.5 for a given

𝑛, when𝑀𝐴𝐽3 nodes are used as probability amplifiers, this would

result in a circuit depth of ℓ1 + ℓ2 + ℓ3 ∼ 2.71 log𝑛. When 𝑀𝐴𝐽3 is

expanded using fan-in 2 gates, we have a circuit implemented using

only gates with fan-in 2. This would result in total circuit size of

𝑂 (𝑛5.3).

B BOOLEAN FORMULA AND DISTRIBUTION
MATRIX

The circuit is represented as a boolean formula by expanding𝑀𝐴𝐽3
(𝑧1, 𝑧2, 𝑧3) as (𝑧1∧𝑧2)∨(𝑧2∧𝑧3)∧(𝑧1∨𝑧3), resulting in a monotone

boolean formula computing majority/threshold function. This for-

mula is then used to compute the distribution matrix of the linear

integer secret sharing scheme (LISS). The Benolah-Leichter (BL)

[32] construction of converting a monotone boolean formula is

briefly recollected here.

Figure 7: Share distributionmatrix forOR andAND functions

Consider Boolean functions 𝑓𝑂𝑅 = 𝑓1 ∨ 𝑓2 and 𝑓𝐴𝑁𝐷 = 𝑓1 ∧ 𝑓2
where 𝑓1, 𝑓2 are either Boolean functions or literals. Let𝑀𝑎 and𝑀𝑏
are share distribution matrices of 𝑓1 and 𝑓2 respectively. The share

distribution matrices of 𝑓𝑂𝑅, 𝑓𝐴𝑁𝐷 are computed as 𝑀𝑂𝑅, 𝑀𝐴𝑁𝐷
as shown in Figure 7, where 𝐶𝑎 is the first column of matrix 𝑀𝑎
and 𝑅𝑎 is the rest of the matrix except the first column of matrix

𝑀𝑎 . Similarly 𝐶𝑏 , 𝑅𝑏 are the first column of matrix𝑀𝑏 and the rest

of the matrix except the first column of the matrix𝑀𝑏 respectively.

If the function contains only one literal, it is taken just as column

i.e., for any literal 𝑓1 = 𝑥𝑖 , the matrix is just [1] with𝐶𝑎 = 1 and no

𝑅𝑎 .

C SEARCH FOR DISTRIBUTION MATRIX
We realize the threshold circuit using 𝑀𝐴𝐽3 internal nodes and

compute the distribution matrix for different values of 𝑛. To gen-

erate the matrix, different random instances of assignment of 𝑦𝑖
values of Figure 3 from 𝑥𝑖 values are considered. A distribution ma-

trix is taken as the matrixM for the access structure if any secret
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Table 4:𝑚 values when using majority and threshold circuits
for different 𝑛 values for p = 0.5, 0.66, e = 2

− 𝑛
4

𝑛
Majority Circuit Threshold Circuit

p = 0.5 p = 0.66 p = 0.5 p = 0.66

5 9 81 9 9

10 81 2187 81 27

20 2187 59049 2187 27

30 19683 531441 19683 81

10 20 30 40 50

10
1

10
2

10
3

Nodes

T
i
m
e
i
n
s
e
c
o
n
d
s

BBSS-PSS

Shamir-PSS

Figure 8: Time taken to refresh shares corresponding to one
scalar value using PSS. For BBSS, it corresponds to re-sharing
a total of 216 values for 10-27 nodes and 1296 283-bit values
for 28 − 50 node network. For Shamir secret sharing, each
node re-shares just one 256-bit element per key. The values
show the mean of values across nodes for 10 runs of the
protocol.

shared using the matrix M can be successfully reconstructed by

any qualified subset of nodes.

