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Abstract

G protein-coupled-receptors (GPCRs) are the largest family of cell surface receptors with
tremendous therapeutic potential. They mediate signal transduction activities via G protein-
dependent signaling pathways, G protein-independent signaling pathways, and other complicated
regulatory processes. The corticotropin-releasing factor receptor type 1 (CRFIR) is a member of
class B GPCRs that is predominantly found in the central nervous system, where it plays a key
role in stress-related neuro-disorders. To date, no drug targeting this receptor has been approved,
partly due to inadequate understanding of the activation mechanism of class B GPCRs.
Previously, using MD simulation, we demonstrated that the CRFIR complexed with a small-
molecule antagonist CP-376395 maintains a conformation of its transmembrane domain (TMD).
Here, using the most abundant structures derived from those simulations, we carried out a
structure-based virtual screening of ZINC15 “Druglike” library containing approximately 17
million compounds. The docking complexes of the CRF1R with the top 30 hits were submitted
to MD simulation to examine the stability of ligand binding mode. Furthermore, MM-GBSA
binding energy calculations were performed on all the complexes to rank them with improving
accuracy. Hit 1 (ZINC000046079839) and hit 20 (ZINC000032907937) span the allosteric site of
the CRF1R, persistently forming interactions with transmembrane helices 3 and 6. These
interactions are likely to keep the receptor in an inactive state since both transmembrane helices

play a critical role in the activation of the receptor.
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Introduction

G protein-coupled-receptors (GPCRs) are the largest family of cell surface receptors with
tremendous therapeutic potential (over 40% of the approved drugs target GPCRs)(Liu &
Kokubo, 2017). They are used by cells to convert extracellular signals into intracellular
responses, mediating signal transduction activities via G protein-dependent signaling pathways,
G protein-independent signaling pathways, and other complicated regulatory processes (Azzi et
al., 2003; Rajagopal, Rajagopal, & Lefkowitz, 2010). They share a conserved structural feature
comprising seven-transmembrane (7TM) helices connected by alternating intracellular and
extracellular loops (ICLs and ECL), an extracellular N-terminus, and an intracellular C-terminus.
Five distinct classes of GPCRs are identified based on sequence homology and functional
similarity: Class A (rhodopsin), Class B (secretin), Class C (glutamate), Class D (adhesion), and
Class E (frizzled) (Pal, Melcher, & Xu, 2012). Class A is the largest GPCR class that is best
studied due to the wealth of structural information available, which greatly increases molecular
understanding of functions and activation mechanisms. On the other hand, Class B is poorly
studied due to the limited structural availability. Members of this class are distinguished by their
large cysteine-rich extracellular domain (ECD) which plays an important role during activation.
15 known receptors in this family are implicated in various disease conditions (Kaspar
Hollenstein et al., 2014), including stress, anxiety, and related neuro-disorders (Garelja et al.,

2020; Harmar, 2001).

The corticotropin-releasing factor receptor type 1 (CRFIR) is a representative member of
class B, predominantly found in the central nervous system, where it is involved in the regulation
of adrenocorticotropic hormone (ACTH)—a key modulator in stress response (Kean, Bortolato,

Hollenstein, Marshall, & Jazayeri, 2015). Thus, CRFIR is a good drug target for anxiety,



depression, inflammation, and other stress-related neuro-disorders (Teleb, Kuppast, Spyridaki,

Liapakis, & Fahmy, 2017).

Molecular dynamics (MD) simulation has been proven to be effective in studying the
natural motion of proteins and other biomolecules at the atomic level and time resolution
(Hollingsworth & Dror, 2018). Using MD simulation, the activation mechanism of the
transmembrane domain (TMD) of CRF1R, which involves large conformational changes of the
TM helices, was demonstrated (Seidel, Zarzycka, Zaidi, Katritch, & Coin, 2017; Singh,
Ahalawat, & Murarka, 2015). Since the activation mechanism of full-length CRF1R was unclear,
we built a full-length CRF1R model using available crystal structures of the N-terminal ECD
(PDB ID: 3EHU) and transmembrane domain (TMD) (PDB ID: 4KBY) (Figure 1). Using
molecular dynamics simulation, we demonstrated that in the presence of a peptide agonist
urocortin 1, the CRFIR undergoes large-scale conformational changes involving breakage of
networks of inter-helical/regional H-bonds and salt bridges and observed movement of
transmembrane helix 6 (TM6). On the other hand, the small molecule antagonist CP-376395-
bound CRF1R maintains the initial inactive conformation of the transmembrane domain

