
P

2094 IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 7, JULY 2023

Engineering Practical Rank-Code-Based
Cryptographic Schemes on Embedded
Hardware. A Case Study on ROLLO
Jingwei Hu , Wen Wang , Kris Gaj , Liping Wang, and Huaxiong Wang

Abstract—In this paper, we investigate the practical performance
of rank-code based cryptography on FPGA platforms by present-
ing a case study on the quantum-safe KEM scheme based on
LRPC codes called ROLLO, which was among NIST post-quantum
cryptography standardization round-2 candidates. Specifically, we
present an FPGA implementation of the encapsulation and decap-
sulation operations of the ROLLO KEM scheme with some varia-
tions to the original specification. The design is fully parameterized,
using code-generation scripts to support a wide range of parameter
choices for security levels specified in ROLLO. At the core of the
ROLLO hardware, we presented a generic approach for hardware-
based Gaussian elimination, which can process both non-singular
and singular matrices. Previous works on hardware-based Gaus-
sian elimination can only process non-singular ones. However, a
plethora of cryptosystems, for instance, quantum-safe key encapsu-
lation mechanisms based on rank-metric codes, ROLLO and RQC,
which are among NIST post-quantum cryptography standardiza-
tion round-2 candidates, require performing Gaussian elimination
for random matrices regardless of the singularity. To the best of
our knowledge, this work is the first hardware implementation for
rank-code-based cryptographic schemes. The experimental results
suggest rank-code-based schemes can be highly efficient.

Index Terms—FPGA implementation, gaussian elimination,
post-quantum cryptography, rank metric code.

I. INTRODUCTION

OST-QUANTUM cryptography (PQC) refers to crypto-
graphic public-key algorithms which exploit the hard prob-

lems thought to be outside bounded-error quantum polynomial
time (BQP) class. As of 2021, most popular public-key algo-
rithms rely on the BQP class problems and are theoretically
insecure against an attack by a quantum computer. Even though
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it is not yet known to what extent a future quantum computer
can be used to solve BQP problems successfully, many cryp-
tographers are designing new algorithms to prepare for a time
when quantum computing becomes a real threat. This line of
work has gained greater attention from academics and industry,
including a large European project PQCRYPTO, and a standard-
ization competition initiated by NIST [1] in 2017. Currently, the
PQC research is mostly focused on lattice-based, code-based,
hash-based, isogeny-based, and multi-variate cryptography [2].

For code-based schemes, the first public-key encryption
(PKE) was introduced in 1978 by McEliece [3]. The basic
construction specifies a public random linear code from a secret
known binary Goppa code. A ciphertext is a codeword of that
public random linear code plus a few random errors. An adver-
sary who attempts to decrypt this ciphertext without knowing
the backdoor has to solve the problem of decoding a random
linear code, which is proved to be NP-complete. The security
of the McEliece system has remained stable despite dozens
of attacks (mostly based on information set decoding) over
40 years. With some modifications including a more efficient
dual PKE suggested by Niederreiter [4], a tight conversion to
IND-CCA2 KEM, and implementation speedups, the McEliece
system is synthesized to be a conservative, well-understood
key encapsulation mechanism (KEM) as Classic McEliece [5]
which is selected as a finalist of the NIST PQC standardization
process.

An interesting variant of McEliece system was recently pro-
posed using QC-MDPC codes [6]. This is a Niederreiter PKE
that uses the so-called moderate density parity check (MDPC)
codes in quasi-cyclic (QC) form. The QC form suffices to
represent the parity check matrix by its first row, which leads to a
shorter key. Due to this lightweight characteristic for compress-
ing information, QC codes are popularly used in many follow-up
work, among which BIKE [7], HQC [8] and LEDAcrypt [9] are
the outstanding representatives. BIKE and HQC have proceeded
to the final round of the NIST PQC standardization competition,
and LEDAcrypt is a round-two candidate. On the other hand,
the use of QC-MDPC codes introduces decoding failures which
might be vulnerable to reaction attacks. For example, using
decoding failures, the GJS attack [10] is a powerful key recovery
attack against CCA-secure BIKE. They estimate the time com-
plexity for attacking the 80-bit CPA (or CCA2)-secure version
as 243.6 (or 255.3) operations. The key observation from the GJS
attack is that it is possible to distinguish the dependence between
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the secret key and the decoding failure probability. Therefore, it
is necessary to keep the decoding failure probability negligibly
small (e.g., 2−128 ) to thwart this type of attack.

The code-based schemes described above are all constructed
on the Hamming metric. In the 1990s, another type of code-based
cryptography, known as GPT cryptosystem [11] emerged, whose
security was based on an alternative metric, the so-called rank
metric. The difference with the McEliece cryptosystem consists
of the choice of the family of codes and the choice of the
metric. At that time, Gabidulin code was the only family of
rank-metric codes with an efficient algebraic polynomial time
decoding algorithm and thus was selected for the GPT system.
However, Overbeck in 2005 proposed a framework that could
be adapted to all variants of Gabidulin codes-based encryption
schemes [12]. Recent years have witnessed the revival of rank-
metric code-based cryptography mainly attributed to two new
variant schemes called RQC [13] and ROLLO [14]. Roughly
speaking, the security of these new schemes is based on the rank
syndrome decoding problem, which has been proven hard with
a probabilistic reduction to the well-known syndrome decoding
problem in Hamming metric. In particular, RQC uses Gabidulin
code as the underlying coding system, which is publicly known.
A nice property RQC has is that the scheme’s security does not
rely on the knowledge of the error-correcting code being used
and naturally resists the Overbeck’s attack. ROLLO is proposed
by using the low rank parity check (LRPC) codes. Unlike
Gabidulin codes which contain a huge vector space invariant
under the Frobenius automorphism suffering from complete
cryptanalysis, LRPC codes are weakly structured and behave
like a random linear code in rank metric after proper scram-
bling. Moreover, RQC and ROLLO benefit from the ideal code
structure to compress the key size and reduce the computational
complexity. The decoding failure probability is well studied and
can easily be chosen to meet security requirements. RQC and
ROLLO are selected by NIST as the round-2 candidates but
they do not survive to the final round due to recent attacking
progress [15], [16]. This algebraic attack suggests the hardness
of the rank syndrome decoding problem is underestimated, and
a minor modification should be introduced to keep RQC and
ROLLO secure. Despite the loss of the election, NIST encour-
ages further investigation of rank-code-based schemes as the
official status report [17] on the second round of candidates states
“Rank-based cryptography should continue to be researched.
The rank metric cryptosystems offer a nice alternative to the
traditional Hamming metric codes with comparable bandwidth.”

Inspired by the confidence in the code-based cryptography,
many publications on hardware implementations have started
to appear. All of the work only focuses on the McEliece/
Niederreiter framework in the Hamming metric. There exists
no cryptographic hardware for the McEliece/Niederreiter in
the rank metric. For example, Heyse and Güneysu in [18]
report that a Goppa code-based Niederreiter decryption op-
eration consumes 58.78 μs on a Xilinx Virtex6-LX240T
FPGA for n =  2048 and t =  27 for 80-bit symmetric secu-
rity. Wen Wang et al. present an FPGA-based key generator
for the Goppa code-based Niederreiter cryptosystem [19] and
later a full implementation [20] which includes modules for
encryption, decryption, and key generation. The hardware for

the classic McEliece scheme has been presented in [21] re-
cently. Thefirst implementation of MDPC code-based McEliece
cryptosystem on embedded devices was presented in [22] in
2013. A lightweight MDPC-McEliece has been implemented
on FPGAs by sequentially manipulating cyclic rotations of the
private key in block RAMs [23]. An area-time efficient MDPC-
Niederreiter has been implemented on FPGAs, which exploits a
resource-balanced MDPC decoding unit [24]. An FPGA-based
key generator for BIKE is presented in [25] which outperforms
the round-2 reference BIKE hardware implementation by nine
times in terms of run-time. A full implementation of round-3
BIKE is studied in [26] which implements the Black-Gray-Flip
decoder for the first time on hardware. The key encapsula-
tion method of LEDAcrypt, also known as LEDAkem [27], is
presented in Xilinx Artix-7 FPGAs and shows its supremacy
over BIKE regarding area efficiency [28]. These works, as
mentioned above, do not consider the new types of arithmetic
used in rank-metric. Despite the existence of ROLLO software
implementations [29], [30], [31], the hardware architecture and
performance for rank-code-based schemes remain unexplored.

