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Abstract. In 2022, NIST selected the first set of four post-quantum
cryptography schemes for near-term standardization. Three of them -
CRYSTALS-Kyber, CRYSTALS-Dilithium, and FALCON - belong to
the lattice-based family and one - SPHINCS+ - to the hash-based fam-
ily. NIST has also announced an ”on-ramp” for new digital signature
candidates to add greater diversity to the suite of new standards. One
promising set of schemes - a subfamily of code-based cryptography - is
based on the linear code equivalence problem. This well-studied problem
can be used to design flexible and efficient digital signature schemes. One
of these schemes, LESS, was submitted to the NIST standardization pro-
cess in June 2023. In this work, we present a high-performance hardware
implementation of LESS targeting Xilinx FPGAs. The obtained results
are compared with those for the state-of-the-art hardware implementa-
tions of CRYSTALS-Dilithium, SPHINCS+, and FALCON.

Keywords: Code-Based Cryptography · Post-Quantum Cryptography
· Hardware Acceleration · FPGA · Digital Signatures.

1 Introduction

The first set of post-quantum cryptography schemes was selected for standard-
ization by NIST in 2022 [3]. These algorithms are intended to replace current
public key standards, such as RSA and Elliptic Curve Cryptosystems, which
are vulnerable to quantum attacks through the use of Shor’s algorithm [28].
These new standards are built upon computationally hard problems that are
secure against classical and quantum computing attacks. Three of the new stan-
dards are lattice-based algorithms: CRYSTALS-Kyber, CRYSTALS-Dilithium,
and FALCON. The fourth, SPHINCS+, is a hash-based algorithm. CRYSTALS-
Dilithium, FALCON, and SPHINCS+ are all digital signature schemes, while
CRYSTALS-Kyber is a Key Encapsulation Mechanism (KEM). The primary rec-
ommendations from NIST and the NSA for most applications are CRYSTALS-
Kyber and CRYSTALS-Dilithium due to their relatively small key sizes and high
performance [3], [23]. FALCON is well suited for applications that require small
signatures and fast verification but has complex and slow key generation and
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signing. Compared to the other selected algorithms, SPHINCS+ has lower per-
formance and larger signatures. However, it has a mature security basis making
it a more conservative option [3].

NIST intends to standardize additional algorithms to diversify the suite of
new standards. This intent includes algorithms optimized for specific types of ap-
plications and algorithms of different cryptographic families. There are currently
three code-based KEMs that have advanced to the fourth round for further eval-
uation, and NIST announced an ”on-ramp” for new digital signature candidates
with the submission deadline on June 1, 2023.

One of these new digital signature algorithms is LESS [8], a code-based dig-
ital signature scheme. Unlike many previous code-based algorithms, which are
based on the Syndrome Decoding Problem (SDP), LESS builds its security on
the difficulty of determining the linear isometry between two codes [12]. This
security basis allows the use of smaller parameters than those typically required
for algorithms based on SDP, enabling more practical key and signature sizes.

In this work, we present a high-performance hardware implementation of
the LESS digital signature scheme. Our hardware architecture implements all
base parameter sets and provides substantial improvements over the software
implementation. The hardware implementation is also protected against timing
attacks as all operations are constant-time with respect to the secret values. The
implementation is publicly available at github.com/GMUCERG/LESS.

2 Previous Work

Since LESS is built using a different framework than previous code-based digital
signature schemes, there are no existing hardware implementations we can make
a direct comparison to. However, there are at least partial implementations of
all the algorithms selected for standardization.

The NIST-selected digital signature algorithms have received varying lev-
els of implementation work. CRYSTALS-Dilithium has received the most effort
with several high-performance and lightweight hardware implementations [32],
[10], [11], [21], [17]. A unified hardware design for CRYSTALS-Dilithium and
Saber was presented in [1]. A similar work on a unified implementation of
CRYSTALS-Kyber and CRYSTALS-Dilithium was presented in [2]. Addition-
ally, software/hardware co-designs of CRYSTALS-Dilithium were reported in [34],
[22], [33], [20]. Of particular relevance to this paper is the pure hardware imple-
mentation by Zhao et al. [32], which is the highest performance implementation
reported thus far. SPHINCS+ has one full implementation which targets high
performance [4]. FALCON has received considerably less effort, with the only
hardware implementation reported thus far being the implementation of the
verification operation [11]. Additionally, a software/hardware co-design of the
verification operation of FALCON was reported in [20].

Hardware implementations of Gaussian elimination over GF (p), performing
an operation similar to that of the Row Reduced Echelon Form unit described in
this paper, were reported in [18], [19]. Additionally, hardware implementations
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of Gaussian elimination over a different class of fields, GF (2m), were reported
in [7], [6], [13], [27], [29], [30], [15], [31], [25], [26].

None of the previously reported designs can be easily adapted for the im-
plementation of the LESS signature scheme. The major differences stem from
the use of a) much larger matrix dimensions, which prevent the use of systolic
array architectures, b) different field, which affects the complexity of addition,
subtraction, multiplication, and inversion, and c) different expected output - the
row reduced echelon form, rather than the (unreduced) row echelon form, also
known as the upper triangular matrix.

3 Background

3.1 Generator, permutation, and monomial matrices

As this work discusses the code-based cryptosystem LESS, there are several
important concepts from coding theory that must be defined.

A fundamental object in coding theory is the generator matrix. A generator
matrix G ∈ Fk×n defines an [n, k]-code by the operation c = mG, where m ∈ Fk

is the message and c ∈ Fn is the corresponding codeword. The same code can
also be defined using the parity check matrix H ∈ F(n−k)×n. The parity check
matrix can be used to check if a given vector c is a codeword by verifying that
HcT = 0.

The generator matrix is said to be in standard form if the k leftmost columns
are the identity matrix, that is if G = (Ik|M) with M ∈ F(k−n)×n. If G is
in standard form, the corresponding parity matrix can be expressed as H =
[−MT |In−k]. If the generator is in standard form, the first k entries of any code
word will simply be the message itself. Thus, the code is said to be systematic
in its first k positions.

For applications that use the functionality of the code, it is beneficial to repre-
sent the generator matrix in its standard form because it enables easy derivation
of the parity check matrix. For LESS, however, we are only concerned with deter-
mining if two matrices produce equivalent codes. That is, is there an invertible
matrix S ∈ GLk(q) for G,G′ ∈ Fk×n such that G = SG. Thus, converting to
any unique representation of a code is sufficient. The standard form representa-
tion is unique and thus would work for this purpose, but it is not required. The
Reduced Row Echelon Form (RREF) is also a unique representation.