(TMD)(Uba, Scorese, Dean, Liu, & Wu, 2021).
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CRF1R TMD (PDB ID: 4K5Y) Full-length CRF1R model

Figure 1. (A) Crystal structure of the N-terminal extracellular domain (ECD) (PDB ID: 4KBY)
and transmembrane domain (TMD) of CRF1R. (B) A full-length CRF1R model built by
homology modeling.

Here, using multiple structures derived from the afore-mentioned MD simulations,
structure-based virtual screening of ZINC “Druglike” library containing 17 million compounds
(T. Sterling & J. J. Irwin, 2015) was conducted. The top 30 compounds complexed with the
CRFI1R were subjected to MD simulation and MM-GBSA binding energy calculation. Hits with
MM-GBSA free energy of binding scores higher than that of the antagonist CP-376395 and
better physicochemical properties are considered potential CRF1R antagonists. These
compounds span the allosteric site of the CRF1R, forming strong interactions with the

transmembrane helices. The interactions are likely to keep the receptor in an inactive state.

Methods

Protein preparation



The crystal structures of the N-terminal extracellular domain (ECD) of CRF1R (PDB ID:
3EHU) (Pioszak, Parker, Suino-Powell, & Xu, 2008) and that of the CRFIR transmembrane
domain (TMD) bound to small molecule antagonist CP-376395 (PDB ID: 4K5Y) (K. Hollenstein

et al., 2013) were retrieved from the protein data bank (https://www.rcsb.org) and prepared using

Maestro’s Protein Preparation Wizard (Sastry, Adzhigirey, Day, Annabhimoju, & Sherman,
2013). During this preparation, the protein was assigned correct bond orders, missing side chain
atoms and hydrogen atoms were added, disulfide bonds were created, and water molecules
beyond 5 A were deleted. The charge state of the titratable residues was optimized using
PROPKA at a pH of 7. A restrained minimization was done to relax the protein using an OPLS3
force field 2. These structures were used as a template to build a full-length model of CRF1R.
The details of the model building and microsecond MD simulations are available in our previous
work (Uba et al., 2021). Three conformations of the CRF1R derived from the MD simulations of
antagonist CP-376395 bound CRFI1R (Figure S1)(Uba et al., 2021) were used to generate a
receptor grid box of 15 A cube for virtual screening. The ligand-binding site was identified from
the crystal structure of the CRFIR TMD bound to the antagonist CP-376395 (PDB ID: 4K5Y)
(K. Hollenstein et al., 2013). The grid map encloses key binding site residues (F232344, N3125-°,
and Y356%%%) that are conserved in class B GPCRs.

Compound Library preparation

A prepared ZINC15 “Druglike” library was downloaded from the ZINC database
(Teague Sterling & John J. Irwin, 2015), in which ChemAxon’s JChem was used to protonate

and prepare biologically relevant tautomers at Physiological pH of 7 (Csizmadia, 2000).

High-throughput virtual screening (HTVS)


https://www.rcsb.org/

Virtual screening was performed using the Glide docking program (Friesner et al., 2004;
Halgren et al., 2004). ZINC15 drug-like library containing 17,900,742 ligand entries was
screened against the CRFIR allosteric site (Teague, Davis, Leeson, & Oprea, 1999). The
druglike library contains compounds that have been filtered based on Lipinski’s “rule-of-five”
parameters: molecular weight, lipophilicity, and hydrogen bonding potential. Figure 2 shows the
virtual screening workflow comprising multiple scoring functions: high throughput virtual
screening (HTVS), standard precision (SP), and extra precision (XP). HTVS serves as the first-
pass filter, so only the top 10% of hits were selected. SP further reduces the thoroughness of the
final torsional refinement and sampling, retaining 10% of hits. XP performs more extensive
sampling, considering ligand-receptor shape complementarity. QikProp module in Schrédinger
rapidly screens the resulting hits for physicochemical properties. Canvas task identifies diverse

structures based on molecular property descriptors.