Contributions: This paper presents the first efficient and scal-
able FPGA-based cryptographic hardware for a post-quantum
KEM/PKE using rank-metric codes (ROLLO). The main con-
tributions include:

A new, constant-time hardware design of Gaussian elimi-
nation for large-scaled (singular) matrices over binaryfield.
A tunable, constant-time approach and design of polyno-
mial multiplication over F 2 m  [z].
A more efficient, bounded decoding failure rate, and
constant-time Rank Support Recovery (RSR) algorithm
and its hardware implementation.
A complete implementation of the ROLLO data encap-
sulation and decapsulation in support of various security
parameters, which uses automatic code-generation scripts
to generate vendor-neutral HDL codes.1

Last but not least, we would like to mention that the imple-
mentation of ROLLO is mostly used as a case study on rank
code based schemes to further explore their real performance
on embedded hardware. The proposed designs are versatile
and applicable to implement other rank code based schemes.
For example, RQC also uses the polynomial multiplication for
computation over ideal code and the Gaussian elimination for
low-rank vector space generation. The flexible and efficient
architectures with different area and performance trade-offs pre-
sented in this work, which strictly follow the parameterization
methodology, can be easily adapted to accelerate RQC and other
(quantum-safe) schemes based on rank metric codes.

II. PRELIMINARIES OF ROLLO

ROLLO is a compilation of two cryptographic schemes,
ROLLO-I and ROLLO-II, which are among 26 round-2 candi-
dates to the NIST’s process for post-quantum cryptography stan-
dardization. ROLLO is based on rank metric codes, and the diffi-
cult problem on which ROLLO relies is the syndrome decoding

1ROLLO hardware project can be found at https://github.com/davidhoo1988/
rollo-hardware
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TABLE I
SECURITY (BIT LEVEL) OF DIFFERENT PARAMETER SETS USED IN ROLLO, TAKEN FROM [14]

problem in the rank metric. In this paper, we stay focused on the
latest parameters (see Table I) in the April-21-2020 version [14].
It is also worth noting that ROLLO proposes 6 instances, each of
which uses distinct system parameters. Therefore, it is challeng-
ing to realize the entire ROLLO, which spans such a wide range
of parameter values, in hardware. To tackle this challenge, the
parameterization methodology is considered in this work such
that the modules are fully parameterized and quickly switched
from one parameter set to another for re-synthesis. More im-
portantly, the actual implementation of ROLLO introduces a
new challenge for hardware-based Gaussian-elimination: the
computation in ROLLO requires Gaussian-eliminating a matrix
with an unknown rank, and it is most likely that the matrix under
operation is singular. Valid manipulation for such a matrix goes
beyond the applicability of the existing Gaussian elimination
hardware.

In the following subsections, we use the same notations from
the ROLLO NIST submission document. Let S n ( F q m  )  stand
for the set of vectors of length n and rank weight w over F q m

and S n      (F q m  ) stand for the set of vectors of length n and rank
weight w, such that its support contains 1

S n ( F q m  ) =  { x  � F n       : dim Supp(x) =  w }

S1 ,w (Fq m  ) =  { x  � F q m  : dim Supp(x) =  w, 1 � Supp(x)}.

A. ROLLO-I as a KEM

ROLLO-I, formerly known as LAKE, is a CPA-secure Key
Encapsulation Mechanism (KEM) running in the category “post-
quantum key exchange”. A Key-Encapsulation scheme KEM =
(KeyGen, Encap, Decap) is a triple of probabilistic algo-
rithms together with a key space K .  The key generation algo-
rithmKeyGengenerates a pair of public and secret key (pk,sk).
The encapsulation algorithm Encap uses the public key pk to
produce an encapsulation c of a key K  � K .  Finally Decap
using the secret key sk and an encapsulation c, recovers the key
K  � K  or fails and returns �.

ROLLO-I is formally described in Algorithm 1. The RSR
algorithm is the rank support recover algorithm proposed in [32]
to recover the rank support of the error vector from the secret
syndrome. P  is an irreducible polynomial of Fq [X ]  of degree n
and constitutes a parameter of the cryptosystem.

It is worthwhile to mention that in the encapsula-
tion/encryption step, two random polynomials of degree n over
F 2 m  , i.e., e1 and e2 have rank support Supp(e1, e2) =  r . In
other terms, ei ( i  =  1, 2) formulates a vector space represented
by a n ×  m matrix with small rank r . This is where universal
Gaussian elimination comes into play.

Algorithm 1: Formal Description of ROLLO-I.

1 KeyGen(1λ): Pick (x, y) ← S 2 n (F q m  ). Set
h  =  x−1 y mod P , and return pk = h, sk = (x, y).

2 Encap(pk): Pick (e1 , e2 ) ← S 2 n (F q m  ), set
E  =  Supp(e1, e2), c =  e1 +  e2 h mod P . Compute
the shared secret key K  =  Hash(E ) and return c.

3 Decap(c, sk): Set s =  xc mod P , F  =  Supp(x, y)
and E  ← RSR(F, s, r). Recover K  =  Hash(E ).

B. ROLLO-II as a PKE

ROLLO-II, formerly known as LOCKER, is a CPA-secure
Public Key Encryption (PKE) running in the category “post-
quantum public-key encryption” and can be adapted for CCA2
security via the HHK framework for the Fujisaki-Okamoto trans-
formation [33]. A PKE scheme is defined by three algorithms:
the key generation algorithm KeyGen, which takes on input the
security parameterλ and outputs a pair of public and private keys
(pk, sk). The encryption algorithm Encrypt(M, pk), which
outputs the ciphertext C  corresponding to the message M and
the decryption algorithm Decrypt(C, sk), which outputs the
plaintext M .

A formal description of ROLLO-II is given in Algorithm 2. P
is an irreducible polynomial in Fq[X ] of degree n and constitutes
a parameter of the cryptosystem. The symbol � denotes the
bitwise XOR. The framework of ROLLO-II is almost identical
to ROLLO-I except that ROLLO-II uses the randomly generated
Hash(E) to mask the message M and then publishes it as a
part of the ciphertext. ROLLO-II is a PKE scheme, and thus
the decoding failure rate of the underlying coding system, i.e.,
LRPC codes must be constrained to an extremely low level
(for example, 2−128). Fulfillment of this requirement leads to a
significantly larger key size (typically 2-3 times larger).

It is worth noting that at the core of the decapsula-
tion/decryption step, the rank support recovery (RSR(·)) algo-
rithm requires computing the intersection of two vector spaces F
and s, which is equivalent to Gauss-eliminating a large-sized
matrix. This type of matrix is inevitably singular and very large
such that the previous designs in the open literature can do
nothing about it.

III. DESIGN PARAMETERS FOR ROLLO UNDERLYING

ARITHMETIC

This section describes ROLLO hardware at the bottom level.
First, a flexible F 2 m      arithmetic unit is presented. Based on
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Algorithm 2: Formal Description of ROLLO-II.

