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Abstract 

Cannabinoid receptor type 2 (CB2R) is a member of the class A G protein-coupled receptor 

(GPCRs) family and a component of the endocannabinoid system that is modulated by the 

psychoactive chemical from Cannabis Sativa, partial agonist Δ9-tetrahydrocannabinol (Δ9-THC). 

Selective activation of CB2R allows for the treatment of inflammatory and immune-related 

conditions without the psychotropic effects of CB1R. While CB2R-selective agonists are 

available, CB2R partial agonists are scarce. Hence, the pharmacological difference between 

CB2R full agonists and partial agonists remains to be deciphered, prompting the search for novel 

partial agonists. Here, using an induced-fit docking approach, we built a partial agonist Δ9-THC 

bound CB2R system from the inactive CB2R structure (PDB ID: 5ZTY) and performed 

microsecond molecular dynamics (MD) simulations. The simulations reveal an upward shift of 

the “toggle switch” W6.48(258) and minor outward movement of the transmembrane helix 6 

(TM6). Dynamic network model identifies a possible communication path between the ligand 

and the toggle switch” W6.48(258). Furthermore, to identify potential CB2R partial agonists, we 

conducted structure-based virtual screening of ZINC15 “Druglike” library containing 17,900742 

compounds against 3 conformations derived from MD simulation of CB2R complexed with 

partial agonist Δ9-THC using Glide virtual screening protocol comprising various filters with 

increasing accuracy. Nine diverse compounds predicted to have high MM-GBSA binding energy 

scores and good ADMET properties (including high gastrointestinal absorption and low toxicity) 

are proposed as potential CB2R partial agonists.  

Keywords: CB2R, toggle switch” W6.48(258), MD simulation, dynamics network model, virtual 

screening, MM-GBSA, CB2R partial agonist 
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Introduction 

Cannabinoid receptors 1 and 2 (CB1R and CB2R) are members of the class A G protein-coupled 

receptor (GPCRs) family and are key components of the endocannabinoid system modulated by 

Δ9-tetrahydrocannabinol (Δ9-THC)—a psychoactive chemical from Cannabis sativa (Munro, 

Thomas, & Abu-Shaar, 1993). The two cannabinoid receptors play crucial roles in pain 

sensation, appetite, memory(Barinaga, 2001), and immunomodulation (Chait & Zacny, 1992). 

They share 44% total sequence identity and 68% sequence similarity in the transmembrane 

region (Abood, 2005). but differ in their tissue distribution and functions in the endocannabinoid 

system. While CB1R is primarily expressed in the central nervous system, CB2R is primarily 

expressed in the immune system (Pertwee, 2006). Regarding immune system modulation, CB2R 

plays a critical role in inflammation, and CB2R activation by cannabinoids usually decreases 

inflammatory cell activation (Manzanares, Julian, & Carrascosa, 2006; Turcotte, Blanchet, 

Laviolette, & Flamand, 2016). Activation of CB2R suppresses proinflammatory cytokines such 

as IL-1β and TNFα while increasing anti-inflammatory cytokines such as IL-4 and IL-10 

(Ashton, Wright, McPartland, & Tyndall, 2008). Thus, selective modulation of CB2R may allow 

for the treatment of inflammatory and immune-related conditions without the psychotropic 

effects of CB1R (Contino, Capparelli, Colabufo, & Bush, 2017; Dhopeshwarkar & Mackie, 

2014; Lunn, Reich, & Bober, 2006). However, the pharmacological difference between full 

agonists and partial agonists of the CB2R remains to be deciphered (Mukhopadhyay et al., 

2016). This may be partly due to the scarcity of the CB2R partial agonists.  

Among the available crystal structures of the CB2R are those with an antagonist (PDB 

ID: 5ZTY) (Li et al., 2019) (Figure 1A) and agonists without G protein (PDB ID: 6KPC) (Hua 

et al., 2020) (Figure 1B). Interestingly, the overall conformation of the transmembrane domain 
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of CB2R in 5ZTY and 6KPC appears to be similar, with an overall Cα RMSD of 0.86 Å (Hua et 

al., 2020) (Figure 1C). The most observed difference between the 2 structures is at the “toggle 

switch” W6.48(258)  (the superscript denotes Ballesteros-Weinstein numbering)(Ballesteros & 

Weinstein, 1995), which is flipped upward in 6KPC (the active conformation) (Figure 1C). This 

single ‘‘toggle switch’’ W6.48(258) is enough to trigger the activation of the downstream 

signaling (Hua et al., 2020). The details of the sole role of this toggle switch in CB2R activation 

are discussed elsewhere (Shahbazi, Grandi, Banerjee, & Trant, 2020). Thus, probing the 

conformational changes of CB2R around this toggle switch may aid in elucidating the activation 

mechanism of the receptor. Also, the three-dimensional structure of partial agonist-bound CB2R 

is not available to date, despite the therapeutic effects of the CB2R partial agonist Δ9-THC 

(Colizzi, Ruggeri, & Bhattacharyya, 2020; Jamontt, Molleman, Pertwee, & Parsons, 2010; van 

Vliet, Vanwersch, Jongsma, Olivier, & Philippens, 2008). The fact that the partial agonist Δ9-

THC binds to the same site on the CB2R as the agonist AM12033, they are expected to show 

similar properties with regard to the CB2R activation. Therefore, molecular dynamics (MD) 

simulations of the partial agonist Δ9-THC-bound CB2R—with an initial model built using 

antagonist-bound CB2R crystal structure 5ZTY may derive potential partially active structures 

from the inactive one, featuring conformational changes of the “toggle switch” W6.48(258)” as the 

signature for the CB2R activation (Hua et al., 2020). 