Further ligand preparation and induced-fit docking

The ionization/tautomeric state of the ligand was generated at a pH of 7 using an
empirical pKa (Epik) prediction module in Maestro (Sastry et al., 2013). To ensure plausible
ligand binding mode by incorporating flexibility into the protein side-chain atoms, induced-fit
docking (IFD) of these top 30 prepared ligands into the CRFIR allosteric pocket was performed
using the Glide IFD module (Friesner et al., 2004). IFD generates a more accurate protein-ligand
complex structure, so the ligands bind in a similar mode to that of the cocrystal ligand, the

antagonist CP-376395.

Molecular dynamics simulation

Molecular dynamics simulation systems of CRF1R complexes with each of the top 30 hits were

constructed. All systems were solvated using the SPC water model and neutralized by the



addition of Na" ions at a concentration of 0.15 M NaCl, and modeled using the OPLS3 force
field (Harder et al., 2016b) in the Desmond simulation package (Bowers et al., 2006). As applied
to another GPCR in our recent MD simulation study (Uba, Aluwala, Liu, & Wu, 2022), the
default protocol of relaxation for membrane protein was employed here. This protocol comprises
eight steps, viz: (i) Minimization with restraints on solute heavy atoms; (ii) Minimization without
any restraints; (iii) Simulation with heating from 0 K to 310 K, with H>O barrier and gradual
restraining; (iv) Simulation in NPT (constant number of particles, constant pressure of 1 bar and
constant temperature of 310 K) ensemble with H>O barrier and with heavy atoms restrained; (v)
Simulation in NPT ensembles with equilibration of solvent and lipids; vi). Simulation in NPT
ensemble with protein-heavy atoms annealing from 10.0 kcal/mol to 2.0 kcal/mol; vii)
Simulation in NPT ensemble with Co atoms restrained at 2 kcal/mol; and (viii). Simulation for
1.5 ns in NPT ensemble with no restraints. Finally, a 200 ns-production run was carried out
under the NPT ensemble using the default protocol. During the simulation, the temperature was
controlled using the Nosé-Hoover chain coupling scheme (Ikeguchi, 2004) with a coupling
constant of 1.0 ps, and pressure was controlled using the Martyna-Tuckerman-Klein chain
coupling scheme (Ikeguchi, 2004) with a coupling constant of 2.0 ps. M-SHAKE (Bailey &
Lowe, 2009) was used to constrain all bonds connecting hydrogen atoms to enable a 2.0 fs time
step in the simulations. The long-range electrostatic interactions under periodic boundary
conditions (charge grid spacing of ~1.0 A, and direct sum tolerance of 10~”) were treated using
the k-space Gaussian split Ewald method (Shan, Klepeis, Eastwood, Dror, & Shaw, 2005). The
cutoff distance for short-range non-bonded interactions was set to 10 A, and the long-range van
der Waals interactions were based on a uniform density approximation. Non-bonded forces were

calculated using an r-RESPA integrator(Stuart, Zhou, & Berne, 1996), where the short-range



forces were updated every step and the long-range forces every three steps. Snapshots were

collected every 50.0 ps for analysis.
Simulation results analysis

To check the convergence of the MD simulations, Ca protein and ligand RMSDs were
calculated. To determine the most abundant/dominant structure, trajectory clustering analysis
was performed using the Desmond trajectory clustering tool (Bowers et al., 2006). By employing
hierarchical clustering with average linkage, backbone RMSD was used as the structural
similarity, with merging distance cutoff set at 2.5 A. The Representative structure (centroid) of

each cluster is the structure with the greatest number of neighbors in the structural family.
MM-GBSA binding energy calculations and decomposition