1 KeyGen(1λ): Pick (x, y ) ← S 2 n (F q m  ). Set
h  =  x−1 y mod P , and return pk = h, sk = (x, y).

2 Encrypt(M,pk): Pick (e1 , e2) ← S 2 n (F q m  ), set
E  =  Supp(e1, e2), c =  e1 +  e2 h mod P . Compute
cipher =  M � Hash(E ) and return the ciphertext

C  =  (c, cipher).
3 Decrypt(C,sk): Set s =  xc mod P , F  =  Supp(x, y)

and E  ← RSR(F, s, r). Return
M =  cipher � Hash(E ). Fig. 1.     Generic architecture for the F 2 m  multiplier.

Algorithm 3: Digit-Level Interleaved Multiplication.

F 2 m  arithmetic, an advanced F 2 m  [z] polynomial multiplier sup-
porting different area-time trade-offs is described. Further, a
SHA3-based hash function and Keccak sponge-based random
number generator specified for ROLLO are detailed. Finally, a
constant-time and flexible Gaussian elimination module, the
kernel of linear algebra-related computations, is presented.

A. F 2 m  Arithmetic

In this subsection, we discuss our design choices for imple-
menting F 2 m      arithmetic with m =  67, 79, 83, 97 which cov-
ers the entire specified ROLLO parameter sets. In particular,
these specified binayfields feature short irreducible polynomials
as moduli, i.e., f ( x )  =  x m  +  x k  +  1 and f ( x )  =  x m  +  x k 3  +
x k 2  +  x k 1  +  1(k3 >  k2 >  k1).

To balance the trade-off between time and area, we naturally
extend the bit-level interleaved multiplication which interleaves
standard multiplication and modulo reduction to the digit-level
interleaved multiplication as described in Algorithm 3 based
on Horner’s method [34]: For each iteration of the algorithm,
several bits (d-bits) of a(x), i.e., [aid+d−1 , . . . , aid ] are read out
to be multiplied by b(x). Then the multiplication result is added
by c(x)xd to accumulate c(x).

Based on the description shown in Algorithm 3, we propose
a generic architecture to perform the interleaved F 2 m  multipli-
cation as depicted in Fig. 1. The input polynomials a(x) and
b(x) are loaded into two m-bit registers. Mul performs the
multiplication of a(x) and a digit fraction of b(x)  where the
register holding b(x) is cyclicly rotated to extract the target digit
fraction of b(x). The multiplication result from the component

Mul is added by the output of the component (�)xd, i.e., c(x)xd,
andfinally updates the register c(x). This process repeats dm/de
cycles plus one extra cycle for the initial data loading, and thus
the total delay of the multiplier is dm/de +  1 cycles. In the
actual implementations of ROLLO presented in this work, the
multiplier is configured with bit-width of operand d =  16 and
the cycle delay is denoted as Delaymul which is a basic constant
used in the next subsection.

B. F 2 m  [z ]/hP (z)i Arithmetic

In this subsection, the arithmetic over F n
m  , which is isomor-

phic to the specific polynomial ring F2m [z]/P (z) with extremely
sparse polynomial P (z ) � F2[z] of degree n, is discussed and
optimized. Before detailing our algorithms on F n

m  multiplica-
tion, the representation of the element of F n

m  and its storage
structure in the memory must be clarified. The element A(z )  of
F n

m  is represented as A(z )  = n −1  ai z i and thus, it is natural
to store n coefficients of A(z )  into dn/de memory cells each of
which contains d coefficients as shown in Fig. 2(a).

Basic Idea: The practical approach we consider is to multiply
one coefficient ai of A(z) by a shifted B(z) each time as follows:

n −1 n −1

A(z )  · B (z )  = ai z i · B (z )  = ai · B (z )z i .
i = 0 i = 0

Note that to implement the calculation of ai · B (z )z i  on hard-
ware, one cannot extract the entire B (z )  out of the memory to
perform B(z)zi as what is done on c(x)xi in the F2m arithmetic.
B (z )  is mn bits long, ranging between 5,561 and 20,467 bits,
and therefore it is infeasible to be held by the registers within
the FPGA fabric. A practical and also scalable solution is to
perform B ( i ) (z )  =  B (z )z i  in the memory and later to perform
the multiplication of ai by every coefficient of B ( i ) (z )  based on
the proposed F 2 m  multiplier. The memory-based rotation tech-
nique is first presented in [23] when tackling the multiplication
over F2 [z ]/zr +  1 used in BIKE. We extend their approach to
more generic polynomial rings over F 2 m  [z]/P (z). In a nutshell,
B ( i ) (z )  =  B (z )z i  is a cheap recursive operation to be done in
the memory as (assume P (z ) is a trinomial)

B ( i + 1 ) (z )  =  B ( i ) (z )  · z

=  Cyclic B ( i ) (z )  +  bn−1 zk ,

Authorized licensed use limited to: George Mason University. Downloaded on August 04,2023 at 19:22:10 UTC from IEEE Xplore. Restrictions apply.
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Fig. 2.     Illustration for the memory storage format for polynomials over F2m , taking ROLLO-I-128 for instance. (a) Polynomial B(z) =  
P

i = 0  b i z i  represented

in memory, with n  =  83, d =  3. (b) Operation to perform B ( z ) z  from B ( z )  in memory, with n  =  83, d =  3.

where Cyclic(B ( i ) (z )) =  
P n − 1  b ( i )

1 z j     denotes the cyclic

shift of the polynomial B ( i ) (z )  and thus the calculation of
B ( i + 1 ) (z )  is viewed as the cyclic B ( i ) (z )  plus one (or three)
term polynomial with coefficient bn−1 .

By use of this method, n F 2 m       multiplications suffice to
compute ai B (z )z i  and further n times iterative accumulation
of ai B (z )z i  for i  =  0, 1, . . . , n −  1 returns the desired result
of A(z )B (z ) .  To sum up, the computational complexity of this
approach is bounded by n2 F 2 m  multiplications yet the memory
cost keeps unchanged.

Improvement: Our new technique for reducing the cycle
counts of the polynomial ring multplication follows the sug-
gestion of [25] to generalize their scheme used for the specific
polynomial ring F2[z]/zr +  1. Essentially, we exploit the hidden
parallelism for computing ai B (z )z i  and a i + 1 B (z )z i + 1  which
aids the construction of F 2 m  multiplier array.

Let Delaym u l  denote the cycle delay of one F 2 m  multipli-
cation. The total time delay of F n

m      multiplication is roughly
estimated by n2Delaymul as we have discussed. This estimation
can be reduced if multiple coefficients of A(z )  are simultane-
ously extracted, in other terms, we assume that the extraction of
at most d coefficients from one memory cell is possible. Now
the multiplication of A(z )B (z )  is rewritten as

dn/de−1

A(z )  · B (z )  = Ai (z )z id · B (z )
i = 0

dn/de−1

= Ai (z )  · B (z )z id , i = 0

where Ai (z) =  adi +  adi+1 z +  · · · +  adi+d−1 zd−1 is a polyno-
mial of degree d −  1 at most and essentially a digit fraction of
the polynomial A(z). By use of this format, B (id)(z) =  B (z )z id

is efficiently performed in the memory based on the observation

of the following recurrence (assume P (z ) is a trinomial):

B ( i + 1 ) d (z )  =  B ( i d ) (z )  · zd

d−1

=  d-Cyclic B ( i d ) (z )  + b n −d + i z
k + i ,

i = 0

where d-Cyclic(B ( id) (z )) =  
P n − 1  b ( id ) z j denotes the cyclic

shift of the polynomial B ( i d ) (z )  by d positions. Likewise,
B ( id ) (z )  =  B (z )z id can be rewritten as follows if P (z ) is a
pentanomial:

