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Abstract—As the use and applications of Unmanned Aerial
Systems (UAS) grow, the need for rapid and efficient research
and development arises. UAS aspects such as sensing, navigation,
and collision avoidance need to be evaluated. To facilitate this,
research infrastructure comprising a simulator and a sizeable
indoor testing center has been proposed and built. The discussed
infrastructure aims to boost research progress with a focus on
low-power computer vision solutions for UAS applications. This
research and development process optimizes available resources
by eliminating suboptimal solutions early. Leveraging a motion
capture system, precise and accurate metrics can be used to
evaluate and compare competing solutions prior to real-world
testing. Additionally, various scenarios and environments can be
recreated at relatively low cost in simulation or indoors,
providing researchers with rigorous testing opportunities.
Competitions are currently held to pit teams from around the
world to produce effective solutions for UAS tasks. Beginning
with simple problems, tasks of increasing complexity will be
introduced commensurate with previous successes. While it is
acknowledged that simulation and indoor testing cannot
completely replace real-world testing, this infrastructure setup
provides an invaluable opportunity for UAS researchers.
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I. INTRODUCTION

The need for more testing environments has emerged as the
popularity and applications of Unmanned Aerial Systems
(UAS) increase. Due to safety concerns, outdoor unmanned
flights are subject to a myriad of regulatory restrictions. Hence,
indoor areas provide advantageous testing grounds for new
developments and applications. Indoor testing areas remove the
constraints of airspace regulations and allow researchers to
control and simulate different environments, scenarios, and
obstacles. Providing a stable testing area promotes the rapid
deployment of novel approaches and solutions of computer
vision problems. Additionally, UAS movement and
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performance can be analyzed using high-definition motion
capture systems with precise and accurate metrics. The
application of metrics to computer vision solutions on
unmanned aerial systems can eliminate bias in determining the
most effective solutions.

II. LITERATURE REVIEW

In recent years, UAS have been used in many civil
applications due to their ease of use, low costs, and high
mobility [1]. These include search and rescue, delivery of
goods, security, surveillance, agriculture, infrastructure
inspection, transportation, wireless communication, and remote
sensing [2]. As a result, extensive research has gone into
developing autonomic systems that do not require human input,
leading to genuinely autonomous aerial vehicles [1]. As part of
this development, UAS platforms must be able to sense,
analyze, communicate, plan, decide, and control themselves
independently. Challenges include power, weight, and
communication limitations. Thus, a need to test and identify
optimal solutions through comparisons and testing arises.
While the use of simulations can estimate the effectiveness of a
solution, applying such solutions to a real-world UAS would
allow developers and engineers to rapidly field-test their ideas
to determine compatibility with practical operating
environments.

Current UAS regulations governing the United States’
National Airspace System focus on improving the safety of
manned aircraft and uninvolved individuals. The primary
legislation governing UAS operations is Title 14 of the Code of
Federal Regulations Part 107, “Small Unmanned Aircraft
Systems” [3]. Part 107 outlines the procedures for UAS
registration, obtaining a small UAS pilot's certificate, and
airspace authorizations. However, following Part 107
procedures can complicate the conduct of research using UAS
platforms. For example, following the airspace authorization
regulations outlined in Part 107 can require up to 90 days in
some parts of the national airspace system. In addition, UAS

Authorized licensed use limited to: Purdue University. Downloaded on April 28,2023 at 16:45:37 UTC from IEEE Xplore. Restrictions apply.



flights must have a Part 107-approved UAS operator to
supervise or fly the vehicle regardless of the testing location.
Many of the restrictions contained in Part 107 are applicable
only to outdoor flight tests. A remote ID requirement is the
next addition to UAS regulation, providing law enforcement
and security personnel the ability to identify the individual
operating the UAS. Similar to Part 107, remote ID only applies
to UAS operators conducting outdoor flights. While
performing indoor flights will remove the remote ID
requirement, additional obstacle avoidance and navigation
parameters can be tested based on the broadcast information
from remote ID. Remote ID transmissions may allow computer
vision solutions to be tested as an additional method for
detecting nearby vehicles.

