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Abstract

Cannabinoid receptor type 2 (CB2R) is a member of the class A G protein-coupled receptor
(GPCRs) family and a component of the endocannabinoid system that is modulated by the
psychoactive chemical from Cannabis Sativa, partial agonist A’-tetrahydrocannabinol (A°-THC).
Selective activation of CB2R allows for the treatment of inflammatory and immune-related
conditions without the psychotropic effects of CB1R. While CB2R-selective agonists are
available, CB2R partial agonists are scarce. Hence, the pharmacological difference between
CB2R full agonists and partial agonists remains to be deciphered, prompting the search for novel
partial agonists. Here, using an induced-fit docking approach, we built a partial agonist A’>-THC
bound CB2R system from the inactive CB2R structure (PDB ID: 5ZTY) and performed
microsecond molecular dynamics (MD) simulations. The simulations reveal an upward shift of
the “toggle switch” W6.48?*® and minor outward movement of the transmembrane helix 6
(TM6). Dynamic network model identifies a possible communication path between the ligand
and the toggle switch” W6.482%®_ Furthermore, to identify potential CB2R partial agonists, we
conducted structure-based virtual screening of ZINC15 “Druglike” library containing 17,900742
compounds against 3 conformations derived from MD simulation of CB2R complexed with
partial agonist A>~THC using Glide virtual screening protocol comprising various filters with
increasing accuracy. Nine diverse compounds predicted to have high MM-GBSA binding energy
scores and good ADMET properties (including high gastrointestinal absorption and low toxicity)
are proposed as potential CB2R partial agonists.

Keywords: CB2R, toggle switch” W6.482*®, MD simulation, dynamics network model, virtual

screening, MM-GBSA, CB2R partial agonist



Introduction
Cannabinoid receptors 1 and 2 (CBIR and CB2R) are members of the class A G protein-coupled
receptor (GPCRs) family and are key components of the endocannabinoid system modulated by
A°-tetrahydrocannabinol (A°-THC)—a psychoactive chemical from Cannabis sativa (Munro,
Thomas, & Abu-Shaar, 1993). The two cannabinoid receptors play crucial roles in pain
sensation, appetite, memory(Barinaga, 2001), and immunomodulation (Chait & Zacny, 1992).
They share 44% total sequence identity and 68% sequence similarity in the transmembrane
region (Abood, 2005). but differ in their tissue distribution and functions in the endocannabinoid
system. While CB1R is primarily expressed in the central nervous system, CB2R is primarily
expressed in the immune system (Pertwee, 2006). Regarding immune system modulation, CB2R
plays a critical role in inflammation, and CB2R activation by cannabinoids usually decreases
inflammatory cell activation (Manzanares, Julian, & Carrascosa, 2006; Turcotte, Blanchet,
Laviolette, & Flamand, 2016). Activation of CB2R suppresses proinflammatory cytokines such
as IL-1B and TNFa while increasing anti-inflammatory cytokines such as IL-4 and IL-10
(Ashton, Wright, McPartland, & Tyndall, 2008). Thus, selective modulation of CB2R may allow
for the treatment of inflammatory and immune-related conditions without the psychotropic
effects of CBIR (Contino, Capparelli, Colabufo, & Bush, 2017; Dhopeshwarkar & Mackie,
2014; Lunn, Reich, & Bober, 2006). However, the pharmacological difference between full
agonists and partial agonists of the CB2R remains to be deciphered (Mukhopadhyay et al.,
2016). This may be partly due to the scarcity of the CB2R partial agonists.

Among the available crystal structures of the CB2R are those with an antagonist (PDB
ID: 5ZTY) (Li et al., 2019) (Figure 1A) and agonists without G protein (PDB ID: 6KPC) (Hua

et al., 2020) (Figure 1B). Interestingly, the overall conformation of the transmembrane domain



of CB2R in 5ZTY and 6KPC appears to be similar, with an overall Co. RMSD of 0.86 A (Hua et
al., 2020) (Figure 1C). The most observed difference between the 2 structures is at the “toggle
switch” W6.482%®) (the superscript denotes Ballesteros-Weinstein numbering)(Ballesteros &
Weinstein, 1995), which is flipped upward in 6KPC (the active conformation) (Figure 1C). This
single ‘‘toggle switch’> W6.48%%® is enough to trigger the activation of the downstream
signaling (Hua et al., 2020). The details of the sole role of this toggle switch in CB2R activation
are discussed elsewhere (Shahbazi, Grandi, Banerjee, & Trant, 2020). Thus, probing the
conformational changes of CB2R around this toggle switch may aid in elucidating the activation
mechanism of the receptor. Also, the three-dimensional structure of partial agonist-bound CB2R
is not available to date, despite the therapeutic effects of the CB2R partial agonist A°-THC
(Colizzi, Ruggeri, & Bhattacharyya, 2020; Jamontt, Molleman, Pertwee, & Parsons, 2010; van
Vliet, Vanwersch, Jongsma, Olivier, & Philippens, 2008). The fact that the partial agonist A°-
THC binds to the same site on the CB2R as the agonist AM 12033, they are expected to show
similar properties with regard to the CB2R activation. Therefore, molecular dynamics (MD)
simulations of the partial agonist A>~THC-bound CB2R—with an initial model built using
antagonist-bound CB2R crystal structure 5SZTY may derive potential partially active structures
from the inactive one, featuring conformational changes of the “toggle switch” W6.485%” as the
signature for the CB2R activation (Hua et al., 2020).