Molecular mechanics generalized Born surface area (MM-GBSA) method with an
implicit membrane (a slab-shaped region with a low dielectric constant (~2)) predicts the binding
affinity of the ligand with improved prediction accuracy than the docking method (Ghosh, Rapp,
& Friesner, 1998; Jianing Li et al., 2011). The MM-GBSA calculations adopted an OPLS3 force
field (Harder et al., 2016a), a VSGB 2.0 solvation model (J. Li et al., 2011), and the default
Prime protocol. The default procedure consists of three steps: computation of energies of
receptor alone, ligand alone, and finally receptor-ligand complex. The interaction terms are
Coulombic, H-bond, GB solvation, van der Waals, pi-pi packing, self-contact, and lipophilic

interactions. The total binding free energy equation is given as:
AE (bind) = Ecomplex - (Eligand + Ereceptor)
The interaction terms were then merged into three components, Electrostatics, Evaw, and Eiipophitic, Where

Eelectrostatics= Hoond T Ecoutomb +EGB_solvation



EvdW = EvdW+En-n +Eself-contact and Elipophilic

The MM-GBSA scoring function lacks the solute conformational entropy which results
in higher negative values when compared to the actual values. Nevertheless, it has proven to be
extremely useful for ranking different drugs targeting receptors with comparable binding entropy
values (Harder et al., 2016b). Therefore, MM-GBSA binding energy was calculated for the top
30 diverse hits against the CRF1R on the snapshots collected during the last 10 ns of the

simulation.

Further ADMET prediction

Prediction of ADMET properties for the top 30 compounds was performed on the

SwissADME web server (http://www.swissadme.ch/) developed by the Swiss Institute of

Bioinformatics to enable computational estimation of physiochemical descriptors and
pharmacokinetic properties, and drug-like small molecule inhibitors. The SMILE code for each
compound was uploaded to the webserver and their ADMET properties were computed. These
include gastrointestinal (GI) absorption, blood-brain barrier permeability, Lipinski’s “rule-of-5”

parameters, liver metabolic (CYP450) enzymes inhibition potential, and PAINS filtering.
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Figure 2. Virtual screening workflow for the identification of CRF1R antagonists.

The initial hits show strong binding potential and good ADMET profiles

A virtual screening workflow comprising various filters is depicted in Figure 2 above.
The final compounds were selected based on an MM-GBSA binding energy score higher than
that of the antagonist CP-376395 (Table 1) and good ADMET properties prioritizing blood-brain
barrier permeability, high GI absorption, and 0 PAINS alert (Table 2). PAINS are chemicals that

non-specifically target several biological targets due to their disruptive functional groups (Baell

11



& Walters, 2014). A complete list of the ADMET properties for the individual hits is given in
Figure S2. These compounds are diverse and bear heterocyclic groups as surface recognition

moiety (Figure 3).
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Figure 3. Structures of the top 7 hits identified by virtual screening of ZINC druglike library as

potential antagonists of CRF1R.
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Table 1. Binding energy and RMSD of the top 30 hits compared to the reference compound, antagonist

CP-376395. Hits 1 to 10 against conformation 1(green); 11 to 20 against conformation 2 (blue); 21 to 30
against conformation 3 (orange).

