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Abstract 

G protein-coupled-receptors (GPCRs) are the largest family of cell surface receptors with 

tremendous therapeutic potential. They mediate signal transduction activities via G protein-

dependent signaling pathways, G protein-independent signaling pathways, and other complicated 

regulatory processes. The corticotropin-releasing factor receptor type 1 (CRF1R) is a member of 

class B GPCRs that is predominantly found in the central nervous system, where it plays a key 

role in stress-related neuro-disorders. To date, no drug targeting this receptor has been approved, 

partly due to inadequate understanding of the activation mechanism of class B GPCRs. 

Previously, using MD simulation, we demonstrated that the CRF1R complexed with a small-

molecule antagonist CP-376395 maintains a conformation of its transmembrane domain (TMD). 

Here, using the most abundant structures derived from those simulations, we carried out a 

structure-based virtual screening of ZINC15 “Druglike” library containing approximately 17 

million compounds. The docking complexes of the CRF1R with the top 30 hits were submitted 

to MD simulation to examine the stability of ligand binding mode. Furthermore, MM-GBSA 

binding energy calculations were performed on all the complexes to rank them with improving 

accuracy. Hit 1 (ZINC000046079839) and hit 20 (ZINC000032907937) span the allosteric site of 

the CRF1R, persistently forming interactions with transmembrane helices 3 and 6. These 

interactions are likely to keep the receptor in an inactive state since both transmembrane helices 

play a critical role in the activation of the receptor. 

Keywords: Class B GPCRs, CRF1R, small-molecule antagonist, structure-based virtual 

screening, MD simulation. 
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Introduction 

G protein-coupled-receptors (GPCRs) are the largest family of cell surface receptors with 

tremendous therapeutic potential (over 40% of the approved drugs target GPCRs)(Liu & 

Kokubo, 2017). They are used by cells to convert extracellular signals into intracellular 

responses, mediating signal transduction activities via G protein-dependent signaling pathways, 

G protein-independent signaling pathways, and other complicated regulatory processes (Azzi et 

al., 2003; Rajagopal, Rajagopal, & Lefkowitz, 2010). They share a conserved structural feature 

comprising seven-transmembrane (7TM) helices connected by alternating intracellular and 

extracellular loops (ICLs and ECL), an extracellular N-terminus, and an intracellular C-terminus. 

Five distinct classes of GPCRs are identified based on sequence homology and functional 

similarity: Class A (rhodopsin), Class B (secretin), Class C (glutamate), Class D (adhesion), and 

Class E (frizzled) (Pal, Melcher, & Xu, 2012). Class A is the largest GPCR class that is best 

studied due to the wealth of structural information available, which greatly increases molecular 

understanding of functions and activation mechanisms. On the other hand, Class B is poorly 

studied due to the limited structural availability. Members of this class are distinguished by their 

large cysteine-rich extracellular domain (ECD) which plays an important role during activation. 

15 known receptors in this family are implicated in various disease conditions (Kaspar 

Hollenstein et al., 2014), including stress, anxiety, and related neuro-disorders (Garelja et al., 

2020; Harmar, 2001). 

The corticotropin-releasing factor receptor type 1 (CRF1R) is a representative member of 

class B, predominantly found in the central nervous system, where it is involved in the regulation 

of adrenocorticotropic hormone (ACTH)—a key modulator in stress response (Kean, Bortolato, 

Hollenstein, Marshall, & Jazayeri, 2015). Thus, CRF1R is a good drug target for anxiety, 
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depression, inflammation, and other stress-related neuro-disorders (Teleb, Kuppast, Spyridaki, 

Liapakis, & Fahmy, 2017).  