To probe these conformational changes, we built and submitted the partial agonist Δ9-

THC system to 3x1 µS MD simulations with different initial velocities. The antagonist-bound 

CB2R (5ZTY) was also subjected to the same treatment. Conformation of the TMD in the 

antagonist system is maintained, but the TM6 moves outward from the TM bundle in two out of 

3 trajectories of the partial agonist system. Consistent with the movement of TM6, the W6.48(258) 
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in the partial agonist system shifts upward like its conformation in the crystal structure of the 

agonist bound CB2R (6KPC). (Hua et al., 2020) Dynamics network analysis reveals a possible 

signal transduction path connecting the partial agonist binding site to the toggle switch” 

W6.48(258). Furthermore, using the 3 most abundant conformations derived from the MD 

simulation of the CB2R-partial agonist Δ9-THC system, we conducted structure-based virtual 

screening of ZINC15 “Druglike” library and performed MD simulations, MM-GBSA binding 

energy calculations, and ADMET property prediction on the top 30 compounds. We propose a 

total of 9 compounds with diverse structures as potential CB2R partial agonists. 
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Figure 1. Crystal structures: (A) antagonist-bound CB2R (5ZTY); (B) agonist-bound CB2R 

(6KPC). (C) The two structures share a similar conformation of the transmembrane domain but 

differ in the conformation of the toggle switch W6.48(258) which is shifted upward in the agonist 

system.  
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Methods 

Protein and ligand preparation, and docking 

The crystal structure of antagonist AM10257-bound CB2R (PDB ID: 5ZTY) (Li et al., 2019) 

was used as a template to build the homology model of CB2R. The model was built to insert the 

missing loops and clean any mutation in the structure. Maestro’s Protein Preparation Wizard 

(Sastry, Adzhigirey, Day, Annabhimoju, & Sherman, 2013) was used to prepare the CB2R 

model for MD simulations. Preprocessing was performed which added hydrogens and disulfide 

bonds where necessary, and assigned correct atom charges based on the protonation state using 

predicted pKa values at physiological pH. A restrained minimization was carried out to correct 

the bond order. 

The 3D structure of the Δ9-THC was retrieved from ChEMBL Database 

(https://www.ebi.ac.uk/chembl/). LigPrep module in Schrödinger Suite (Friesner et al., 2004) 

was used to prepare Δ9-THC. “LigPrep predicts accurate ligand conformation by tautomerism 

and predicting ionization states, adjusting ring conformations, and generating stereoisomers. The 

glide extra precision (XP) docking method was used to dock Δ9-THC into CB2R. The structure 

of the antagonist AM10257 from the 5ZTY was retained in the built CB2R model. 

Molecular dynamics simulation 

Molecular dynamics simulation setup 

All MD simulations were performed using Desmond Module in Schrödinger Suite (Bowers et 

al., 2006). After aligning the complexes to the membrane set to the helices of the TMD, an 

OPLS3 force field (Harder et al., 2016) was used to build the simulation system. The systems 

were solvated in the SPC water model and ionized with 0.15M NaCl.  
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MD simulation protocols 

 Each system underwent the following steps of the default relaxation protocol for membrane 

proteins (Zhang, Hou, Wang, Wang, & Zhang, 2012): 1) Minimization with restraints on solute 

heavy atoms; 2) Minimization without any restraints; 3) Simulation with heating from 0 K to 300 

K, with H2O barrier and gradual restraining; 4) Simulation in NPT (constant number of particles, 

constant pressure of 1 bar and constant temperature of 300 K) ensemble with H2O barrier and 

with heavy atoms restrained; 5) Simulation in NPT ensembles with equilibration of solvent and 

lipids; 6). Simulation in NPT ensemble with protein-heavy atoms annealing from 10.0 kcal/mol 

to 2.0 kcal/mol; 7) Simulation in NPT ensemble with Cα atoms restrained at 2 kcal/mol; and 8). 

Simulation for 1.5 ns in NPT ensemble with no restraints.  Finally, three separate 1000 ns 

production runs with different initial velocities were carried out in an NPT ensemble for each of 

the two systems using the default protocol. The temperature was controlled using the Nosé-

Hoover chain coupling scheme (Ikeguchi, 2004) with a coupling constant of 1.0 ps. The pressure 

was controlled using the Martyna-Tuckerman-Klein chain coupling scheme (Ikeguchi, 2004) 

with a coupling constant of 2.0 ps. M-SHAKE (Bailey & Lowe, 2009) was applied to constrain 

all bonds connecting hydrogen atoms, enabling a 2.0 fs time step in the simulations. The k-space 

Gaussian split Ewald method (Shan, Klepeis, Eastwood, Dror, & Shaw, 2005) was used to treat 

long-range electrostatic interactions under periodic boundary conditions (charge grid spacing of 

~1.0 Å, and direct sum tolerance of 10–9). The cutoff distance for short-range non-bonded 

interactions was 10 Å, and the long-range van der Waals interactions were based on a uniform 

density approximation. To reduce the computation, non-bonded forces were calculated using an 

r-RESPA integrator (Stuart, Zhou, & Berne, 1996) where the short-range forces were updated 
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every step and the long-range forces were updated every three steps. The trajectories were saved 

at 50.0 ps intervals for analysis.  

 

Trajectory clustering analysis 

Six trajectories (3 for each system) were analyzed using the trajectory clustering tool in Maestro. 

A hierarchical clustering method with average linkage was applied. The parameter for the 

structural similarity metric was the backbone RMSD and the merging distance cutoff was set to 

2.5 Å. Structures of the most abundant cluster for each system were saved for further analysis. 

The representative structure of the most abundant clusters for the antagonist and partial agonist 

systems were aligned and superimposed to compare conformational differences.  

Interaction and dynamics analysis  

The receptor-ligand interactions and other dynamics properties were analyzed using the 

simulation interaction diagram (SID) tool in Maestro: protein-ligand contacts, Root Mean-Square 

Deviation (RMSD), Root Mean-Square Fluctuation (RMSF), and Secondary Structure Element 

(SSE). The type and occupancy of each protein-ligand contact were recorded. The RMSD 

measures the displacement change of atoms for the entire trajectory with respect to the reference 

model. The RMSF measures residual displacement with respect to the initial model. Changes in 

the secondary structure (helices and beta sheets) were recorded through simulations.  