4 Compound Dé’cc(l)‘rizg VDW ELE Hydrophobic | MM-GBSA | Receptor Ligand
(keal/mol) (kcal/mol) | (kcal/mol) (kcal/mol) (kcal/mol) | RMSD(A)* | RMSD(A)?
Ref. Anagonst NA -66.4£1.0 | 3.9+12 305418 | -93.0%44 | 86+14 | 04+0.1
1 ZINC000046079839 122 -68.1£3.6 -14.5+9.4 -52.1+£3.3 -134.8+12.5 4.8+0.3 1.63+0.1
2 ZINC000008072573 12.1 -61.3+3.9 -6.1+4.9 -51.8+3.7 -119.2+8.4 6.4+0.1 2.24+0.1
3 ZINC000001154395 -11.9 -60.8+5.2 -10.0x11.6 -54.8+4.3 -125.6+13.9 3.9+0.1 2.6+0.1
4 ZINC000065062688 -11.8 -61.4+3.9 -10.2+4.0 -52.6+3.2 -124.3+8.5 4.8+0.3 1.7£0.2
5 ZINC000409176962 -11.8 -58.8+2.9 -19.0+£2.9 -41.4+2.8 -119.2+6.1 4.6+0.4 1.3+0.3
6 ZINC000214746700 -11.8 -52.3+1.2 -3.3+2.4 -39.0+2.9 -94.6+4.3 5.3+0.3 0.3+0.2
7 ZINC000020144024 -11.8 -57.4+5.6 5.3+6.1 5.3+4.9 -109.6+13.7 6.0+0.2 1.8+0.3
8 ZINC000009730882 -11.7 -51.24+4.1 -28.1+12.2 -42.0+£2.5 -121.5+12.7 5.2+0.2 2.840.1
9 ZINC000077119068 -11.6 -61.5+3.9 | -21.1+4.9 -56.1+2.8 -138.7+6.9 7.3+0.2 1.7+0.0
10 | ZINC000001926343 -11.6 -46.6+4.8 | -13.6+6.9 -35.1+3.2 -95.3+9.7 4.60.1 2.1+0.1
11 | ZINC000224809098 -13.7 -62.4+4.4 | -17.4+4.6 -58.8+4.1 -138.5+10.7 5.40.1 1.9£0.1
12 | ZINC000224898313 -13.2 -55.4+4.8 -9.9+3.4 -59.35.6 -124.6+11.1 8.4+0.4 2.7+0.2
13 | ZINC000224117283 -13.1 -66.3+2.7 -7.9+7.1 -53.3+3.7 -127.6+7.9 4.420.2 2.1+0.4
14 | ZINC000013145638 -13.1 -48.6+4.0 | -13.6+3.4 -44.5+3.8 -106.7+7.7 6.1+0.2 2.6+0.1
15 | ZINC000049609494 -12.9 -52.1+4.2 | -12.3%4.9 -44.7£3.3 -109.1+8.3 6.3+0.2 1.5+0.2
16 | ZINC000224728551 -12.9 -55.3+3.9 | -10.65.1 -51.8+3.9 -117.76.6 7.1£0.2 2.1+0.1
17 | ZINC000224631654 -12.9 -61.3+2.9 -0.3+8.4 -55.6+3.4 -117.1+10.1 4.6+0.2 2.5+0.1
18 | ZINC000224761269 -12.8 -63.6+4.0 -2.3+5.2 -58.6+3.4 -124.4+9.3 7.8+0.1 1.740.1
19 | ZINC000224669931 -12.8 -56.6+3.6 -5.4+4.9 -55.3+3.2 -117.3+7.5 6.2+0.3 2.4+0.0
20 | ZINC000032907937 -12.8 -61.9+3.8 | -12.4%3.1 -56.5+3.6 -130.8+3.8 4.9+0.3 1.9+0.2
21 ZINC000004521247 -12.2 -50.5+4.1 -2.6+11.7 -37.0£3.2 -90.1+10.9 4.4+0.5 1.7+0.1
22 | ZINC000000959167 -12.0 -50.4+3 .4 -2.4+49.3 -37.1+4.3 -89.0+8.4 4.3+0.4 1.7+0.1
23 | ZINC000000057555 -12.0 -51.6+4.0 | -18.247.8 -41.8+2.9 -111.6+10.5 4.3+0.4 1.740.1
24 | ZINC000828172322 -11.9 -50.0£6.6 | -21.7+14.5 -48.7+3.7 -120.4+12.1 6.3+0.1 2.240.2
25 | ZINC000031167739 -11.5 -54.843.5 | -17.5+5.4 -51.4+3.4 -123.7+7.3 6.4+0.3 1.6+1.1
26 | ZINC000012374475 -11.5 -54.8+3.5 | -17.5+5.4 | -51.3+3.4 -123.7+7.2 6.3+2.1 2.1+0.1
27 | ZINC000020761418 -11.5 -56.0+4.3 | -17.5+11.0 -42.2+4.1 -115.7+13.4 8.8+0.9 2.1+0.1
28 | ZINC000031159228 -11.5 -58.2+3.5 | -14.2%6.5 -55.3+3.9 -127.7+9.5 5.0£0.1 2.5+0.1
29 | ZINC000143132475 -11.3 -57.443.7 | -16.4+7.6 -59.8+3.4 -133.7+8.5 5.5+0.2 0.5+0.1
30 | ZINC000067673743 -11.3 -62.0+7.3 -23.6+3.2 -41.8+3.7 -127.4+12.2 6.4+0.2 1.4+0.1

