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Binbin Jiang1,2, Emmanuel Boss2* , Thomas Kiffney3, Gabriel Hesketh2,

Guillaume Bourdin2, Daidu Fan1* and Damian C. Brady3*

1 State Key Laboratory of Marine Geology, Tongji University, Shanghai, China, 2 School of Marine Sciences, University

of Maine, Orono, ME, United States, 3 Darling Marine Center, University of Maine, Walpole, ME, United States

Aquaculture of the eastern Q12oyster, Crassostrea virginica, is an expanding industry in the

US, particularly in the Gulf of Maine. High resolution ocean color satellites launched in

the last decade potentially provide aquaculture-relevant water-quality parameters at farm

scales. However, these parameters, such as temperature, suspended particulate matter

(SPM), and Chlorophyll a (Chl a), need to be derived by interested users. Water quality

parameters are derived first by applying an atmospheric correction and then estimating

the target parameter with a specific algorithm. Here, we use five atmospheric correction

schemes and two algorithms to derive SPM and Chl a from the Sentinel 2A&B satellites’

multispectral instrument data. The best estimates of SPM and Chl a are determined by

comparison with in situ observations from buoys. Together with SST from Landsat-8,

we estimated an Oyster Suitability Index (OSI) along the transects in five estuaries in the

Gulf of Maine as well as applied a novel particulate organic matter algorithm, a function

of Chl a and SPM in low turbidity estuaries. We then apply the optimal approaches to

derive water quality parameters to study five different estuaries in Maine and find that

existing high-yield oyster aquaculture farms are found in areas with elevated OSI values.

Additionally, we suggest new areas, currently under-exploited, where oyster aquaculture

is likely to succeed, showcasing the utility of the approach.

Keywords: Landsat 8, Gulf of Q13Maine, oyster aquaculture, Sentinel 2 (ESA), atmospheric correction (AC)

INTRODUCTION

The United States is Q14the largest oyster aquaculture producer in North America, producing more
than 150,000 metric tons in 2018, more than 10 times that of Canada (14,614 metric tons,
FAO, 2020). In particular, eastern oyster aquaculture is an expanding industry in coastal Maine,
United States. Landings of the eastern oyster, Crassostrea virginica, totaled USD 1.2 million in 2011
and increased by nearly 800% to USD 9.7 million in 2019 (Maine Department of Marine Resources Q15,
2020).1 As the industry expands, prospecting for new oyster growing sites has traditionally relied on
grower experience along with trial and error. Recently, the utility of remotely sensed water-quality

1www.maine.gov/dmr/ Q16
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data has been suggested as a useful approach to reduce the
uncertainty of aquaculture site selection (Gernez et al., 2017;
Snyder et al., 2017; Palmer et al., 2020; Newell et al., 2021).
Some of the most relevant parameters (temperature and food) for
bivalve growth can be obtained from space-based observations at
spatial scales relevant to growers (Newell et al., 2021).

Existing ocean color space-based sensors [Moderate
Resolution Imaging Spectroradiometer (MODIS), Visible
Infrared Imaging Radiometer Suite (VIIRS), and Ocean and
Land Color Instrument (OLCI)] on board satellites such as
Aqua, NOAA-20, and Sentinel 3 have operationally produced
water quality products that are freely available online. However,
their resolution is often too coarse to be useful in nearshore
areas where the majority of marine aquaculture operates. Sensors
on more recently launched high-resolution satellites, such as
Multispectral Instruments (MSI) on Sentinel 2 A&B (hereafter
referred to as Sentinel 2) and the Operational Land Imager
(OLI) and the Thermal Infrared Sensor (TIRS) onboard Landsat
8, have sufficient spatial resolution (≤60 m) to provide data
in long and narrow estuaries that fringe large coastal systems
such as the Gulf of Maine (GoM). For example, Sentinel 2
has a 5-day revisiting time for Maine, while Landsat 8 has a
16-day revisiting time. Unfortunately, Sentinel 2 lacks thermal
bands, which are available from Landsat 8. Although these
satellites have the potential to provide farm-scale data valuable to
aquaculturists, there are no operational water quality parameters
derived from these sensors, e.g., sea surface temperature (SST),
Chlorophyll a (Chl a), and suspended particulate matter (SPM).
To derive such parameters, the data from the satellites (i.e., top
of the atmosphere radiance and thermal emissions) need to be
corrected first.

Here, we demonstrated how to derive oyster relevant water
quality parameters for five estuaries in coastal Maine. We tested
several different schemes to derive water-quality parameters from
space and choose the schemes and algorithms with a best match
to in situ observations to characterize their uncertainties during
the validation process. Finally, we use these parameters to assess
spatial variability in oyster aquaculture suitability along transects
of five geomorphologically narrow estuaries that require high
resolution sensing.

MATERIALS AND METHODS

Study Sites
Aquaculture operations in Maine generally target estuaries with
low freshwater input (Johnson et al., 2019) to avoid water quality
issues related to land-based pollution and maintain a particular
flavor profile. Therefore, we selected five relatively low flow
estuaries: Damariscotta, Medomak, St. George, Sheepscot, and
New Meadows (Figure 1) for in-depth remote sensing analysis.
For example, the Damariscotta and the Sheepscot estuaries have
freshwater inputs ranging from 1 to 15 m3 s−1, while the nearby
Kennebec River estuary, a high input river system, receives 150
m3 s−1 to over 600 m3 s−1 from a watershed area of 24,000
km2 (Mayer, 1996). The watershed area of all the estuaries
included in this analysis range from 60 km2 in the Medomak

to 943 km2 in the Sheepscot. Although these estuaries are
similar in freshwater input, they vary in geomorphology, existing
aquaculture intensity, and catchment basin characteristics. Due
to a large tidal range (>2m) and narrow shape, the residence time
of these estuaries is on the order of multiple days in the upper
estuary and roughly two tidal cycles closer to the mouths of the
systems (Hillyer et al., 2021; Liberti et al., 2021).