Molecular dynamics (MD) simulation has been proven to be effective in studying the 

natural motion of proteins and other biomolecules at the atomic level and time resolution 

(Hollingsworth & Dror, 2018). Using MD simulation, the activation mechanism of the 

transmembrane domain (TMD) of CRF1R, which involves large conformational changes of the 

TM helices, was demonstrated (Seidel, Zarzycka, Zaidi, Katritch, & Coin, 2017; Singh, 

Ahalawat, & Murarka, 2015). Since the activation mechanism of full-length CRF1R was unclear, 

we built a full-length CRF1R model using available crystal structures of the N-terminal ECD 

(PDB ID: 3EHU) and transmembrane domain (TMD) (PDB ID: 4KBY) (Figure 1). Using 

molecular dynamics simulation, we demonstrated that in the presence of a peptide agonist 

urocortin 1, the CRF1R undergoes large-scale conformational changes involving breakage of 

networks of inter-helical/regional H-bonds and salt bridges and observed movement of 

transmembrane helix 6 (TM6). On the other hand, the small molecule antagonist CP-376395-

bound CRF1R maintains the initial inactive conformation of the transmembrane domain 

(TMD)(Uba, Scorese, Dean, Liu, & Wu, 2021).   
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Figure 1. (A) Crystal structure of the N-terminal extracellular domain (ECD) (PDB ID: 4KBY) 

and transmembrane domain (TMD) of CRF1R. (B) A full-length CRF1R model built by 

homology modeling.  

 

Here, using multiple structures derived from the afore-mentioned MD simulations,  

structure-based virtual screening of ZINC “Druglike” library containing 17 million compounds 

(T. Sterling & J. J. Irwin, 2015) was conducted. The top 30 compounds complexed with the 

CRF1R were subjected to MD simulation and MM-GBSA binding energy calculation. Hits with 

MM-GBSA free energy of binding scores higher than that of the antagonist CP-376395 and 

better physicochemical properties are considered potential CRF1R antagonists. These 

compounds span the allosteric site of the CRF1R, forming strong interactions with the 

transmembrane helices. The interactions are likely to keep the receptor in an inactive state. 

Methods 

Protein preparation 
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The crystal structures of the N-terminal extracellular domain (ECD) of CRF1R (PDB ID: 

3EHU) (Pioszak, Parker, Suino-Powell, & Xu, 2008) and that of  the CRF1R transmembrane 

domain (TMD) bound to small molecule antagonist CP-376395 (PDB ID: 4K5Y) (K. Hollenstein 

et al., 2013) were retrieved from the protein data bank (https://www.rcsb.org) and prepared using 

Maestro’s Protein Preparation Wizard (Sastry, Adzhigirey, Day, Annabhimoju, & Sherman, 

2013). During this preparation, the protein was assigned correct bond orders, missing side chain 

atoms and hydrogen atoms were added, disulfide bonds were created, and water molecules 

beyond 5 Å were deleted. The charge state of the titratable residues was optimized using 

PROPKA at a pH of 7. A restrained minimization was done to relax the protein using an OPLS3 

force field 2. These structures were used as a template to build a full-length model of CRF1R. 

The details of the model building and microsecond MD simulations are available in our previous 

work (Uba et al., 2021). Three conformations of the CRF1R derived from the MD simulations of 

antagonist CP-376395 bound CRF1R (Figure S1)(Uba et al., 2021) were used to generate a 

receptor grid box of 15 Å cube for virtual screening. The ligand-binding site was identified from 

the crystal structure of the CRF1R TMD bound to the antagonist CP-376395 (PDB ID: 4K5Y) 

(K. Hollenstein et al., 2013). The grid map encloses key binding site residues (F2323.44, N3125.50, 

and Y3566.53) that are conserved in class B GPCRs. 

Compound Library preparation 

A prepared ZINC15 “Druglike” library was downloaded from the ZINC database 

(Teague Sterling & John J. Irwin, 2015), in which ChemAxon’s JChem was used to protonate 

and prepare biologically relevant tautomers at Physiological pH of 7 (Csizmadia, 2000). 

High-throughput virtual screening (HTVS) 

https://www.rcsb.org/
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Virtual screening was performed using the Glide docking program (Friesner et al., 2004; 

Halgren et al., 2004). ZINC15 drug-like library containing 17,900,742 ligand entries was 

screened against the CRF1R allosteric site (Teague, Davis, Leeson, & Oprea, 1999). The 

druglike library contains compounds that have been filtered based on Lipinski’s “rule-of-five” 

parameters: molecular weight, lipophilicity, and hydrogen bonding potential. Figure 2 shows the 

virtual screening workflow comprising multiple scoring functions: high throughput virtual 

screening (HTVS), standard precision (SP), and extra precision (XP). HTVS serves as the first-

pass filter, so only the top 10% of hits were selected. SP further reduces the thoroughness of the 

final torsional refinement and sampling, retaining 10% of hits. XP performs more extensive 

sampling, considering ligand-receptor shape complementarity. QikProp module in Schrödinger 

rapidly screens the resulting hits for physicochemical properties. Canvas task identifies diverse 

structures based on molecular property descriptors. 