RREF is an extension of Row Echelon Form (REF), which is defined as
follows: a matrix is in row echelon form if the following properties hold: (1) All
rows consisting of only zeroes are at the bottom of the matrix, (2) the leading
entry of every non-zero row is to the right of the leading entry of every row
above it. That is, they form a staircase pattern. A matrix is then in RREF if it
meets all the requirements of REF, all of the leading entries of non-zero rows are
1, and each column containing a leading 1 has zeros in all of its other entries.
Pseudocode for converting a matrix to RREF is provided in Algorithm 1.

Other important concepts for LESS are permutation and monomial matrices.
A permutation matrix is a square binary matrix that has exactly one entry of 1
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in each row and each column and 0s elsewhere. A monomial matrix is a matrix
with the same non-zero pattern as a permutation matrix. However, unlike a
permutation matrix, where the non-zero entry must be 1, in a monomial matrix,
the non-zero entry can be any non-zero value in F ∗

q .

Algorithm 1: Converting a k × n matrix to Reduced Row Echelon
Form (RREF)

Input: Matrix G ∈ Zk×n
q

Output: Matrix G ∈ Zk×n
q

1 for row id to reduce ∈ [0, k − 1] do
2 valid pivot ← 0
3 for col id ∈ [row id to reduce, n− 1] do
4 for row id ∈[row id to reduce, k − 1] do
5 if (G[row id][col id] > 0) and (valid pivot == 0 ) then
6 pivot row id ← row id
7 pivot col id ← col id
8 valid pivot ← 1

9 swap row(G[row id to reduce], G[pivot row id])
10 m← G[row id to reduce][pivot col id]−1 mod q
11 for col id ∈ [0, n− 1] do
12 G[row id to reduce][col id] ← m ·G[row id to reduce][col id] mod q
13 for row id ∈ [0, k − 1] do
14 if row id ̸= row id to reduce then
15 m← G[row id][pivot col id]
16 for col id ∈ [pivot col id, n− 1] do
17 tmp ← m ·G[row id to reduce][col id] mod q
18 G[row id][col id] ← G[row id][col id]− tmp mod q

3.2 LESS

LESS is a code-based digital signature scheme based on the difficulty of the
Linear Equivalence Problem (LEP). LESS was first introduced by Biasse et
al. [12] and was later expanded upon by Barenghi et al. [9] and Persichetti [24].
This work focuses on the most recent version of the scheme that was submitted
to the NIST standardization process [8]. The linear equivalence problem can be
defined as follows: given two generator matrices G,G′ ∈ Fk×n

q which generate
codes C,C′, determine if the two corresponding codes are linearly equivalent.
That is, does there exist matrices S ∈ GLk(q) and P ∈ Mn such that G′ = SGP .

The digital signature scheme is created by first defining a sigma protocol
using the linear equivalence problem and then converting it to a non-interactive
signature using the Fiat-Shamir transformation [16]. In the sigma protocol, there
are two users involved: the prover, who is attempting to prove they know the
secret corresponding to a public key, and a verifier, who is trying to confirm
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Table 1: Parameter sets for LESS and resulting data sizes.
NIST Parameter Code Params Prot. Params pk sig
Cat. Set n k q t ω s (KiB) (KiB)

1
LESS-1b

252 126 127
247 30 2 13.7 8.4

LESS-1i 244 20 4 41.1 6.1
LESS-1s 198 17 8 95.9 5.2

3
LESS-3b

400 200 127
759 33 2 34.5 18.4

LESS-3s 895 26 3 68.9 14.1

5
LESS-5b

548 274 127
1352 40 2 64.6 32.5

LESS-5s 907 37 3 129.0 26.1

the identity of the prover. The private key is a monomial matrix Q ∈ Mn, and
the public key is G1 = RREF (G0Q), where G0 is a publicly available gener-
ator matrix. The prover first generates a commitment by sampling a random
monomial Q̃ and calculating G̃ = RREF (G0Q̃). They then hash G̃ and send
the hash to the verifier as the commitment. The verifier then responds with a
single-bit challenge. If the challenge is 0, then the prover responds with Q̃, and
the verifier checks the response by checking that the hash of G0 multiplied by
the response equals the commitment. If the challenge is 1, the prover responds
with Q−1Q̃, and the verifier checks the response by verifying that the product of
G1 and the response matches the commitment. Note that this holds true because
G1Q

−1Q̃ = G0QQ−1Q̃ = G0Q̃, which matches the commitment.

With each round of the protocol, an imposter has a 1
2 chance of deceiving

the verifier by guessing what the challenge will be. The difficulty of deceiving
the verifier can be increased by repeating the protocol multiple times or by
creating additional pairs of public and private matrices. LESS takes advantage of
both approaches. This protocol can be converted into a digital signature scheme
by having the prover pre-compute numerous commitments and then using an
agreed-upon function to self-generate an unpredictable challenge. In the case
of LESS, this is accomplished by hashing the commitment matrices with the
message appended and using a variant of the Fisher-Yates shuffle to generate a
challenge with a fixed number of non-zero entries.

The parameters for the version of LESS this work implements are described
in Table 1. Parameters are provided for three security levels corresponding to
the NIST-defined security levels 1, 3, and 5. There are multiple parameter sets
for each security level. They aim for different optimization metrics. The bal-
anced parameter sets, denoted by ”b”, seek to minimize the combined size of
the public key and signature. The small parameter sets, denoted by ”s”, aim
to minimize the signature size. Level 1 also has an intermediate parameter set,
denoted by ”i”. The first three parameters relate to the codes used in LESS: n
and k define the dimensions of the generator matrices, and q is the modulus of
the coefficients. The following three relate to the LESS protocol: t defines the
number of challenges, i.e., how many rounds of the sigma protocol are simulated.
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The number of non-zero challenges is defined by ω, and the number of pairs in
the key is defined by s.

The short parameter sets reduce the signature size by increasing the number
of pairs in the key. This means fewer iterations of the protocol are required to
reach the security threshold, and consequently, the number of responses in the
signature is smaller. However, this comes at the cost of larger keys.

The descriptions of key generation, signing, and verification for LESS are
provided in Algorithms 2, 3, and 4. In a key generation, the user generates s
key pairs. The first pair is simply the public parameter G0 and the identity ma-
trix. All following pairs are generated by sampling a random Qi and calculating
Gi = RREF (G0Qi). Note that Qi is assumed to be inverted when sampled,
so for the calculation of the public key, we must invert the monomial before
multiplication. This assumption removes the need for inverting the monomial
in signature generation. The seeds used to sample the secret monomials are all
derived from a single input seed seedsk. The calculated matrices are serialized
to minimize their size in the public key.

Algorithm 2: LESS-Keygen() [8]

Input: None

Output: sk = (seed1, . . . , seeds−1): private key, where seedi ∈ {0, 1}λ is
employed to derive Q−1

i . The first entry of the private key Q0 = In
is not stored.
pk = (seed0,G1, . . . ,Gs−1): public key, where Gi ∈ Fk×n

q is stored as
the non-pivot columns and their positions via the CompressRREF
subroutine.