Testing and analysis must be performed on multiple aspects
of autonomous flight, one of which is collision avoidance.
Essential elements of collision avoidance include object
detection, object trajectory, and local path planning to avoid
collision [4]. Each element of collision avoidance contains
various solutions and approaches, together with benefits and
drawbacks. An example of this is using cameras as passive
sensors, which have low power consumption but high
processing requirements. Another approach is using active
sensors such as radar and sonar; these have higher power
consumption but lower processing requirements. Further, each
sensing method is susceptible to false-negative detection of
particular objects in specific environments. Cameras, for
example, are prone to glare, while radar may not provide
sufficient resolution for some detection applications. In
addition, ground-based surveillance methods can be relayed to
UAS or integrated with ground-based command and control
systems. Finally, collision avoidance solutions must be
compatible with the global path planning and navigation
method in use. Possible real-time metrics for collision
avoidance performance can include detection constraints
(velocity or object size), ability to handle dynamic
environments, swarm  compatibility, = communication
dependence, escape paths, and potential for deadlock (local
minima) [4]. In practice, testing and analysis of a collision
avoidance solution must be completed to ensure adequate
performance prior to real-world deployment.

Regarding navigation and path planning, navigation
systems are classified into three categories based on the
amount of measured environmental information: the map-
based system, the map-less system, and the map-building
system [5]. Most general localization methods for UAS rely on
inertial measurement systems or global navigation systems [6].
The map-based system applies these two navigation systems to
allow UAS the capability for route planning and detours. The
other two methods rely greatly on the airborne optical system.
The UAS with a map-less system needs to extract, analyze and
memorize the visual information to move without collision. A
map-building system adds another step that compares and
amends the existing map according to the actual environment
sensed while operating [5]. Such vision-based navigation can
be treated as an extension of ground autonomous driving. The
difference is that UAS operate in three-dimensional space.

Cesetti et al. [7] proposed a vision-based guidance system
that enables autonomous navigation and landing ability for
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UAS by detecting natural landmarks. Singh et al. [8]
constructed a theoretical model by predicting the collision
probability between a UAS and surrounding obstacles using an
algorithm demonstrates the ability to respond to various
latency constraint scenarios. Padhy et al. [9] achieved UAS
navigation in the indoor corridor environment by taking the
next maneuver course as a classification task. The trained
Convolutional Neural Network (CNN) model processes the
video information from the front camera and feedback the real-
time command. Finally, Vanegas et al. [10] introduced a model
that combines multiple localization algorithms into one
framework. The method uses Simultaneous Localization and
Mapping (SLAM) with Partially Observable Markov Decision
Processes (POMDP) algorithms to navigate and explore the
UAS's surroundings with the Global Navigation Satellite
System (GNSS) failed situation, processing the action as
“sequential decision problems under uncertainty” [10].

The successful testing and development of these UAS
components can lead to the safe integration of UAS in national
airspace systems. In addition, simulators and indoor/small-
scale environments allow preliminary testing to be performed
in controlled environments at a relatively low cost, with no
need for regulatory approvals. For many smaller developers
and applications, large-scale testing with national organizations,
such as the National Aeronautics and Space Administration's
UAS Traffic Management (UTM) National Campaigns, is out
of reach and may not be suitable for early-development testing
[11]. Hence, the opportunity to test solutions at an indoor test
facility is invaluable to researchers.

III. METHODOLOGY

Fig. 1. Indoor infrastructure facility.