To compute the RMSD for a selected region, all frames were aligned with their initial 

positions based on their TMD. Simulation event analysis was then used to calculate the RMSD 

of TMD, TM6, and C-terminal regions. 

Molecular switch analysis 
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Molecular switches are a set of non-covalent interactions that play roles in protein structure 

stabilization. Breakage of these interactions causes the receptor to enter an activated state 

(Kobilka & Deupi, 2007). The DRY and NPxxY motifs, and “toggle switch” W6.48(258) are the 3 

molecular switches present in the CB2R akin to the most class A GPCRs (Hua et al., 2020). 

Since conformational changes of the “toggle switch” W6.48(258) are enough to activate CB2R 

(Hua et al., 2020), its dihedral angle was computed over time for each of the 3 trajectories of the 

antagonist and partial agonist systems. Also, the conformational change of the “toggle switch” 

W6.48(258) was analyzed by the superimposition of the most abundant structures of the two 

systems with the structures of the antagonist-bound CB2R (5ZTY) and agonist-bound CB2R 

(6KPC). 

Dynamic network analysis 

To propose signal transduction pathways leading to partial activation of the receptor by the 

partial agonist Δ9-THC, dynamics network models—defined as a set of nodes connected by 

edges (Eargle & Luthey-Schulten, 2012) were generated using the NetworkView plugin (Eargle 

& Luthey-Schulten, 2012) in VMD (Humphrey, Dalke, & Schulten, 1996). A contact map was 

generated for each trajectory. Contact map added an edge between any 2 given nodes whose 

heavy atoms interacted within a cutoff of 4.5 Å for at least 75% of the simulation. The edge 

distance was derived by the program Carma (Glykos, 2006) using pairwise correlations between 

nodes (Eargle & Luthey-Schulten, 2012). The probability of information transfer across the edge 

is given by: 
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Δ𝑟⃗ (𝑡) =  𝑟⃗𝑖(𝑡) − ⟨ 𝑟⃗𝑖(𝑡)⟩ 

where Cij is the correlation coefficient; r is the edge distance, and t denotes time. The edges are 

weighted (wij) between any two nodes i and j: wij = −log(∣Cij∣). The thicker the edge the higher 

the probability of information transfer.  

Using the Girvan-Newman algorithm (Girvan & Newman, 2002), the generated network 

was then further grouped into subnetworks, referred to as communities, based on the frequency 

of connection to each other. A possible communication path between the ligands and ‘‘toggle 

switch’’ W6.48(258) was generated. 

Structure-based virtual screening 

Compound Library preparation 

A prepared ZINC15 “Druglike” library was downloaded from the ZINC database(Sterling & 

Irwin, 2015), which used ChemAxon’s JChem to protonate and prepare biologically relevant 

tautomers at Physiological pH(Csizmadia, 2000). 

Using 3 most abundant conformations accounting for 26, 21, and 19% of the MD simulation of 

the CB2R-partial agonist Δ9-THC system, structure-based virtual screening of ZINC15 

“Druglike” library was conducted (Figure 2). The Glide molecular docking module has 3 levels 

of docking scoring functions: high throughput virtual screening (HTVS), standard precision (SP), 

and extra precision (XP). HTVS serves as a first filter to reduce the compounds into manageable 

numbers only the top 0.01% of hits proceeded to the second screening step. SP further reduces 

the chemical space to a manageable size with improved accuracy. XP is the most accurate 

scoring function and performs an exhaustive evaluation of ligand poses. 
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To enhance the likelihood of identifying promising preclinical candidates, all ligands were also 

evaluated with the Schrodinger QikProp package to predict ADME and toxicity parameters. 

Ligand structures were clustered by fingerprints, and diverse representatives per cluster were 

selected.  

MD simulation of the top 30 hits and MM-GBSA binding energy calculation 

The top 30 hits—10 from each conformation, were complexed with CB2R and submitted to 200 

ns MD simulation using the same simulation parameters as above. And the physics-based MM-

GBSA binding energy of the improved ligand pose was computed to enhance the prediction 

accuracy. This level of screening is considerably slower. 

Further ADMET prediction  

Prediction of ADMET properties for the top 30 compounds was performed on the SwissADME 

web server (http://www.swissadme.ch/) developed by the Swiss Institute of Bioinformatics to 

enable computational estimation of physiochemical descriptors and pharmacokinetic properties, 

and drug-like small molecule inhibitors. The SMILE code for each compound was uploaded to 

the webserver and their ADMET properties were computed. These include gastrointestinal (GI) 

absorption, blood-brain barrier permeability, Lipinski’s “rule of 5” parameters, liver metabolic 

(CYP450) enzymes inhibition potential, and PAINS alert.  

http://www.swissadme.ch/
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Figure 2. Structure-based virtual screening workflow for identification of potential CB2R partial 

agonist. 

 

Results 

The antagonist binds deeper into the CB2R pocket than the partial agonist 

Crystal structure of antagonist AM10257-bound CB2R (PDB ID: 5ZTY) (Li et al., 2019) was 

used as a template to build the homology model of CB2R. During the mode building, 
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intracellular loop 3 (IL3) was inserted and the cocrystal ligand, antagonist AM10257 was 

retained. The model comprises seven transmembranes (7TM) helices connected by loops and the 

C-terminal region only. The antagonist AM10257 is bound to CB2R with its substituted core 

pyrazole group residing among TM2, TM3, and TM7 and forms mainly hydrophobic interactions 

with residues at ECL2, TM2, TM3, TM4, and TM6 (Figure 3A). The docking pose of the partial 

agonist Δ9-THC reveals that the tetrahydro-6H-benzo[c]chromene ring system is located within 

the main hydrophobic pocket, with an alkyl chain at C3 of the resorcinol moiety buried deep 

inside the tunnel (Figure 3B) like described elsewhere (Linciano et al., 2020). This shorter 

pentyl chain of Δ9-THC only partially occupies the hydrophobic tunnel compared with the same 

chain in the antagonist AM10257, having an extra hydroxyl group (Figure 3C). 