To probe these conformational changes, we built and submitted the partial agonist A9-
THC system to 3x1 puS MD simulations with different initial velocities. The antagonist-bound
CB2R (5ZTY) was also subjected to the same treatment. Conformation of the TMD in the
antagonist system is maintained, but the TM6 moves outward from the TM bundle in two out of

3 trajectories of the partial agonist system. Consistent with the movement of TM6, the W6.482%%)



in the partial agonist system shifts upward like its conformation in the crystal structure of the
agonist bound CB2R (6KPC). (Hua et al., 2020) Dynamics network analysis reveals a possible
signal transduction path connecting the partial agonist binding site to the toggle switch”
W6.4825®) Furthermore, using the 3 most abundant conformations derived from the MD
simulation of the CB2R-partial agonist A>~THC system, we conducted structure-based virtual
screening of ZINC15 “Druglike” library and performed MD simulations, MM-GBSA binding
energy calculations, and ADMET property prediction on the top 30 compounds. We propose a

total of 9 compounds with diverse structures as potential CB2R partial agonists.
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Figure 1. Crystal structures: (A) antagonist-bound CB2R (5ZTY); (B) agonist-bound CB2R
(6KPC). (C) The two structures share a similar conformation of the transmembrane domain but
differ in the conformation of the toggle switch W6.482%® which is shifted upward in the agonist
system.



Methods

Protein and ligand preparation, and docking

The crystal structure of antagonist AM10257-bound CB2R (PDB ID: 5ZTY) (Li et al., 2019)
was used as a template to build the homology model of CB2R. The model was built to insert the
missing loops and clean any mutation in the structure. Maestro’s Protein Preparation Wizard
(Sastry, Adzhigirey, Day, Annabhimoju, & Sherman, 2013) was used to prepare the CB2R
model for MD simulations. Preprocessing was performed which added hydrogens and disulfide
bonds where necessary, and assigned correct atom charges based on the protonation state using
predicted pKa values at physiological pH. A restrained minimization was carried out to correct

the bond order.

The 3D structure of the A’-THC was retrieved from ChEMBL Database
(https://www.ebi.ac.uk/chembl/). LigPrep module in Schrédinger Suite (Friesner et al., 2004)
was used to prepare A°-THC. “LigPrep predicts accurate ligand conformation by tautomerism
and predicting ionization states, adjusting ring conformations, and generating stereoisomers. The
glide extra precision (XP) docking method was used to dock A’-THC into CB2R. The structure

of the antagonist AM 10257 from the 5ZTY was retained in the built CB2R model.
Molecular dynamics simulation
Molecular dynamics simulation setup

All MD simulations were performed using Desmond Module in Schrédinger Suite (Bowers et
al., 2006). After aligning the complexes to the membrane set to the helices of the TMD, an
OPLS3 force field (Harder et al., 2016) was used to build the simulation system. The systems

were solvated in the SPC water model and 1onized with 0.15M NaCl.



MD simulation protocols

Each system underwent the following steps of the default relaxation protocol for membrane
proteins (Zhang, Hou, Wang, Wang, & Zhang, 2012): 1) Minimization with restraints on solute
heavy atoms; 2) Minimization without any restraints; 3) Simulation with heating from 0 K to 300
K, with H>O barrier and gradual restraining; 4) Simulation in NPT (constant number of particles,
constant pressure of 1 bar and constant temperature of 300 K) ensemble with H>O barrier and
with heavy atoms restrained; 5) Simulation in NPT ensembles with equilibration of solvent and
lipids; 6). Simulation in NPT ensemble with protein-heavy atoms annealing from 10.0 kcal/mol
to 2.0 kcal/mol; 7) Simulation in NPT ensemble with Ca atoms restrained at 2 kcal/mol; and 8).
Simulation for 1.5 ns in NPT ensemble with no restraints. Finally, three separate 1000 ns
production runs with different initial velocities were carried out in an NPT ensemble for each of
the two systems using the default protocol. The temperature was controlled using the Nos¢-
Hoover chain coupling scheme (Ikeguchi, 2004) with a coupling constant of 1.0 ps. The pressure
was controlled using the Martyna-Tuckerman-Klein chain coupling scheme (Ikeguchi, 2004)
with a coupling constant of 2.0 ps. M-SHAKE (Bailey & Lowe, 2009) was applied to constrain
all bonds connecting hydrogen atoms, enabling a 2.0 fs time step in the simulations. The k-space
Gaussian split Ewald method (Shan, Klepeis, Eastwood, Dror, & Shaw, 2005) was used to treat
long-range electrostatic interactions under periodic boundary conditions (charge grid spacing of
~1.0 A, and direct sum tolerance of 10~). The cutoff distance for short-range non-bonded
interactions was 10 A, and the long-range van der Waals interactions were based on a uniform
density approximation. To reduce the computation, non-bonded forces were calculated using an

r-RESPA integrator (Stuart, Zhou, & Berne, 1996) where the short-range forces were updated



every step and the long-range forces were updated every three steps. The trajectories were saved

at 50.0 ps intervals for analysis.

Trajectory clustering analysis

Six trajectories (3 for each system) were analyzed using the trajectory clustering tool in Maestro.
A hierarchical clustering method with average linkage was applied. The parameter for the
structural similarity metric was the backbone RMSD and the merging distance cutoff was set to
2.5 A. Structures of the most abundant cluster for each system were saved for further analysis.
The representative structure of the most abundant clusters for the antagonist and partial agonist

systems were aligned and superimposed to compare conformational differences.
Interaction and dynamics analysis

The receptor-ligand interactions and other dynamics properties were analyzed using the
simulation interaction diagram (SID) tool in Maestro: protein-ligand contacts, Root Mean-Square
Deviation (RMSD), Root Mean-Square Fluctuation (RMSF), and Secondary Structure Element
(SSE). The type and occupancy of each protein-ligand contact were recorded. The RMSD
measures the displacement change of atoms for the entire trajectory with respect to the reference
model. The RMSF measures residual displacement with respect to the initial model. Changes in

the secondary structure (helices and beta sheets) were recorded through simulations.