Data: CSPRNG(seed, SRREF): Samples a generator matrix in RREF from the
output of SHAKE using the provided seed.
CSPRNG(seed,Mn): Samples a monomial matrix from the output of
SHAKE using the provided seed.
RREF(G): Converts input generator into RREF.
CompressRREF(Gi): Encodes pivot locations and non-pivot columns
of generator matrix in RREF.

1 G0 ← CSPRNG(pk[0], SRREF)
2 for i← 1 to s− 1 do

3 sk[i]
$←− {0, 1}λ

4 Q← CSPRNG(sk[i],Mn)
5 Qi ← Q−1

6 Gi ← RREF(G0Qi)
7 pk[i]← CompressRREF(Gi)

8 return (sk, pk)

In a slightly simplified approach to signing, first t commitments are generated
by sampling random monomials Q̃i and calculating G̃i = RREF (G0Q̃i). All the
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commit matrices are then encoded and hashed with the message to generate the
challenge seed d. The challenge seed is then used to seed the XOF function from
which the challenge is parsed. For the zero challenges, the seed used to sample
the corresponding monomial serves as the response. For the non-zero challenges,
Q−1

xi
Qi is the response. The signatures are composed of the challenge seed and

all responses.
An optimization can be performed that significantly reduces the size of the

signatures. Instead of transmitting the entire monomial for the non-zero chal-
lenges, we can instead transmit only the columns corresponding to the pivot
columns of the result. This reduces the transmission overhead of these monomi-
als by a factor of two. However, to recover from the missing information of the
monomial, additional processing is required after the RREF operation. The non-
pivot columns are lexicographically minimized and sorted to remove the impact
of the scaling and permutation operations of the monomial multiplication. These
operations are combined into a single function called PrepareDigestInput. For
further details, we refer to the LESS specification [8].

Another optimization is used for the seeds of the challenge monomials. Rather
than defining the seeds using simple expansion of a root seed by an XOF, the
seeds are defined as the leaves of a binary tree derived from the root seed. So,
the seeds are generated by recursively hashing an input seed until the required
number of leaves is reached. Then the signature size can be reduced by sending
the tree nodes needed to recreate the target leaves rather than sending the leaves
themselves.

In verification, the challenge seed is first expanded into the challenge in the
same manner as in signing, and the leaves of the seed tree are regenerated from
the path. For all responses t, the monomial is decoded or resampled and mul-
tiplied by the corresponding generator matrix. When the monomial is sampled
from a seed, we use the same PrepareDigestInput algorithm to regenerate the
commitment. When the monomial is decoded from the response, we use the
standard RREF operation and minimize and sort the non-pivot columns of the
result. All the generator matrices are then hashed, and the result is compared
with the challenge seed in the signature. If they match, the signature is accepted.

4 Hardware Architecture

In this section, we discuss the design of our implementation of LESS. We begin
with a brief description of the top-level architecture before discussing the details
of the submodules and operation schedule. The datapath of packed matricies
and seeds is W = 64. For all parameter sets, n > q. So for portions of the design
that transmit data of both width ⌈log2(n)⌉ and ⌈log2(q)⌉, we use a width of
⌈log2(n)⌉.

4.1 Top Level Architecture

The top-level datapath of the hardware architecture is shown in Fig. 1. The
hardware modules implementing all the operations of LESS are partitioned into
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Algorithm 3: LESS-Sign(sk,msg, pk) [8]

Input: sk = (seed1, . . . , seeds−1): private key, where seedi ∈ {0, 1}λ is
employed to derive Q−1

i . The first entry of the private key which is the
identity matrix Q0 = I is not stored.
pk[0] = seed0: first element of the public key employed to derive G0 in
RREF at runtime
msg: message to be signed, as a sequence of bits

Output: σ = (rsp1, . . . , rspt,d): signature composed by a salt salt, ω ZKID
protocol responses rspi, 0 ≤ i < t, the seed-tree path treepath and a
digest d

Data: CSPRNG(seed, St,ω): Samples the fixed weight challenge from the
output of SHAKE.
PrepareDigestInput(G, ˜︁Q): Calculates the RREF of G˜︁Q and
returns the lexicographically sorted and minimized values of the
non-pivot columns of the result as well as the corresponding entries of
the monomial.
SeedTreeLeaves(seed, salt): Generates seed tree using SHAKE.
SeedTreePaths(seed, (x0, . . . , xt−1)): Calculates nodes of path for the
target leaves of the seed tree.
CompressMonomAction(QQ): Encodes the relevant permutation
and coefficients of the monomial matrix.

1 G0 ← CSPRNG(pk[0], SRREF)

2 rootSeed
$←− {0, 1}λ

3 salt
$←− {0, 1}λ

4 (seed[0], . . . , seed[t− 1])← SeedTreeLeaves(rootSeed, salt)
5 for i← 0 to t− 1 do

6 ˜︁Qi ← CSPRNG(seed[i],Mn)

7 (Vi,Qi)← PrepareDigestInput(G0, ˜︁Qi)

8 d← Hash(V0|| . . . ||Vt−1||msg||salt)
9 (x0, . . . , xt−1)← CSPRNG(d, St,ω)

10 treepath← SeedTreePaths(rootSeed, (x0, . . . , xt−1))
11 j ← 0
12 for i← 0 to t− 1 do
13 if xi ̸= 0 then
14 Q← sk[xi]

15 rspj ← CompressMonomAction(QQi)

16 j ← j + 1

17 return (salt, treepath, rsp0, . . . , rspω−1,d)

five major submodules: the seed generator, monomial arithmetic unit, generator
arithmetic unit, RREF unit, and challenge generator. The seed generator is
responsible for expanding the input seeds into the seeds used for sampling of
monomial and generator matrices. This includes the simple expansions of the
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Algorithm 4: LESS-Verify(pk, σ,msg) [8]

Input: pk = (G0, . . . ,Gs−1): public key, where Gi ∈ Fk×n
q

σ = (salt, treepath, rsp0, . . . , rspω−1,d): signature composed by a salt
salt, omega ZKID protocol responses rspi, 0 ≤ i < t, the seed-tree path
treepath and a digest d
msg: message to be signed, as a sequence of bits

Output: Boolean value indicating whether the signature is valid

Data: RebuildSeedTreeLeaves(treepath, (x0, . . . , xt−1), salt): Regenerates
the target leaves of the seed tree using the path nodes.
ExpandToMonomAction(rsp): Decodes the encoded coefficients and
permutation values from the monomial.
LexMin(v): lexicographically minimizes the input vector.
LexSortColumns(V): lexicographically sorts the set of the input
vectors.

