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a b s t r a c t 

In this paper, machine learning (ML) modeling is proposed for the detection and classification of global 

positioning system (GPS) spoofing in unmanned aerial vehicles (UAVs). Three testing scenarios are imple- 

mented in an outdoor yet controlled setup to investigate static and dynamic attacks. In these scenarios, 

authentic sets of GPS signal features are collected, followed by other sets obtained while the UAV is under 

spoofing attacks launched with a software-defined radio (SDR) transceiver module. All sets are standard- 

ized, analyzed for correlation, and reduced according to feature importance prior to their exploitation in 

training, validating, and testing different multiclass ML classifiers. The resulting performance evaluation 

of these classifiers shows a detection rate (DR), misdetection rate (MDR), and false alarm rate (FAR) better 

than 92%, 13%, and 4%, respectively, together with a sub-millisecond detection time. Hence, the proposed 

modeling facilitates accurate real-time GPS spoofing detection and classification for UAV applications. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

The use of unmanned aerial vehicles (UAVs) has increased 

n the past few years in many applications, such as remote 

ensing, agriculture, search and rescue missions, 3D mapping, 

ostal engineering, and disaster management ( Shakhatreh et al., 

019 , Naidoo et al., 2011 , Nex and Remondino, 2014 , Radoglou- 

rammatikis et al., 2020 , Drummond et al., 2015 , Erdelj and Na- 

alizio, 2016 ). To this end, the UAV market has grown significantly 

nd is expected to reach USD 100B by 2030 ( Unmanned Aerial 

ehicle (UAV) Drones Market Size 2022-2030 ). This growth is at- 

ributed to the rapid development in emerging navigation and 

ontrol technologies that enable swarm networking and colli- 

ion avoidance protocols ( Shakhatreh et al., 2019 ). However, UAV- 

pecific solutions for cybersecurity vulnerabilities are not ade- 

uately addressed. These vulnerabilities potentially lead to dam- 

ging private properties and infrastructure, not to mention threat- 

ning public safety as recently reported in many incidents world- 

ide ( Electromagnetic Interference Behind Darling Harbour Drone 

rash , SkyJack Software Finds and Hijacks Drones , HK$1 million in 

amage caused by GPS jamming that caused 46 drones to plum- 

et during Hong Kong show , Drone Crash Due To GPS Interference , 
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167-4048/© 2022 Elsevier Ltd. All rights reserved. 
rones crash during light display at lantern festival ). Therefore, it is 

aramount to develop detection and mitigation methodologies for 

he different types of cyberattacks against UAVs. Machine learning 

ML) modeling for real-time detection and classification of global 

ositioning system (GPS) spoofing is of a special interest to this 

ork. GPS spoofing mitigation, on the other hand, is addressed 

ith other techniques including inter-vehicle ranging and data 

haring, inconsistency evaluations of GPS statistical properties, spa- 

ial processing of the GPS angle of arrival, signal strength and noise 

oor computations, null steering and beam forming, adaptive fil- 

ering, and time correlation estimation of the received GPS signals 

 Carson et al., 2016 , Haider and Khalid, 2016 , Jahromi et al., 2012 ,

hmad et al., 2019 , Sathaye and Ranganathan, 2020 , Lee et al., 

020 ). 

GPS spoofing attack affects the location awareness of a UAV by 

roadcasting a fake GPS signal that outpowers authentic transmis- 

ions to enforce a different position that serves the adversary inter- 

st ( da Silva, 2017 ). Various detection solutions to this attack were 

roposed, such as evaluating the autocorrelation of the received 

ignals or calculating position tolerances via the GPS and inertial 

easurement unit (IMU) modules ( Khan et al., 2020 , Wang et al., 

020 ). However, these methods introduce a high computational 

omplexity and require high-precision sensors. Other solutions uti- 

ized antenna arrays for enabling a multi-stage spatial process- 

ng of the received signal to calculate the correlation in posi- 

https://doi.org/10.1016/j.cose.2022.103085
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2022.103085&domain=pdf
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Table 1 

Properties of each square in the experimental setup. 