Further ligand preparation and induced-fit docking 

The ionization/tautomeric state of the ligand was generated at a pH of 7 using an 

empirical pKa (Epik) prediction module in Maestro (Sastry et al., 2013). To ensure plausible 

ligand binding mode by incorporating flexibility into the protein side-chain atoms, induced-fit 

docking (IFD) of these top 30 prepared ligands into the CRF1R allosteric pocket was performed 

using the Glide IFD module (Friesner et al., 2004). IFD generates a more accurate protein-ligand 

complex structure, so the ligands bind in a similar mode to that of the cocrystal ligand, the 

antagonist CP-376395.  

Molecular dynamics simulation  

Molecular dynamics simulation systems of CRF1R complexes with each of the top 30 hits were 

constructed. All systems were solvated using the SPC water model and neutralized by the 
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addition of Na+ ions at a concentration of 0.15 M NaCl, and modeled using the OPLS3 force 

field (Harder et al., 2016b) in the Desmond simulation package (Bowers et al., 2006). As applied 

to another GPCR in our recent MD simulation study (Uba, Aluwala, Liu, & Wu, 2022), the 

default protocol of relaxation for membrane protein was employed here. This protocol comprises 

eight steps, viz: (i) Minimization with restraints on solute heavy atoms; (ii) Minimization without 

any restraints; (iii) Simulation with heating from 0 K to 310 K, with H2O barrier and gradual 

restraining; (iv) Simulation in NPT (constant number of particles, constant pressure of 1 bar and 

constant temperature of 310 K) ensemble with H2O barrier and with heavy atoms restrained; (v) 

Simulation in NPT ensembles with equilibration of solvent and lipids; vi). Simulation in NPT 

ensemble with protein-heavy atoms annealing from 10.0 kcal/mol to 2.0 kcal/mol; vii) 

Simulation in NPT ensemble with Cα atoms restrained at 2 kcal/mol; and (viii). Simulation for 

1.5 ns in NPT ensemble with no restraints. Finally, a 200 ns-production run was carried out 

under the NPT ensemble using the default protocol.  During the simulation, the temperature was 

controlled using the Nosé-Hoover chain coupling scheme (Ikeguchi, 2004) with a coupling 

constant of 1.0 ps, and pressure was controlled using the Martyna-Tuckerman-Klein chain 

coupling scheme (Ikeguchi, 2004) with a coupling constant of 2.0 ps. M-SHAKE (Bailey & 

Lowe, 2009) was used to constrain all bonds connecting hydrogen atoms to enable a 2.0 fs time 

step in the simulations. The long-range electrostatic interactions under periodic boundary 

conditions (charge grid spacing of ~1.0 Å, and direct sum tolerance of 10–9) were treated using 

the k-space Gaussian split Ewald method (Shan, Klepeis, Eastwood, Dror, & Shaw, 2005). The 

cutoff distance for short-range non-bonded interactions was set to 10 Å, and the long-range van 

der Waals interactions were based on a uniform density approximation. Non-bonded forces were 

calculated using an r-RESPA integrator(Stuart, Zhou, & Berne, 1996), where the short-range 
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forces were updated every step and the long-range forces every three steps. Snapshots were 

collected every 50.0 ps for analysis. 

Simulation results analysis 

To check the convergence of the MD simulations, Cα protein and ligand RMSDs were 

calculated. To determine the most abundant/dominant structure, trajectory clustering analysis 

was performed using the Desmond trajectory clustering tool (Bowers et al., 2006). By employing 

hierarchical clustering with average linkage, backbone RMSD was used as the structural 

similarity, with merging distance cutoff set at 2.5 Å. The Representative structure (centroid) of 

each cluster is the structure with the greatest number of neighbors in the structural family. 