We consider a (𝑛, ⌊ 2𝑛
3
⌋) access structure and compute the distri-

bution matrix M for different number of nodes. A random instance

of mapping from literals 𝑥𝑖 , 𝑖 ∈ [𝑛] to literals 𝑦 𝑗 , 𝑗 ∈ [𝑚] needs to
be fixed for the computation, to do so one needs to search across

the possible random instances of mapping when each𝑦 𝑗 is assigned

a uniformly sampled 𝑥𝑖 . Since for each 𝑦 𝑗 , any of the 𝑥𝑖 values

can be assigned, the size of the assignment space is 𝑛𝑚 , however

the search space can be drastically reduced when considering the

number of occurrences of each literal among 𝑥𝑖s. Each literal 𝑥𝑖
corresponds to the node with index 𝑖 , hence in an ideal scenario, all

the nodes need to occur “uniformly" among the literals 𝑦 𝑗 , that is

to say, the number of occurrences/assignments of each 𝑥𝑖 to certain

𝑦 𝑗 should be almost equal. Thus we look at only those random

instances where each literal 𝑥𝑖 occurs ∼ 𝑚
𝑛 times, so we restrict

ourselves to those instance where each literal is assigned literals

between

[
⌊𝑚𝑛 ⌋, ⌈

𝑚
𝑛 ⌉ + 1

]
, for each of the instance of random map-

ping, the distribution matrix is constructed and checked against all

the possible threshold combinations.

For an access structure (𝑛, 𝑡), there are ∑𝑛
𝑘=𝑡+1

(𝑛
𝑘

)
qualified sets

that can reconstruct the secret value, however if the reconstruction

is successful for all the 𝑡 + 1 element subsets, it will be successful

for any of the subsets with more than 𝑡 + 1 elements. Thus a distri-

bution matrix is declared to be valid if all the 𝑡 + 1 element subsets

result in correct reconstruction. We find the distribution matrix

that reconstructs the secret key for all qualified sets up to 𝑛 = 18,

beyond which we use heuristics since the number of qualified sets

is large. We check reconstruction up to a million qualified sets for

higher 𝑛. When a subset T of nodes come together to reconstruct a

secret, they first compute the vector 𝝀T with elements in {0, 1,−1}
such that M⊤T𝝀T = (1, 0, · · · , 0)⊤.

D ZERO-KNOWLEDGE PROOF OF EQUALITY
OF COMMITTED VALUE

The distributed key generation protocol in the Figure 4 involves

a zero-knowledge proof of the equality of values committed by

Pedersen commitment and discrete log commitment. Here we re-

produce the non-interactive zero-knowledge proof of knowledge

NIZKPoK [29]: given a discrete log commitment (DLog) commit-

ment of value 𝑠 as 𝐶1 = 𝑔𝑠 and a Pedersen commitment of the

same value 𝑠 as 𝐶2 = 𝑔𝑠ℎ𝑟 for 𝑔, ℎ ∈ G and 𝑠, 𝑟 ∈ Z𝑝 , the prover
proves the knowledge of (𝑠, 𝑟 ) for the given (𝐶1,𝐶2) using the

proof we denote by 𝜋 . It is generated using the following steps:

The prover P does the following: (i) Picks values 𝑣1, 𝑣2
$←− Z𝑝

and computes (𝑉1,𝑉2) = (𝑔𝑣1 , ℎ𝑣2 ) (ii) Computes the hash 𝑐 =

𝐻 (𝑔, ℎ,𝐶1,𝐶2,𝑉1,𝑉2) where (𝐶1,𝐶2) = (𝑔𝑠 , 𝑔𝑠ℎ𝑟 ) and 𝐻 : G→ Z𝑝
(iii) Computes values (𝑢1, 𝑢2) = (𝑣1−𝑐𝑠, 𝑣2−𝑐𝑟 ) (iv) Sends (𝑐,𝑢1, 𝑢2)
as proof 𝜋 along with (𝐶1,𝐶2)

The verifier V with the values (𝑔, ℎ,𝐶1,𝐶2, 𝑐,𝑢1, 𝑢2) performs

the following check: (i) Computes: (𝑉 ′
1
,𝑉 ′

2
) =

(
𝑔𝑢1𝐶𝑐

1
, ℎ𝑢2

(𝐶2

𝐶1

)𝑐 )
(ii) Computes 𝑐′ = 𝐻 (𝑔, ℎ,𝐶1,𝐶2,𝑉 ′

1
,𝑉 ′

2
). (iii) Accepts the proof if

𝑐 = 𝑐′ else rejects.