B ( i + 1 ) d (z )  =  B ( id ) (z )  · zd

d−1

=  d-Cyclic B ( i d ) (z )  + b n −d + i z
k + i .

k = k 1 , k 2 , k 3  i = 0

Fig. 2(b) depicts the operation to perform this recurrence using
the block memory with n =  83, k3 =  7, k2 =  4, k1 =  2, d =  3
which is used in the ROLLO-I-128 instance. First, the cyclic
rotation is performed such that the first entry of B (z )  moves
forward to the second entry, the second entry moves to the
third, and so forth. Later, the entry [b80b81b82] and the entry
[b82b0b1] ([b1b2b3] and [b4b5b6] for k2 and k3, respectively)
are extracted to sum up and then written back to complete
the computation of B (z )zd . Meanwhile, [aid, . . . , aid+d−1]
are extracted from the memory to perform Ai (z )  · B ( id ) (z )  =

j = 0  a i d + j  · B ( id ) (z )z j .  Note this multiplication is split to d
parts and each part, i.e., a i d + j  · B ( id ) (z )z j  can be parallelized
to compute using multiple F 2 m  multipliers (implemented as an
array of F 2 m  multipliers).

FPGA Architecture: The schematic architecture for the pro-
posed multiplier is depicted in Fig. 3. The multiplier uses two
block memories, i.e., mem A and mem B for input polynomials
A(z) and B(z), and uses one block memorymem C for the result
polynomial C (z )  =  A(z )B (z )  mod P (z ). In particular, mem
B is dual-ported to facilitate cyclic rotation within memory. The
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TABLE II
PERFORMANCE OF THE CONFIGURABLE      2 m  [z] MULTIPLIERS FOR ROLLO-I ON XILINX ARTIX-7 FPGA

Fig. 3.     Schematic of the proposed for F 2 m  [z] multiplier using the computa-
tion matrix core of     2 m  multipliers.

kernel of the multiplier consists of the d ×  d F2 m  multiplier array
under control of a finite state machine FSM. FSM initializes at
state INIT and transits to state PRE for data pre-processing.
Then it switches repeatedly between the state MUL for F 2 m

multiplications and the state POST for data post-processing, and
finally moves back to state INIT.

Performance: For the trinomial P (z ), INIT takes 1 clock cy-
cle, PRE takes 3 clock cycles, MUL takes (Delaymul +  1)dn/de
cycles, POST takes Delaym u l  +  3 clock cycles. MUL and POST
repeat dn/de times. In summary, the total cycle counts are cal-
culated as: 4 +  dn/de · [(Delaymul  +  1)dn/de +  Delaym u l  +
3] ≈  (Delaym u l  +  1) n .

Likewise, for the pentanomial P (z ), INIT takes
1 clock cycle, PRE takes 3 clock cycles, MUL takes
(Delay +  1)dn/de cycles, POST takes Delay +  19 clock
cycles. In summary, the total cycle counts are calculated
as: 4 +  dn/de · [(Delaymul  +  1)dn/de +  Delaym u l  +  19] ≈
(Delaym u l  +  1) n        . The concrete FPGA implementation
results for F 2 m  [z] used in ROLLO-I and ROLLO-II are reported
in Table II and Table III, respectively.

C. Hash Function and Random Number Generator

We use SHA-3 as the hash engine for ROLLO encapsula-
tion in our design. For easier migration from a stand-alone
SHA3 implementation to our ROLLO coprocessor, we choose a

well-documented open-sourced SHA3 project from Open-
Cores.org [35]. In ROLLO implementations, SHA3 is used to
hash a very limited number of data, i.e., the low-rank (typically
7,8,9) vector space. Therefore, the low-throughput open-sourced
core fits well, and we use it as the ROLLO hashing engine. The
performance of the proposed SHA3 hash architecture is evalu-
ated on Xilinx Artix-7 as shown in Table IV. The experiment
focuses on the execution of the hash function ( K  =  Hash(E )
listed in the formal description of ROLLO, see Algorithm 1) used
in the encapsulation and decapsulation of ROLLO-I. The results
reaffirm the efficiency of our new design: The hashing process
only takes 50 � 175 cycles, runs at 190 MHz, and consumes
about 619 slices only.

We choose SHAKE −  128 which uses KECCAK-[r =
1344, c =  256] as the underlying random number generator
(RNG) to replace the relatively bulky AES-based RNG proposed
in the ROLLO NIST submission package. This KECCAK-based
RNG can be built in a very compact core that is suitable for
devices with scarce resources as the state can be stored in 200
bytes and can produce 1,344 pseudo-random bits within 24 clock
cycles. On the security aspects, KECCAK-[r =  1344, c =  256]
based RNG provides 128-bit post quantum security. The secu-
rity level can scale up if the KECCAK capacity c increases.
For example, KECCAK-[r =  1088, c =  512] provides provides
256-bit post quantum security. It is worth noting that the Keccak-
based RNG deviates from the ROLLO specification and that
hence known-answer-test of the ROLLO submission does not
apply here. However, our design is modular and can be replaced
by the AES-based RNG if the users request a standard implemen-
tation that strictly follows the specification. We have synthesized
our SHAKE −  128 based RNG in Xilinx Artix-7 FPGAs, and
the post place-and-route reports show that the throughput of
Keccak-PRNG is 11.2 Gbit/s, running at 200 Mhz and occupying
600 slices.

D. Gaussian Elimination on Systolic Array

Gaussian elimination is the most computing-intensive and
distinguishing operation in rank metric cryptography, partic-
ularly in the context of ROLLO. The performance of Gaus-
sian elimination on a large-sized matrix over a finite field is
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TABLE III
PERFORMANCE OF THE CONFIGURABLE F 2 m  [z] MULTIPLIERS FOR ROLLO-II ON XILINX ARTIX-7 FPGA

TABLE IV
CONFIGURABLE SHA3 HASH ENGINE FOR ROLLO ON XILINX ARTIX-7 FPGA
WHERE digit DENOTES THE NUMBER OF F 2 m  ELEMENTS STORED IN ONE

BLOCK MEMORY CELL

another bottleneck other than the multiplication over the ring
F 2 m  [z ]/P (z). For example, ROLLO-II PKE.encrypt generates
a random r  ×  m matrix over F2 to represent the error vector
space E, which requires performing Gaussian elimination to get
its reduced-row-echelon form. ROLLO-II PKE.decrypt requests
Gaussian elimination to intersect the secret syndrome spaces
S i  =  f − 1 S  for finding the r  linearly independent bases of the
secret error vector space E .  We are facing a new challenge in
rank-code based cryptosystem, namely, triangularizing a singu-
lar matrix in ROLLO. In this subsection, we will detail our gen-
eralized approach, which not only solves this new problem but is
also applicable to the Gaussian elimination cases used in the clas-
sic Niederreiter cryptosystem and multi-variate cryptosystem.