The Δ9-THC induces minor conformational changes at CB2R  

The conformational changes of the antagonist AM10257 bound-CB2R and partial agonist Δ9-

THC bound CB2R are compared in terms of the root-mean-square deviation (RMSD) profile of 

the specific regions of the receptor. The antagonist system maintains the initial conformation of 

the TMD. This is manifested in the RMSD of the TM6 which appears to be the same upon 

alignment based on the TMD with TM6 (Figure 4A) and without the TM6 (Figure 4B). On the 

other hand, RMSD of the TM6 increases in the partial agonist system upon alignment based on 

TM1-5& TM7 (Figures 4C and D), suggesting movement of the TM6. This movement of TM6 

was also analyzed in the rest of the two trajectories for each system. All the 3 trajectories for the 

antagonist system maintain the conformation of the TMD (Figure S1). However, only two out of 

the 3 trajectories of the partial agonist system show the outward movement of TM6 from the 

7TM bundle (Figure S2).  
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The helical content of both antagonist and partial agonist systems are conserved through 

the simulation (Figure S3), and no significant difference in the root-mean-square fluctuation 

(RMSF) profiles of the TMD between the two systems. However, intracellular loop 3 (IL3)—the 

missing loop in the CB2R structure (5ZTY) inserted during model building, shows high 

fluctuation (Figure S4). 
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Figure 3. (A) Docking pose of the partial agonist Δ9-THC at CB2R. (B) Cocrystal pose of the 

agonist AM12033 in the active structure of CB2R (6KPC) (C). A comparison of the two 

structures reveals a similar binding mode of the ligands. 
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Figure 4. Root-mean-square deviation (RMSD) of the specific regions of CB2R: (A) antagonist 

system aligned with the initial model based on the transmembrane domain (TMD); and (B) based 

on TMD (excluding TM6). The corresponding RMSD of the partial agonist system (C) aligned 

based on TMD, and (D) based on TMD (excluding TM6). 

The ligands form different interactions with CB2R 

The AM10257, acting as a competitive antagonist of CB2R spans the CB2R pocket with its core 

pyrazole ring and a three-arm scaffold assuming a constrained binding pose. The antagonist 

forms mainly hydrophobic interactions with CB2R and an H-bond between the hydroxyl group 

of the alkyl chain and T114 at CB2R persisting in more than 60% of the simulation (Figure 5A). 

On the other hand, despite binding to the same site as the antagonist AM10257, the partial 

agonist Δ9-THC, via hydroxyl substituent on its polycyclic ring, forms 2 H-bonds with K109 and 

S90 in about 35% of the simulation. Other interactions formed are mainly hydrophobic, however, 
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the alkyl chain does not appear to be involved in persistent interactions with the receptor (Figure 

5B). The other two trajectories for the respective systems show similar interaction patterns 

(Figures S5 and 6). Also, the two ligands show different torsion angle distribution, with the 

antagonist AM10257 displaying high flexibility, especially at the alkyl linker region (Figure S7). 

This allows the linker to be buried completely in the hydrophobic pocket of CB2R.   

 

Figure 5. Interaction between CB2R and ligands: (A) antagonist system; (B) partial agonist 

system. The timeline of the various interactions is shown in the left panel while the receptor-

ligand interaction for the most abundant structure is displayed in the right panel.  

 

The toggle switch” W6.48(258) experiences an upward shift in the partial agonist system 

Trajectory clustering analysis was performed to identify the dominant structure through the 

simulation. The most abundant clusters are found to be 62% and 64% for the antagonist and 
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partial agonist systems, respectively. Their representative structures were superimposed with 

both crystal structures of the antagonist AM10257 bound CB2R (5ZTY) and agonist bound 

CB2R (6KPC) to look for conformational changes, particularly, at TM6 and the “toggle switch” 

W6.48(258). Compared to the crystal structure of the antagonist-bound CB2R, the antagonist 

system does not show significant changes at both the TM6 and W6.48(258) (Figure 6A). 

However, when compared to the agonist-bound crystal structure, the TM6 does not show 

significant change, and the W6.48(258) does not shift upward in the antagonist system (Figure 

6B). On the other hand, the TM6 slightly moves out of the 7TM in the partial agonist system and 

W6.48(258) experiences a strong upward shift like in the crystal structure of the agonist bound 

CB2R (Figures 6C-F). While the W6.48(258) dihedral angle is maintained (between 18 and 27 

degrees) through the simulation in the antagonist system (Figure 7A), it deviates high (between -

15 and 40 degrees) between 530 and 720 ns in the partial agonist system (Figure 7B). Even 

though this conformational change of the W6.48(258) appears to be transient, its magnitude is 

reflected in the representative structure of the most abundant cluster of the partial agonist-bound 

CB2R. Consistent trends can be seen in all the 3 trajectories of the antagonist system and at least 

a trajectory of the partial agonist system (Figures S8-10). 
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Figure 6. Comparison of the antagonist and partial agonist MD conformations with the inactive 

(5ZTY) and active (6KPC) crystal structures of CB2R: (A) antagonist-bound MD conformation 

superimposed with inactive structure and (B) with active structure; (C) Partial agonist-bound MD 

conformation superimposed with inactive structure; (D-F) Partial agonist-bound MD 

conformations superimposed with the active crystal structure. The “toggle switch” W6.48(258) in 

the antagonist does not show conformational change whereas it shifts upward in the partial 

agonist system. 
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Figure 7. Dihedral angle profile of W6.48(258): (A) antagonist system; (B) partial agonist system. 