Satellite Data
Sentinel 2 Level 1C (L1C) top-of-the-atmosphere radiance data
were downloaded from CREODIAS.2 Thermal Landsat 8 data
(Collection 2 Level 2) were downloaded from the USGS earth
explorer.3 We obtained 86 Sentinel 2A or 2B images covering
all five estuaries from June to September in 2016–2020 and 62
thermal Landsat 8 images from June to September in 2013–2020.
We used the images to develop monthly climatologies for the
region. The period from June to September was selected because
it represents the primary oyster growing season inMaine (Snyder
et al., 2017; Adams et al., 2019).

Atmospheric Correction of the Level 1C Data

Atmospheric correction (AC) is a necessary step for processing
ocean color imagery as typically> 90% of top-of-the-atmosphere
upwelled radiance in the visible spectrum above water is due
to the interaction of light with atmospheric aerosols and gas.
However, there is currently no consensus regarding the best
scheme to perform such AC (Warren et al., 2019; Pahlevan
et al., 2021). Therefore, we used five different and freely available
AC schemes to derive remote sensing reflectance at sea level,
including SeaWiFS Data Analysis System (SeaDAS), Acolite,
Polymer, the Case 2 Regional Coast Color processor (C2RCC),
and the Ocean Color Simultaneous Marine and Aerosol Retrieval
Tool (OCSMART) (Table 1).

Each AC scheme was processed using the default settings
(e.g., no glint correction). For those AC schemes that produce
water reflectance (ρw), we converted each ρw to remote-sensing
reflectance (Rrs; unit: sr−1) by:

Rrs =
ρw

π

The spatial resolution for most of the AC corrected data from
Sentinel 2 is 20 m with the exception of OC-SMART which has a
resolution of 60 m. For comparison with buoys, we performed
statistics on seven-by-seven pixels centered around the buoy
when the resolution was 20 m and three by three pixels centered
on the buoy when it was 60 m (Pahlevan et al., 2021).

Deriving Suspended Particulate Matter From

Atmospheric Correction Corrected Sentinel 2 Images

We chose two algorithms, one explicit (Nechad et al., 2010) and
one implicit (SOLID) (Balasubramanian et al., 2020), to derive
SPM from Rrs computed from Sentinel 2 (see Supplementary

Material for equations). Both algorithms were designed for
and applied to locations with SPM concentrations from 0.04

2https://discovery.creodias.eu/dataset
3https://earthexplorer.usgs.gov/
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FIGURE 1 | Locations of buoysQ4

Q5

in the GoM whose environmental data we use for validation of the remote-sensing products computed along five transects in

different Maine estuaries.

to 110 mg L−1, which include those found in the GoM (i.e.,
0.1–15 mg L−1).

Deriving Chlorophyll a From Atmospheric Correction

Corrected Sentinel 2 Images

We also chose two algorithms to derive Chl a from Sentinel
2 reflectance (see Supplementary Material for equations).
The explicit standard OC3/OC4 (OCx) is NASA’s current
standard Chl a algorithm (O’Reilly and Werdell, 2019; Pahlevan
et al., 2020) and the implicit Mixture Density Networks
(MDN) is based on machine learning (Pahlevan et al., 2020).
The latter has been found to perform better than the
former in an initial analysis of inland and coastal waters
(Pahlevan et al., 2020).

Buoy Data for Validation
To validate the remote sensing products, observations from
in situ buoys within the region of interest (Figure 1)

from the Northeast Regional Association of Coastal Ocean
Observing Systems and an aquaculture observing system are
available at http://maine.loboviz.com/. The relevant water-quality
parameters are Chl a (estimated from measurements with
a WETLabs Eco fluorometer), suspended particulate matter
(SPM, estimated with a WETLabs Eco FLNTU turbidity
meter), fluorescing dissolved organic matter (FDOM, estimated
from measurements with a WETLabs Eco fluorometer) and
temperature (measured with a SeaBird conductivity and
temperature sensor). Although the sensors on these buoys are
cleaned regularly, periods with obvious fouling were identified by
a trained user and removed.

Comparisons between final satellite data and corresponding
buoy measurements were evaluated on their root mean
squared error (RMSE), root mean squared log-error (RMSLE),
median absolute percentage error (MAPE), mean absolute error
computed in log-space (MAE), and log-transformed residuals
(Bias) (Tables 2, 3).
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TABLE 1 | Descriptions of the five atmospheric correction schemes (adapted from Pahlevan et al., 2021).