To compute the RMSD for a selected region, all frames were aligned with their initial
positions based on their TMD. Simulation event analysis was then used to calculate the RMSD

of TMD, TM6, and C-terminal regions.

Molecular switch analysis



Molecular switches are a set of non-covalent interactions that play roles in protein structure
stabilization. Breakage of these interactions causes the receptor to enter an activated state
(Kobilka & Deupi, 2007). The DRY and NPxxY motifs, and “toggle switch” W6.48?°® are the 3
molecular switches present in the CB2R akin to the most class A GPCRs (Hua et al., 2020).
Since conformational changes of the “toggle switch” W6.48%3® are enough to activate CB2R
(Hua et al., 2020), its dihedral angle was computed over time for each of the 3 trajectories of the
antagonist and partial agonist systems. Also, the conformational change of the “toggle switch”
W6.484%%) was analyzed by the superimposition of the most abundant structures of the two
systems with the structures of the antagonist-bound CB2R (5ZTY) and agonist-bound CB2R

(6KPC).
Dynamic network analysis

To propose signal transduction pathways leading to partial activation of the receptor by the
partial agonist A>~THC, dynamics network models—defined as a set of nodes connected by
edges (Eargle & Luthey-Schulten, 2012) were generated using the NetworkView plugin (Eargle
& Luthey-Schulten, 2012) in VMD (Humphrey, Dalke, & Schulten, 1996). A contact map was
generated for each trajectory. Contact map added an edge between any 2 given nodes whose
heavy atoms interacted within a cutoff of 4.5 A for at least 75% of the simulation. The edge
distance was derived by the program Carma (Glykos, 2006) using pairwise correlations between
nodes (Eargle & Luthey-Schulten, 2012). The probability of information transfer across the edge

is given by:
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A (8) ="ri(t) - Cri(t))

where Cjjis the correlation coefficient; r is the edge distance, and t denotes time. The edges are
weighted (w;j) between any two nodes 1 and j: w; = —log(|Cjl). The thicker the edge the higher

the probability of information transfer.

Using the Girvan-Newman algorithm (Girvan & Newman, 2002), the generated network
was then further grouped into subnetworks, referred to as communities, based on the frequency
of connection to each other. A possible communication path between the ligands and ‘‘toggle

switch’> W6.482°®) was generated.
Structure-based virtual screening
Compound Library preparation

A prepared ZINC15 “Druglike” library was downloaded from the ZINC database(Sterling &
Irwin, 2015), which used ChemAxon’s JChem to protonate and prepare biologically relevant

tautomers at Physiological pH(Csizmadia, 2000).

Using 3 most abundant conformations accounting for 26, 21, and 19% of the MD simulation of
the CB2R-partial agonist A>-THC system, structure-based virtual screening of ZINC15
“Druglike” library was conducted (Figure 2). The Glide molecular docking module has 3 levels
of docking scoring functions: high throughput virtual screening (HTVS), standard precision (SP),
and extra precision (XP). HTVS serves as a first filter to reduce the compounds into manageable
numbers only the top 0.01% of hits proceeded to the second screening step. SP further reduces
the chemical space to a manageable size with improved accuracy. XP is the most accurate

scoring function and performs an exhaustive evaluation of ligand poses.
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To enhance the likelihood of identifying promising preclinical candidates, all ligands were also
evaluated with the Schrodinger QikProp package to predict ADME and toxicity parameters.
Ligand structures were clustered by fingerprints, and diverse representatives per cluster were

selected.

MD simulation of the top 30 hits and MM-GBSA binding energy calculation

The top 30 hits—10 from each conformation, were complexed with CB2R and submitted to 200
ns MD simulation using the same simulation parameters as above. And the physics-based MM-
GBSA binding energy of the improved ligand pose was computed to enhance the prediction

accuracy. This level of screening is considerably slower.

Further ADMET prediction

Prediction of ADMET properties for the top 30 compounds was performed on the SwissADME

web server (http://www.swissadme.ch/) developed by the Swiss Institute of Bioinformatics to

enable computational estimation of physiochemical descriptors and pharmacokinetic properties,
and drug-like small molecule inhibitors. The SMILE code for each compound was uploaded to
the webserver and their ADMET properties were computed. These include gastrointestinal (GI)
absorption, blood-brain barrier permeability, Lipinski’s “rule of 5 parameters, liver metabolic

(CYP450) enzymes inhibition potential, and PAINS alert.
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Figure 2. Structure-based virtual screening workflow for identification of potential CB2R partial

agonist.