MM-GBSA binding energy calculations and decomposition 

Molecular mechanics generalized Born surface area (MM-GBSA) method with an 

implicit membrane (a slab-shaped region with a low dielectric constant (~2)) predicts the binding 

affinity of the ligand with improved prediction accuracy than the docking method (Ghosh, Rapp, 

& Friesner, 1998; Jianing Li et al., 2011). The MM-GBSA calculations adopted an OPLS3 force 

field (Harder et al., 2016a), a VSGB 2.0 solvation model (J. Li et al., 2011), and the default 

Prime protocol. The default procedure consists of three steps: computation of energies of 

receptor alone, ligand alone, and finally receptor-ligand complex. The interaction terms are 

Coulombic, H-bond, GB solvation, van der Waals, pi-pi packing, self-contact, and lipophilic 

interactions. The total binding free energy equation is given as:  

ΔE (bind) = Ecomplex – (Eligand + Ereceptor) 

The interaction terms were then merged into three components, Electrostatics, EvdW, and Elipophilic, where   

Eelectrostatics= Hbond + Ecoulomb +EGB_solvation  
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EvdW = EvdW+Eπ-π +Eself-contact and Elipophilic   

The MM-GBSA scoring function lacks the solute conformational entropy which results 

in higher negative values when compared to the actual values.  Nevertheless, it has proven to be 

extremely useful for ranking different drugs targeting receptors with comparable binding entropy 

values (Harder et al., 2016b). Therefore, MM-GBSA binding energy was calculated for the top 

30 diverse hits against the CRF1R on the snapshots collected during the last 10 ns of the 

simulation.  

Further ADMET prediction  

Prediction of ADMET properties for the top 30 compounds was performed on the 

SwissADME web server (http://www.swissadme.ch/) developed by the Swiss Institute of 

Bioinformatics to enable computational estimation of physiochemical descriptors and 

pharmacokinetic properties, and drug-like small molecule inhibitors. The SMILE code for each 

compound was uploaded to the webserver and their ADMET properties were computed. These 

include gastrointestinal (GI) absorption, blood-brain barrier permeability, Lipinski’s “rule-of-5” 

parameters, liver metabolic (CYP450) enzymes inhibition potential, and PAINS filtering. 

http://www.swissadme.ch/
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Figure 2. Virtual screening workflow for the identification of CRF1R antagonists. 

 

Results 

The initial hits show strong binding potential and good ADMET profiles 

A virtual screening workflow comprising various filters is depicted in Figure 2 above. 

The final compounds were selected based on an MM-GBSA binding energy score higher than 

that of the antagonist CP-376395 (Table 1) and good ADMET properties prioritizing blood-brain 

barrier permeability, high GI absorption, and 0 PAINS alert (Table 2). PAINS are chemicals that 

non-specifically target several biological targets due to their disruptive functional groups (Baell 



12 
 

& Walters, 2014). A complete list of the ADMET properties for the individual hits is given in 

Figure S2. These compounds are diverse and bear heterocyclic groups as surface recognition 

moiety (Figure 3). 

 

 

Figure 3. Structures of the top 7 hits identified by virtual screening of ZINC druglike library as 

potential antagonists of CRF1R. 
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Table 1. Binding energy and RMSD of the top 30 hits compared to the reference compound, antagonist 

CP-376395. Hits 1 to 10 against conformation 1(green); 11 to 20 against conformation 2 (blue); 21 to 30 

against conformation 3 (orange). 

a Based on the snapshots from the last 10 ns simulation. 

Compounds selected based on MM-GBSA scores <-93.0 Kcal/mol are represented in bold font. 

 

 

 

 

# Compound 

Docking 

Score 

(kcal/mol) 

VDW 

(kcal/mol) 

ELE 

(kcal/mol) 

Hydrophobic 

(kcal/mol) 

MM-GBSA 

(kcal/mol) 