Equality of exponent with different bases
To prove equality of exponent in discrete logarithm commitment

with different bases 𝑔 ∈ G, g ∈ G, given 𝐶1 = 𝑔𝑠 and 𝐶2 = g𝑠 , the

prover P does the following: (i) Picks values 𝑣
$←− Z𝑝 and computes

(𝑉1,𝑉2) = (𝑔𝑣, g𝑣) (ii) Computes the hash 𝑐 = 𝐻 (𝑔, g,𝐶1,𝐶2,𝑉1,𝑉2)
(iii) Computes 𝑢 = 𝑣 − 𝑐𝑠 (iv) Sends (𝑐,𝑢) as proof along 𝜋Eq with
(𝐶1,𝐶2)

The verifierV takes the values (𝑔, g,𝐶1,𝐶2, 𝑐,𝑢) and computes

the following (i) (𝑉 ′
1
,𝑉 ′

2
) =

(
𝑔𝑢𝐶𝑐

1
, g𝑢𝐶𝑐

2

)
(ii) 𝑐′ = 𝐻 (𝑔, g,𝐶1,𝐶2,𝑉 ′

1
,𝑉 ′

2
).

(iii) Accepts the proof if 𝑐 = 𝑐′ else rejects.

E SECURITY ANALYSIS
E.1 Correctness and secrecy of BBSS-DKG

Theorem 2. Given a correct and secure (𝑛, 𝑡)-verifiable BBSS
scheme, the Proactive BBSS protocol of Figure 9 satisfies correctness
and secrecy properties under the discrete log assumption.

Proof. Correctness. In Phase 1 of the BBSS-DKGprotocol from

Figure 4, all honest parties compute the same qualified set Q as the

complaint and disqualification information is broadcast to all parties.

Any party 𝑃𝑖 ∈ Q, which shared its value 𝑧𝑖 successfully and any set
T of 𝑡+1 ormore honest parties can reconstruct the secret key value,

owing to the threshold structure of the BBSS performed. Let R =⋃
𝑖 𝑇𝑖 , 𝑖 ∈ T be the set of all row indices of 𝑴 held by the parties of

T . Each 𝑧𝑖 =
∑
𝑘∈R 𝑠𝑖𝑘 ·𝜆𝑘 𝝀T = {𝜆𝑘 , 𝑘 ∈ R} such that M⊤T ·𝝀T = 𝜺

and 𝑧𝑖 = s⊤T · 𝝀T , where sT is the vector of all share elements held

by all the parties in T . Every honest party computes its share
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Public parameters pp = {𝑛, 𝑡, 𝑞, 𝑝,M,M′,𝜓 (·),𝜓 (·)′}. Each party 𝑃𝑖 begins with an initial verified share sk𝑖 ( and sk′𝑖 ) consisting of
elements 𝑠𝑖,𝑘 ′ ( and ˆ𝑠′𝑖,𝑘 ′ ) ∈ Z𝑞, 0 ≤ 𝑘′ ≤ |𝜓−1 (𝑖) |.M ∈ {0, 1}𝑑×𝑒 ,M′ ∈ {0, 1}𝑑

′×𝑒′
. All the honest parties begin with a commitment

vector v = (𝑣1, 𝑣2 · · · 𝑣𝑒 ). Share renewal:
For each 𝑘′ from above party 𝑃𝑖 performs the following:

(1) Performs a Verifiable-BBSS of each of the share elements among all the parties. Samples random vectors 𝝆𝑖 , 𝝆
′
𝑖 ∈ Z𝑒

′
𝑝 with

elements 𝜌𝑖𝑙 , 𝜌
′
𝑖𝑙 , 𝑙 ∈ [𝑒′] and computes s𝑖 = M′ · 𝝆𝑖 and s′

𝑖
= M′ · 𝝆′𝑖 with 𝜌𝑖1 = 𝑠𝑖𝑘 ′ and 𝜌′𝑖1 = ˆ𝑠′𝑖𝑘 ′

(2) Let the share elements of s𝑖 and s′
𝑖
be 𝑠𝑖𝑙 and 𝑠

′
𝑖𝑙 , 𝑙 ∈ [𝑒′]. Forward the share elements 𝑠𝑖𝑘 , 𝑠

′
𝑖𝑘 to party 𝑃 𝑗 , 𝑘 ∈ 𝑇𝑗 = 𝜓−1 ( 𝑗)

and commitments 𝑐𝑖𝑙 = 𝑔
𝜌𝑖𝑙ℎ𝑠

′
𝑖𝑙 , 𝑙 ∈ [𝑒′] to all the parties.