The antagonist binds deeper into the CB2R pocket than the partial agonist

Crystal structure of antagonist AM10257-bound CB2R (PDB ID: 5ZTY) (Li et al., 2019) was

used as a template to build the homology model of CB2R. During the mode building,

13



intracellular loop 3 (IL3) was inserted and the cocrystal ligand, antagonist AM 10257 was
retained. The model comprises seven transmembranes (7TM) helices connected by loops and the
C-terminal region only. The antagonist AM 10257 is bound to CB2R with its substituted core
pyrazole group residing among TM2, TM3, and TM7 and forms mainly hydrophobic interactions
with residues at ECL2, TM2, TM3, TM4, and TM6 (Figure 3A). The docking pose of the partial
agonist A’-THC reveals that the tetrahydro-6H-benzo[c]chromene ring system is located within
the main hydrophobic pocket, with an alkyl chain at C3 of the resorcinol moiety buried deep
inside the tunnel (Figure 3B) like described elsewhere (Linciano et al., 2020). This shorter
pentyl chain of A°-THC only partially occupies the hydrophobic tunnel compared with the same

chain in the antagonist AM 10257, having an extra hydroxyl group (Figure 3C).
The A°>-THC induces minor conformational changes at CB2R

The conformational changes of the antagonist AM 10257 bound-CB2R and partial agonist A°-
THC bound CB2R are compared in terms of the root-mean-square deviation (RMSD) profile of
the specific regions of the receptor. The antagonist system maintains the initial conformation of
the TMD. This is manifested in the RMSD of the TM6 which appears to be the same upon
alignment based on the TMD with TM6 (Figure 4A) and without the TM6 (Figure 4B). On the
other hand, RMSD of the TM6 increases in the partial agonist system upon alignment based on
TM1-5& TM7 (Figures 4C and D), suggesting movement of the TM6. This movement of TM6
was also analyzed in the rest of the two trajectories for each system. All the 3 trajectories for the
antagonist system maintain the conformation of the TMD (Figure S1). However, only two out of
the 3 trajectories of the partial agonist system show the outward movement of TM6 from the

7TM bundle (Figure S2).
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The helical content of both antagonist and partial agonist systems are conserved through
the simulation (Figure S3), and no significant difference in the root-mean-square fluctuation
(RMSF) profiles of the TMD between the two systems. However, intracellular loop 3 (IL3)—the
missing loop in the CB2R structure (5ZTY) inserted during model building, shows high

fluctuation (Figure S4).
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agonist AM12033 in the active structure of CB2R (6KPC) (C). A comparison of the two
structures reveals a similar binding mode of the ligands.
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Figure 4. Root-mean-square deviation (RMSD) of the specific regions of CB2R: (A) antagonist
system aligned with the initial model based on the transmembrane domain (TMD); and (B) based
on TMD (excluding TM6). The corresponding RMSD of the partial agonist system (C) aligned
based on TMD, and (D) based on TMD (excluding TM6).

The ligands form different interactions with CB2R

The AM10257, acting as a competitive antagonist of CB2R spans the CB2R pocket with its core
pyrazole ring and a three-arm scaffold assuming a constrained binding pose. The antagonist
forms mainly hydrophobic interactions with CB2R and an H-bond between the hydroxyl group
of the alkyl chain and T114 at CB2R persisting in more than 60% of the simulation (Figure SA).
On the other hand, despite binding to the same site as the antagonist AM 10257, the partial
agonist A>-THC, via hydroxyl substituent on its polycyclic ring, forms 2 H-bonds with K109 and

S90 in about 35% of the simulation. Other interactions formed are mainly hydrophobic, however,
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the alkyl chain does not appear to be involved in persistent interactions with the receptor (Figure
5B). The other two trajectories for the respective systems show similar interaction patterns
(Figures S5 and 6). Also, the two ligands show different torsion angle distribution, with the
antagonist AM 10257 displaying high flexibility, especially at the alkyl linker region (Figure S7).

This allows the linker to be buried completely in the hydrophobic pocket of CB2R.
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Figure 5. Interaction between CB2R and ligands: (A) antagonist system; (B) partial agonist
system. The timeline of the various interactions is shown in the left panel while the receptor-
ligand interaction for the most abundant structure is displayed in the right panel.

The toggle switch” W6.482%® experiences an upward shift in the partial agonist system

Trajectory clustering analysis was performed to identify the dominant structure through the

simulation. The most abundant clusters are found to be 62% and 64% for the antagonist and
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partial agonist systems, respectively. Their representative structures were superimposed with
both crystal structures of the antagonist AM10257 bound CB2R (5ZTY) and agonist bound
CB2R (6KPC) to look for conformational changes, particularly, at TM6 and the “toggle switch”
W6.4825% Compared to the crystal structure of the antagonist-bound CB2R, the antagonist
system does not show significant changes at both the TM6 and W6.48%® (Figure 6A).
However, when compared to the agonist-bound crystal structure, the TM6 does not show
significant change, and the W6.48°® does not shift upward in the antagonist system (Figure
6B). On the other hand, the TM6 slightly moves out of the 7TM in the partial agonist system and
W6.483%%) experiences a strong upward shift like in the crystal structure of the agonist bound
CB2R (Figures 6C-F). While the W6.48?% dihedral angle is maintained (between 18 and 27
degrees) through the simulation in the antagonist system (Figure 7A), it deviates high (between -
15 and 40 degrees) between 530 and 720 ns in the partial agonist system (Figure 7B). Even
though this conformational change of the W6.48%®) appears to be transient, its magnitude is
reflected in the representative structure of the most abundant cluster of the partial agonist-bound
CB2R. Consistent trends can be seen in all the 3 trajectories of the antagonist system and at least

a trajectory of the partial agonist system (Figures S8-10).
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Most abundant structure of antagonist AM10257 bound CB2R

Most abundant structures of partial agonist A°-THC bound CB2R  Crystal structure of agonist AM12033 bound CB2R (6KPC)

Figure 6. Comparison of the antagonist and partial agonist MD conformations with the inactive
(5ZTY) and active (6KPC) crystal structures of CB2R: (A) antagonist-bound MD conformation
superimposed with inactive structure and (B) with active structure; (C) Partial agonist-bound MD
conformation superimposed with inactive structure; (D-F) Partial agonist-bound MD
conformations superimposed with the active crystal structure. The “toggle switch” W6.482%%) in
the antagonist does not show conformational change whereas it shifts upward in the partial
agonist system.
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(A) Antagonist AM10257-bound CB2R (B) Partial agonist A®- THC-bound CB2R
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Figure 7. Dihedral angle profile of W6.482%®): (A) antagonist system; (B) partial agonist system.
The “toggle switch” W6.482%®: shows no significant changes in the antagonist system but
experiences some flipping events through the simulation in the partial agonist system.