2 Based on the snapshots from the last 10 ns simulation.

Compounds selected based on MM-GBSA scores <-93.0 Kcal/mol are represented in bold font.
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Table 2. Druglike and ADMET properties of the top 30 compounds predicted using the SwissADME

server. Compounds shown in bold have higher MM-GBSA energy scores than that of the cocrystal ligand
Antagonist CP-376395 (PDB ID: 4KBY). Compounds highlighted in green show good ADMET
properties, including high gastrointestinal (GI) absorption and blood-brain barrier permeability.

GI

BBB

CYP1A2

CYP2C19

CYP2C9

CYP2D6

CYP3A4

Lipinski’s “Rule

SIN Compound absorption | permeant | inhibitor | inhibitor | inhibitor | inhibitor | inhibitor of 5” PAINS
Ref. é;ﬁg%zgl;; High Yes No Yes No Yes No Y]\iincl) éllgiit.lf ;1: 0 alert
1 ZINC000046079839 High Yes Yes Yes Yes Yes Yes 0 violation 0 alert
2 ZINC000008072573 High Yes No Yes Yes Yes Yes 0 violation 0 alert
3 | ZINC000001154395 Low No Yes Yes Yes No Yes 0 violation 0 alert
4 ZINC000065062688 High No No Yes Yes No Yes 0 violation 0 alert
5 | ZINC000409176962 High No Yes Yes Yes No Yes 0 violation 0 alert
6 | ZINC000214746700 Low No No Yes Yes No No 0 violation 1 alert: ene_rhod
7 | ZINC000020144024 High Yes Yes Yes Yes Yes Yes 0 violation 0 alert
8 | ZINC000009730882 High No No No Yes No No 0 violation 0 alert
9 | ZINC000077119068 High No Yes Yes Yes Yes Yes 0 violation 0 alert
10 | ZINC000001926343 Low No No No Yes No No 0 violation 1 alert‘:
sulfonamide
11 ZINC000224809098 High No Yes Yes Yes Yes Yes 0 violation 0 alert
12 | ZINC000224898313 High No No Yes Yes Yes Yes 0 violation 0 alert
13 | ZINC000224117283 High No Yes Yes Yes Yes Yes 0 violation 0 alert
14 | ZINC000013145638 High Yes No No No Yes Yes 0 violation 0 alert
15 | ZINC000049609494 High Yes No Yes Yes Yes Yes 0 violation 0 alert
16 | ZINC000224728551 High No Yes Yes Yes Yes Yes 0 violation 0 alert
17 | ZINC000224631654 High No Yes Yes Yes Yes Yes 0 violation 0 alert
18 | ZINC000224761269 High No Yes Yes Yes Yes Yes 0 violation 0 alert
19 | ZINC000224669931 High No Yes Yes Yes Yes Yes 0 violation 0 alert
20 | ZINC000032907937 High Yes No Yes No Yes Yes 0 violation 0 alert
21 ZINC000004521247 High No No No No Yes No 0 violation 0 alert
22 ZINC000000959167 High No No Yes Yes No No 0 violation 0 alert
23 | ZINCO000000057555 High No No No No Yes No 0 violation 0 alert
24 | ZINC000828172322 High Yes No Yes Yes Yes Yes 0 violation 0 alert
25 | ZINC000031167739 |  High No No No Yes No No 0 violation alert: catechol
26 | ZINC000012374475 High No No No No Yes No 0 violation 0 alert
27 | ZINC000020761418 Low No No Yes Yes No No 0 violation 0 alert
28 | ZINC000031159228 |  High No No No Yes No No 0 violation 1 alert: catechol
29 | ZINC000143132475 High No No No No Yes No 0 violation 0 alert
30 | ZINC000067673743 High No No Yes No No No 0 violation 0 alert

Note: hits 1-10 against conformation 1; 11-20 against conformation 2; 21-30 against conformation 3.