Receptor 

RMSD(Å)a 

Ligand 

RMSD(Å)a 

Ref. 
Antagonist 

CP-376395 
NA -66.4±1.0 3.9±1.2 -30.5±1.8 -93.0±4.4 8.6±1.4 0.4±0.1 

1 ZINC000046079839 -12.2 -68.1±3.6 -14.5±9.4 -52.1±3.3 -134.8±12.5 4.8±0.3 1.63±0.1 

2 ZINC000008072573 -12.1 -61.3±3.9 -6.1±4.9 -51.8±3.7 -119.2±8.4 6.4±0.1 2.2±0.1 

3 ZINC000001154395 -11.9 -60.8±5.2 -10.0±11.6 -54.8±4.3 -125.6±13.9 3.9±0.1 2.6±0.1 

4 ZINC000065062688 -11.8 -61.4±3.9 -10.2±4.0 -52.6±3.2 -124.3±8.5 4.8±0.3 1.7±0.2 

5 ZINC000409176962 -11.8 -58.8±2.9 -19.0±2.9 -41.4±2.8 -119.2±6.1 4.6±0.4 1.3±0.3 

6 ZINC000214746700 -11.8 -52.3±1.2 -3.3±2.4 -39.0±2.9 -94.6±4.3 5.3±0.3 0.3±0.2 

7 ZINC000020144024 -11.8 -57.4±5.6 5.3±6.1 5.3±4.9 -109.6±13.7 6.0±0.2 1.8±0.3 

8 ZINC000009730882 -11.7 -51.2±4.1 -28.1±12.2 -42.0±2.5 -121.5±12.7 5.2±0.2 2.8±0.1 

9 ZINC000077119068 -11.6 -61.5±3.9 -21.1±4.9 -56.1±2.8 -138.7±6.9 7.3±0.2 1.7±0.0 

10 ZINC000001926343 -11.6 -46.6±4.8 -13.6±6.9 -35.1±3.2 -95.3±9.7 4.6±0.1 2.1±0.1 

11 ZINC000224809098 -13.7 -62.4±4.4 -17.4±4.6 -58.8±4.1 -138.5±10.7 5.4±0.1 1.9±0.1 

12 ZINC000224898313 -13.2 -55.4±4.8 -9.9±3.4 -59.3±5.6 -124.6±11.1 8.4±0.4 2.7±0.2 

13 ZINC000224117283 -13.1 -66.3±2.7 -7.9±7.1 -53.3±3.7 -127.6±7.9 4.4±0.2 2.1±0.4 

14 ZINC000013145638 -13.1 -48.6±4.0 -13.6±3.4 -44.5±3.8 -106.7±7.7 6.1±0.2 2.6±0.1 

15 ZINC000049609494 -12.9 -52.1±4.2 -12.3±4.9 -44.7±3.3 -109.1±8.3 6.3±0.2 1.5±0.2 

16 ZINC000224728551 -12.9 -55.3±3.9 -10.6±5.1 -51.8±3.9 -117.7±6.6 7.1±0.2 2.1±0.1 

17 ZINC000224631654 -12.9 -61.3±2.9 -0.3±8.4 -55.6±3.4 -117.1±10.1 4.6±0.2 2.5±0.1 

18 ZINC000224761269 -12.8 -63.6±4.0 -2.3±5.2 -58.6±3.4 -124.4±9.3 7.8±0.1 1.7±0.1 

19 ZINC000224669931 -12.8 -56.6±3.6 -5.4±4.9 -55.3±3.2 -117.3±7.5 6.2±0.3 2.4±0.0 

20 ZINC000032907937 -12.8 -61.9±3.8 -12.4±3.1 -56.5±3.6 -130.8±3.8 4.9±0.3 1.9±0.2 

21 ZINC000004521247 -12.2 -50.5±4.1 -2.6±11.7 -37.0±3.2 -90.1±10.9 4.4±0.5 1.7±0.1 

22 ZINC000000959167 -12.0 -50.4±3.4 -2.4±9.3 -37.1±4.3 -89.0±8.4 4.3±0.4 1.7±0.1 

23 ZINC000000057555 -12.0 -51.6±4.0 -18.2±7.8 -41.8±2.9 -111.6±10.5 4.3±0.4 1.7±0.1 

24 ZINC000828172322 -11.9 -50.0±6.6 -21.7±14.5 -48.7±3.7 -120.4±12.1 6.3±0.1 2.2±0.2 

25 ZINC000031167739 -11.5 -54.8±3.5 -17.5±5.4 -51.4±3.4 -123.7±7.3 6.4±0.3 1.6±1.1 

26 ZINC000012374475 -11.5 -54.8±3.5 -17.5±5.4 -51.3±3.4 -123.7±7.2 6.3±2.1 2.1±0.1 

27 ZINC000020761418 -11.5 -56.0±4.3 -17.5±11.0 -42.2±4.1 -115.7±13.4 8.8±0.9 2.1±0.1 

28 ZINC000031159228 -11.5 -58.2±3.5 -14.2±6.5 -55.3±3.9 -127.7±9.5 5.0±0.1 2.5±0.1 

29 ZINC000143132475 -11.3 -57.4±3.7 -16.4±7.6 -59.8±3.4 -133.7±8.5 5.5±0.2 0.5±0.1 