SeaDAS Polymer Acolite C2RCC OCSMART

Auxiliary

data

NASA NASA NASA NASA

(Downloaded by user)

NASA

Cloud

mask

ρsurf (1,609) > 0.018 ρsurf (865) > 0.2 ρsurf (1,609) > 0.215 IdePIX ρrc (865) >

0.027 and ε <

2.5

Calculate Pixel Pixel One area Pixel Pixel

Algorithm

feature

Assumes water

reflectance is zero in

the NIR-SWIR

(865–1,613 nm) region

Rayleigh corrected reflectance,

a second function treats

aerosol and sun-glint

reflectance

Searches for dark pixel

in an area (default)

(6 km × 6 km)

Machine learning

(6 hidden layers; 77

neurons each)

Machine learning (3

layers;100 × 75 × 50

neurons)

Reference Pahlevan et al., 2017 Steinmetz et al., 2011;

Steinmetz and Ramon, 2018

Vanhellemont, 2019 Brockmann et al., 2016 Fan et al., 2021

Resolution 20 m 20 m 20 m 20 m 60 m

Version 8.0 4.13 2021.01.06 8.0 1.0

Language,

System

Python,

Linux

Python,

Linux

Python,

Linux

Java,

Linux

Python,

Linux

Deriving and Quality Controlling Satellite Temperature

Data

Temperature was derived from Landsat 8 collection 2 level 2 by
applying a linear formula to the thermal band 10 output.4

SST
(

◦C
)

= Band 10 (K) ∗ 0.00341802 + 149.0 − 273.15

We noticed that the cloud mask provided in the level 2 data
sometimes misidentified a small number of pixels affected by
clouds, cloud shadows, and ice. To minimize SST outliers, we
removed pixels out of the 2.5–97.5% range of every satellite scene.

Deriving and Quality Controlling Buoy Suspended

Particulate Matter Data

SPM was calculated by converting the turbidity (NTU) reported
by the Eco-FLNTU on buoys through a 1:1 relationship, 1
NTU = 1 mg l−1, although this could vary by up to 37%

4https://www.usgs.gov/core-science-systems/nli/landsat/landsat-collection-2-
level-2-science-products

TABLE 2 | StatisticalQ18 comparisons of SPM derived using five atmospheric

correction schemes and buoy data from Supplementary Figure 1.

Model Metrics Polymer Acolite SeaDAS OCSMART C2RCC

SOLID N 145 126 86 156 139

RMSE 1.60 5.26 1.90 1.81 4.31

RMSLE 0.31 0.53 0.28 0.36 0.41

MAPE 35.3% 164% 40.8% 50.1% 41.6%

Bias 1.15 0.37 1.03 1.50 1.52

MAE 1.66 2.83 1.68 1.97 1.98

Nechad N 155 127 93 155 142

RMSE 2.16 4.27 2.06 1.73 1.85

RMSLE 0.37 0.53 0.41 0.36 0.41

MAPE 41.7% 178% 56.1% 50.0% 54.3%

Bias 1.06 0.36 1.55 1.48 1.43

MAE 1.83 2.92 2.13 1.95 2.09

(Pfannkuche and Schmidt, 2003; Boss et al., 2009; Snyder et al.,
2017). Turbidity data were removed from validation data set
if a significant drift upward in values was observed before a
buoy cleaning. SPM from the Bowdoin buoy in Harpswell, ME
(Figure 1) was estimated by calculating the backscatter coefficient
(bb) from the volume scattering function (β) through bb = 2∗

π ∗ β(θ) ∗χ(θ), using an χ(θ) of 1.1 (Boss and Pegau, 2001).
Then, SPM was calculated based on the formula from Boss et al.
(2009) as follows: NTU = (bb - bw) /0.0163 where bw is the
backscattering of water.

Deriving and Quality Controlling Buoy Chlorophyll a

Data

Chl a concentration estimated with fluorometers (FChl) have to
be corrected for several factors including contribution of colored
dissolved organic matter (CDOM), variability in the Chl a to
FChl relationships, and non-photochemical quenching. CDOM
is prevalent in coastal waters and can contribute to the signal

TABLE 3 | Statistical comparisons of Chl a derived using five atmospheric

corrections schemes and buoy data from Supplementary Figure 2.

Model Metrics Polymer Acolite SeaDAS OCSMART C2RCC

MDN N 145 121 71 162 148

RMSE 2.89 8.14 4.67 4.71 5.15

RMSLE 0.39 0.59 0.53 0.52 0.56

MAPE 49% 118% 130 74.6% 67.4%

Bias 1.27 0.40 0.49 0.64 0.66

MAE 2.02 2.78 2.73 2.54 2.69

OCX N 163 135 68 153 153

RMSE 3.1036 3.25 66.7 17 11.12

RMSLE 0.49 0.48 1.22 0.73 0.76

MAPE 91% 68.5% 1,167% 204% 162%

Bias 0.51 0.56 0.10 0.35 0.32

MAE 2.43 2.45 11.1 3.93 3.98
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measured by Chl a fluorometers (Proctor and Roesler, 2010). We
corrected for the CDOM contribution based on the method of
Xing et al. (2017):

FChlcorrected = FChl − Y ∗ F_CDOM

Where F_CDOM comes from the DOM fluorometer in Quinine
Sulfate units (QSDE) and Y is the slope of the FCHL and CDOM
relationship which ranges from 0.04 to 0.11 chl/QSDE, with a
mean of 0.087 (Proctor and Roesler, 2010). Additionally, there
is natural variability between the relationship of Chl a and its
fluorescence. The Chl a fluorometers used here (i.e., WETLabs
eco series) have been found to globally overestimate Chl a by a
factor of 2 µg l−1 (Roesler et al., 2017). However, in the GOM,
the sensors have been found to underestimate the extracted Chl
a by a factor of 1.71 µg l−1 based on Snyder et al. (2017) and
additional unpublished comparisons. We adjusted our estimates
with this correction factor. Finally, daytime measurements of
FChl often underestimate the true value as phytoplankton
quench fluorescence when exposed to high light (termed non-
photochemical quenching, NPQ). We mitigated the effects of
NPQ through the use of night time buoy measurements (hence
measurements that do not suffer from NPQ) taken at the same
phase of the tide as satellite overpass. We computed a corrected
Chl a estimate from an average of FChlcorrected at 12.5 h before the
Sentinel 2 overpass time and 12.5 h after the overpass time. This
final adjusted Chl a value was used for validation.