1) Previous Work: From a geometric point of view, the hard-
ware architectures for Gaussian elimination over afinitefield fall
into two groups: triangular and linear, each of which is subdi-
vided into three types: systolic array [36], systolic network [37],
and systolic line [38]. In these Gaussian elimination designs,
the data is fed into a processor array in a systolic fashion and
eventually the result of Gaussian elimination is stored in the
prcoeesor array and can be streamed out for post-processing if
required.

a) Triangular shaped array: Triangular shaped array is a two
dimensional array where all nodes in the array shape a triangle.
This array is triangular because Gaussian elimination causes all
nodes except the pivot node to be zero for each column of the

matrix and these zeros are unnecessary to be saved. In 1989,
Hochet et al. described for the first time the triangular systolic
array for doing Gaussian elimination a matrix over Fq [36]. This
work was further adapted for faster processing using systolic
network [37] and systolic line [38]. For code based cryptography,
this architecture for Gaussian elimination is applied to large
matrices over F2 specified in the key-pair generation of the
classic McEliece cryptosystems based on Goppa code. See [19],
[39] for details. In general, triangular-shaped array sets the
priority for time complexity while sacrificing space complexity.
It typically completes one Gaussian elimination for a k ×  l
matrix in Θ(k +  l) of time and Θ(kl) of space.

b) Linear shaped array: Linear shaped array is one dimen-
sional linear-shaped array where all nodes in the array shape a
horizontal line as described in [38]. It only preserves the first
line of the triangular array while all intermediate results are
pushed to an array of shift registers waiting for the next round
of processing. Linear systolic array is more area-efficient than
the triangular-shaped array if the Gaussian elimination is
performed on a matrix over an extended finite field F 2 m  . It
typically completes one Gaussian elimination for a k ×  l matrix
in Θ(kl) of time and Θ(l) of space.

These previous designs are capable of eliminating a binary
matrix of the size k ×  l, with k =  l, which removes the shape
limit existing in the Gaussian elimination hardware mentioned
above. The pre-requisite for successful Gaussian elimination is
that the input matrix must be full-rank. Gaussian elimination is
the most computing-intensive and also a distinguishing op-
eration in rank-metric-code-based cryptography like ROLLO
and RQC. However, these rank-code-based schemes require
performing Gaussian elimination on mediumsize and large-size
matrices over a binary field, and more importantly, these matri-
ces can be rank-deficient. In contrast, the current state-of-the-art
designs cannot process such type.

2) Main Idea: Dynamical Dual-Mode Switch: In our work,
we focus on Gaussian elimination for matrices over F2 which is
the type of Gaussian elimination used in ROLLO. The process of
such Gaussian elimination makes use of two types of elementary
row operations which must be performed on the rows of a matrix:
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r Swap the positions of two rows.
Add one row to another row.

By using these row operations, a matrix can always be trans-
formed into an upper triangular matrix (row-echelon form), and
further simplified to reduced row-echelon form where the left-
most nonzero entry in each row is 1, and every column containing
such leftmost nonzero entry has zeros elsewhere. In this work, we
use the term ‘triangularization’ to denote the operation of putting
the input matrix into its row-echelon form and ‘systemization’
to denote the operation of putting a row-echelon formed matrix
into its reduced-row-echelon form.

The most challenging part of this work is that the position of
pivot nodes in our Gaussian elimination architecture is flexible.
In contrast, all previous work [36], [37], [38], [40] assumes the
pivots are always found along the diagonal. This flexibility of
pivot position renders these works inapplicable in ROLLO. Our
new idea of implementing Gaussian elimination is as follows:
Each node is configured to have dual functions for every iteration
of Gaussian elimination: either the pivot node or the basic node
depending on the data input from the above node and the control
input from the left-hand-side node. The pivot node behaves
actively as the pivot in that particular row and propagates the
operational signal to its right-hand-side basic nodes. The basic
node behaves passively according to the operation signal, i.e.,
PASS,ADD, orSWAP for performing elementary row operations,
which are specified as follows:

PASS: The node passes the input data into the output port
and retains the data stored in the internal register of the
node.
ADD: The node adds the input data and the internal register
data, and then outputs sum. Meanwhile, the node retains
the internal register data.
SWAP: The node swaps the input data and the internal
register data, i.e., the node outputs the internal register data
and then updates the internal register with the input data.

A detailed description of the proposed node is shown in
Fig. 4(a). It has 8 signals and 6 of them are identical to the ports of
classic nodes presented in the literature including data_in,
data_out, start_in, start_out, op_in and op_out.
The difference is that a new pair of signals, pivot_in and
pivot_out is used to determine whether the current node is
pivot or not and broadcast this message to its right neighboring
node. With such new mechanism, the node can dynamically
switch between pivot and non-pivot for each input data update
described in Fig. 5: start_in triggers the initial phase when
the data flushes into the internal register r for the first time.
Otherwise, the node resides in the normal phase when it acts as
either the pivot node or the basic(non-pivot) node depending on
the 2-bit signal {r, pivot_in}: if {r, pivot_in}= 20b10,
the node acts as pivot. Otherwise, it acts as basic node.

3) Triangular Systolic Array Design: With the new node
design for Gaussian elimination, we chose a triangular systolic
array (TSA) as the basic architecture for implementing Gaussian
elimination in this work. Fig. 4(b) depicts the overview of the
Gaussian elimination systolic array for any matrices over F2

including singular and non-singular ones. The basic structure is
arranged in a rectangular shape such that every signal of

Fig. 4.     A versatile node proposed to solve non-fixed-pivot row exceptions in
Gaussian elimination. (a) Signal declaration of the new design of the node. (b)
Overview of the two dimensional array for Gaussian elimination, each node is
pipelined to reduce the critical path delay.

the node is pipelined, allowing all data and control signals to be
propagated in a systolic manner. An improvement of this
architecture is that all r registers in the nodes below the diagonal
of the systolic array are always zero, whatever the input matrix is
after the Gaussian elimination is done. Therefore, these nodes
(which are drawn in dotted lines) can be removed and finally
result in a triangular-shaped array.

4) Gaussian Elimination for ROLLO Encryption: In the en-
cryption part, the matrix has relatively small dimension of r
×  m, e.g., r =  7, 8, 9 and m =  67, 79, 97 are used in ROLLO-I.
In this case, it is natural to realize the entire Gaussian triangu-
larization/systemization using a single systolic array. Note that
systemization is necessary to acquire a unique representation
of error vector space E such that the subsequent hash function
always outputs a correct shared key. To better understand the
mechanism of the proposed Gaussian elimination architecture,
Fig. 5 describes the behavior of the node in triangularization and
Fig. 6 illustrates a step-by-step procedure for a single systolic
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TABLE V
GAUSSIAN ELIMINATION PERFORMANCE (TRIANGULARIZATION +

SYSTEMIZATION) FOR A k ×  l  MATRIX USED IN ROLLO-II.ENCRYPT ON

XILINX ARTIX-7 FPGA

Fig. 5.     Behavior description of the node used in the proposed systolic array
for matrix triangularization, written in Verilog-like pseudocode.
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colored in red indicates the value stored in the r register of the
node. The data colored in blue indicates the buffereddata_out
signal in the pipeline register between two neighboring nodes as
shown in Fig. 4(b). The circled value indicates it is the current
pivot of that particular row. Note that the input matrix must be fed
into the array in a skewed form for systolic processing as shown
in step-(0), i.e., at the first clock cycle, the systolic array takes
one bit ‘0’ as input. At the second clock cycle, the systolic array
takes two bit ‘00’ as inputs, and so forth. In step-(1), ‘0’ has been
updated to the node at the upper-left corner of the systolic array.
Given the input signals {r, pivot_in}==2’b00, this partic-
ular node executes the SWAP operation, which updates r by ‘0’,
outputs ‘0’ and also passes ‘SWAP’ signal and pivot_out = 0
to its right neighbor. In step-(2), consider the first row of the
systolic array, the leftmost node executes SWAP again since
{r, pivot_in} = =  2’b00 and the second node executes
‘SWAP’, which is passed from the leftmost node in step-(0). In
step-(3), the second node in the first row acts as the pivot since
{r, pivot_in} ==2’b10. This pivot node (circled in the
figure) ignores the ‘SWAP’ signal passed from step-(2) but
performs ‘PASS’ as a replacement. An analogous pattern can be
found in step-(4), where the pivot node in the first row ignores

‘SWAP’but executes ‘ADD’ since the input data is ‘1’. Eventually,
when all input data are flushed into the internal registers of all
nodes distributed at four distinct rows as shown in step-(10), the
input matrix has been successfully eliminated in the desired row
echelon form. In summary, the total delay for triangularizing a k
×  l matrix is 2k +  l −  2.