1 G0 ← CSPRNG(pk[0], SRREF)
2 (x0, . . . , xt−1)← CSPRNG(d, St,ω)
3 (seed[0], . . . , seed[t− 1])←

RebuildSeedTreeLeaves(treepath, (x0, . . . , xt−1), salt)

4 for i← 0 to t− 1 do
5 if xi = 0 then

6 ˜︁Qi ← CSPRNG(seed[i],Mn)

7 (Vi,Qi)← PrepareDigestInput(G0, ˜︁Qi)

8 else

9 Qi ← ExpandToMonomAction(rspi)
10 Gi ← pk[xi]

11 Gi ← GiQi

12 [I Vi]← RREF(Gi) // Vi = [v0 v1 · · · vn−k−1]
13 for j ← 0 to (n− k)− 1 do
14 vj ← LexMin(vj)
15 Vi ← LexSortColumns(Vi)

16 d′ ← Hash(V0|| . . . ||Vt−1||msg||salt)
17 if (d = d′) then
18 return true
19 return false

secret key seed as well as all seed tree operations. The monomial arithmetic
unit performs the sampling, inversion, multiplication, encoding, and decoding
of monomial matrices. It receives input from the seed generator when sampling
and transfers the monomial matrices to the generator module as needed. The
generator module performs the generator-monomial multiplication, encoding, as
well as lexicographic sorting. The RREF unit converts the matrix multiplication
result into RREF. The challenge parser hashes the commitment matrices and
uses the result to generate the challenge.
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Seed
Generator
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Generator
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Generator

DOUTDI
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W

W

Fig. 1: Top-Level Block Diagram of LESS Hardware Architecture.

During most operations, only a single generator matrix needs to be stored
throughout the entire operation. For example, during key generation and sign-
ing, only G0 needs to be used multiple times. All other generator matrices are
immediately hashed or unloaded from the accelerator. The exception is verifi-
cation, where all public keys may be required to check the authenticity of the
signature. For the balanced parameter sets, which only uses two generator matri-
ces, this does not cause any issues. However, for the short parameter sets, there
are eight matrices in the public key. Due to the large size of these matrices, this
requires a significant amount of memory resources. To address this limitation,
we assume that the system that is connected to the accelerator holds the full
public key. The accelerator requests the generator matrices as they are needed
during verification.

4.2 Submodule Design

Seed Generator. All operations of LESS require the generation of various
seeds for the sampling of monomial and generator matrices. The architecture of
this module can be seen in Fig. 2. The SHA-3 module used is a publicly available
implementation [14]. During key generation, the generation of seeds is done by
expanding the λ-bit seed into s − 1 λ-bit seeds using the XOF. The SHA-3
module is configured to run the appropriate variant of SHAKE. The core ingests
the input seed and produces the appropriate number of output bits which are
stored back in memory. These seeds can then be used to initialize the XOF for
sampling as needed.

During signature generation and verification, the seed tree operations are also
utilized. This includes the generation of the seed tree by recursively hashing the
root seed, generation of the path nodes needed for the signature, and recreation of
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the relevant leaves using the path nodes. The seed tree operation is implemented
in a straightforward manner using breadth-first traversal of the tree and hashing
the current node into two child nodes until the required number of leaves is
generated. The seed path generation is performed in two steps. During the first
step, the tree is traversed from the leaves up, and a flag is set for each seed
to indicate whether or not it is in the path of the target seeds. For the leaves
themselves, they are considered target seeds if they are not part of the non-zero
challenges. For the node seeds, they are included if both of their children are
included. Once the flags of all seeds are set, the tree is traversed again, and
seeds are included in the path if their flag is set but their parent node is not.
The entire seed tree is kept in memory after the initial generation, so no hashing
is required during this operation. During the regeneration of the leaves, the first
step from path generation is repeated. For the second step, the tree is traversed
in the same manner, but once a seed that is in the path is reached, it is hashed
to generate its child nodes.

All of these operations can be performed using a very simple datapath shown
in Fig. 2. The controller is responsible for tracking the current location during
tree traversal and setting the flgi signal, which is used to set the flag for each
seed as needed during the seed tree operations.

All operations performed by the seed generator are constant time with respect
to the sensitive data. Hashing requires a constant number of cycles. Thus seed
expansion does not leak any information. The generation and usage of the seed
tree path are non-constant time, but the variation of the latency depends on the
public challenge, not the secret seeds.

SHA-3

Simple Dual-Port 

RAM


W+1

DI

DOUT

W+1

Fig. 2: Top-level Diagram of Seed Generator Submodule
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Mono
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HASH_IN

DI

DOUT

MONO_OUT

Mono RAM

Perm
RAM

Scalar
RAM

Mono
Action PIVOTS_DI

Fig. 3: Top-level Diagram of Monomial Submodule

Monomial Arithmetic. The top-level architecture of the monomial arithmetic
unit is shown in Fig. 3. This section of the hardware consists of two memories
and five submodules related to the monomial matrices.

Monomial sampling is required in key generation for the creation of the secret
key and in signing for the generation of the ephemeral secrets used to create the
commitments. The hardware architecture implementing monomial sampling is
shown in Fig. 4. The monomial is represented as two lists, one representing
the scalar values and one representing the permutation. The scalar values are
generated using rejection sampling on ⌈logq(q)⌉ bits of pseudorandom input at
a time. Samples are accepted if they are in the range [0, q − 2] and then are
incremented by one to shift them into the range [1, q − 1]. Since the latency
of monomial sampling is negligible in comparison to the latency of the RREF
operation, only one sample is processed per cycle. The permutation coefficients
are generated using a simple shuffling algorithm. The shuffler module contains a
N×⌈log2(n)⌉ RAM module, which is initialized to hold the array [0, 1, ..., n−1].
This array is then shuffled using n random samples in the range [0, n− 1].

Monomial encoding is a straightforward serialization of the permutation and
scalar values. This is accomplished using a variable-rate bus width converter,
which can receive input at a rate of ⌈log2(n)⌉ or ⌈log2(q)⌉ and produces an
output of length W . Fig. 5 shows the architecture of this module. The decoding
module follows a similar architecture with the modification that the input is W
bits and the output can optionally be N × ⌈log2(n)⌉ or N × ⌈log2(q)⌉ bits.

Monomial inversion involves element-wise inversion of the scalar values of
the monomial as well as calculation of the inverse permutation. The architecture
implementing this operation is shown in Fig. 6. The inverse permutation b of
permutation a can be calculated by bai = i. This can be accomplished by using
the input permutation as the address of a memory while writing values sequen-
tially from 0, ..., n − 1. In the hardware module shown, the input permutation
is used as the address input when writing the sequential values coming from a
counter. After the entire permutation is loaded in, the RAM will contain the in-
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Fig. 5: Monomial Encoder Block Diagram

verse permutation, which can be read out sequentially using the counter to drive
the address input. Since the modulus is small, inversion of the coefficient values
can be done inexpensively using a Look-Up-Table one coefficient at a time. The
ordering of the coefficients must also be adjusted to match the new permutation
so the coefficients are written into RAM in the same manner as the permutation.