Extracted Chlorophyll-a for Final
Algorithm Comparison
Despite the corrections applied in section “Deriving and Quality
Controlling Buoy Chlorophyll a Data,” fluorescence remains an
imperfect measure of Chl a (Proctor and Roesler, 2010). To
determine the final Chl a algorithm, match-ups between Sentinel
2 derived Chl a and extracted Chl a from a long-term monitoring
program were made after applying both algorithms, MDN and
OCX, to the best performing AC method. The extracted Chl a
monitoring program samples surface water twice weekly from
a dock at the Darling Marine Center in the Damariscotta River
Estuary. Water samples were collected in triplicate in opaque
bottles at noon, roughly 1 h after Sentinel 2 overpass, and filtered
for a standard acetone extraction before being read on a Turner
10 AU fluorometer (Holm-Hansen and Riemann, 1978).

Derivation of Particulate Organic Matter
From Chlorophyll a and Suspended
Particulate Matter
Newell et al. (2021) used high resolution satellite imagery and
a multiple linear regression to derive particulate organic matter
(POM), an indicator of food available to oysters, from SPM
and Chl a. Importantly, they argued that this technique is only
applicable to coastal environments with low inorganic SPM loads,
which is characteristic of the five estuaries we targeted. We
derived POM using the following equation from Newell et al.
(2021):

POM =
(

0.153 ∗ Chl + 0.194 ∗ SPM
)

/0.939

TABLE 4 | Values for oyster suitability index for the Gulf of Maine (adapted from

Snyder et al., 2017).

Ideal Moderate Poor Importance factor

Weight 1 0.6 0

SST SST > 22 22 > SST > 20 SST < 20 0.8

SPM SPM < 8 10 > SPM > 8 SPM > 10 0.05

Chl a 10 > Chl a > 3 3 > Chl a > 1 Chl a < 1

Chl a > 10

0.15

The Oyster Suitability Index
For each of the five estuaries, 3 × 3 pixel transects were extracted
from the final water quality products, POM, SPM, Chl a, and
temperature. The oyster suitability index (OSI) was computed
along the latitude of the transect following Snyder et al. (2017):

OSI = SSTweight ∗ 0.8 + Chlweight ∗ 0.15 + SPMweight ∗ 0.05

Where each parameter (SST, Chl a, SPM) is attributed a weight
if it falls within conditions defined as ideal, moderate or poor
for oyster culture (Table 4; Snyder et al., 2017). Each weight
was multiplied by its importance factor and added together to
calculate the final OSI (Table 4). If any of the parameters fell in the
poor classification, the final OSI was reduced to 0. The OSI was
classified as poor (OSI < 0.25), moderate (0.25 < OSI < 0.75),
and ideal (OSI > 0.75). The weights in Snyder et al.’s (2017) OSI
were derived from published literature; however, we acknowledge
that they were derived from expert opinion and literature values
and designed to be an initial step in classifying productive oyster
sites. We included the transects of each environmental parameter
used in the OSI so independent conclusions could be drawn.

RESULTS

Validation of Remotely Derived
Parameters
We compared the different scheme and algorithm combinations
with the buoy measurements of SPM and Chl a (Tables 2, 3; see
Supplementary Figures 1, 2 for visual comparisons of remote
sensing observations and corresponding buoy values). Overall,
there were 10 different combinations, five AC methods and
two algorithms, for each parameter. The resulting match up
performance metrics varied with AC and algorithm.

For SPM, the SOLID algorithm and Polymer AC
outperformed the other combinations. Polymer resulted in
the lowest MAPE and MAE for both algorithms; however, the
SOLID-Polymer combination had 15 and 9 percent lower MAPE
and MAE, respectively, when compared to the Nechad-Polymer
results (Table 2). Additionally, the SOLID-Polymer comparison
had the lowest RMSE and lower or similar RMSLE than the other
AC schemes. While the SOLID-Acolite and SOLID-SeaDAS
combinations had lower bias than SOLID-Polymer, the SOLID-
Acolite combination had four times higher MAPE and a 58%
higher MAE (Table 2). The SOLID-SeaDAS’s MAPE and MAE
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FIGURE 2 | (Left) Time series comparisons of remote sensing Chl a and extracted in-situ Chl a in the Damariscotta River estuary. (Right) Matchups between

remote sensing Chl a and time series Chl a. All satellite derived Chl a was Polymer processed and Chl a was derived from the MDN (top) or OCx (bottom) algorithms.

were closer to the SOLID-Polymer combination, however, it
produced a 40% reduction in number of matchups.