On the other hand, the Gaussian systemization is required
right after the triangularization process to shape the matrix
to the systematic form. Fig. 7 describes the behavior logic of
the node. In our actual implementations, the functionalities for
triangularization and systemization are merged to a single node.

Finally, we test the performance of our systolic array for
Gaussian elimination in compliance with ROLLO-II.encrypt.
The implementation results are collected in Table V.

5) Gaussian Elimination for ROLLO Decryption: ROLLO
decryption requires calculating the intersection of two vector
spaces in the rank support recovery algorithm and later sys-
temizing the intersected vector space to reconstruct the secret
shared key K .  Such intersection uses the Zassenhaus algorithm
in which the Gaussian elimination for a large 2n ×  2m matrix
over F2 is performed. In this case, it is infeasible to realize the
large-scale elimination on systolic array directly since the
resource utilization has exceeded the maximum capacity of
Xilinx Artix-7 FPGAs. The solution proposed in this work is to
divide the large matrix into several smaller blocks and to
conquer each submatrix using a relatively small systolic array.
We are particularly interested in a division where the smaller
blocks share the same column width as the large matrix. In other
terms, we use a d ×  2m Gaussian elimination systolic array to
process larger 2n ×  2m matrices with m =  67, 79, 83, 97, n =
83, 97, 113, 189, 193, 211 and d =  8, 9. This requirement re-
moves the storage of intermediate operation codes (op_in
signals from each Gaussian elimination node).

We detail our idea of using a smaller systolic array to tri-
angularize a larger matrix here. The node behavior mode must
be modified such that the node can correctly load data in or
load data off to the external memory. Therefore, we add a new
feature, called swap_in, to the input signal lists of the node as
shown in Fig. 8. swap_in is triggered to output the data
within the internal register and, menwhile, update the register
by the input data at the specific timing when the systolic array
requires to load the register data off to the memory. A simple
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example, i.e., to transform a 4 ×  4 matrix �0      
 
0      

 
0      

 
1
� to its

0       1       0       1
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row echelon form �0       0       0       1� on a 2 ×  4 systolic array is
0       0       0       0
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Fig. 6.     A toy example for the proposed Gaussian elimination hardware by triangularizing a 4 ×  4 matrix over F2 .  Triangularization means putting the input
matrix into its row-echelon form. The signals ‘S’, ‘P’, and ‘A’ stand for ‘SWAP’, ‘PASS’ and ‘ADD’, respectively.

Fig. 7.     Behavior description of the node used in the proposed systolic array
for matrix systemization, written in Verilog-like pseudocode.

depicted step-by-step in Fig. 9. The entire process requires two
rounds of Gaussian eliminations: The first round costs 10 steps
which manipulate the entire four rows of the input matirx and
eliminate the first two rows, and finally load the four rows back
to memory; The second round costs 8 steps which manipulate
only the last two rows of the input matrix and then load back to
memory.

Fig. 8.     Behavior description of the node used in the proposed systolic array for
matrix triangularization specified for ROLLO decryption, written in Verilog-like
pseudocode.

In Round-1, initially at step-(0), the input matrix
0       0       0       0

�
0       0       0       1

� i s  p r e p a r e d  i n  s kew e d  f o r m  a n d  f e d

t o  t h e  a r r a y ;
0       1       0       1

At step-(1), the upperleft node accepts ‘0’ to its internal register
and {r, pivot_in}==2’b00 triggers ‘SWAP’ signal; At
step-(2), on the one hand, the upperleft node outputs ‘0’ to
the buffer register due to the ‘SWAP’ signal from step-(1),
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Fig. 9.     A toy example to transform 4 ×  4 matrix over F 2  by the proposed 2 ×  4 systolic array. Triangularization refers to putting the input matrix into its
row-echelon form.

and again performs ‘SWAP’ since {r, pivot}==2’b00.
On the other hand, the second node in the first row of the
array receives ‘SWAP’ passed by the leftmost node in the last
step and therefore, executes ‘SWAP’ accordingly; At step-(3),
the second node in the first row acts as a pivot since {r,
pivot_in}==2’b10; At step-(4), the swap_in is exter-
nally triggered on the upperleft node for loading-off; Starting
from step-(5), the swap_in signals of the two leading nodes

of the respective rows of the systolic array keep enabled until
the array finally loads all effective data out to the external
memory at step-(10). It is worth mentioning that the systolic

0       1       0       0

a r r a y  o u t p u t s  t h e  r e s u l t  m a t r i x  �0       0       0       0
� i n

r eve r s e d  or d e r,
0       0       0       0

i.e., first, it outputs the last row, then second last one, and
eventually the first one. It is easily seen that the first two rows
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of the result matrix has been eliminated correctly at the end of
Round-1.

The Round-2 process mostly repeats what has been described
for Round-1 except that the input matrix has two rows which are
extracted from the last two rows of the result matrix mentioned in
Round-1. In general, it costs D /d (assume d | D  for simplicity)
rounds for triangularizing a D ×  l matrix with a single d ×  l(d <
D )  systolic array within about ( D + 2 l ) · D  cycles.

To sum up, the architectures presented in this subsection
are two-fold: The Gaussian elimination module for ROLLO
encryption is based on systolic array design and the new dual-
mode switching node for processing a (singular) matrix; the
Gaussian elimination module for ROLLO decryption reuses the
former to process any large-sized matrices while preserving
constant resource utilization. The proposed method for Gaussian
elimination is constant-time and thus is secure against timing
attacks. In addition, the proposed systolic array for Gaussian
elimination is fully parameterized at compile time to support
rapid configurations for different sets of parameters without the
need to re-write the hardware code.

IV. HIGHER LEVEL DESCRIPTION FOR ROLLO
AND HARDWARE ARCHITECTURE

This section describes the ROLLO hardware at a higher
level. It is worth mentioning that the CPA-secure ROLLO can
be converted to a CCA2-secure KEM when the HHK [33]
framework for the Fujisaki-Okamoto transformation is applied.
Therefore, we focus on the CCA2-secure parameter sets and
include the core functionalities, e.g., encryption and decryption
in this work. First, the ROLLO encryption hardware, together
with its key components, is presented, evaluated, and compared
with related work. Then the ROLLO decryption hardware is
presented, evaluated, and compared. In particular, the Rank
Support Recovery algorithm which is the kernel of the decoding
of LRPC codes is optimized and further adapted for efficient
hardware implementation.

A. ROLLO Encapsulation/Encryption

ROLLO-I is a KEM = (KeyGen, Encap, Decap) but ROLLO-
II is a PKE =  (KeyGen, Encrypt, Decrypt). In this subsection,
we bundle the implementation discussions on ROLLO-I. Encap
and ROLLO-II.Encrypt as they share similar descriptions.

Error Vector Space E: The first step of encryption is to
generate a small dimensional subspace of F n  . This subspace is
called the error vector space E  and let its dimension be r .
A random r  ×  m matrix over Fq is generated from our
Keccak-PRNG (as introduced in Section III-C) and fed into the
Gaussian elimination systolic array for rank determination. This
random matrix is accepted to represent E  if and only if its rank is
r .

Gaussian Elimination: Although the randomly generated E
is invertible with overwhelming probability, it is necessary to
fully implement the Gaussian elimination on E to obtain its
reduced-row-echelon form E_rref, and thus the representation
of the vector space E is uniquely determined for the correct-
ness of the decryption. Gaussian elimination for E includes

two phases: triangularization and systemization which costs
2k +  l −  2 and k +  l cycles, respectively. The total execution
of Gaussian elimination (including necessary memory access)
consumes 3k +  2l +  4 cycles.