Monomial multiplication involves combinations of both the permutations and
the scalar values of the two input monomials. The resulting permutation is calcu-
lated by reading the permutation of the left operand with the permutation of the
right operand. In the hardware architecture shown in Fig. 7, this is accomplished
by first writing the left operand’s permutation into a RAM and then unloading
using the right operand’s permutation as the address. The scalar values are cal-
culated by first applying the right operand’s permutation to the scalar values
of the left-operand and then multiplying coefficient-wise with the left operand’s
coefficients. This is accomplished in the hardware by writing the left operand’s
scalar values into memory and then using the right operand’s permutation to
drive the address when performing the multiplication.

The monomial operations are also constant time with respect to the sensi-
tive data. Monomial inversion, multiplication, encoding, and decoding are all
constant time operations, as their latency depends only on the dimension of the
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Fig. 7: Monomial Multiplier Block Diagram

matrices and not on the values within them. Monomial sampling is not strictly
constant time as it uses rejection sampling. However, the difference in latency
caused by rejection does not leak any information about the value of the accepted
samples. Thus it is not vulnerable to timing attacks.

Generator Arithmetic. The generator arithmetic module has three primary
functions: 1) preparing the generator for processing by decoding a matrix from
the public key or sampling it from a seed, 2) performing the monomial multi-
plication while loading the generator into the RREF module, and 3) performing
the post-processing of sorting and encoding the non-pivot columns after RREF.

Generator encoding and decoding is similar to monomial encoding in that it is
a straightforward serialization of elements, one being a set of n bits representing
whether each column is a pivot or not and the other being the ⌈log2(q)⌉ bit
coefficients. The list of pivot locations is serialized first at the beginning of the
encoded string. Then the coefficients of the non-pivot columns are serialized
row-wise.



Hardware Implementation of the LESS Digital Signature Scheme 15

Simple Dual-Port
RAM


MonoMultMONO_IN

HASH_IN

DIDecodeGen

ExpandGen

Transpose

Merge

Sort

EncodeColumnsGEN_OUT

Simple Dual-Port
RAM


RREF_OUT RREF_IN

Fig. 8: Top-level Diagram of Generator Submodule

The monomial multiplication is performed when loading the matrix into the
RREF module. An entire row can be accessed from memory at once. The per-
mutation is applied using several k × 1 multiplexers to read the row coefficients
using the monomial permutation. The selected row coefficients are then scaled
by the monomial coefficients before they are loaded into the RREF module.

During the lexicographic sorting operation, the matrix must be sorted column-
wise. However, the operations of RREF and encoding are performed row-wise.
Therefore we have a module which transposes the matrix when it is received
from the RREF module. The columns are then sorted using an implementation
of merge sort. During this operation, the entire column is accessible from the
memories, so the comparison operation can be performed in a single cycle. Since
merge sort requires additional memory overhead during processing, both memo-
ries are used during the sorting process. The sorted columns are then transposed
back before encoding of the columns.

All operations performed by the generator arithmetic module are secure
against timing attacks. The latencies of decoding, monomial multiplication, and
transposition are determined by the dimension of the matrix and always take
the exact same number of cycles. The expansion of the generator is a public op-
eration. Merge sort was selected as the approach for sorting the columns because
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Fig. 9: Top-level Diagram of Challenge Generator Submodule

of its excellent performance in hardware and because it is very straightforward
to implement in constant time. Each of the log2(k) layer involves exactly k read,
write, and comparison operations. Since these operations always require the same
amount of time, the entire operation is constant time.

Challenge Generator. The challenge generator module is responsible for hash-
ing the commitment matrices and parsing the signature element d into the fixed-
weight challenge. The challenge is parsed by first sampling the values of the ω
non-zero entries. When s is two, this stage can be skipped since 1 is the only pos-
sible value. These samples are written into the top ω entries of a t entry memory.
They are then randomly permuted using a variant of the Fisher-Yates shuffle.
A counter p is initialized to t − ω, and then samples are repeatedly generated
in the range [0, p− 1] using rejection sampling to determine where to shuffle the
value at index p. This is repeated until all ω samples have been shuffled into
the challenge. Since the parsing of the challenge is a public operation, it is not
a target for timing attacks.

RREF. The RREF operation converts a matrix to row reduced echelon form.
The typical complexity of this operation on a k× n matrix is O(nk2), where all
k rows must be reduced, and each reduction requires all k × n elements to be
operated on.

The reduction of a matrix to RREF is described in Algorithm 1. Four major
steps of the algorithm can be identified. They are: (1) pivot search, (2) row swap,
(3) rescaling a pivot row, and (4) reduce other rows. These steps are repeated
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Fig. 10: RREF Example: n = 7, k = 3, q = 7

k times, once for every row, so that all rows of the matrix are fully reduced.
The first step is identifying a pivot element. The pivot of a row is the leftmost
non-zero element such that after the reduction of the matrix, the pivot will be
1, and all elements below it, in the same column, will be 0. The pivot search
step is described in lines 2-8 of Algorithm 1. After finding the pivot (which is
not guaranteed to be in the row to reduce), a row swap is performed so the row
to reduce always contains the pivot. Next, the pivot row is rescaled so that the
pivot element is 1. This is achieved by multiplying the entire row by a multiplier
equal to the inverse of the pivot element modulo q. This operation is described
in lines 11-12 of Algorithm 1. Finally, all other rows are reduced so that the
elements in the same column as the pivot, above and below, are set to 0. This
operation is described in lines 13-18 of the Algorithm 1.

There are several features of this algorithm that can be taken advantage of
for optimization. When performing an arithmetic operation on a row, such as
rescaling a pivot row or reducing a non-pivot row, there is no sequential depen-
dence between elements. Arithmetic operations can be performed on all elements
of a row at the same time. This parallelism reduces the time complexity of the
algorithm to O(k2) and creates an O(n) area cost in hardware. Additionally,
the rows involved in the pivot search are always bounded by the row to reduce
and k. This means that each time a pivot search is performed, the pivot row will
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always be between the row to reduce and k, and the search will require less time,
each iteration, at a constant rate. Also, the current iteration’s reduce other row’s
results are the elements that are searched during the pivot search in the next
row to reduce. Cycles can be saved by searching for the next pivot while per-
forming reduce other rows operation of the current row to reduce. Finally, once
the rescale pivot row step has been completed, all operations being performed
in the reduce other rows step are row-independent. This means that any row
can be reduced in any order, creating an independent series of operations that
can be pipelined to increase the hardware frequency, while maintaining a high
throughput. Combining these observations about the pivot search and reduce
other rows, the reduce other rows operation can be performed on rows in the
pivot search area so that the next pivot will always be found before the next
iteration of row reducing begins, masking the time spent searching for a pivot.