The dynamic network model identifies possible signal transduction path

Dynamical network models were generated to understand the relationship between different
structural units (referred to as communities) of CB2R following ligand binding and to identify
possible signal transduction paths. For the antagonist system, the weighted network does show
high correlations between structural units around TM6 (Figure 8A) that are grouped into 11
communities (Figure 8B). Due to the binding of the antagonist deeper in the CB2R pocket, a
possible signal transduction path comprises only residues T114 and T116 at TM3 relaying the
signal to the “toggle switch” W6.48%® at the TM6 (Figure 8C). In the case of the partial agonist
system, thicker connections are observed at the extracellular site of TM5 and TM6 (Figure 8D),
suggesting correlated movement of these regions. A total of 12 communities are identified
(Figure 8E), and a path comprising S90 and Y87 at TM2; L289, and C288 at TM7, relaying the
signal to W6.48%3® at the TM6. Also, while the communication paths differ among the 3

trajectories of the antagonist system (Figure S11), the same path is identified in all the 3

21



trajectories of the partial agonist (Figure S12). The dynamic network model reveals different
community arrangements between the two systems, the possible correlation between the

movement of TMS5 and TM6 in the partial agonist system, and a longer communication between

the partial agonist A>-THC and the “toggle switch” W6.483%%).

.

Along TM3&TM6

y

Along TM2,TM7&TM6

Figure 8. Dynamics network model: (A-C) weighted network; communities (shown in different
colors); and possible signal transduction path for the antagonist system, and (D-F) weighted
network; communities and possible signal transduction path for the partial agonist system.

Structure-based virtual screening, MD simulation, and MMGBSA evaluation

The three most abundant conformations derived from MD simulation of partial agonist A°>-THC

bound CB2R were used for virtual screening of ZINC15 “Druglike” library. The top 30 hits (10
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hits against each confirmation), each complexed with the CB2R were submitted to 200 ns MD
simulation. A total of 17 diverse compounds (Figure 9) were found to have a higher MM-GBSA
binding energy score than the partial agonist A>~THC (Table 1) and are therefore considered the
initial hit partial agonists of CB2R. Their binding poses are compared to that of the agonist
AM12033 in the active crystal structure 6KPC. Even though they all bind to the same agonist

binding site, they show slightly different modes compared to the agonist AM12033 (Figure S13).

Table 1. Ligand binding energy of the top 30 hits compared to the reference compound A°>~-THC
was calculated using docking and MD simulation properties. The virtual screening was
conducted against 3 conformations: conformation 1 (blue); conformation 2 (orange);
conformation 3 (green).