Side length a i (m) a 1 = 20 a 2 = 35 a 3 = 50 a 4 = 70 

Altitude h (m) 10 5 3 5 

Ground speed v (m/sec) 1.00 1.50 2.20 5.00 

Spoofer antenna gain (dB) 72 76 80 85 
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ion error ( Broumandan and Curran, 2017 , Rothmaier et al., 2021 , 

ansen et al., 2016 ). Nevertheless, these solutions introduce addi- 

ional hardware components and may not be suitable for UAV ap- 

lications. A vision-based solution that exploits a camera and the 

MU module to measure the UAV velocity and compare it to that 

btained by the GPS receiver was proposed in ( Qiao et al., 2017 ).

lthough this solution has demonstrated an excellent performance 

n detecting spoofing, it imposes greater challenges to the onboard 

rocessor due to the sophisticated processing of images. Spoofing 

etection via analyzing the civilian and encrypted GPS signals were 

xplored in ( O’Hanlon et al., 2013 ). However, this approach requires 

nformation from another reference GPS receiver outside the attack 

ange, which can be impractical, particularly in the scenario where 

he location of the attacker is unknown. The use of the automatic 

ain control (AGC) unit in the GPS receiver as a solution for de- 

ecting spoofing attacks was studied in ( Akos, 2012 ). This solution, 

owever, is affected by the noise level at the GPS frequency band, 

he environmental conditions, and the quality of the AGC unit. 

The aforementioned literature survey suggests the need for de- 

eloping real-time UAV-specific GPS spoofing detection and classi- 

cation techniques with reasonable computational resources and 

inimal to no modifications to the already-existing hardware. 

hese techniques must consider testing setups that pair both sim- 

lations and measurements to represent realistic attack scenarios. 

herefore. this work explores, and ultimately validates, a solution 

or GPS spoofing detection and classification utilizing ML. The so- 

ution presented herein differs from other reported solutions in the 

ollowing facets: 

I Unlike ( Carson et al., 2016 , Sathaye and Ranganathan, 2020 , 

Broumandan and Curran, 2017 , Jansen et al., 2016 , Zhang et al., 

2012 , Wang et al., 2018 ), the proposed approach neither re- 

quires new sensors nor modifications to the existing hardware 

(e.g., receiver circuitry). Rather, it can be integrated with stan- 

dard receivers and ubiquitous modules. 

II The datasets used for training and validating the ML classi- 

fiers are collected from testing setups that characterize authen- 

tic and spoofed autonomous flights. In such setups, the flights 

are created with a commercial flight controller and software in- 

terface, and attacks are launched with a software-defined ra- 

dio (SDR) module. On the contrary, other reported approaches 

based their solutions on either simulated attacks or by launch- 

ing attacks in a confined lab environment that fails in capturing 

authentic GPS signals ( Wang et al., 2020 , Jansen et al., 2016 ,

O’Hanlon et al., 2013 , Zhang et al., 2012 , Wang et al., 2018 ,

Xue et al., 2020 , Jiang et al., 2021 , Dang et al., 2022 ). 

III ML techniques for spoofing detection were discussed in 

( Xue et al., 2020 , Jiang et al., 2021 , Dang et al., 2022 ). How-

ever, these techniques are computationally expensive because 

of utilizing deep learning or image-based classification, leading 

to increased training and detection time. On the other hand, the 

classifiers developed in this work are trained and tested con- 

sidering minimal use of computational resources for enabling 

real-time spoofing detection. 

IV All collected datasets and trained classifiers are made accessible 

to the research community. The datasets convey features that 

are extracted from a commercial GPS module. As a result, these 

datasets and classifiers can be utilized in promoting the cyber- 

security in other research fields, such as transportation services, 

autonomous vehicles, and robotics. 