The small scale example provided in Fig. 10 identifies the the key features
of the RREF operation. Step A. starts with identifying the first pivot, where
the search area is the entire matrix. After finding the pivot, the pivot row is
swapped so that it is in the same position as the row to reduce, this swap takes
place in step C. The pivot row is rescaled in step D, and in step E, all other rows
are reduced. The pivot search area in step E includes one less column and row
than the area in step A. The search also overlaps with the reduction of other
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result

data_out
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Fig. 11: RREF Top-Level Block Diagram
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rows. Once all of the other rows are reduced, the search is also completed and
the pivot is identified by step F. From here, the process is repeated until all k
pivots have be identified and their rows reduced.

The hardware implementation of RREF aims to take advantage of each of
the identified characteristics. The top-level module is split into three main parts:
column memory unit, pivot search, and row arithmetic. The top level block
diagram is presented in Fig. 11. Each part operates on an entire row of the input
matrix at once. The pivot search unit is designed to search only rows that are
within the search area for a specific row to reduce. This feature is in line with the
row arithmetic unit’s write back, so the search for the pivot of the next row to
reduce occurs during the operations on the current row to reduce. The column
memory unit provides separate read and write ports to enable pipelining of the
rescale arithmetic which supports its highly parallel nature.

The column memory unit provides a wide interface to enable reading/writing
to an entire row in a memory single access. The block diagram for the column
memory unit is presented in Fig. 12. It is built up of n simple dual-port RAMs
with synchronous read operating in parallel. Additionally, when addressing the
memory, an address translation table is used. The table is built of a true dual-
port RAM to enable the swapping of rows without needing to access the entire
memory. A separate translation table is required for both the read and write
ports of the column memory unit so the pipelined accesses do not need to target
the same row. Any access to this memory unit will require two cycles, one for
the address translation and another for the data access.
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data_i data_o

waddr

Address
Translation RAM

clog2(k) x clog2(k)

wdata_a
addr_a

wdata_b
addr_b

rdata_a

rdata_bpivot_row_id

w_row_id

w_row_id

RAM n-1
k x clog2(q)

data_i data_o

waddr

...

...

data_i

...

data_o

...

1

raddr

Address
Translation RAM

clog2(k) x clog2(k)

wdata_a
addr_a

wdata_b

addr_b

rdata_a

rdata_bpivot_row_id

r_row_id

r_row_id

raddr raddr

we we we
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The pivot search circuit, presented in Fig. 13, guarantees the results of the
pivot search in a deterministic number of cycles, independent of the location
of the pivot. This is achieved by requiring the entire matrix to be searched
before revealing the result, guaranteeing a constant number of clock cycles spent
searching, independent of any input data. The pivot of a specific row to reduce
is the first non-zero element in a row, greater than or equal to the row to reduce,
in the leftmost column, greater than or equal to the row to reduce. To identify
the pivot, as the row id changes between the row to reduce and k − 1, the
corresponding data is checked to be non-zero using n comparators operating in
parallel. If a comparator determines that its corresponding column element is
non-zero, then it will set a flag and record the row id in its own register. At
this point, that specific columns pivot has been determined for a row to reduce,
meaning that there are now n registers holding the row id of the first non-zero
element in a column and a flag to identify if the column contains a non-zero
element. An n-bit priority encoder is used on all n flag bits to determine the
leftmost column that contains a pivot. These flags are masked so that only a
column id greater than or equal to the row to reduce is identified. The encoded
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column id is then used to read from the corresponding register to identify the
row id of the pivot element in that column. By the time all k rows have been
iterated over, the circuit will have determined the pivot row id and pivot column
id for the corresponding row id to reduce. There is a three-cycle latency for the
results of the pivot search to be accessible by the rest of the module to support
a higher frequency. This latency will be masked away by the top-level pipeline.

An example of the pivot search circuit in operation, with n = 4, is provided in
Fig. 14. After the start search signal is set, the valid pivot flip-flops (vld pivot[i])
are cleared. This action initializes the circuit to begin a search. If the data in a
column within the search area is non-zero, then the corresponding pivot register
will store the index of the first (lowest-index) row containing a non-zero element.
Each valid pivot flip-flop will store a value indicating whether there exists at least
one non-zero element in the search area of a given column. The priority encoder
uses the flags of each column and a mask, driven by the shift register, to identify
the lowest column id with a valid pivot. The mask, stored in shift reg, makes it
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possible to shrink the search area when iterating over subsequent values of the
row id to reduce. Once the pivot column id is determined, the row id from the
corresponding pivot register is routed to the output register, pivot row id, of the
pivot search circuit. The valid signal of the priority encoder is used to determine
if a valid pivot was found in the current iteration of the algorithm. The search
area of the next iteration of row id to reduce is smaller than the previous one.
It does not include row 0 and column 0. The start search signal is asserted again
to clear the valid pivot flip-flops corresponding to the columns located inside of
the search area. In the iteration when row id is 1, columns 1 and 2 contain zeros,
this causes the corresponding pivot registers and valid pivot flip-flops to not be
updated. When a non-zero value occurs in a column and row within the search
area, and the valid pivot flag is not already set, then the row index is captured,
and the valid pivot flag is raised. If the pivot search circuit cannot find a pivot,
the RREF controller will halt operation and signal that an error has occurred.
In the context of LESS key generation, signing, and verifying, all input matrices
to the RREF operation are guaranteed to have an RREF.
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Fig. 15: RREF Row Arithmetic Block Diagram
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The row arithmetic circuit, shown in Fig. 15, is used to perform multiplica-
tion, subtraction, and reduction modulo q of all elements in a row. It can be
controlled to switch between rescaling a pivot row and reducing other rows. The
circuit contains n arithmetic units to operate on an entire row in parallel. To
support higher clock frequencies, the circuit takes advantage of the parallel na-
ture of the rescaling operation by implementing several pipeline registers. The
arithmetic pipeline has 5 stages: pivot element select select, scale factor select,
two stages of multiply and reduce, and conditional subtract. The pivot row must
be rescaled before the reduction of other rows can begin. The bypass of the last
row of registers and the feedback loop allow starting the reduction of other rows
a couple of cycles earlier than the when the rescaled pivot row is written back
to memory. The pipeline bypass consistently occurs independent of input data,
so this circuit will always complete its operation in a constant number of clock
cycles.