(3) 𝑃𝑖 verifies the shares and the corresponding commitments received from party 𝑃 𝑗 and broadcasts a complaint against 𝑃 𝑗 if the

verification fails.

(4) 𝑃𝑖 computes the qualified set Q′ as in Phase 1 of BBSS-DKG, at the end of which all honest parties compute the same set Q′.
(5) 𝑃𝑖 computes the new share as follows: LetM′Q′ be the set of rows held by the parties in the set Q′. Each party computes the

vector 𝝀Q′ ∈ {0, 1,−1}𝑑𝑄′ such that M′⊤Q′ · 𝝀Q′ = 𝜺. The new share of 𝑃𝑖 is sk′𝑖 = s̃⊤
𝑖,Q′ · 𝝀Q′ , where s̃𝑖,Q′ is the set of all share

elements received by party 𝑃𝑖 from the parties in the set Q′.

Proactive BBSS

Figure 9: Proactive BBSS Scheme

vector sk𝑗 = {𝑠𝑘 |𝑠𝑘 =
∑
𝑖∈Q 𝑠𝑖𝑘 , 𝑘 ∈ 𝑇𝑗 } element-wise for each 𝑘 .

Thus we have, 𝑠𝑘 =
∑
𝑖∈Q 𝑧𝑖 =

∑
𝑖∈Q

( ∑
𝑘∈R 𝑠𝑖𝑘 · 𝜆𝑘

) ∑
𝑘∈R 𝜆𝑘 ·( ∑

𝑖∈Q 𝑠𝑖𝑘
)
=
∑
𝑘∈R 𝜆𝑘 · 𝑠𝑘 This holds for any set qualified set T

(and hence the corresponding set of rows R), thus giving a unique

𝑠𝑘 for all such sets with 𝑡 + 1 or more parties. Also, each share

element 𝑠𝑘 , 𝑘 ∈ 𝑇𝑗 of a party 𝑃 𝑗 , can be computed and verified from

the publicly available values 𝑔𝑠𝑖𝑘 , 𝑔𝑠𝑘 = 𝑔
∑

𝑖∈Q 𝑠𝑖𝑘 =
∏
𝑖∈Q 𝑔

𝑠𝑖𝑘 =∏
𝑖∈Q

(∏𝑒
𝑙=1

𝐴
𝑚𝑘𝑙

𝑖𝑙

)
which is available from Phase 2 of the protocol

of Figure 4. Thus each share (and share element) can be verified for

correctness at the time of reconstruction.

The public key 𝑝𝑘 =
∏
𝑖∈Q 𝑔

𝜌𝑖1
is computed from values broad-

cast in the protocol, hence the value can be obtained by all the

honest parties. It remains to be shown that 𝑝𝑘 = 𝑔𝑠𝑘 such that 𝑠𝑘 =∑
𝑖∈Q 𝑧𝑖 . For the parties against whom a complaint is generated,

the value 𝑧𝑖 is reconstructed publicly. For the other parties against

whom there was no complaint, all their values𝐴𝑖𝑙 , 𝑙 ∈ [𝑒] have been
verified using the verification step in Phase 2 of the protocol. Since

all such parties constitute the qualified set Q which is computed

by all the honest parties, the value 𝐴𝑖1 = 𝑔
𝜌𝑖𝑙 = 𝑔𝑧𝑖 . The value 𝑝𝑘

is computed by honest parties as 𝑝𝑘 =
∏
𝑖∈Q 𝑔

𝑧𝑖 = 𝑔
∑

𝑖∈Q 𝑧𝑖 = 𝑔𝑠𝑘 .

Hence all the honest parties compute the same public key 𝑝𝑘 corre-

sponding to 𝑠𝑘 . Also since the qualified set of parties Q computed

in the phase 1 of the protocol consists of at least one honest party

who shares the value 𝑧𝑖 which is chosen randomly, the secret key

𝑠𝑘 =
∑
𝑖∈Q 𝑧𝑖 is uniformly random.