The MDN algorithm and Polymer AC outperformed the
other algorithm-AC scheme combinations when compared to
buoy Chl a (Table 3). Similar to the SPM comparisons,
MAPE and MAE were lower for both OCx and MDN when
processed by Polymer than any other AC scheme, but were
lower by 46 and 17 percent for the MDN-Polymer combination.
RMSE and RMSLE for the MDN-Polymer combination were
also lower than the other MDN-AC scheme combinations.
The OCx-Polymer combination had lower RMSE than other
OCx-AC scheme combinations, but was slightly outperformed
in RMSLE by OCx-Acolite. Overall, the buoy comparisons
demonstrated that the Polymer AC scheme provided the lowest
error metrics and the Polymer processed MDN Chl a slightly
outcompeted the OCx Chl a.

For the final verification of Chl a, products derived from both
OCx and MDN on Polymer processed scenes were compared
to a time series of extracted Chl a in the Damariscotta River
(Figure 2). The same error metrics used to assess the buoy

comparisons resulted in much lower MAPE, MAE, and bias for
OCx than MDN when compared to extracted data. While RMSE
and RMSLE was lower for the MDN algorithm, the Chl a was
consistently underpredicted and 70 percent fewer matchups were
retrieved than with OCx.

For the examinations of oyster aquaculture suitability all
scenes were corrected with Polymer, the SOLID algorithm was
used to generate SPM, and the OCx algorithm was used to derive
Chl a. We also validated the Landsat 8 SST product and found it
satisfactory (e.g., RMSE < 1.3◦C) (Hesketh, 2021 Q19).

Transects of Five Study Estuaries
In the Damariscotta River estuary, the single largest oyster
growing area in the Northern New England region, the median
summer SST ranged from 16◦C at the mouth of the estuary
to 23◦C in its upper reaches, the highest median temperatures
observed in the study (Figure 3). Chl a was consistent at 2 µg l−1

up to latitude 43.97◦N north of which it increased to a peak at ∼

4 µg l−1. SPM slowly increased from a median of 1 mg l−1 at the
mouth to 1.5 mg l−1 at the upper end of the estuary (Figure 3).
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FIGURE 3 | Bathymetric map of the Damariscotta River estuary (from

downstream to upstream left to right) with a red line showing the central

transect. (A) POM (B), SPM (C), Chl a (D), and SST (E) are reconstructed

from remote sensing data, and OSI (F) is derived following the method of

Snyder et al. (2017). Gray color belts show standard deviation of POM, SPM,

Chl a, and SST derived in summer (June–September) over the period

2016–2020, with their median values depicted by blue, green, and cyan

points that denote poor, moderate and ideal conditions for oyster aquaculture,

respectively.

The majority of the Damariscotta scored a low OSI due to
low temperatures. However, above 44.97◦N, the estuary became
better suited for oyster culture as the temperature increased from
a poor to a moderate classification. The very upper portion of
the Damariscotta (above latitude 44.01◦N) is the only area in this

FIGURE 4 | Bathymetric map of the Sheepscot River estuary (from

downstream to upstream left to right) with a red line showing the central

transect. (A) POM (B), SPM (C), Chl a (D), and SST (E) are reconstructed

from remote sensing data, and OSI (F) is derived following the method of

Snyder et al. (2017). Gray color belts show standard deviation of POM, SPM,

Chl a, and SST derived in summer (June–September) over the period

2016–2020, with their median values depicted by blue, green, and cyan

points that denote poor, moderate and ideal conditions for oyster aquaculture,

respectively.

analysis that reaches OSI values of 1 driven by high temperature
and moderate food conditions. No other estuary reached median
temperatures above 22◦C, capping the highest possible OSI values
in other estuarine systems at 0.68 (Figures 3–6).

In contrast to the Damariscotta, OSI values in the Sheepscot
River estuary indicated that the majority of its main channel is
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FIGURE 5 | Bathymetric map of the Medomak River estuary (from

downstream to upstream left to right) with a red line showing the central

transect. (A) POM (B), SPM (C), Chl a (D), and SST (E) are reconstructed

from remote sensing data, and OSI (F) is derived following the method of

Snyder et al. (2017). Gray color belts show standard deviation of POM, SPM,

Chl a, and SST derived in summer (June–September) over the period

2016–2020, with their median values depicted by blue, green, and cyan

points that denote poor, moderate and ideal conditions for oyster aquaculture,

respectively.

unsuitable for oyster culture. Throughout the Sheepscot transect,
the median SST ranged from 13 to 16◦C with no warming trend
with latitude. Similarly, SPM remained constant at a relatively
low 1 mg l−1 along the entire estuary (Figure 4). Chl a is also
constant along the transect with concentrations just under 3 µg

FIGURE 6 | Bathymetric map of the New Meadows River estuary (from

downstream to upstream left to right) with a red line showing the central

transect. (A) POM (B), SPM (C), Chl a (D), and SST (E) are reconstructed

from remote sensing data, and OSI (F) is derived following the method of

Snyder et al. (2017). Gray color belts show standard deviation of POM, SPM,

Chl a, and SST derived in summer (June–September) over the period

2016–2020, with their median values depicted by blue, green, and cyan

points that denote poor, moderate and ideal conditions for oyster aquaculture,

respectively.

l−1. Occasionally, Chl a crosses into the moderate classification
raising the OSI values to 0.2 (Figure 4). Due to the low Chl a
and SPM concentrations, the Sheepscot had the lowest satellite
derived POM of the estuaries in our analysis (Figures 3–7).
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FIGURE 7 | Bathymetric map of the St. George River estuary (from

downstream to upstream left to right) with a red line showing the central

transect. (A) POM (B), SPM (C), Chl a (D), and SST (E) are reconstructed

from remote sensing data, and OSI (F) is derived following the method of

Snyder et al. (2017). Gray color belts show standard deviation of POM, SPM,

Chl a, and SST derived in summer (June–September) over the period

2016–2020, with their median values depicted by blue, green, and cyan

points that denote poor, moderate and ideal conditions for oyster aquaculture,

respectively.