The “toggle switch” W6.48(258):  shows no significant changes in the antagonist system but 

experiences some flipping events through the simulation in the partial agonist system. 

 

The dynamic network model identifies possible signal transduction path 

Dynamical network models were generated to understand the relationship between different 

structural units (referred to as communities) of CB2R following ligand binding and to identify 

possible signal transduction paths. For the antagonist system, the weighted network does show 

high correlations between structural units around TM6 (Figure 8A) that are grouped into 11 

communities (Figure 8B). Due to the binding of the antagonist deeper in the CB2R pocket, a 

possible signal transduction path comprises only residues T114 and T116 at TM3 relaying the 

signal to the “toggle switch” W6.48(258) at the TM6 (Figure 8C). In the case of the partial agonist 

system, thicker connections are observed at the extracellular site of TM5 and TM6 (Figure 8D), 

suggesting correlated movement of these regions. A total of 12 communities are identified 

(Figure 8E), and a path comprising S90 and Y87 at TM2; L289, and C288 at TM7, relaying the 

signal to W6.48(258) at the TM6. Also, while the communication paths differ among the 3 

trajectories of the antagonist system (Figure S11), the same path is identified in all the 3 



22 
 

trajectories of the partial agonist (Figure S12). The dynamic network model reveals different 

community arrangements between the two systems, the possible correlation between the 

movement of TM5 and TM6 in the partial agonist system, and a longer communication between 

the partial agonist Δ9-THC and the “toggle switch” W6.48(258). 

 

Figure 8. Dynamics network model: (A-C) weighted network; communities (shown in different 

colors); and possible signal transduction path for the antagonist system, and (D-F) weighted 

network; communities and possible signal transduction path for the partial agonist system. 

 

Structure-based virtual screening, MD simulation, and MMGBSA evaluation 

The three most abundant conformations derived from MD simulation of partial agonist Δ9-THC 

bound CB2R were used for virtual screening of ZINC15 “Druglike” library. The top 30 hits (10 
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hits against each confirmation), each complexed with the CB2R were submitted to 200 ns MD 

simulation. A total of 17 diverse compounds (Figure 9) were found to have a higher MM-GBSA 

binding energy score than the partial agonist Δ9-THC (Table 1) and are therefore considered the 

initial hit partial agonists of CB2R. Their binding poses are compared to that of the agonist 

AM12033 in the active crystal structure 6KPC. Even though they all bind to the same agonist 

binding site, they show slightly different modes compared to the agonist AM12033 (Figure S13). 

Table 1. Ligand binding energy of the top 30 hits compared to the reference compound Δ9-THC 

was calculated using docking and MD simulation properties. The virtual screening was 

conducted against 3 conformations: conformation 1 (blue); conformation 2 (orange); 

conformation 3 (green).  

# Compound 
Docking 

Score 
(kcal/mol) 

VDW 
(kcal/mol) 

ELE 
(kcal/mol) 

Hydrophobic 
(kcal/mol) 

MM-GBSA 

(kcal/mol) 

Receptor 

RMSD1 

(Å) 

Ligand 

RMSD1 
(Å) 

Ref. Δ9-THC -11.7 -48.2±2.6 -6.0±3.0 -61.4±3.8 -115.6±6.7   

1 ZINC000009762581 -16.7 -71.8±4.4 -14.0±2.9 -58.3±5.0 -144.1±9.6 2.8±0.2 0.9±0.1 

2 ZINC000096124070 -16.4 -66.6±5.9 -15.7±4.6 -40.8±2.7 -123.0±8.3 2.8±0.6 1.2±0.3 

3 ZINC000534577320 -16.1 -59.3±2.9 -13.2±3.4 -47.6±2.6 -120.1±8.8 4.3±0.6 0.7±0.2 

4 ZINC000017192627 -16.1 -68.4±4.8 -30.5±4.1 -43.7±3.1 -142.6±7.9 3.9±0.9 1.8±0.2 

5 ZINC000096482611 -15.7 -49.8±3.6 -4.8±3.9 -38.2±3.2 -92.8±6.9 2.5±0.5 1.1±0.3 

6 ZINC000002977189 -15.6 -54.6±2.6 -6.7±3.0 -45.2±2.8 -106.5±4.5 2.6±0.5 1.4±0.2 

7 ZINC000005895757 -15.5 -52.4±3.9 -22.9±3.2 -22.4±1.9 -97.7±4.8 2.7±0.5 0.7±0.1 

8 ZINC000010130639 -15.5 -49.8±3.5 -9.1±6.7 -68.5±5.2 -127.4±10.5 2.7±0.5 0.7±0.2 

9 ZINC000005890991 -15.3 -53.4±3.3 -19.5±4.4 -26.8±1.8 -99.8±6.1 3.1±0.6 0.6±0.1 

10 ZINC000409265923 -15.1 -67.4±2.7 -13.0±3.1 -46.1±2.8 -126.5±5.2 3.1±0.7 1.6±0.2 

11 ZINC000067457850 -15.0 -52.8±2.8 -7.9±2.7 -41.2±2.6 -102.0±6.3 2.1±0.2 1.0±0.2 

12 ZINC000082087170 -14.6 -52.4±2.9 -21.1±9.1 -35.1±1.7 -108.7±10.6 3.0±0.6 1.1±0.2 

13 ZINC000004403342 -14.4 -86.3±4.2 -23.3±8.4 -84.5±6.3 -194.1±14.9 2.8±0.4 1.5±0.3 

14 ZINC000089836703 -14.4 -51.7±2.5 -9.7±2.9 -39.6±1.8 -101.0±4.6 2.4±0.3 2.2±0.2 

15 ZINC000013548332 -14.3 -62.4±3.5 -12.7±3.4 -47.9±2.8 -123.0±6.6 2.3±0.3 2.2±0.5 

16 ZINC000006752723 -14.3 -59.6±3.2 -21.7±4.1 -47.3±4.1 -128.6±8.1 2.4±04 0.7±0.2 

17 ZINC000218260651 -14.3 -57.4±4.5 -15.3±4.6 -44.1±3.4 -116.8±10.2 2.9±0.4 0.3±0.1 

18 ZINC000095527098 -14.3 -58.4±3.8 -9.2±6.3 -46.7±4.3 -114.4±11.8 3.0±0.4 1.3±0.4 

19 ZINC000008791953 -14.3 -60.6±4.9 -9.2±4.2 -43.1+3.6 -112.9±8.6 2.6±0.5 0.9±0.1 
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20 ZINC000257304951 -14.2 -59.8±3.9 -12.7±5.0 -43.9±2.7 -116.3±7.5 2.5±0.4 1.9±0.4 