SHA3 Hashing: The standard SHA3 hashing (see Section
III-C) costs 25dr/digite where digit is the number of F 2 m

elements stored in one block memory cell and in our implemen-
tation digit is set to 1. Moreover, the encryption engine exploits a
centralized control unit for all computation components; thus,
interaction among them takes slightly longer. The modified
hashing core costs two more cycles to hash the content in one
memory cell and thus uses 27r plus a few more cycles for state
logic transition.

Random Errors from E: For all ROLLO instances, it is nec-
essary to generate some random vectors with small rank weight
from the error vector space E. To achieve this, all the basis
vectors from E are first extracted and then inserted at a random
address to the block memory representing that random error.
Later, a random linear combination of all the basis vectors is
performed and inserted at other addresses of the same block
memory. Such random linear combination is essentially the

e~

vector-matrix product of [a1, a2, . . . , ar ] · �
e~ 
� where ai is the

e~
random bit generated from the Keccak-PRNG and the basis
vector e~ comes from the error vector space E. Since ai is
binary and the actual implementation is cheap XORs among the
selected e~ ’s, which is done in a single clock cycle. The perfor-
mance bottleneck is how fast the Keccak-PRNG generates the
random bits. In our case, theKeccak-PRNGgenerates 1344 bits
within 25 cycles and therefore, it takes about 25 · dn/b 1344 ce
cycles to generate such a random error vector with n F 2 m

entries.
Quotient Ring Multiplication: F 2 m  [z] multiplication is the

most time-consuming operation in the ROLLO encryption
scheme. We use the proposed F 2 m  [z] multiplier based on the
F 2 m  multiplication array shown in Section III-B. To facilitate
the pipeline streaming for the error vector generation, we set the
digit width of the F 2 m  [z] multiplier to a small constant number
(Precisely, we set in the actual implementations for each memory
cell holding 5 F 2 m  coefficients). Our parameterized multiplier
allows tuning the digit width and adjusting the resource utiliza-
tion as desired. Note the quotient ring multiplier is the densest
core of the entire ROLLO encryption hardware, and the freedom
for such modularity makes implementing all variants of ROLLO
on Artix-7 FPGA possible.

Hardware Architecture: Fig. 10 depicts the overview archi-
tecture for the ROLLO encryption. In ROLLO-I, The RNG
provides the necessary randomness to drive Low-Rank
Polynomial Generator for generating the error space E
and subsequently for the two ‘small’ error vectors e1, e2.
Gaussian Systemizer transforms E  to its reduced row
echelon form Erref and then checks its rank value. Finally, the
cipher c is calculated via the polynomial multiplier and adder,
and the other cipher K  is calculated by hashing Erref . Likewise,
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ROLLO encryption hardware. (a) Hardware architecture for ROLLO-I key encapsulation. (b) Hardware architecture for ROLLO-II data encryption.

the architecture for ROLLO-II encryption is almost identical to
that for ROLLO-I except for the way of manipulating the final
ciphertext: ROLLO-I outputs the hash value K directly, whereas
ROLLO-II encrypts the message m by XORing K .  Moreover,
the circuit size for ROLLO-II is generally larger since ROLLO-II
requires an extremely low decoding failure rate to satisfy the se-
curity requirement. This reacts to increase the size of parameter
sets.

B. ROLLO Decapsulation/Decryption

1) Rank Support Recovery Algorithm: ROLLO NIST sub-
mission package includes a constant-time algorithm for the
Rank Support Recovery (RSR) subroutine used in the decryption
algorithm as shown in Algorithm 4. The idea to recover the rank
support from the syndrome space S  is to compute S i  =  f − 1 S
for each i  which contains the error support e j ( j  =  1, 2, . . . r) of
the error space E  and then to retrieve the entire error space E  as
the intersections of all Si ’s. However, the intersections may not
return E  correctly due to two factors. First, the syndrome space S
may not contain all f i e j  for i  =  1, . . . , d and j  =  1, . . . , r as its
rank support, then some Sj ’s only contain a (strict) subset of
e1, e2, . . . , er and thus the intersections of these Sj ’s cause the
failure of rank support recovery. Second, the intersection of Si ’s
may contain some shared vectors that are not the rank support,
and thus the intersection returns an incorrect vector space larger
than the expected E .  Nevertheless, an appropriate selection of
system parameters n, m can fix this problem and reduce the
probability of decryption failure exponentially. Therefore,
ROLLO is immune to potential reaction attacks [41], [42] which
exploit the decryption failure.

2) Vector Space Intersection: Single Vector Space Intersec-
tion: At the heart of RSR algorithm, the intersection of two
vectors space S i  and S j  dominates the performance, and worse
still, such intersection is repeated for d −  1 times. Therefore,
special care must be taken for efficient implementations. We
first consider a single round of vector space intersection. The
standard technique for such intersection is performed by Zassen-
haus algorithm as follows: Let S1 and S2 be represented in an
n-by-m binary matrix form as [s~ 1, s~ 2, . . . , s~ n]T and
[s2,1, s~ 2, . . . , s~ n]T with s~,i � F 2 m  and s~ j � F 2 m  . In other
terms, the row space of the associated matrix formulates the
vector space of S1 and S2 , respectively. Zassenhaus algorithm

Algorithm 4: Constant-Time Rank Support Recover (RSR)
Algorithm.

Input: s =  (s1, . . . , sn) � F  m  a syndrome of an error
e of weight r  and of support E

Output: A candidate for the vector space E
// Compute the vector space E F

1 Compute the syndrome vector space S  =  hs1, . . . , sni;
// Recover the vector space E  from
S  ’s

2 Compute every S i  =  f − 1 S  for i  =  1 to d;
3 E  ← ∩ i = 1 S i  ;
4 return E;

constructs a 2n-by-2m matrix using S1 and S2 and then reduces
it into row-echelon form by use of Gaussian Elimination

� 
S1      S2 

�

−→ 0 E ,
2 0 0

where E  is the exact intersection of S1 and S2 .
After the triangularization above is completed, we can extract

the targeted intersection of two vector spaces as E .  Then E  is
intersected with S3 to update a smaller E ,  and so forth. Note
that this intersected error vector space E  has smaller and
smaller dimensions and eventually reduces to r  =  7, 8, 9 after
all rounds of vector space intersection are completed, and we
must systemize this small vector space to formulate the
unique row-reduced-echelon form for hashing to produce the
symmetric secret key (See the last step in the decapsulation
algorithms). In this case, the x ×  2m(r ≤  x  <  m) systolic array
proposed in Section III-D is reused for both triangularization and
systemization tasks.

Multiple Consecutive d −  1 Intersections: It is worth noting
that the RSR algorithm requires d −  1 times of single vec-tor
space intersection to retrieve the error E .  Indeed, we can
significantly reduce the time complexity of these consecutive
intersections by dynamically adjusting the row number of the
input matrix: Each round of RSR algorithm reduces the di-
mension of E ,  and therefore, the row number of large matrix

S i       0
gradually decreases as the round number increases.

Authorized licensed use limited to: George Mason University. Downloaded on August 04,2023 at 19:22:10 UTC from IEEE Xplore. Restrictions apply.



d

2

S S

2 i

i

2

S S

E E

HU et al.: ENGINEERING PRACTICAL RANK-CODE-BASED CRYPTOGRAPHIC SCHEMES ON EMBEDDED HARDWARE. A CASE STUDY ON ROLLO 2107

Fig. 11.     ROLLO decryption hardware. (a) Hardware architecture for ROLLO-I key decapsulation. (b) Hardware architecture for ROLLO-II data decryption.