30 ZINC000067673743 -11.3 -62.0±7.3 -23.6±3.2 -41.8±3.7 -127.4±12.2 6.4±0.2 1.4±0.1 
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Table 2. Druglike and ADMET properties of the top 30 compounds predicted using the SwissADME 

server. Compounds shown in bold have higher MM-GBSA energy scores than that of the cocrystal ligand 

Antagonist CP-376395 (PDB ID: 4KBY). Compounds highlighted in green show good ADMET 

properties, including high gastrointestinal (GI) absorption and blood-brain barrier permeability.  

S/N Compound 
GI 

absorption 

BBB 

permeant 

CYP1A2 

inhibitor 

CYP2C19 

inhibitor 

CYP2C9 

inhibitor 

CYP2D6 

inhibitor 

CYP3A4 

inhibitor 

Lipinski’s “Rule 

of 5” 
PAINS 

Ref. 
Antagonist 

CP-376395 
High Yes No Yes No Yes No 

Yes; 1 violation: 

MLOGP>4.15   
0 alert 

1 ZINC000046079839 High Yes Yes Yes Yes Yes Yes 0 violation 0 alert 

2 ZINC000008072573 High Yes No Yes Yes Yes Yes 0 violation 0 alert 

3 ZINC000001154395 Low No Yes Yes Yes No Yes 0 violation 0 alert 

4 ZINC000065062688 High No No Yes Yes No Yes 0 violation 0 alert 

5 ZINC000409176962 High No Yes Yes Yes No Yes 0 violation 0 alert 

6 ZINC000214746700 Low No No Yes Yes No No 0 violation 1 alert: ene_rhod 

7 ZINC000020144024 High Yes Yes Yes Yes Yes Yes 0 violation 0 alert 

8 ZINC000009730882 High No No No Yes No No 0 violation 0 alert 

9 ZINC000077119068 High No Yes Yes Yes Yes Yes 0 violation 0 alert 

10 ZINC000001926343 Low No No No Yes No No 0 violation 
1 alert: 

sulfonamide_ 

11 ZINC000224809098 High No Yes Yes Yes Yes Yes 0 violation 0 alert 

12 ZINC000224898313 High No No Yes Yes Yes Yes 0 violation 0 alert 

13 ZINC000224117283 High No Yes Yes Yes Yes Yes 0 violation 0 alert 

14 ZINC000013145638 High Yes No No No Yes Yes 0 violation 0 alert 

15 ZINC000049609494 High Yes No Yes Yes Yes Yes 0 violation 0 alert 

16 ZINC000224728551 High No Yes Yes Yes Yes Yes 0 violation 0 alert 

17 ZINC000224631654 High No Yes Yes Yes Yes Yes 0 violation 0 alert 

18 ZINC000224761269 High No Yes Yes Yes Yes Yes 0 violation 0 alert 

19 ZINC000224669931 High No Yes Yes Yes Yes Yes 0 violation 0 alert 

20 ZINC000032907937 High Yes No Yes No Yes Yes 0 violation 0 alert 

21 ZINC000004521247 High No No No No Yes No 0 violation 0 alert 

22 ZINC000000959167 High No No Yes Yes No No 0 violation 0 alert 

23 ZINC000000057555 High No No No No Yes No 0 violation 0 alert 

24 ZINC000828172322 High Yes No Yes Yes Yes Yes 0 violation 0 alert 

25 ZINC000031167739 High No No No Yes No No 0 violation 
1 alert: catechol 

A. 