The RREF order of operations is demonstrated in Fig. 16. While data is being
loaded into the RREF internal memory, the first pivot search occurs. Once all
rows of the matrix are loaded in, then the RREF pipeline begins by performing
a swap, if no swap is required, the clock cycle is spent swapping in place. The
rescale pivot row and reduce other rows operations follow, while performing the
next pivot search during the reduce other rows. These operations repeat until
the matrix is fully reduced.
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Fig. 16: RREF Operation Scheduling
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All loops within the RREF algorithm described in Algorithm 1 are bounded
by constants and do not exit early due to any results. This enables a fixed latency
to perform all operations of RREF. Additionally, memory access also has a fixed
latency, regardless of the data. Therefore the RREF operation is completed in
constant time, regardless of the input matrix. The required cycles to perform
the operation, for any parameter set, not including loading the input matrix and
unloading the output matrix, can be represented by k2 + 3k + 58.

4.3 Operation Scheduling

The schedule of operations used to perform the algorithms of LESS is described
in Figs. 17, 18, and 19. The figures provide insight into the order of operations
and which of them can be performed in parallel, but the duration of the op-
erations is not to scale. In the key generation, the operation begins with the
module receiving the secret key seed and the parameter generator matrix G0.
The seed is expanded into s − 1 seeds which are used to sample the secret key
monomial matrices. The inversion of the first monomial matrix is performed in
parallel with the sampling of the generator matrix. Then the generator matrix is
multiplied by the monomial matrix before being written loading into the RREF
module. The RREF operation is then started, and the next monomial is sam-
pled and inverted in parallel with the operation. Once RREF completes, the
resulting generator matrix is encoded and unloaded from the hardware. This
loop of RREF is repeated in parallel with monomial sampling until all generator
matrices for the public key are calculated.

The first stage of signing is similar to key generation, except that the re-
sulting generator matrices are hashed instead of unloaded. Before the hashing,
these non-pivot columns are transposed, sorted, and then encoded. The sorting,
encoding, and hashing are performed in parallel with the RREF operation. Once
t generator matrices are calculated and hashed, the message is ingested to the
hash function to generate the challenge seed. The challenge seed is then used
to parse the challenge itself. There are t monomial matrices sampled during the
commitments. However, only ω are needed for the response. Since ω is much
smaller than t and monomial sampling is a computationally inexpensive oper-
ation, it is more efficient to resample these needed matrices. The resampling is
performed, and then the results are multiplied together and encoded as a part of
the signature. After all the non-zero responses are calculated, the seed generator
generates the path needed for the regeneration of the zero-response seeds.

Verification begins by first reconstructing the challenge from the signature
and decoding the monomial matrices. The responses must be processed sequen-
tially in order to successfully recreate the challenge seed. Thus, for each response,
if the challenge value is zero, then the monomial is resampled from the response
seed. If it is nonzero, the decoded monomial is used. Once the response mono-
mial is prepared, the public key generator matrix corresponding to the challenge
value is decoded and multiplied with the monomial before being loaded into
the RREF module. The post-processing is performed in the same manner as in
signing. The next monomial and generator matrix are prepared in parallel with
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Table 2: RREF Implementation Results on Artix-7

k n q
Frequency LUTs FFs BRAM Cycles

(MHz) (×103) (×103) (36 Kbit) (×103)
126 252 127 200 27.1 26.8 26.5 16.3
200 400 127 167 40.3 43.5 41 40.7
274 548 127 143 58.8 61.2 56.5 75.9

the RREF operation. The result is encoded and ingested into the hash function.
After all generator matrices and the message are hashed, the resulting hash is
compared with the challenge seed. If they match, the signature is accepted. If
not, it is rejected.

5 Results

Hardware performance and area results are reported for Artix-7 FPGA. The
device used for generating timing and area results was XC7A200TFBG484-3.
Xilinx Vivado 2022.2 was used for synthesis and implementation. Performance
cycle counts were determined using simulation. All hardware implementations
included for comparison also reported their area and timing for Artix-7 FPGA.

The implementation results for the RREF unit are listed in Table 2. The
area and operating frequency results are dependent on n. A large n will result
in a greater area, due to more parallel elements, along with a slower clock fre-
quency, due to large multiplexers. The RREF operation in hardware is executed
in constant time, where the number of clock cycles is uniquely dependent on the
size of k.

The implementation results for the entire LESS scheme are provided in Ta-
bles 3 and 4. The maximum frequency of the LESS module is limited by the
critical path of the RREF unit, which is dependent on the size of the generator
matrix. Thus the lower parameter sets have a higher maximum frequency. The
RREF module consumes the majority of resources and takes up the most signif-
icant portion of the latency. Approximately 50%-56% of the LUTs of the design
are used in the RREF module, and approximately 80% of the cycles in sign and
verification are spent in the RREF module. Due to the computational intensity
of RREF, all other modules were able to be optimized for the low area.

With respect to area consumption, most of the change in resource consump-
tion is related to the size of the generator matrices. In particular, the resources
of RREF and generator modules scale linearly with the size of these matrices.
This is because the RREF and sorting modules always perform their operations
on an entire row or column in a single cycle, so the number of processing ele-
ments within these modules scales with n and k. The memory also scales directly
with the dimension of the matrices. The LUT and FF resources of the remaining
modules are mostly independent with respect to the size of the matrices, but the
memories within these modules do increase for the larger matrices.
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Table 3: Comparison of Hardware Area for Relevant PQC Implementations. TW
refers to this work.

Algorithm Implementer Platform
Parameter

Set
Frequency

LUTs
(×103)

FFs
(×103) DSP

BRAM
(36 Kbit)

LESS TW Artix-7
L1-{b,i,s} 200 54.8 39.9 0 59.5
L3-{b,s} 167 76.7 57.9 0 102.5
L5-{b,s} 143 104.3 76.7 0 167.5

FALCON Beckwith et al Artix-7
L1

142
14.5 7.3 4 2

L5 13.9 6.7 4 2

Dilithium Zhao et al Artix-7
L2

96.9 30 10.4 10 11L3
L5

SPHINCS+ Amiet et al Artix-7

128s-simple

250 & 500

48.2 72.5 0 11.5
128s-robust 49.1 73.1 0 15.5
128f-simple 48.0 72.5 1 11.5
128f-robust 48.9 73.0 1 15.5
192s-simple 48.7 72.5 0 17
192s-robust 50.1 74.5 0 22.5
192f-simple 48.4 73.5 1 17
192f-robust 47.2 74.3 1 22.5
256s-simple 51.1 74.6 1 22.5
256s-robust 50.1 75.7 1 30
256f-simple 51.0 74.5 1 22.5
256f-robust 50.3 75.7 1 30

Table 4: Performance Results for Relevant PQC Implementations on Artix-7.
TW refers to this work.