Secrecy. We provide a simulator S in Figure 10 on the lines of

[29, 54] which simulates the adversary view of the BBSS-DKG pro-

tocol of Figure 4. Without loss of generality we assume that the

set of parties C = {𝑃1, · · · , 𝑃𝑡 ′ } are corrupted and set of rest of

the parties H = {𝑃𝑡 ′+1, · · · , 𝑃𝑛} are honest. The simulator con-

trols all the honest partiesH and performs all computations and

communications with the corrupt parties on behalf of them.

The simulator follows the Phase 1 of the protocol as shown

in Figure 4 and generates share vectors 𝒔𝑖, 𝑗 using random 𝝆𝑖 for

Let C = {𝑃𝑖 , 𝑖 ∈ {1, · · · , 𝑡 ′ }} denote the parties controlled by the adversary
and H = {𝑃 𝑗 , 𝑗 ∈ {𝑡 ′ + 1, · · · , 𝑛}} denote the set of honest parties in the

protocol. 𝑡 ′ ≤ 𝑡 . S takes the public key 𝑦 as input.

(1) The simulator S performs all the steps in the Phase 1 of the BBSS-

DKG on behalf of the parties of set H including generating and

forwarding shares and commitments, verifications of the received

shares and handling all communications with the corrupted parties

such that the following hold:

(a) The values 𝝆𝑖 , 𝝆
′
𝑖
for 𝑃𝑖 ∈ H are chosen at random by S.

(b) The set Q is well defined with H ⊂ Q
(c) The adversary’s view consists of (𝝆 𝑗 , 𝝆

′
𝑗
) for 𝑃 𝑗 ∈ C, shares

(s𝑖,𝑗 , s′𝑖,𝑗 ) for 𝑃𝑖 ∈ Q and 𝑃 𝑗 ∈ C and commitments 𝐶𝑖𝑘 , 𝑃𝑖 ∈
Q, 𝑘 ∈ [𝑡 ]

(d) S has all shares and commitments of the parties in Q. For 𝑗 ∈
Q\H, S has enough valid shares to reconstruct the vector 𝝆 𝑗 , 𝝆

′
𝑗
.

(2) Perform:

(a) Compute 𝐴𝑖𝑙 , 𝑙 ∈ [𝑒 ] = 𝑔𝜌𝑖𝑙 for 𝑖 ∈ Q\𝑛, 𝑙 ∈ [𝑒 ]
(b) Set 𝐴∗

𝑛0
= 𝑦

∏
𝑖∈Q\𝑛 (𝐴𝑖0 )−1 and s∗

𝑛𝑘
= 𝒔𝑛𝑘 = {𝑠𝑛𝑘 , 𝑘 ∈ 𝑇𝑛 }

where 𝑠𝑛𝑙 , 𝑙 ∈ [𝑒 ] is an element of the vector𝑀 · 𝝆𝑛 item Broad-

cast the values𝐴𝑖𝑙 for 𝑖 ∈ H\𝑛 and 𝐴∗
𝑛𝑙

with 𝑙 ∈ [𝑒 ] along with
the corresponding NIZKPoK 𝝅𝑖

Simulator S

Figure 10: Simulator for BBSS-DKG

𝑃𝑖 ∈ H , 𝑃 𝑗 ∈ C. Similarly it generates and forwards the vectors s′
𝑖, 𝑗

using random 𝝆′
𝑖
. Sfollows the protocol including the computation

of qualified set Q. However, in the second phase of the protocol,

it computes and broadcasts all the 𝐴𝑖,𝑙 for all the honest parties

except one party 𝑃𝑛 . For the party 𝑃𝑛 it sets the secret value 𝐴𝑖,0
such that the public key obtained as

∏
𝑖∈Q 𝐴𝑖𝑙 , 𝑙 ∈ [𝑒] is the desired

value 𝑦. The simulator S will be able to reconstruct the vector 𝝆𝑘
for any party 𝑃𝑘 which is present in the qualified set Q but not in

the setH . Whenever a valid complaint is broadcast from any party

controlled by adversary, S constructs the secret value and opens

it. □
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E.2 Security of Proactive secret sharing
Correctness. Let (𝑛, 𝑡), (𝑛′, 𝑡 ′) be access structures in the epochs

e and e + 1. Without loss of generality let 𝒔𝒌𝑖 , 𝑖 ∈ [𝑛] be shares of
secret key 𝑠𝑘 of the 𝑛 parties in epoch e and 𝒔𝒌′𝑖 , 𝑖 ∈ [𝑛