The temperature conditions in the shallower Medomak were
more favorable to oyster aquaculture ranging from 18◦C at the
mouth to 22◦C further inland (Figure 5). The Medomak also
exhibited the highest sustained concentrations of bivalve food.
Chl a could be as high as 5 µg l−1 and SPM ∼3 mg l−1 between
44.05 and 44.06◦N (Figure 5). The relatively high Chl a and SPM

also resulted in the highest calculated POM values observed in
mid-Coast GoM (Figure 5).

Although located ∼ 45 km to the southwest, the New
Meadows River estuary was very similar to the Medomak. The
temperature transects the same range (18–22◦C). Chl a was
slightly lower, reaching ∼7 mg l−1 at the highest point along
the transect with the corresponding peak in SPM reaching 2 mg
l−1 (Figure 6). Above latitude 43.87◦N, the OSI reached its
peak of 0.68, driven by higher food availability and moderate
temperatures (Figure 6).

The most northeastern estuary, the St. George, had similarly
low OSI values and spatial homogeneity as the Sheepscot for
the majority of the system. However, while the Sheepscot has
consistently low temperature and food along the entire transect,
the St. George does show a pattern of increasing conditions with
higher latitudes. SST increased to just over 20◦C at the very top
of the estuary from 16◦C at the mouth. St George Chl a and SPM
increased from 1.5 and 1.5 mg l−1, respectively, to a small peak of
8 and 3 mg l−1 at similar latitudes to the Medomak (Figure 7).

DISCUSSION

Proposed Methods for Deriving Remote
Sensing Data
We compared five atmospheric corrections with two algorithms
for each derived parameter (Chl a and SPM) and found the
combination that provided the best comparison with available
in situ data. It is important to note that variability between
the CDOM to Chl a ratio in a given environment and the
environment the algorithm was trained in can cause poor
performance. This variability often drives many practitioners to
use local data to design their own regional Chl a algorithm.
Another cause for poor Chl a comparisons in Sentinel 2 Chl a
products are across track non-uniformities created by instrument
artifacts identified in Pahlevan et al. (2017). Comparisons
between remote sensing imagery and buoy-based observations
located in different tracks of the same imagemay result in over- or
under-estimations because the conditions under which they are
captured are not identical and inaccuracies in the AC procedure
can thus result in striped composites. Note that in this work,
we are not using locally tuned algorithms but rather algorithms
developed by other groups with data encompassing a variety of
environments to reflect the conditions that the vast majority of
aquaculturists would potentially access remote sensing imagery
during their decision-making process.

Combining ocean color data with SST from Landsat 8 and
averaging over several years to obtain enough images to create
a stable climatology allowed us to compute the distribution of
POM and the OSI for five estuaries in the mid-coast of the GoM,
from which promising new areas for oyster aquaculture can be
identified. For example, theMedomak River estuary has relatively
few aquaculture leases; however, conditions from our analysis
indicate that this region is a promising location for sustainable
oyster aquaculture development.

The ability to accurately characterize spatial transects in
water quality at high spatial resolution should improve as
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more cloud free imagery becomes available. However, there are
caveats to using this information and recommendations for
improvement. The accuracy of water quality parameters was
strongly linked to the suitability of the atmospheric correction
applied (Supplementary Figures 1, 2). So far, there are no
AC schemes that perform best for high resolution satellites
everywhere, e.g., contrastWarren et al. (2019) with Pahlevan et al.
(2021). The search for a more universal or flexible AC scheme
may be improved if data from other sources (e.g., AERONET-OC
and other satellites) are brought to bear on this problem (Warren
et al., 2019; Pahlevan et al., 2021).

Food and the Oyster Suitability Index
The OSI is driven primarily by temperature which is weighted
at 80% of the final value. Temperature and food are often
regarded as the main drivers of oyster growth (Bourlès et al.,
2009; Rico-Villa et al., 2009; Hawkins et al., 2013a; Filgueira
et al., 2014). Temperature is especially important in GoM oyster
culture since it is close to the northern end of the eastern oyster’s
range. Eastern oyster filtration activity is generally minimal below
10◦C and increases to a peak at roughly 30◦C (Loosanoff, 1958)
with optimal temperatures falling between 20 and 30◦C (Stanley
and Sellers, 1986). When temperature is low enough to reduce
feeding, oysters may not need to take advantage of all available
food, indicating that at higher temperatures food becomes more
important (Comeau et al., 2008, 2010). Median growing season
Chl a, the proxy for oyster food in the OSI, varied from 2 to 8
µg l−1 along transects and between estuaries. While all the study
estuaries had regions classified as poor based on food (Figures 3–
6), in all regions where temperature fell within the moderate and
ideal temperature ranges (>20◦C), Chl a was primarily in its ideal
range (3–10 µg l−1) indicating that food was not a major limiting
parameter in the identification of sites with the OSI.