21 ZINC000013475970 -16.5 -113.1±5.0 -29.5±6.3 -75.4±4.8 -218.0±12.4 4.3±0.9 0.9±0.2 

22 ZINC000002765499 -15.8 -48.6±2.5 -10.7±2.8 -37.5±2.3 -96.9±5.2 3.0±0.6 1.1±0.2 

23 ZINC000408739159 -15.7 -66.1±5.0 -11.8±10.1 -48.9±3.3 -126.8±12.0 2.8±0.6 1.6±0.2 

24 ZINC000013356709 -15.6 -65.5±3.7 -13.7±6.3 -54.9±2.9 -134.9±9.0 2.9±0.4 1.9±0.4 

25 ZINC000252533065 -15.3 -59.4±3.2 -13.7±3.1 -41.9±2.3 -115.0±6.2 3.0±0.6 1.2±0.3 

26 ZINC000089917273 -15.3 -52.4±3.3 -16.6±5.3 -47.0±5.2 -116.0±1.1 3.5±0.7 1.6±0.5 

27 ZINC000001464338 -15.2 -54.5±3.7 -16.7±4.4 -40.6±2.9 -111.8±8.7 3.0±0.6 0.6±0.1 

28 ZINC000002687799 -15.1 -65.6±3.1 -18.5±4.2 -49.4±3.4 -133.5±8.5 2.7±0.3 0.7±0.2 

29 ZINC000012628414 -15.0 -59.3±4.4 -14.2±6.0 -42.6±3.8 -116.1±8.0 2.7±0.4 2.4±0.7 

30 ZINC000072477563 -15.0 -60.7±3.1 -14.5±4.1 -39.1±3.2 -114.3±8.5 3.1±0.9 2.4±0.4 

1.Based on the snapshots from the last 10 ns simulation. Based on MM-GBSA scores < 115.6 Kcal/mol and the top 

compounds are represented in bold font. 

 

 

Figure 9. Structures of the top 9 hits were identified as potential CB2R paragonistsonist using structure-based 

virtual screening of ZINC15 “Druglike” library against CB2R. Three conformations derived from MD simulations 

were used for the screening. 
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The final hits show good ADMET properties 

The final hits were selected based on ADMET properties predicted using the SwissADME 

server. A total of 9 compounds selected as potential partial agonists of CB2R were predicted to 

demonstrate high gastrointestinal (GI) absorption, non-blood-brain barrier penetration, less 

chance of inhibiting liver enzymes associated with drug metabolism, 0 violation of Lipinski’s 

“rule of five” and 0 PAINS alert (Table 2). PAINS are chemicals that non-specifically target 

several biological targets with their disruptive functional groups, including catechols and 

enones(Baell & Walters, 2014), which are also present in some of the eliminated compounds 

(Table 2). The selected compounds are expected to not pass the blood-brain barrier since they are 

predicted to act on peripheral CB2R (CB2R is also expressed in the brain but in less extent than 

CB1R). The ADMET properties of the individual hits are available in Figure S14. 
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Table 2. Druglike and ADMET properties of the top 30 compounds were predicted using 

SwissADME server. Compounds shown in bold have higher MM-GBSA energy scores than that 

of Δ9-THC. Compounds highlighted in green may have good ADMET properties. 

S/N Compound GI 

absorption 

BBB 

permeant 

CYP1A2 

inhibitor 

CYP2C19 

inhibitor 

CYP2C9 

inhibitor 

CYP2D6 

inhibitor 

CYP3A4 

inhibitor 

Lipinki’s rule PAINS 

Ref. Δ9-THC High Yes No Yes Yes Yes Yes Yes; 1 violation: 

MLOGP>4.15 

0 alert 

Ref. CBD High Yes No Yes Yes Yes Yes Yes; 1 violation: 

MLOGP>4.15 

0 alert 

Ref. CB2R-selective agonist 

AM1710 

High No No Yes Yes Yes No Yes, 0 violation 0 alert 

Ref. CB2R-selective agonist 

JWH-133 

Low No No Yes Yes No No Yes; 1 violation: 