This observation leads to faster matrix triangularization used
in RSR. However, this fast implementation is not constant-time
and may raise security concerns on timing attacks.

A better strategy is to further reduce the matrix size while
keeping the constant-time computation. It is achievable if one
notices that the dimension of E  cannot exceed r  · d as RSR
iterates. For all ROLLO instances, r · d is always smaller than n;
therefore, triangularizing a (n +  rd) ×  2m matrix is faster than
triangularizing a 2n ×  2m matrix. In short, this new strategy
triangularizes a 2n ×  2m matrix in the first iteration to intersect
S1 and S2 for E .  Starting from the second intersection, it
triangularizes a smaller (n +  rd) ×  2m matrix to get E  ∩ S i

where one operand E  has rd rows while the other operand
S i , i  =  3, 4, . . . has n rows. This asymmetry between operands
can be manipulated to accelerate the triangularization. Such
asymmetric computation repeats d −  2 times before the final E
with dimension r  is retrieved.

3) ROLLO Decryption Hardware: In this subsection, we
discuss the implementation details on ROLLO-I.Decap and
ROLLO-II.Decrypt.

Quotient Ring Multiplication: The multiplier is reused here
in decryption hardware. The cycle count for the multiplication is
estimated as (Delaym u l  +  1)d n e2 .

Vector Space Reformulation (Si  Gen): When the syndrome
space S  is calculated from the quotient ring multiplier, the next
step is to formulate the vector spaces S1 and S2 , and then to

construct a 2n ×  2m binary matrix as S
1      

0
1 for memory

storage. Note that the input S is arranged in a dn/de ×  md binary
matrix and we need extra control logic to process m-bits by
m-bits of S : One F  m      multiplier is utilized to perform S  =
f − 1 S  for every entry of Si iteratively. In summary, let Delaymul

and Delayrd denote the delay of F 2 m  multiplier and the delay
of memory-read, respectively, the cycle count for vector space
reformulation is d(Delaymul  +  2)n +  d(Delayrd +  2).

Rank Support Recovery (RSR): When S1     and S2     are
ready in memory, RSR will perform Zassenhaus algorithm on

S
1      

0
1 to retrieve the intersection as the error vector space

E  =  S1 ∩ S2 . Note that the dimension of E  is upper bounded by
r  · d and therefore E  is always written back to the first r  · d
rows of memory such that the first dim(E )  rows store E  and the
remaining rd −  dim(E )  rows store null vector. Next, S i ( i  =
3, . . . , d) is written to the following n rows of memory

TABLE VI
DETAILED CYCLE COUNT ANALYSIS ON ROLLO ENCRYPTION/

ENCAPSULATION FOR THE CLAIMED 128-BIT/192-BIT/256-BIT SECURITY

LEVEL (SL), RESPECTIVELY

TABLE VII
DETAILED CYCLE COUNT ANALYSIS ON ROLLO

DECRYPTION/DECAPSULATION FOR THE CLAIMED 128-BIT/192-BIT/256-BIT

SECURITY LEVEL (SL), RESPECTIVELY

to formulate the large matrix as S i       0
for Zassenhaus

algorithm to update a new and further reduced E .  The Zaussen-
haus algorithm is repeatedly performed d −  1 times to extract
the correct E  after which a final matrix systemization of E  is
required for hashing.

Hardware Architecture: Figs. 11(a) and 11(b) depict the
hardware architecture for the ROLLO decryption/decapsulation.
The critical components include the F 2 m  [z] multiplier and the
Gaussian Elimination systolic array which occupy the majority
of the hardware utilization. ROLLO-I and ROLLO-II share
almost an identical architecture though ROLLO-II decryption
is relatively larger due to the larger system parameter n. The
only difference at the top level is that ROLLO-I outputs the hash
value K  directly whereas ROLLO-I decrypts the cryptogram by
XORing K .

V. CONCRETE RESULTS ON ROLLO HARDWARE

Table VI lists the cycle count for ROLLO encryption/
encapsulation on Xilinx Artix-7 FPGAs. To compare among
ROLLO encryption hardware, ROLLO-I is the fastest and the
smallest: All three variants use about 3k�5k cycles to do
data encapsulation. ROLLO-II is much slower, using around
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TABLE VIII
PERFORMANCE OF ROLLO HARDWARE AND COMPARISON WITH EXISTING WORK ON PQC HARDWARE, TARGETING NIST SECURITY LEVELS 1/3/5

13k�18k cycles, but the advantage for ROLLO-II is that it can
do long-term data encryption.

The cycle count information for the proposed ROLLO de-
cryption hardware on Artix-7 is collected in Table VII. The
primary factor accountable for the cycle delay is the RSR
algorithm, which relies on the Gaussian elimination systolic
array. The secondary factor is the F 2 m  [z] multiplication. Note
that the performance of ROLLO-II decryption is about 2-3
times worse than that of ROLLO-I. This observation can be
interpreted as follows: The primary and the second factors are
more or less a quadratic function of n and m as n2 +  m · n.
The value of n used in ROLLO-II is about twice as large as
ROLLO-I, giving rise to the overall 2-3 times performance
degradation.

In terms of encryption performance, compared with other
PQC hardware in the literature shown in Table VIII, our ROLLO-I
encryption hardware is faster than the Classic McEliece en-
cryption hardware [5]. Our ROLLO-II encryption hardware is
about three times slower than [5] but uses much fewer slices
and BRAMs. The fastest implementation on the Niederreiter
cryptosystem is reported in [20], and our work is comparable
with theirs regarding the cycle count. Moreover, our ROLLO-I
hardware is also faster than the latest BIKE hardware imple-
mentations [26], [43]. It even outperforms an obsolete BIKE

hardware with an 80-bit parameter set presented in [22], which
also targets high-speed implementation. Our work is signifi-
cantly faster but also uses more hardware resources than the
area-efficient LEDAkem hardware shown in [28].

In terms of decryption performance, compared with the
optimized software implementation using AVX2 instructions
included in the ROLLO NIST submission, the cycle count is re-
duced by at least 20 and 16 times for ROLLO-I, and ROLLO-II,
respectively. Compared with other PQC hardware implementa-
tions on FPGA listed in Table VIII, the decryption throughput of
ROLLO is advantageous: It is apparently faster than the quasi-
cyclic MDPC/LDPC code-based schemes, including BIKE [26],
[43] and LEDAkem [28], and even approaches the state-of-art
implementation of the Niederreiter cryptosystem featuring high-
speed [20]. BIKE and LEDAkem appear to outperform ROLLO
and Classic McEliece regarding slices and BRAM usage. On
the other hand, ROLLO uses fewer slices and BRAMs but runs
slower than the Classic McEliece [5].

VI. CONCLUSION

This paper presented a complete FPGA implementation of
the ROLLO scheme using LRPC codes. It is the first hardware
implementation of a rank-metric code-based cryptosystem that
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supports varying security parameters. The efficiency of our
design is achieved by a novel Gaussian elimination structure, a
simplified implementation strategy for the rank support recovery
algorithm, and a fast interleaved polynomial multiplier, among
others. The proposed parameterized architectures, such as the
Gaussian elimination and the polynomial multiplication, are
not limited to instances used in ROLLO but also fully support
other rank-code-based schemes. For example, RQC applies the
identical family of ideal codes to construct the public key and
the ciphertext. Therefore, the F2

m[z ] arithmetic presented in
this work can be directly reused as the underlying arithmetic. At
the core of RQC key generation and data encryption algorithm,
the generation of vectors over F2 with prescribed rank weight is
demanding, and the parameterized Gaussian elimination systolic
array can be adapted effortlessly for this task.
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