Design Algorithm Details Performance Results

Algorithm Implementer
Parameter

Set
Public Key

(KB)
Signature
(KB)

Frequency
Keygen Sign Verify

Cycles
(×103)

Latency
(µs)

Cycles
(×103)

Latency
(µs)

Cycles
(×103)

Latency
(µs)

LESS TW

L1-b 13.7 8.4
200

29.1 145.3 5,204.6 26,023.0 5,156.2 25,780.9
L1-i 41.1 6.1 77.5 387.7 5,126.4 25,631.8 5,093.2 25,465.8
L1-s 95.9 5.2 174.5 872.5 4,166.1 20,830.6 4,137.2 20,685.9
L3-b 34.5 18.4

167
72.1 432.8 39,237.4 235,424.4 39,146.0 234,875.7

L3-s 68.9 14.1 132.8 796.7 46,216.7 277,300.0 46,142.8 276,856.9
L5-b 64.6 32.5

143
134.4 941.1 129,885.6 909,199.5 129,726.1 908,082.6

L5-s 129 26.1 247.9 1,735.5 87,161.5 610,130.3 87,013.8 609,096.4

FALCON Beckwith et al
L1 0.897 0.666 142

N/A N/A N/A N/A
2.4 16.8

L5 1.79 1.28 142 4.7 32.8

Dilithium Zhao et al
L2 1.31 2.4

96.9
4.1 41 28.1 281 4.4 44

L3 1.95 3.3 5.9 59 44.7 447 6.2 62
L5 2.59 4.6 8.8 88 49.0 490 9.0 90

SPHINCS+ Amiet et al

128s-simple 0.032 7.9

250 & 500 N/A N/A N/A

12,400

N/A

70
128s-robust 0.032 7.9 21,100 110
128f-simple 0.032 17.1 1,010 160
128f-robust 0.032 17.1 1,640 230
192s-simple 0.048 16.3 21,400 100
192s-robust 0.048 16.3 38,300 150
192f-simple 0.048 35.7 1,170 190
192f-robust 0.048 35.7 2,120 310
256s-simple 0.064 29.8 19,300 140
256s-robust 0.064 29.8 36,100 200
256f-simple 0.064 49.9 2,520 210
256f-robust 0.064 49.9 4,680 340
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Table 5: Performance Comparison with AVX2 Implementation

Parameter
Set

Platform Frequency
Keygen Sign Verify

Latency
(µs)

HW
Speedup

Latency
(µs)

HW
Speedup

Latency
(µs)

HW
Speedup

L1-b

Artix-7

200 MHz
145.3 ×1.5 26,023.0 ×2.5 25,780.9 ×2.5

L1-i 387.7 ×1.4 25,631.8 ×2.7 25,465.8 ×2.7
L1-s 872.5 ×1.4 20,830.6 ×2.6 20,685.9 ×2.6
L3-b

167 MHz
432.8 ×1.4 235,424.4 ×2.5 234,875.7 ×2.5

L3-s 796.7 ×1.4 277,300.0 ×2.5 276,856.9 ×2.5
L5-b

143 MHz
941.1 ×1.4 909,199.5 ×2.6 908,082.6 ×2.6

L5-s 1,735.5 ×1.3 610,130.3 ×2.5 609,096.4 ×2.5
L1-b

Software
(AVX2)

3.9 GHz

222.7 64,653.9 68,500.4
L1-i 557.5 68,689.0 68,689.0
L1-s 1,185.8 54,835.1 54,835.1
L3-b 610.7 584,660.7 584,660.7
L3-s 1,099.8 683,915.5 683,915.5
L5-b 1,306.4 2,348,707.0 2,348,707.0
L5-s 2,333.3 1,547,110.1 1,547,110.1

5.1 Software Comparison

Table 5 provides a comparison between our hardware accelerator running on
Artix-7 and the optimized AVX2 implementation running on an AMD Ryzen
5 5600G desktop CPU. The software was compiled with GCC 12.2 with -O3

-march=native -mtune=native optimization flags and the measurements were
taken with hyperthreading and frequency-scaling (Turbo Core) disabled. The
CPU was running at 3.9 GHz, which is 19.5− 27.3× faster than the hardware.

Despite this significant difference in clock frequency, the hardware outper-
forms the software for all parameter sets. The key generation operation is 1.4×
faster in hardware. Signing and verification are both 2.5× faster. The perfor-
mance could be increased further through the use of a higher-end FPGA, which
can enable high clock frequencies, or through implementation as an ASIC.

5.2 Comparison with Other Digital Signature Schemes

In Tables 3 and 4, we provide comparisons with the best high-performance hard-
ware architectures for CRYSTALS-Dilithium, FALCON, and SPHINCS+.

When comparing both performance and area, the two lattice-based algo-
rithms CRYSTALS-Dilithium and FALCON both outperform the implementa-
tion of LESS. Both algorithms require significantly fewer resources, with the
exception of DSPs, and have significantly lower latency. The DSP usage is re-
quired in these algorithms for modular multiplication because the moduli are too
large to effectively perform in LUTs without a significant increase in the critical
path of the design, whereas the small modulus of LESS allows for multiplication
to be implemented using LUTs.

A more relevant comparison is with SPHINCS+, which is the only non-lattice-
based signature scheme selected by NIST for standardization to date. Both algo-
rithms provide parameter sets optimizing for different metrics. For SPHINCS+,
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the ”s” and ”f” notations correspond to ”smaller signature but slower signing”
and ”faster signing but larger signature,” respectively. The ”simple” parameter
set has higher performance but a less conservative security argument than the
”robust” parameter set [5].

When comparing the parameter sets for LESS and SPHINCS+, we can ob-
serve that the signature size of LESS varies from 30%-106%, 39%-112%, and
52%-109% of the size of SPHINCS+’s signatures for security levels 1, 3, and 5,
respectively. Both algorithms have multiple parameter sets with different trade-
offs for the signature size. The small signature parameter set of LESS always
has a smaller signature size then that of SPHINCS+, but the public key is
significantly larger. The latency for SPHINCS+ is lower for all levels except
when comparing SPHINC+ 128s-robust to LESS L1-s, in which LESS is slightly
shorter.

The area of the LESS design is comparable to SPHINCS+ for most parameter
sets. LESS uses similar LUTs at level 1 to all levels of SPHINCS+, slightly more
at level 2, and substantially more at level 3. The flip-flop utilization of LESS is
less or very similar to all parameter sets of SPHINCS+. The BRAM utilization
is much larger for LESS than SPHINCS+ due to the optimization of RREF
operating on an entire row of the matrix.

6 Conclusions

This work presents a high-performance hardware implementation of LESS, a
recently-proposed code-based digital signature scheme, which was submitted to
the NIST post-quantum cryptography standardization process. A key component
is a constant-time, highly parallel unit implementing conversion of an arbitrary
k×n matrix over GF (p) to the reduced row echelon form. This conversion is by
far the most computationally intensive operation of LESS. The hardware imple-
mentation running on Artix-7 FPGA outperforms optimized software running
on a modern desktop CPU by factors ranging between 1.3 and 2.7 depending
on a variant and security level. The entire hardware implementation of LESS is
resistant to timing attacks.
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