There are multiple existing solutions, vehicles, and
regulations for the use and operation of UAS. Conducting UAS
research and testing within a large, enclosed space allows
researchers better control over external variables. The
infrastructure under development provides a UAS research
framework impacted less significantly by airspace regulations.
The indoor infrastructure is built into a hangar with 20,000
square feet (1,858 square meters) of floor space with 30-foot
ceilings (10-meter), allowing ample room for UAS movement
in all three dimensions as seen in Fig. 1. In addition, the hangar
allows for the permanent operation and installation of motion
capture cameras. Camera operation in indoor conditions
improves lighting, temperature, and visual conditions. The
current camera array comprises sixty Oqus 7+ motion capture
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cameras mounted into the hangar's ceiling. The motion
tracking system allows multiple objects, individuals, or
vehicles to be tracked simultaneously with six degrees of
freedom. The motion capture system can easily track ground
and air vehicles with the attachment of compatible reflectors.

While large spaces are helpful for beginning applications
and research, many projects require the ability to control
external conditions to represent the real world accurately. For
example, the controlled addition of buildings, trees, or other
structures that block camera sight lines creates an accurate
representation of real-world conditions. Flexibility in the
location, size, and number of buildings is critical. Therefore,
diverse environments can be emulated using modular building
blocks, such as Everblocks as seen in Fig. 2 [12]. Multiple
vehicles are available for testing computer vision solutions,
including ground vehicles which can be used as tracking
targets. Maintaining multiple vehicles capable of operating on
the same motion capture system allows for changing the flight
or target vehicle with minimal system downtime.

Fig. 2. Everblocks representing an urban landscape.

In addition to the large indoor space for UAS testing, a
computer simulator for computer vision package testing
comprises the discussed research framework. The simulator
can be easily adjusted to represent the current state of the
hangar or modified to future states with and without the
Everblock obstacles. Multiple existing simulator platforms are
available; however, the selected simulator is based on Aerial
Informatics and Robotics Simulation (AirSim) and Unreal
Engine as seen in Fig. 3. The primary use of the simulator is to
increase efficiency by reducing real-world issues such as costs
and implementation on different platforms [13]. The simulator
provides the first layer of efficiency by allowing rapid
deployment and testing of various computer vision solutions.
Once successful solutions are validated, they can be deployed
at the testing facility, reducing resources wasted from testing
suboptimal solutions in person as illustrated in Fig. 4. In
addition, testing the solution at the indoor facility provides a
safe and controllable environment free of regulatory burdens
during the development process.

Fig. 3. Sample image of simulator.
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As a result of the combined simulation and indoor-testing
infrastructure, novel solutions can be tested efficiently, and
competing computer vision solutions can be rapidly evaluated.
The use of the motion capture system available in the facility
provides recordings for performance analysis based on
quantitative metrics. For metrics such as navigation, the
distance from programmed waypoints and actual location can
be measured with precision and accuracy. The motion capture
system can also be used to emulate the Global Positioning
System (GPS) by feeding precise location information for the
drone to its command system. Data fed from aircraft
surveillance systems such as Automatic Dependent
Surveillance-Broadcast (ADS-B) or Traffic Information
Service-Broadcast (TIS-B) can be emulated by artificially
adding latency in the data transmission. Random errors similar
to those experienced in practice can also be added to the data
passed on to the UAS to enhance the testing environment

further.
y—

Feedback Simulator

Real-

world
fa

Fig. 4. Development cycle.

Hangar

Using the motion capture system, the minimum distance
from a vehicle to a conflicting object or other vehicle can be
easily measured when testing object detection systems and
algorithms. In addition, avoidance trajectories can be compared
between computer vision solutions. High-speed interactions
and tests can also be performed with the ability to capture data
at frequencies greater than 1,000 frames per second. Solutions
can be evaluated for applications such as object tracking by
setting objectives such as maintaining a 3-foot distance from
the object being tracked. A UAS’s collision avoidance system,
and its ability of the solution to track and follow a moving
object can be evaluated. Further, the stability of drone flights
can be easily measured by tracking multiple points on the
vehicle.