′] be shares
of the 𝑛′ parties in epoch e + 1. We need to show that any set of

𝑡 ′ + 1 or more parties in epoch e + 1 reconstruct the secret key 𝑠𝑘 .
For epoch 𝑒 , the share elements held by parties in qualified set

Q are 𝑠𝑘 , 𝑘 ∈ R = {⋃𝑖 𝑇𝑖 , 𝑃𝑖 ∈ Q}. R is the set of all rows held by

the parties in Q. We know, 𝑠𝑘 =
∑
𝑘∈R 𝜆𝑘𝑠𝑘

However, each share element 𝑠𝑘 is verifiable secret shared in

the next epoch e + 1. Thus any qualified set Q′ of 𝑡 ′ + 1 parties

can construct the share element 𝑠𝑘 . Let R′ be the rows held by the

parties in Q′. Then, 𝑠𝑘 =
∑
𝑖∈R 𝜆𝑖𝑠𝑖 =

∑
𝑖∈R 𝜆𝑖

( ∑
𝑗∈R′ 𝜆 𝑗𝑠𝑖 𝑗

)
=∑

𝑗∈R′ 𝜆 𝑗
( ∑

𝑖∈R 𝜆𝑖𝑠𝑖 𝑗
)
=
∑
𝑗∈R′ 𝜆 𝑗𝑠 𝑗 = 𝑠𝑘

Secrecy. The secrecy of the secret in each phase follows from the

security properties of Verifiable BBSS scheme. Let B,B′, |B|,B′ | <
𝑡 be the set of servers corrupted in an epoch e and e + 1. W.l.o.g let

B ∩ B′ = 𝜙 , from the correctness principle above, we know that

any 𝑡 ′ + 1 or more parties can construct the secret key in the epoch

e + 1. From the security of the BBSS scheme we know that no set of

𝑡 ′ or less number of parties has any information about the secret,

hence maintaining the secrecy property.

E.3 Security of PRF evaluations
Here we argue the security of the ParSecretKeyEval and ParPub-
KeyEval by providing a reduction to LWR problem instance.

Theorem 3. If the LWR(𝑞,m,n) assumption holds, the function
ParSecretKeyEval(𝑋, E, pp) is pseudo-random.

Proof. Let ParSecretKeyEval(𝑋,E, pp) be 𝑓E (𝑋 ), we show that

𝑓E is a family of pseudo-random functions. Let D be an efficient

algorithm that gets the value of 𝑓E on ℓ −1 uniformly chosen inputs

𝑋1, 𝑋2, · · · , 𝑋ℓ−1 and distinguishes 𝑓E (𝑋ℓ ) from randomwith a non-

negligible advantage 𝜖 . We construct an algorithm A that breaks

the LWR assumption:

On input (𝑨, ⌊𝑨𝒔⌋𝑝 ) where𝑨 ∼ 𝑈 (Zm×n𝑞 ), 𝒔 ∼ 𝑈 (Zn𝑞).A parses

thematrix𝑨 as rows 𝒂1, 𝒂2, · · · , 𝒂m and vector ⌊𝑨𝒔⌋𝑝 as 𝒛′1, 𝒛′2, · · · ,
𝒛′m. For each 𝒛′𝑖 , 𝑖 ≤ m, sample 𝑑 − 1 uniformly random values

𝑠𝑖,2, 𝑠𝑖,3, · · · 𝑠𝑖,𝑑 ∈ Z𝑝 . Let 𝒛𝑖, 𝑗 = 𝒂𝑖 ·𝑠𝑖, 𝑗 for 𝑖 ≤ m; 2 ≤ 𝑗 ≤ 𝑑 . NowA
invokesm instances of algorithmD𝑖 each with the ℓ−1 pairs of val-
ues {⟨𝐻 (𝑋 𝑗 ), 𝑓E (𝑋 𝑗 )⟩}ℓ−1𝑗=1 and a pair ⟨𝑎𝑖 , [𝒛′𝑖 , 𝒛𝑖,2, 𝒛𝑖,3, · · · , 𝒛𝑖,𝑑 ]⟩
for 𝑖 ≤ m. D𝑖 distinguishes [𝒛′𝑖 , 𝒛𝑖,2, 𝒛𝑖,3, · · · , 𝒛𝑖,𝑑 ] from a uni-

formly random vector with advantage 𝜖 . AlgorithmA distinguishes

the LWR instance from a uniformly random vector 𝑈 (Z𝑑𝑞 ) with an

advantage at-least 𝜖 . □

Theorem 4. If the LWR𝑞,m,n assumption holds, CombSecKey is a
(𝑛, 𝑡)-threshold evaluation of a pseudo-random function.