# Compound Dgcci)(rizg VDW ELE Hydrophobic MM-GBSA }E:I\C/IeSp]tDO‘r }I{II\%IIID(%
(keal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kal/mol) A) (A)
Ref. A°-THC -11.7 -48.242.6 -6.0+£3.0 -61.4+3.8 -115.6+6.7
1 ZINC000009762581 -16.7 -71.8+4.4 -14.0+2.9 -58.3+5.0 -144.149.6 2.8+0.2 0.9+0.1
2 ZINC000096124070 -16.4 -66.6+5.9 -15.7+4.6 -40.8+2.7 -123.0+8.3 2.8+0.6 1.2+0.3
3 ZINC000534577320 -16.1 -59.3+2.9 -13.243.4 -47.6+2.6 -120.1+8.8 4.3+0.6 0.7+0.2
4 ZINC000017192627 -16.1 -68.4+4.8 -30.5+4.1 -43.74£3.1 -142.6+7.9 3.9+0.9 1.8+0.2
5 ZINC000096482611 -15.7 -49.8+3.6 -4.8+3.9 -38.243.2 -92.8+6.9 2.5+0.5 1.1£0.3
6 ZINC000002977189 -15.6 -54.6+2.6 -6.7+3.0 -45.2+2.8 -106.5+4.5 2.6+0.5 1.4£0.2
7 ZINCO000005895757 -15.5 -52.4+3.9 -22.943.2 -22.4+1.9 -97.7+4.8 2.7£0.5 0.7+0.1
8 ZINC000010130639 -15.5 -49.8+3.5 -9.1+6.7 -68.5+5.2 -127.4+10.5 2.7+0.5 0.7+0.2
9 ZINC000005890991 -15.3 -53.4+3.3 -19.5+4.4 -26.8+1.8 -99.8+6.1 3.1£0.6 0.6+0.1
10 ZINC000409265923 -15.1 -67.4+2.7 -13.043.1 -46.1+2.8 -126.5+5.2 3.1+0.7 1.6+0.2
11 ZINC000067457850 -15.0 -52.8+2.8 -7.9+2.7 -41.242.6 -102.0£6.3 2.1+0.2 1.0£0.2
12 ZINC000082087170 -14.6 -52.4+2.9 -21.1£9.1 -35.1%1.7 -108.7£10.6 3.0+0.6 1.1£0.2
13 ZINC000004403342 -14.4 -86.3+4.2 -23.3+8.4 -84.5+6.3 -194.1+14.9 2.8+0.4 1.5+0.3
14 ZINC000089836703 -14.4 -51.7£2.5 -9.7£2.9 -39.6+1.8 -101.0+4.6 2.4+0.3 2.240.2
15 ZINC000013548332 -14.3 -62.443.5 -12.7£3.4 -47.9+2.8 -123.0+6.6 2.3+0.3 2.240.5
16 ZINC000006752723 -14.3 -59.6+3.2 -21.7+4.1 -47.344.1 -128.6+8.1 2.4+04 0.7+0.2
17 ZINC000218260651 -14.3 -57.4+4.5 -15.3+4.6 -44.1£3.4 -116.8+10.2 2.9+0.4 0.3+0.1
18 ZINC000095527098 -14.3 -58.4+3.8 -9.2+6.3 -46.7+4.3 -114.4+11.8 3.0+0.4 1.3+0.4
19 ZINC000008791953 -14.3 -60.6+4.9 -9.2+4.2 -43.1+3.6 -112.9+£8.6 2.6+0.5 0.9£0.1
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20 ZINCO000257304951 -14.2 -59.8+3.9 -12.7£5.0 -43.9£2.7 -116.3+7.5 2.5+0.4 1.9+0.4
21 ZINC000013475970 -16.5 -113.145.0 -29.5+6.3 -75.4+4.8 -218.0+12.4 4.3+0.9 0.9+0.2
22 ZINC000002765499 -15.8 -48.6+2.5 -10.7£2.8 -37.542.3 -96.9+5.2 3.0+0.6 1.1£0.2
23 ZINC000408739159 -15.7 -66.1+5.0 -11.8+10.1 -48.9+3.3 -126.8+12.0 2.8+0.6 1.6+0.2
24 ZINC000013356709 -15.6 -65.5+3.7 -13.7+6.3 -54.9£2.9 -134.9+9.0 2.9+0.4 1.9+0.4
25 ZINC000252533065 -153 -59.4+3.2 -13.7£3.1 -41.9+2.3 -115.0+6.2 3.0+0.6 1.2+0.3
26 ZINC000089917273 -15.3 -52.4+3.3 -16.6+5.3 -47.0£5.2 -116.0+1.1 3.540.7 1.6+0.5
27 ZINC000001464338 -15.2 -54.5+3.7 -16.7+4.4 -40.6+2.9 -111.8+8.7 3.0+0.6 0.6+0.1
28 ZINC000002687799 -15.1 -65.6+3.1 -18.5+4.2 -49.4+3.4 -133.5+8.5 2.7+£0.3 0.7+0.2
29 ZINC000012628414 -15.0 -59.3+4.4 -14.2+6.0 -42.6+3.8 -116.1+8.0 2.7+£0.4 2.4+0.7
30 ZINC000072477563 -15.0 -60.7+3.1 -14.544.1 -39.1+3.2 -114.3+8.5 3.1+0.9 2.4+0.4

1.Based on the snapshots from the last 10 ns simulation.
compounds are represented in bold font.
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1 (ZINC000009762581) 2 (2INC000096124070) 20 (ZINC000257304951

NH

21 (ZINC000013475970) 23 (ZINC000408739159) 24 (ZINC000013356709)

26 (ZINC000089917273 ) 28 (ZINC000002687799) 29 (ZINC000012628414)

Figure 9. Structures of the top 9 hits were identified as potential CB2R paragonistsonist using structure-based
virtual screening of ZINC15 “Druglike” library against CB2R. Three conformations derived from MD simulations
were used for the screening.
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The final hits show good ADMET properties

The final hits were selected based on ADMET properties predicted using the SwissADME
server. A total of 9 compounds selected as potential partial agonists of CB2R were predicted to
demonstrate high gastrointestinal (GI) absorption, non-blood-brain barrier penetration, less
chance of inhibiting liver enzymes associated with drug metabolism, 0 violation of Lipinski’s
“rule of five” and 0 PAINS alert (Table 2). PAINS are chemicals that non-specifically target
several biological targets with their disruptive functional groups, including catechols and
enones(Baell & Walters, 2014), which are also present in some of the eliminated compounds
(Table 2). The selected compounds are expected to not pass the blood-brain barrier since they are
predicted to act on peripheral CB2R (CB2R is also expressed in the brain but in less extent than

CBI1R). The ADMET properties of the individual hits are available in Figure S14.

25



Table 2. Druglike and ADMET properties of the top 30 compounds were predicted using
SwissADME server. Compounds shown in bold have higher MM-GBSA energy scores than that
of A’>-THC. Compounds highlighted in green may have good ADMET properties.