26 ZINC000012374475 High No No No No Yes No 0 violation 0 alert 

27 ZINC000020761418 Low No No Yes Yes No No 0 violation 0 alert 

28 ZINC000031159228 High No No No Yes No No 0 violation 
1 alert: catechol 

A. 

29 ZINC000143132475 High No No No No Yes No 0 violation 0 alert 

30 ZINC000067673743 High No No Yes No No No 0 violation 0 alert 

 

Note: hits 1-10 against conformation 1; 11-20 against conformation 2; 21-30 against conformation 3. 

 

The top hits show stable binding mode 

To examine the stability of ligand binding mode, both protein and ligand RMSDs were 

computed over time. The protein-Cα RMSDs increase due to the high mobility of the N-terminal 
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ECD and C-terminal regions, and later converge through the simulation. On the other hand, 

decreased ligand RMSD trends are observed (Figure 4), suggesting stability of binding mode. 

While the RMSF values of the N-terminal ECD, C-terminal, and loop regions increase, the TMD 

show decreased fluctuation (Figure S3). Also, the overall secondary structure is maintained with 

some loss of helicity (Figure S4). 

 

Figure 4. Protein Cα and ligand RMSDs of the CRF1R complexes with the top 7 hits identified 

by structure-based virtual screening.  

 

Plausible protein-ligand interactions  

A summary of protein-ligand interactions is presented in given in Figure 5. Like the 

antagonist CP-376395, the key interactions formed by the top compounds are mostly 

hydrophobic, with a couple of polar and charged contacts. The antagonist CP-376395 forms 

persistent interactions with N3125.50, and Y3566.53 (The Ballesteros–Weinstein numbering 

scheme(Ballesteros & Weinstein, 1995)). These residues enclose the allosteric antagonist binding 

site of the CRF1R. Other less persistent interactions are formed with L209, F2323.44, and 

M2353.47. In the case of the CRF1R MD conformation 1, hit 1 forms similar interaction as the 
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antagonist CP-376395, with additional polar interactions with R194 and N231. Similarly, hits 2 

and 7 engage both Y3566.53 and F2323.44 in hydrophobic interactions. For conformation 2, hit 14 

bearing a benzyl group along its length, does not share any interactions with antagonist CP-

376395; it rather forms a persistent hydrophobic interaction with L3526.49, and a charged 

interaction with E2383.50 via a water molecule. Hit 15 forms a persistent interaction with L3526.49 

like hit 14, with only other non-persistent interactions with F2323.44 like formed by the antagonist 

CP-376395. Despite having a different structure from the antagonist CP-376395, hit 20 forms 

similar interacting residues enclosing the CRF1R allosteric site. In the case of conformation 3, 

hit 24 forms persistent polar interactions with residues along TM3, TM6, and TM7. 

 

Figure 5. Protein-ligand interaction in the CRF1R complexes with the antagonist CP-376395 

and the top 7 hits identified by structure-based virtual screening. 

Ligand conformational adjustment 
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Superimposition of the induced-fit docking pose with the MD simulation poses for the most 

abundant structure of each ligand reveals ligand conformational adjustment (Figure 6). Like the 

antagonist CP-376395, hits 1 and 2 do not show significant movement, but rather a slight shift of 

aromatic recognition group. Hit 7 shifts horizontally towards TM3 and TM6 but remains bound 

deeper into the allosteric pocket. The conformations of hits 14, and 20 become more extended, 

while hit 15 slightly moves to the edge of the pocket. However, hit 24—the only hit against 

conformation 3, moves away from the pocket, resulting in a completely different set of persistent 

interactions. Hence, of all the 7 hits, 24 should be considered with caution. 

 

Figure 6. Superimposition of the docking pose with MD simulation pose of the antagonist CP-

376395 and the top 7 hits identified by structure-based virtual screening of ZINC druglike library 

against CRF1R. 

 

Discussion 

Despite the implication of CRF1R in stress-related neuro-disorders, no drug targeting the 

receptor has been approved yet. To identify novel small non-peptide antagonists of CRF1R, we 

carried out an elaborate virtual screening campaign that comprises various filters from a 
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combination of multiple computational approaches. Using the 3 most abundant conformations 

derived from our previous MD simulation of the antagonist-bound CRF1R(Uba et al., 2021), we 

identified a total of 30 compounds as the initial hits from virtual screening. These were subjected 

to MD simulations coupled with MM-GBSA binding energy calculation and ADMET prediction. 