Proof. Let D′ be an efficient algorithm that differentiates an

evaluation of CombSecKey from a uniformly random vector with a

non-negligible advantage 𝜖 after ℓ − 1 queries. It takes the vectors
[𝒛1, 𝒛2, · · · , 𝒛𝑛], computes 𝜆𝑖 ·𝒛𝑖 such that the elements of the vector

𝜆𝑖 ∈ {−1, 0, 1} and differentiates the resultant vector 𝒔𝒌 from the

uniform vector 𝑈 (Z𝑛𝑞 ) with an advantage 𝜖 .

We first consider the case when all the 𝑛 servers are honest

and then consider the case when 𝑡 of them are corrupt. We build

an algorithm A′ with uses D′ to solve the LWR instance. On

input (𝑨, ⌊𝑨𝒔⌋𝑝 ) where 𝑨 ∼ 𝑈 (Zm×n𝑞 ), 𝒔 ∼ 𝑈 (Z𝑛𝑞 ). A parses the

matrix 𝑨 as rows 𝒂1, 𝒂2, · · · , 𝒂m and vector ⌊𝑨𝒔⌋𝑝 as 𝒛′
1
, 𝒛′

2
, · · · ,

𝒛′m. For each 𝒛′
𝑖
, 𝑖 ≤ m, sample 𝑑 − 1 uniformly random values

𝑠𝑖,2, 𝑠𝑖,3, · · · , 𝑠𝑖,𝑑 ∈ Z𝑝 . Let 𝒛𝑖, 𝑗 = 𝒂𝑖 · 𝑠𝑖, 𝑗 for 𝑖 ≤ m; 2 ≤ 𝑗 ≤ 𝑑𝑖 , 𝑍𝑖 =
[𝒛′
𝑖
, 𝒛𝑖,2, 𝒛𝑖,3, · · · ,𝒛𝑖,𝑑𝑖 ]. Now A′ invokes 𝑗 instances of algorithm

D′ each with ℓ − 1 vectors 𝑍𝑖, 𝑗 , 𝑖 ≤ ℓ − 1 and an additional input a

vector 𝑍 ′
𝑗
= [𝑍 𝑗 , 𝑍 𝑗+1, · · ·𝑍 𝑗+𝑛] for 1 ≤ 𝑗 ≤ ⌈m𝑛 ⌉. Each instance of

D′ distinguishes the input vector from uniformly random vector

𝑈 (Z𝑛𝑝 ) with an advantage 𝜖 , thus algorithm A′ distinguishes an
LWR instance from a random vector with an advantage at-least 𝜖 .

In the case where 𝑡 ′ servers are corrupt, the adversary has access
to the secret key shares of the 𝑡 ′ servers. In such a case, the algo-

rithmA′ supplies only 𝑛−𝑡 element vectors to each instance of the

algorithm D′ through the vector [𝑍 𝑗 , 𝑍 𝑗+1, · · ·𝑍 𝑗+𝑛−𝑡 ]. Each D′
simulates the 𝑡 servers by sampling 𝑡 values 𝑍 𝑗+𝑛−𝑡 , · · · , 𝑍 𝑗+𝑛 ∈
Z𝑑𝑖𝑝 . It constructs the vector 𝑍 ′

𝑗
= [𝑍 𝑗 , 𝑍 𝑗+1, · · · , 𝑍 𝑗+𝑛], computes

𝒔𝒌 𝑗 = 𝜆𝑖 · 𝑍 𝑗 for each element of 𝜆𝑖 ∈ {−1, 0, 1}. The algorithm
D′ differentiates the vector from a uniform random vector with

an advantage 𝜖 . The algorithm A′ differentiates the LWR instance

from a random vector with an advantage of at-least 𝜖 . □
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