MLOGP>4.15 

0 alert 

1 ZINC000009762581 High No Yes Yes Yes Yes No Yes, 0 violation 0 alert 

2 ZINC000096124070 High No Yes No No No No Yes, 0 violation 0 alert 

3 ZINC000534577320 High Yes Yes No Yes Yes Yes Yes, 0 violation 0 alert 

4 ZINC000017192627 Low No No Yes No No No Yes, 0 violation 0 alert 

5 ZINC000096482611 High No No Yes Yes Yes Yes Yes, 0 violation 0 alert 

6 ZINC000002977189 High No Yes Yes Yes No Yes Yes, 0 violation 1 alert: 

ene_six_he

tA 

7 ZINC000005895757 High No No No No No No Yes, 0 violation 0 alert 

8 ZINC000010130639 High No Yes Yes Yes No Yes Yes, 0 violation 1 alert: 

ene_six_he

tA 

9 ZINC000005890991 High No No No No No Yes Yes, 0 violation 0 alert 

10 ZINC000409265923 High No No No Yes No Yes Yes, 0 violation 1 alert: 

ene_six_he

tA 

11 ZINC000067457850 High Yes Yes Yes Yes Yes Yes Yes, 0 violation 0 alert 

12 ZINC000082087170 High No No No No No No Yes, 0 violation 0 alert 

13 ZINC000004403342 Low No  Yes No No Yes Yes Yes, 0 violation 0 alert 

14 ZINC000089836703 High No No No No Yes No Yes, 0 violation 0 alert 

15 ZINC000013548332 High No No No No  No  Yes Yes, 0 violation 1 alert: 

anil_di_alk

_E 

16 ZINC000006752723 High No  No No No No  Yes Yes, 0 violation 1 alert: 

anil_di_alk

_E 

17 ZINC000218260651 High  Yes Yes Yes No No No Yes, 0 violation 1 alert: 

catechol_A 
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18 ZINC000095527098 High No Yes Yes No No No Yes, 0 violation 1 alert: 

catechol_A 

19 ZINC000008791953 High No No  Yes Yes Yes Yes Yes, 0 violation 0 alert 

20 ZINC000257304951 High No No Yes Yes Yes Yes Yes, 0 violation 0 alert 

21 ZINC000013475970 High No No No No No  Yes Yes, 0 violation 0 alert 

22 ZINC000002765499 High Yes No Yes Yes Yes Yes Yes, 0 violation 0 alert 

23 ZINC000408739159 High No No  Yes Yes Yes Yes Yes, 0 violation 0 alert 

24 ZINC000013356709 High No No No No No No Yes, 0 violation 0 alert 

25 ZINC000252533065 High No No Yes No No Yes Yes, 0 violation 0 alert 

26 ZINC000089917273 High No No Yes No No Yes Yes, 0 violation 0 alert 

27 ZINC000001464338 High No No Yes Yes Yes Yes Yes, 0 violation 0 alert 

28 ZINC000002687799 High No No Yes Yes No Yes Yes, 0 violation 0 alert 

29 ZINC000012628414 High No No No No No Yes Yes, 0 violation 0 alert 

30 ZINC000072477563 High No No No No No No Yes, 0 violation 0 alert 

GI: gastrointestinal absorption; BBB: blood-brain barrier; CYP: cytochrome P450 enzymes; LogP: logarithm of 

Octanol-water partition coefficient; PAINS: Pan-assay interference compounds 

 

The top hits show stable binding mode 

Out of the 10 hits for each conformation, only 2 hits from 1st conformation; 1 hit from 2nd 

conformation; and 6 hits from the 3rd conformation passed both the MM-GBSA binding energy 

and ADMET evaluations. These compounds show a stable binding mode over time, reflected in 

the reduced protein and ligand RMSD halfway through the simulation (Figure 10). 
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Figure 10. Protein and ligand RMSD profiles over 200 ns. The top 9 hits were selected based on 

high MM-GBSA energy score and good ADMET properties (A) The top 2 hits against 

conformation 1: ZINC000009762581 (1) and ZINC000096124070 (2). (B). The best hit against 

conformation 2: ZINC000257304951(20). (C) The top 6 hits against conformation 3: 

ZINC000013475970 (21), ZINC000408739159 (23), ZINC000013356709 (24), 

ZINC000089917273 (26), ZINC000002687799 (28) and ZINC000012628414 (29). 

Key protein-ligand interactions are identified 

The partial agonist Δ9-THC, via hydroxyl substituent on the polycyclic ring, forms 2 H-bonds 

with K109 and S90 in 35% of the simulation. Similarly, the top 9 hits demonstrate similar 
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persistent interactions with all the 3 most abundant conformations of CB2R. Other key-

interacting residues are found in common to the Δ9-THC bound CB2R and the top 9 hits are 

tabulated (Table 3). Unlike the alkyl chain of Δ9-THC which does not engage in the persistent 

interaction with CB2R, the aromatic chain in all the 9 compounds forms stable interactions with 

residues along the CB2R pocket (Figure 11), accounting for their higher docking and MM-

GBSA binding energy scores (Table 1). The timeline of the individual interaction is shown in 

Figure S15. The ligand interacted with a combination of different polar and hydrophobic 

interactions all over the CB2R channel. 

Table 3. Key-interacting residues. These are residues involved in persistent 

interaction between CB2R and Δ9-THC, and the top 9 hits. 

S/N Compound F87 S90 F91 F94 F106 K109 F183 

Ref. Δ9-THC Yes Yes Yes No Yes Yes No 

1 ZINC000009762581 Yes Yes Yes Yes Yes Yes Yes 

2 ZINC000096124070 Yes Yes Yes No Yes Yes Yes 

20 ZINC000257304951 Yes Yes Yes Yes Yes Yes No 

21 ZINC000013475970 No No Yes Yes No No Yes 

23 ZINC000408739159 Yes Yes Yes Yes No No Yes 

24 ZINC000013356709 Yes Yes Yes Yes No No Yes 

26 ZINC000089917273 Yes Yes Yes Yes Yes Yes Yes 

28 ZINC000002687799 Yes Yes Yes Yes Yes Yes Yes 

29 ZINC000012628414 Yes Yes Yes Yes Yes Yes Yes 
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Figure 11. Protein-ligand interaction. The top 2 hits against conformation 1: 

ZINC000009762581 (1) and ZINC000096124070 (2). The best hit against conformation 2: 

ZINC000257304951(20). The top 6 hits against conformation 3: ZINC000013475970 (21), 

ZINC000408739159 (23), ZINC000013356709 (24), ZINC000089917273 (26), 

ZINC000002687799 (28) and ZINC000012628414 (29). 