Seven compounds having MM-GBSA binding energy lower than that of the antagonist CP-

376395, high gastrointestinal absorption, and blood-brain barrier permeability were selected as 

the final hits. The selection of the MM-GBSA free energy of binding scores higher than that of 

the antagonist CP-376395 increases the reliability of the identified hits since the MM-BGSA 

method is more accurate in predicting ligand binding affinity than molecular docking method 

(Hou, Wang, Li, & Wang, 2011a), even though the former ignores entropic contribution to the 

overall free energy of binding (Sun et al., 2018). Another method for calculating ligand binding 

affinity is molecular mechanics-Poisson Boltzmann surface area (MM-PBSA)(Fogolari, Brigo, 

& Molinari, 2003). However, the MM-GBSA method has been demonstrated to perform better 

than MM-PBSA in predicting both correct binding poses and binding free energy for the 

examined protein-ligand systems (Hou, Wang, Li, & Wang, 2011b). Also, the further ADMET 

filtering performed was meant to increase the chance of obtaining compounds with better 

physicochemical properties (van de Waterbeemd & Gifford, 2003).  

Structural stability was measured using protein and ligand RMDs. Increased protein RMSD in 

the antagonist CP-376395 is due to the large movement of the N-terminal ECD and C-terminal 

region (Uba et al., 2021). On the other hand, all the 7 hits show lower protein RMSDs which 

converge over time. Hits 1, 2, and 7 stabilize at <2.0 Å against conformation 1, while hits 14, 15, 

20 stabilize at about 2.0 Å against conformation 2, and so does hit 24 against conformation 3. 

Thus, hits 1, 2, and 7 demonstrate similar dynamic behavior with the antagonist CP-376395. 
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These decreased ligand RMSD trends suggest binding mode stability (Liu & Kokubo, 2017; 

Uba, Weako, Keskin, Gürsoy, & Yelekçi, 2019). Consistent with the protein RMSD data, the N-

terminal ECD, C-terminal region, and loops show higher fluctuation compared to the TMD 

region within which the antagonist ligands sit. Increased movement of these regions of CRF1R 

has been reported previously(Seidel et al., 2017). 

The histogram of the protein-ligand interaction fractions reveals more interactions with higher 

fractions formed by the hits than those formed by the antagonist CP-376395 (Figure 7). A 

timeline representation of the interactions and contacts (H-bonds, hydrophobic, ionic, water 

bridges) showing the total number of specific contacts the protein makes with the ligand over the 

course of the trajectory is given in Figure S5. In particular, hits 1 and 20 demonstrate similar 

interaction patterns to the antagonist CP-376395. In addition, being larger than the reference 

compounds, they span the whole CRF1R allosteric pocket, forming persistent polar and 

hydrophobic interactions with mostly TM3 and TM6 via amide groups. Both TM3 and TM6 play 

a critical role in class B activation (Garelja et al., 2020). Thus, these interactions are likely to 

keep the receptor in an inactive state. 
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Figure 7. Histogram of protein-ligand interaction showing interaction fractions in the complexes of 

CRF1R with the top 7 hits identified from structure-based virtual screening of ZINC15 druglike library. 

 

Conclusion 

Despite the therapeutic potential of the CRF1R, no drugs targeting the receptor have been 

approved to date, partly due to inadequate understanding of the activation mechanism. 

Previously, we showed that the conformation of CRF1R TMD is maintained when bound to the 
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antagonist CP-376395. Here, we used the conformations derived from those simulations to 

identify potential antagonists of CRF1R by structure-based virtual screening and MD 

simulations. Of the top 7 hits identified, 1 (ZINC000046079839) and hit 20 

(ZINC000032907937) demonstrate plausible binding to residues at the TM3 and TM7. Since 

both TMs play a critical role in the activation of the receptor, hits 1 and 20 are likely to maintain 

the inactive conformation of the receptor. Therefore, these are proposed as potential CRF1R 

antagonists for the possible treatment of stress and anxiety-related neuro-disorders. 
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