S/N Compound GI BBB CYP1A2 | CYP2C19 | CYP2C9 | CYP2D6 | CYP3A4 | Lipinki’s rule PAINS
absorption | permeant | inhibitor | inhibitor | inhibitor | inhibitor | inhibitor
Ref. A°-THC High Yes No Yes Yes Yes Yes Yes; 1 violation: 0 alert
MLOGP>4.15
Ref. CBD High Yes No Yes Yes Yes Yes Yes; 1 violation: 0 alert
MLOGP>4.15
Ref. | CB2R-selective agonist High No No Yes Yes Yes No Yes, 0 violation 0 alert
AM1710
Ref. | CB2R-selective agonist Low No No Yes Yes No No Yes; 1 violation: 0 alert
JWH-133 MLOGP>4.15
1 ZINC000009762581 High No Yes Yes Yes Yes No Yes, 0 violation 0 alert
2 ZINC000096124070 High No Yes No No No No Yes, 0 violation 0 alert
3 ZINC000534577320 High Yes Yes No Yes Yes Yes Yes, 0 violation 0 alert
4 ZINC000017192627 Low No No Yes No No No Yes, 0 violation 0 alert
5 ZINC000096482611 High No No Yes Yes Yes Yes Yes, 0 violation 0 alert
6 ZINC000002977189 High No Yes Yes Yes No Yes Yes, 0 violation 1 alert:
ene_six_he
tA
7 ZINC000005895757 High No No No No No No Yes, 0 violation 0 alert
8 ZINC000010130639 High No Yes Yes Yes No Yes Yes, 0 violation 1 alert:
ene six_he
tA
9 ZINC000005890991 High No No No No No Yes Yes, 0 violation 0 alert
10 ZINC000409265923 High No No No Yes No Yes Yes, 0 violation 1 alert:
ene_six_he
tA
11 ZINC000067457850 High Yes Yes Yes Yes Yes Yes Yes, 0 violation 0 alert
12 ZINC000082087170 High No No No No No No Yes, 0 violation 0 alert
13 ZINC000004403342 Low No Yes No No Yes Yes Yes, 0 violation 0 alert
14 ZINC000089836703 High No No No No Yes No Yes, 0 violation 0 alert
15 ZINC000013548332 High No No No No No Yes Yes, 0 violation 1 alert:
anil di alk
E
16 ZINC000006752723 High No No No No No Yes Yes, 0 violation 1 alert:
anil_di_alk
_E
17 ZINC000218260651 High Yes Yes Yes No No No Yes, 0 violation 1 alert:
catechol_A
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18 ZINC000095527098 High No Yes Yes No No No Yes, 0 violation 1 alert:
catechol A
19 ZINC000008791953 High No No Yes Yes Yes Yes Yes, 0 violation 0 alert

ZINC000072477563

High

Yes, 0 violation

GI: gastrointestinal absorption; BBB: blood-brain barrier; CYP: cytochrome P450 enzymes; LogP: logarithm of
Octanol-water partition coefficient; PAINS: Pan-assay interference compounds

The top hits show stable binding mode

Out of the 10 hits for each conformation, only 2 hits from 1* conformation; 1 hit from ond

conformation; and 6 hits from the 3™ conformation passed both the MM-GBSA binding energy

and ADMET evaluations. These compounds show a stable binding mode over time, reflected in

the reduced protein and ligand RMSD halfway through the simulation (Figure 10).
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Figure 10. Protein and ligand RMSD profiles over 200 ns. The top 9 hits were selected based on
high MM-GBSA energy score and good ADMET properties (A) The top 2 hits against
conformation 1: ZINC000009762581 (1) and ZINC000096124070 (2). (B). The best hit against
conformation 2: ZINC000257304951(20). (C) The top 6 hits against conformation 3:
ZINC000013475970 (21), ZINC000408739159 (23), ZINC000013356709 (24),
ZINC000089917273 (26), ZINC000002687799 (28) and ZINC000012628414 (29).

Key protein-ligand interactions are identified

The partial agonist A>~THC, via hydroxyl substituent on the polycyclic ring, forms 2 H-bonds

with K109 and S90 in 35% of the simulation. Similarly, the top 9 hits demonstrate similar
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persistent interactions with all the 3 most abundant conformations of CB2R. Other key-
interacting residues are found in common to the A°~THC bound CB2R and the top 9 hits are
tabulated (Table 3). Unlike the alkyl chain of A°~THC which does not engage in the persistent
interaction with CB2R, the aromatic chain in all the 9 compounds forms stable interactions with
residues along the CB2R pocket (Figure 11), accounting for their higher docking and MM-
GBSA binding energy scores (Table 1). The timeline of the individual interaction is shown in
Figure S15. The ligand interacted with a combination of different polar and hydrophobic

interactions all over the CB2R channel.

Table 3. Key-interacting residues. These are residues involved in persistent
interaction between CB2R and A’-THC, and the top 9 hits.

S/N | Compound F87 | S90 | F91 | F94 | F106 | K109 | F183

Ref. | A°-THC Yes | Yes | Yes | No | Yes Yes No

1 ZINC000009762581 Yes | Yes | Yes | Yes | Yes Yes Yes

2 ZINC000096124070 Yes | Yes | Yes | No Yes Yes Yes

20 ZINC000257304951 Yes | Yes | Yes | Yes | Yes Yes No

21 ZINC000013475970 No No | Yes | Yes | No No Yes

23 ZINC000408739159 Yes | Yes | Yes | Yes | No No Yes

24 ZINC000013356709 Yes | Yes | Yes | Yes | No No Yes

26 ZINC000089917273 Yes | Yes | Yes | Yes | Yes Yes Yes

28 ZINC000002687799 Yes | Yes | Yes | Yes | Yes Yes Yes

29 ZINC000012628414 Yes | Yes | Yes | Yes | Yes Yes Yes
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Figure 11. Protein-ligand interaction. The top 2 hits against conformation 1:
ZINC000009762581 (1) and ZINC000096124070 (2). The best hit against conformation 2:
ZINC000257304951(20). The top 6 hits against conformation 3: ZINC000013475970 (21),
ZINC000408739159 (23), ZINC000013356709 (24), ZINC000089917273 (26),
ZINC000002687799 (28) and ZINC000012628414 (29).
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Discussion and conclusion

Selective modulation of CB2R may be useful for the treatment of inflammation (Shahbazi et al.,
2020) without the psycho-activity of CB1R. Elucidating the role of the “toggle switch”
W6.482%%) in the partial activation of CB2R may provide insights into the mechanism of
activation which does not involve a large-scale conformational change. In this study,
microsecond MD simulations reveal a slight outward movement of the TM6 in the partial
agonist-bound CB2R. The movement of TM6 to allow for G-protein-coupling is a common
hallmark for the activation of class A GPCRs. (Uba, Scorese, Dean, Liu, & Wu, 2021; Zhou et

al., 2019)