Low summer SPM concentrations were observed in all five
estuaries with a max of ∼ 6 mg l−1. Low SPM was likely due
to the minimal freshwater input in all the systems reducing
input from terrestrial sources. Snyder et al.’s (2017) OSI includes
high concentrations of SPM as a negative parameter for oyster
growth due to the potential for the inorganic components of
SPM to dilute bivalve food (Widdows et al., 1979; Barille et al.,
1997; Snyder et al., 2017). However, while oysters and other
bivalves have been shown to preferentially select phytoplankton,
they also gain significant energy from detrital components in
POM (Langdon and Newell, 1990; Hawkins et al., 2013a,b; Both
et al., 2020). Within our study area, bioavailable proteins within
detritus are an important and necessary source of protein for
oysters in the Damariscotta River (Adams et al., 2019). In a study
examining oyster feeding rates in the upper Damariscotta River
estuary, one of the most productive oyster producing regions
in Maine, POM averaged 1.8 mg l−1 (±0.8) over the growing
season (Adams et al., 2019). While not included in the OSI,
we calculated POM transects to give a more complete picture
of bivalve food to account for the likely positive contribution
of detritus in these systems with low freshwater input and
consequently, low inorganic sediment load. Where the transect
temperatures are above 20◦C, POM is above 1 mg l−1, similar
to the upper Damariscotta (Figures 3–6). Furthermore, the

good correspondence between SPM and Chl a along with their
moderate values are also encouraging as they suggest that SPM
is mostly organic in origin and likely representative of food as
opposed to transported or resuspended terrestrial sediments of
low or no nutritional value.

Oyster Aquaculture Site Prospecting
Mid-coast GoM estuaries examined for oyster aquaculture
suitability fall in a region dominated by narrow North-South
running estuaries formed from drowned river valleys bounded
between Casco Bay in the South and Penobscot Bay in the
North (Kelley, 1987). Despite all five of the estuaries entering
the GoM along a 50 km stretch of coast, depth and natural
constrictions can lead to variations in mixing and residence
time. There are relatively few published estimates of residence
time for these systems; however, it has been examined in some
of the study estuaries. Geomorphological features in the upper
Damariscotta result in long residence times (>7 days, Liberti
et al., 2021). Hillyer et al. (2021) also recently calculated residence
times for the Medomak River estuary on the order of days.
Conversely, the mouths of these same estuaries tend to have
residence times on the order of one to two tidal cycles (Liberti
et al., 2021). Clearly, our transects reflect the spatial change in
residence time of these long narrow estuarine systems where
bottom and side friction retains water and particulates at the
upper end of the estuaries and flushes relatively rapidly at
the mouth. These variations can create significant variations in
temperature and oyster food between and along transects of
these systems. Finally, in contrast, estuarine systems without
these geomorphological features, such as the Sheepscot and
St. George estuaries, displayed spatially homogeneous patterns
in temperature and food availability suggesting relatively low
residence time for heat and particulate retention.

Comparisons between existing farm sites and the OSI allow
for additional observational validation of its performance. The
Damariscotta River estuary (DRE; Figure 3) and the New
Meadows (Figure 6) are regions of relatively high current
production in both our analysis and actual production. Maine’s
regulation of aquaculture leases can be grouped into larger
standard or experimental leases (referred to as leases) and smaller
limited purpose aquaculture leases (referred to as LPAs). The
size of an LPA is capped at 37 square meters and is designed
for potential farmers to trial farm sites before starting the costly
process of obtaining a lease. The DRE and the New Meadows
contain both lease types.

Oyster aquaculture in the region began in the DRE in
1975 (Hanes, 2019) and now produces over half of Maine
oysters from 29 leases held by 13 farms as well as 74
LPAs (Maine Department of Marine Resources, 2021). The
majority of these DRE farms are concentrated in the upper
third of the estuary above latitude 43.9◦N. At this location,
a natural bedrock constriction separates the upper DRE from
the remaining estuary increasing the residency time of the
water and allowing it to warm to ideal temperatures for oyster
aquaculture. The increased suitability of the upper estuary
for warm water culture species has been well documented
(Shatkin, 1992; Barber and Davis, 1997; Snyder et al., 2017; Beard
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et al., 2020). One early study showed 25 mm difference in
shell length and a 40 g difference in live weight of eastern
oysters after one growing season compared to a site only
7.5 km south of the estuary’s constriction (Davis and Barber,
1999). Promisingly, the satellite derived OSI captured the
effects of the constriction with the OSI reaching moderate
classification at the same latitude as the constriction and
increasing to the only ideal classification in the main growing
area (Figure 3).

While aquaculture development in the New Meadows is
relatively new compared to the Damariscotta and hosts fewer
farm than the Damariscotta, the five leases held by five separate
farms as well as 47 LPAs indicate high interest in oyster culture
and make it a good test case for the satellite driven OSI (Maine
Department of Marine Resources, 2021). These standard leases
are all held above latitudes of 43.87◦N, within the area identified
as suitable by the OSI (Figure 6). While the majority of the LPAs
are also concentrated in the upper estuary, many are held in
latitudes with low OSI values, but are close to shore or in coves
that may offer warmer water temperatures. A valuable application
of high-resolution satellite products may be lateral transects in
addition to the latitudinal transects we have focused on here.

While the Damariscotta and the NewMeadows are established
hubs of oyster culture, the three remaining estuaries examined
are largely unused by farmers. The Sheepscot has 5 leases and 14
LPAs, the Medomak has one lease and no oyster LPAs, and the St.
George has one lease and 14 LPAs (Maine DMR). In these regions
the OSI can be used for prospecting lease sites.