A venue for testing such solutions has been and continues
to be competitions hosted at the facility. During the first
competition, participants were tasked to program a drone
equipped with a camera to track a red ball mounted on an
autonomous rover as it maneuvered a city constructed of
Everblocks. Teams qualified for hangar testing by completing
the challenge in the simulator. Succeeding in the competition,
the solution must have been able to track the object, command
the drone to follow the object, search for the rover if the line of
sight is lost, and avoid the obstacles. In addition, all
competitors were limited to the same drone, fairly pitting low-
power computer vision solutions against each other. During the
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first competition, only one team completed this task. For future
competitions, additional challenges such as the goal to
maintain a specified distance from the object will be added to
add layers of complexity to judge different solutions.

Flight analysis metrics and evaluation tools have been
created to reduce the arbitrary assessment and evaluation of
object tracking and computer vision. The metrics include:

o The average error from the target tracking distance
o Duration of flight target in the camera frame
o Duration of matching orientation between the test vehicles;

e Number of risky incidents regarding the distance between
obstacle and vehicle (based on a minimum threshold)

o Speed of the tracked object
o Predicted versus the true location of vehicles
e Average detection time per frame [14]

The metrics proposed may not be applicable or appropriate
in all cases. Hence, relevant metrics should be carefully
selected before use for evaluation and comparison. More
restrictions, such as expressly forbidden airspace control, can
be added to the hangar site to simulate real-world conditions as
closely as possible.

The metrics will be used to evaluate performance in the
low-power computer vision competition. In addition, the tools
should give any researcher the capability to perform an overall
comparison between multiple computer vision solutions.

For collision avoidance evaluation, UAS are tasked to fly
from one point of a mock city to another while encountering
other cooperative and non-cooperative vehicles. Global and
local path planning solutions can be simultaneously tested with
metrics such as the number of collisions/missed traffic, closest
distance with conflicting traffic, the average time to clear the
course, and the ability to handle various speeds and levels of
complexity. Interactions between drones of the same solution
running different tasks in the same environment can also be
tested to simulate an active airspace environment.

In addition to the Low Power Computer Vision
competitions, the testing and research facility discussed within
this paper is open for any researcher to develop and test UAS
solutions. Data from the motion capture system is then
available for the researcher to utilize while also kept for
analysis by the infrastructure team. Data gathered from the
facility will also be shared publicly on request for others to
analyze.

IV. LIMITATION AND PROPOSED ADDITIONS

As the facility continues to develop, multiple additions are
planned. These additions include a weather testing component
(wind/mist/rain), increasing the complexity of tasks and
requirements for UAS, an open category competition where
other hardware can be used to compete, and the
implementation of scenarios that simulate air traffic conflicts.
Object identification and search-and-rescue scenarios are also
planned for other researchers to test and display their solutions.
These additions are contingent on competitors' success with the
current competition setup and the needs of researchers who
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utilize the facility. The complexity of tasks and tests performed
at the facility must be reasonable and achievable by its users.

Efforts to create a simulation environment representative of
the hangar facility and the hangar facility representative of
real-world environments and scenarios, constraints on the
simulator, and hangar fidelity to real-world environments must
be acknowledged. The ideal environment that makes simulator
and hangar testing valuable leads to the exclusion of some real-
world considerations. For example, the variability of real-world
weather, such as high winds and precipitation, can also
significantly impact performance. Additionally, objects
represented in simulation or the hangar are simplified
representations of real-world objects. Therefore, computer
vision methods used in the simulation or hangar will likely
need significant adjustments and testing in real-world
environments prior to deployment.

V. CONCLUSION

The described infrastructure provides a unique and valuable
way for UAS users and researchers to develop, test, and
evaluate solutions for problems faced by UAS systems now
and in the future. Using a simulator, solutions can be tested
rapidly and at almost no cost, followed by hangar testing that
eliminates regulatory constraints while providing a safe and
controllable environment to test and measure solutions in a
near-reality environment with actual drones. The hangar’s
motion-capture system is the largest of its kind, offering
unmatched opportunities for research. This should increase the
quality and efficiency of the drone development process.
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