The initial model of CB2R was built using antagonist-bound CB2R crystal structure
(5ZTY) instead of the one of the CB2R with the agonist AM12033 (6KPC), so possible
conformational changes occurring during the receptor activation could be observed. This may
allow for deriving partially active conformations from the inactive one. Also, since activation of
CB2R is dependent on the well-known “toggle switch” W6.48%°®) (Hua et al., 2020), we focused
on this switch and examined its conformational changes through the simulations. Analysis of
most abundant structures shows that W6.48®) experiences an upward shift like in the crystal
structure of antagonist-bound CB2R (6KPC). The dihedral angle of the W6.48%%® varies
between -15 and 40 degrees halfway through the simulation until around 720 ns. This transient
change may be due to partial activation of some populations of the receptor through distinct
intermediates as shifted by ligands. (Weis & Kobilka, 2018) This agrees with a study on the
common activation mechanism of class A GPCRs which shows that most partial agonists either

cause partial activation or inactivation of a receptor (Zhou et al., 2019) and with the fact that
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CB2R behaves as most solved class A GPCRs, which only experience minor conformational

changes upon agonist binding. (Hua et al., 2020)

The Dynamic network model shows frequent connections between communities at TM5
and TM6, suggesting possible communication between the two TM helices via extracellular loop
2 (ECL2) like in other class A GPCR(Uba et al., 2020). This may have resulted from A°-THC
forming two persistent H-bonds via its hydroxyl group on the 6H-dibenzo[b,d]pyran ring;
causing the upward shift of the W6.48%3® and consequently, the slight movement of the TM6
toward TMS. The outward movement of TM6 is a crucial event in the mechanism of GPCRs
activation (Weis & Kobilka, 2018). On the other hand, the antagonist system maintains the initial
conformation of the W6.48%%® and the TMD. Furthermore, a possible signal transduction path
between the ligands and the “toggle switch” W6.482%®) was generated. For the antagonist system,
a shorter path along TM3 was generated due to the binding of the antagonist deeper into the
CB2R pocket. In the case of the partial agonist system, a longer path along with TM2 and TM7
was identified, which results from the binding of the partial agonist less deep into the pocket,

thereby allowing the W6.482%® to flip up during the activation.

To identify potential CB2R partial agonists with better pharmacological properties,
ensemble-based virtual screening was conducted against 3 conformations derived from the 1 uS
MD simulation of the partial agonist-bound CB2R. These conformations slightly differ (at TMD)
from the crystal structure of agonist bound CBR (PDB ID: 6KPC). By employing extreme
filtering, 9 compounds were found to bind strongly to CBR with high MM-GBSA binding
energy scores, with better predicted ADMET properties compared to known CB2R partial
ligands. These compounds are proposed as potential CB2R partial agonists, subject to further

experimental evaluation. Caution: we assume these hits may be partial agonists since 3 partial-
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agonists bound MD conformations that slightly differ from the active one (6KPC)(Figure 6D-F)
were used for the virtual screening. However, due to the lack of experimental data to validate the
activity of the identified compounds, we cannot rule out the possibility that some of these
compounds may be full agonists. CB2R partial agonist may allow for a better understanding of

CB2R activation since the therapeutic implications of the receptor’s full and partial activation

remain elusive(Bie, Wu, Foss, & Naguib, 2018; Pertwee, 2008; Soethoudt et al., 2017).

Taken together, MD simulations reveal minor conformational changes of TM6 due to the binding
of partial agonist, which may be related to the conformational change of the “toggle switch
W6.483%%) The Dynamic network model showed a possible communication between the ligand
and the toggle switch causing the conformational change. Therefore, the MD simulations may
have predicted the partial agonist-bound CB2R structure from the inactive structure of CB2R.
These structures were then used to identify potential CB2R partial agonists with better druglike
properties. Findings from this study may aid in the development of CB2R partial agonists with
improved pharmacological profiles to allow for a better understanding of the CB2R partial

activation.
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Data included in the supporting information file are:

RMSD of the antagonist-bound CB2R computed with respect to the initial model aligned
based on the transmembrane domain (TMD) versus alignment based on TMs 1-5 & 7 for
the individual 3 trajectories.

RMSD of the antagonist-bound CB2R computed with respect to the initial model aligned
based on the transmembrane domain (TMD) (left) versus alignment based on TMs 1-5 &
7 for the individual 3 trajectories.

Secondary structural element (SSE) showing the average helical content of CB2R
through the simulation for each of the 3 trajectories of the antagonist system and partial
agonist system.

RMSF profile showing the average residual fluctuation of CB2R through the simulation

for each of the 3 trajectories of the antagonist system and partial agonist system.

Interaction between CB2R and ligands for the trajectories of the antagonist system.
Interaction between CB2R and ligands for the trajectories of the partial agonist system.

Dihedral angle distribution for (A) antagonist AM10257; (B) partial agonist system.
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e Comparison of the antagonist and partial agonist systems with the inactive (5ZTY) and
active (6KPC) crystal structures of CB2R for the individual trajectories

e Dihedral angle profile of W6.482%® for the antagonist system and partial agonist systems

e Dynamics network model: weighted network; communities; and possible signal
transduction path for the antagonist and partial agonist systems.

e ADMET properties of the individual hits identified by structure-based virtual screening.

e Histogram of protein-ligand interaction for the top hits identified by structure-based

virtual screening.
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