Results for the Sheepscot deemed it largely unsuitable for
eastern oyster culture (Figure 4). While similar in size to the
Damariscotta, the lower portion of the Sheepscot is characterized
by a deep (MLW 20–60 m) channel and well mixed cold waters
(Stickney, 1959). In the summer months, the majority of the river
is ∼5–10◦C colder than the DRE (Figures 3–7). However, in the
upper reaches of the estuary the water becomes shallower (MLW
1–10 m) and the river experiences a wider range of temperatures
and is more influenced by its two main tributaries, the Marsh
and Dyer Rivers (Stickney, 1959). In this upper portion, beyond
the range of the transect, there is a large oyster farm that
consists of 4 of the 5 leases in the river at latitude 44.03◦N
(Maine Department of Marine Resources, 2021) as well as one
of the few natural populations of C. virginica in Maine (Larsen
et al., 2013). Given the low concentrations of Chl a and POM
as well as the lowest summer temperatures in this study, the
lower Sheepscot may be more suitable for culture of mussel or
scallop species that prefer temperature in the 10–20◦C and Chl
a above 0.5 mg l−1 (Mizuta and Wikfors, 2019; Coleman et al.,
2022).

Similar to the Sheepscot, the majority of the St. George also
scored low on the OSI. This estuary is oriented on a Northeast-
Southwest line compared to the other North-South estuaries
in this study and is the last major estuary before Penobscot
Bay, marking an important demarcation between Eastern and
Western GoM source water to these estuaries (Figure 1). Like
the Sheepscot, the St. George is connected to the GoM by a
deeper channel resulting in colder water infiltrating deeper into
the estuary (Maine Coastal Observing Alliance [MCOA], 2015).

However, unlike the Sheepscot, the food and temperature
conditions improve with higher latitudes. Currently, the
northernmost farm site is a recreational LPA at 44.01◦N
and oyster sites are present as far South as 43.94◦N (Maine
Department ofMarine Resources, 2021).While theOSI scores the
majority of the upper river as poor growing locations, the median
temperatures are ∼19◦C and coupled with the high food, may
present productive growing locations.

The Medomak River had the fewest number of oyster leases
and LPAs despite relatively high OSI scores. The system plays a
key role in the state’s clam fishery, the second largest fishery in
the region to American lobster (Hillyer et al., 2021). The estuary
has a wide mouth where it enters the GoM and narrows to
a constriction at ∼44.01◦N after which it widens to expansive
tidal flats with a deep center channel (MLW 6–20 m) (Hillyer
et al., 2021). The only oyster lease in the estuary is located at
the southern end of the transect in Figure 6 at 43.98◦N. While
this location is labeled as poor by the OSI, this farm is enclosed
within an lobster pound which artificially increases residence
time and has been able to produce good growth due to its local
environmental conditions (Leeman Q20et al., in review). North of
this lease, high Chl a and increased temperatures drive the OSI
into moderate values (Figure 6). At high tides, water fills the
shallow flats where it can be influenced more heavily by the
air temperature (Kim et al., 2010). In the summer, higher air
temperatures could lead to warmer waters on ebb tides increasing
the OSI. These areas are potentially productive oyster areas;
however, close collaboration with existing industries, such as
clam harvesters, would be vital in siting farms to avoid conflict
(Cleaver et al., 2018).

While the satellite driven OSI provides a valuable tool to
inform site selection, the index does not have much flexibility in
classifying sites that exist on the borders between classification
breaks (such as sites with median temperatures of 19◦C),
lateral variability across estuaries, or interannual variability. For
example, in a 2003 growth study that examined oyster production
of selected lines in several estuaries, including the New Meadows
and the St. George, Rawson and Feindel (2012) found that the two
estuaries had similar whole weight growth (Rawson and Feindel,
2012). However, in a 2004 trial, the New Meadows had roughly
double the whole weight as the St. George (Rawson and Feindel,
2012). Despite this variability, satellite derived site selection
tools provide valuable spatial data previously unavailable to
prospective oyster aquaculturists in a rapidly changing GoM.

Future work should couple process based growth models with
remotely sensed parameters and incorporate newly launched
satellites. Growth models driven by satellite data can provide
metrics such as time-to-market that can be more informative
when prospecting for new culture sites (Palmer et al., 2020).
Additionally, the new satellite Landsat 9, launched in September
2021, will be able to increase the revisit time of a satellite
with thermal bands when combined with Landsat 8 (currently
16 days). When combined with Sentinel 2 (5 days), the
high-resolution satellite revisiting time will be 2–3 days
providing a greater chance of cloud free overpass days and
more robust estimates of seasonal and interannual trends in
SST, SPM, and Chl a.
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CONCLUSION

Satellite derived SPM, chlorophyll a, and particulate organic
matter from Sentinel 2 and sea surface temperature from Landsat
8 are powerful tools for oyster aquaculture site selection. Using
validated remote sensing data from Landsat 8 and Sentinel 2,
we mapped the location where oyster aquaculture should thrive
along transects of five estuaries in the GoM. The OSI was capable
of successfully identifying areas where existing successful farms
are already operating as well as identifying a variety of new
sites where oyster aquaculture could be successful. The high-
resolution products were also capable of detecting the effect
of local geomorphological features that drive local scale site
selection. A key to the approach is validation with in situ data,
as without such validation it is impossible to assess uncertainties
of any scheme to derive water quality parameters from the freely
available satellite data.
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