The top hits show stable binding mode

To examine the stability of ligand binding mode, both protein and ligand RMSDs were

computed over time. The protein-Ca. RMSDs increase due to the high mobility of the N-terminal
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ECD and C-terminal regions, and later converge through the simulation. On the other hand,
decreased ligand RMSD trends are observed (Figure 4), suggesting stability of binding mode.
While the RMSF values of the N-terminal ECD, C-terminal, and loop regions increase, the TMD
show decreased fluctuation (Figure S3). Also, the overall secondary structure is maintained with

some loss of helicity (Figure S4).
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Figure 4. Protein Co and ligand RMSDs of the CRF1R complexes with the top 7 hits identified
by structure-based virtual screening.

Plausible protein-ligand interactions

A summary of protein-ligand interactions is presented in given in Figure 5. Like the
antagonist CP-376395, the key interactions formed by the top compounds are mostly
hydrophobic, with a couple of polar and charged contacts. The antagonist CP-376395 forms
persistent interactions with N3123°, and Y356%3 (The Ballesteros—Weinstein numbering
scheme(Ballesteros & Weinstein, 1995)). These residues enclose the allosteric antagonist binding
site of the CRF1R. Other less persistent interactions are formed with L209, F23234 and

M235%47_In the case of the CRF1R MD conformation 1, hit 1 forms similar interaction as the
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antagonist CP-376395, with additional polar interactions with R194 and N231. Similarly, hits 2
and 7 engage both Y356%33 and F2323* in hydrophobic interactions. For conformation 2, hit 14

bearing a benzyl group along its length, does not share any interactions with antagonist CP-

26.49

376395; it rather forms a persistent hydrophobic interaction with L35 , and a charged

83.50 26.49

interaction with E23 via a water molecule. Hit 15 forms a persistent interaction with L35
like hit 14, with only other non-persistent interactions with F232%#* like formed by the antagonist
CP-376395. Despite having a different structure from the antagonist CP-376395, hit 20 forms

similar interacting residues enclosing the CRF1R allosteric site. In the case of conformation 3,

hit 24 forms persistent polar interactions with residues along TM3, TM6, and TM?7.
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Figure 5. Protein-ligand interaction in the CRF1R complexes with the antagonist CP-376395
and the top 7 hits identified by structure-based virtual screening.

Ligand conformational adjustment

16

&



Superimposition of the induced-fit docking pose with the MD simulation poses for the most
abundant structure of each ligand reveals ligand conformational adjustment (Figure 6). Like the
antagonist CP-376395, hits 1 and 2 do not show significant movement, but rather a slight shift of
aromatic recognition group. Hit 7 shifts horizontally towards TM3 and TM6 but remains bound
deeper into the allosteric pocket. The conformations of hits 14, and 20 become more extended,
while hit 15 slightly moves to the edge of the pocket. However, hit 24—the only hit against
conformation 3, moves away from the pocket, resulting in a completely different set of persistent

interactions. Hence, of all the 7 hits, 24 should be considered with caution.
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Figure 6. Superimposition of the docking pose with MD simulation pose of the antagonist CP-
376395 and the top 7 hits identified by structure-based virtual screening of ZINC druglike library
against CRFIR.