31 
 

Discussion and conclusion 

Selective modulation of CB2R may be useful for the treatment of inflammation (Shahbazi et al., 

2020) without the psycho-activity of CB1R. Elucidating the role of the “toggle switch” 

W6.48(258) in the partial activation of CB2R may provide insights into the mechanism of 

activation which does not involve a large-scale conformational change. In this study, 

microsecond MD simulations reveal a slight outward movement of the TM6 in the partial 

agonist-bound CB2R. The movement of TM6 to allow for G-protein-coupling is a common 

hallmark for the activation of class A GPCRs. (Uba, Scorese, Dean, Liu, & Wu, 2021; Zhou et 

al., 2019) 

The initial model of CB2R was built using antagonist-bound CB2R crystal structure 

(5ZTY) instead of the one of the CB2R with the agonist AM12033 (6KPC), so possible 

conformational changes occurring during the receptor activation could be observed. This may 

allow for deriving partially active conformations from the inactive one. Also, since activation of 

CB2R is dependent on the well-known “toggle switch” W6.48(258) (Hua et al., 2020), we focused 

on this switch and examined its conformational changes through the simulations. Analysis of 

most abundant structures shows that W6.48(258) experiences an upward shift like in the crystal 

structure of antagonist-bound CB2R (6KPC). The dihedral angle of the W6.48(258) varies 

between -15 and 40 degrees halfway through the simulation until around 720 ns. This transient 

change may be due to partial activation of some populations of the receptor through distinct 

intermediates as shifted by ligands. (Weis & Kobilka, 2018) This agrees with a study on the 

common activation mechanism of class A GPCRs which shows that most partial agonists either 

cause partial activation or inactivation of a receptor (Zhou et al., 2019) and with the fact that 
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CB2R behaves as most solved class A GPCRs, which only experience minor conformational 

changes upon agonist binding. (Hua et al., 2020) 

The Dynamic network model shows frequent connections between communities at TM5 

and TM6, suggesting possible communication between the two TM helices via extracellular loop 

2 (ECL2) like in other class A GPCR(Uba et al., 2020). This may have resulted from Δ9-THC 

forming two persistent H-bonds via its hydroxyl group on the 6H-dibenzo[b,d]pyran ring; 

causing the upward shift of the W6.48(258) and consequently, the slight movement of the TM6 

toward TM5. The outward movement of TM6 is a crucial event in the mechanism of GPCRs 

activation (Weis & Kobilka, 2018). On the other hand, the antagonist system maintains the initial 

conformation of the W6.48(258) and the TMD. Furthermore, a possible signal transduction path 

between the ligands and the “toggle switch” W6.48(258) was generated. For the antagonist system, 

a shorter path along TM3 was generated due to the binding of the antagonist deeper into the 

CB2R pocket. In the case of the partial agonist system, a longer path along with TM2 and TM7 

was identified, which results from the binding of the partial agonist less deep into the pocket, 

thereby allowing the W6.48(258) to flip up during the activation. 

To identify potential CB2R partial agonists with better pharmacological properties, 

ensemble-based virtual screening was conducted against 3 conformations derived from the 1 µS 

MD simulation of the partial agonist-bound CB2R. These conformations slightly differ (at TMD) 

from the crystal structure of agonist bound CBR (PDB ID: 6KPC). By employing extreme 

filtering, 9 compounds were found to bind strongly to CBR with high MM-GBSA binding 

energy scores, with better predicted ADMET properties compared to known CB2R partial 

ligands. These compounds are proposed as potential CB2R partial agonists, subject to further 

experimental evaluation. Caution: we assume these hits may be partial agonists since 3 partial-
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agonists bound MD conformations that slightly differ from the active one (6KPC)(Figure 6D-F) 

were used for the virtual screening. However, due to the lack of experimental data to validate the 

activity of the identified compounds, we cannot rule out the possibility that some of these 

compounds may be full agonists. CB2R partial agonist may allow for a better understanding of 

CB2R activation since the therapeutic implications of the receptor’s full and partial activation 

remain elusive(Bie, Wu, Foss, & Naguib, 2018; Pertwee, 2008; Soethoudt et al., 2017).  

Taken together, MD simulations reveal minor conformational changes of TM6 due to the binding 

of partial agonist, which may be related to the conformational change of the “toggle switch 

W6.48(258). The Dynamic network model showed a possible communication between the ligand 

and the toggle switch causing the conformational change. Therefore, the MD simulations may 

have predicted the partial agonist-bound CB2R structure from the inactive structure of CB2R. 

These structures were then used to identify potential CB2R partial agonists with better druglike 

properties. Findings from this study may aid in the development of CB2R partial agonists with 

improved pharmacological profiles to allow for a better understanding of the CB2R partial 

activation. 
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• RMSD of the antagonist-bound CB2R computed with respect to the initial model aligned 

based on the transmembrane domain (TMD) versus alignment based on TMs 1-5 & 7 for 

the individual 3 trajectories. 

• RMSD of the antagonist-bound CB2R computed with respect to the initial model aligned 

based on the transmembrane domain (TMD) (left) versus alignment based on TMs 1-5 & 

7 for the individual 3 trajectories. 

• Secondary structural element (SSE) showing the average helical content of CB2R 

through the simulation for each of the 3 trajectories of the antagonist system and partial 

agonist system. 

• RMSF profile showing the average residual fluctuation of CB2R through the simulation 

for each of the 3 trajectories of the antagonist system and partial agonist system. 

• Interaction between CB2R and ligands for the trajectories of the antagonist system.  

• Interaction between CB2R and ligands for the trajectories of the partial agonist system.  

• Dihedral angle distribution for (A) antagonist AM10257; (B) partial agonist system. 
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• Comparison of the antagonist and partial agonist systems with the inactive (5ZTY) and 

active (6KPC) crystal structures of CB2R for the individual trajectories 

• Dihedral angle profile of W6.48(258) for the antagonist system and partial agonist systems 

• Dynamics network model: weighted network; communities; and possible signal 

transduction path for the antagonist and partial agonist systems. 

• ADMET properties of the individual hits identified by structure-based virtual screening. 

• Histogram of protein-ligand interaction for the top hits identified by structure-based 

virtual screening. 
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