Discussion

Despite the implication of CRFIR in stress-related neuro-disorders, no drug targeting the
receptor has been approved yet. To identify novel small non-peptide antagonists of CRF1R, we

carried out an elaborate virtual screening campaign that comprises various filters from a
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combination of multiple computational approaches. Using the 3 most abundant conformations
derived from our previous MD simulation of the antagonist-bound CRF1R(Uba et al., 2021), we
identified a total of 30 compounds as the initial hits from virtual screening. These were subjected
to MD simulations coupled with MM-GBSA binding energy calculation and ADMET prediction.
Seven compounds having MM-GBSA binding energy lower than that of the antagonist CP-
376395, high gastrointestinal absorption, and blood-brain barrier permeability were selected as
the final hits. The selection of the MM-GBSA free energy of binding scores higher than that of
the antagonist CP-376395 increases the reliability of the identified hits since the MM-BGSA
method is more accurate in predicting ligand binding affinity than molecular docking method
(Hou, Wang, Li, & Wang, 2011a), even though the former ignores entropic contribution to the
overall free energy of binding (Sun et al., 2018). Another method for calculating ligand binding
affinity is molecular mechanics-Poisson Boltzmann surface area (MM-PBSA)(Fogolari, Brigo,
& Molinari, 2003). However, the MM-GBSA method has been demonstrated to perform better
than MM-PBSA in predicting both correct binding poses and binding free energy for the
examined protein-ligand systems (Hou, Wang, Li, & Wang, 2011b). Also, the further ADMET
filtering performed was meant to increase the chance of obtaining compounds with better

physicochemical properties (van de Waterbeemd & Gifford, 2003).

Structural stability was measured using protein and ligand RMDs. Increased protein RMSD in
the antagonist CP-376395 is due to the large movement of the N-terminal ECD and C-terminal
region (Uba et al., 2021). On the other hand, all the 7 hits show lower protein RMSDs which
converge over time. Hits 1, 2, and 7 stabilize at <2.0 A against conformation 1, while hits 14, 15,
20 stabilize at about 2.0 A against conformation 2, and so does hit 24 against conformation 3.

Thus, hits 1, 2, and 7 demonstrate similar dynamic behavior with the antagonist CP-376395.
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These decreased ligand RMSD trends suggest binding mode stability (Liu & Kokubo, 2017;
Uba, Weako, Keskin, Giirsoy, & Yelekci, 2019). Consistent with the protein RMSD data, the N-
terminal ECD, C-terminal region, and loops show higher fluctuation compared to the TMD
region within which the antagonist ligands sit. Increased movement of these regions of CRFIR

has been reported previously(Seidel et al., 2017).

The histogram of the protein-ligand interaction fractions reveals more interactions with higher
fractions formed by the hits than those formed by the antagonist CP-376395 (Figure 7). A
timeline representation of the interactions and contacts (H-bonds, hydrophobic, ionic, water
bridges) showing the total number of specific contacts the protein makes with the ligand over the
course of the trajectory is given in Figure S5. In particular, hits 1 and 20 demonstrate similar
interaction patterns to the antagonist CP-376395. In addition, being larger than the reference
compounds, they span the whole CRF1R allosteric pocket, forming persistent polar and
hydrophobic interactions with mostly TM3 and TM6 via amide groups. Both TM3 and TM6 play
a critical role in class B activation (Garelja et al., 2020). Thus, these interactions are likely to

keep the receptor in an inactive state.
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Figure 7. Histogram of protein-ligand interaction showing interaction fractions in the complexes of
CRF1R with the top 7 hits identified from structure-based virtual screening of ZINC15 druglike library.

Conclusion

Despite the therapeutic potential of the CRFIR, no drugs targeting the receptor have been
approved to date, partly due to inadequate understanding of the activation mechanism.

Previously, we showed that the conformation of CRF1R TMD is maintained when bound to the
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antagonist CP-376395. Here, we used the conformations derived from those simulations to
identify potential antagonists of CRFIR by structure-based virtual screening and MD
simulations. Of the top 7 hits identified, 1 (ZINC000046079839) and hit 20
(ZINC000032907937) demonstrate plausible binding to residues at the TM3 and TM7. Since
both TMs play a critical role in the activation of the receptor, hits 1 and 20 are likely to maintain
the inactive conformation of the receptor. Therefore, these are proposed as potential CRF1R

antagonists for the possible treatment of stress and anxiety-related neuro-disorders.
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