The remaining of this paper is organized as follows: 

ection 2 discusses the underlined experimental setup, which 

laborates on the spoofing attacks and the collection of signal 

eatures. Section 3 discusses the classifiers development, which 

ntails the processing of the collected datasets, details the ML 

raining process, and provides a performance evaluation for the 
2 
ifferent detection and classification models. Finally, Section 4 con- 

ludes this study and provides insight into future work. 

. Experimental Setup 

The experimental setup for collecting signal features is illus- 

rated in Figure 1 . This setup consists of four square-like flight- 

aths, each with a square side length of a 1 = 20 m, a 2 = 35 m,

 3 = 50 m, and a 4 = 70 m. All squares are centered at the ad-

ersary (i.e., spoofer) and are assigned with different UAV flight 

ltitudes and velocities, as detailed in Table 1 . The attacks are 

aunched at an open-source UAV from COEX, which is equipped 

ith a u-blox M8 GPS receiver and a PX4 flight controller that 

nables the logging of several GPS features during flight. Mission 

lans are created with QGroundControl software tool, which al- 

ows for monitoring and controlling the UAV. Attack files are cre- 

ted with gps-sdr-sim, which uses the satellite ephemeris data and 

he coordinates of the fake location to generate a file with the bit 

tream of the attack. It is noteworthy to point out that ephemeris 

ata is available at ( Daily GPS Broadcast Ephemeris Files ). Finally, 

he attacks are launched via a universal software radio periph- 

ral B-210 SDR from National Instruments, which is interfaced with 

NURadio installed on Linux virtual machine. A safe zone is desig- 

ated for the testing area to avoid disturbing other surrounding 

lectronics. This is achieved by adjusting the SDR (i.e., spoofer) 

ransmitter gain while observing the GPS reception with a hand- 

eld GPS receiver. 

Two spoofing attack types are investigated in this work: static 

nd dynamic. In the static attack featured in Figure 1 (a), the ad- 

ersary transmits a fake GPS signal with a single location that 

iffers from the correct one. This attack spoofs the UAV by en- 

orcing a lock to a fixed position even though the UAV is in mo- 

ion. On the other hand, the dynamic attack is created by launch- 

ng spoofed GPS transmissions with moving location coordinates. 

his attack enforces the UAV to travel a flightpath designed by the 

dversary. These attack types are considered for the square with 

 1 = 20 m. The configuration of the static attack entails collect- 

ng authentic and spoofed GPS feature samples. The authentic sam- 

les are collected while the UAV is hovering at the center of each 

quare side. Then, attacks are launched to create a fake location 

t each of the four square corners, followed by collecting samples 

or the same set of features. The configuration of the dynamic at- 

ack (i.e., Dynamic 1) illustrated in Figure 1 (b) involves placing the 

AV at one of the square corners. Authentic features are collected 

hile the UAV is executing a predefined mission along the perime- 

er of the square. Then, a spoofed signal with the same flight- 

ath information is launched, and samples for the same set of fea- 

ures are collected. After this attack is completed, another varia- 

ion of the dynamic attack (i.e., Dynamic 2) is also launched, where 

he spoofed flightpath conveys a midflight deviation, as shown in 

igure 1 (c). This deviation causes the UAV to change (i.e., correct) 

ts course during mission execution. The same setups for these at- 

acks are repeated for squares a 2,3,4 . For each square, the trans- 

itter (i.e., spoofer) gain is selected such that the signal power 

s at the threshold of spoofing the onboard GPS receiver as sum- 

arized in Table 1 . Also, the collection of feature samples is per- 

ormed over multiple days to diversify the data samples with dif- 

erent satellite constellations. It is paramount to point out that the 
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Figure 1. Experimental setup: (a) static attack. Triangles and stars represent the authentic and spoofed UAV positions, respectively, (b) dynamic attack 1 flightpaths, and (c) 

dynamic attack 2 flightpaths. Greyed area depicts the safe zone. 

Figure 2. Logged authentic flightpaths of a single flight for each of the four squares: ( a ) altitude above ground level, and ( b ) ground speed. The datasets in (Resources) are 

for multiple flights with altitudes above sea level. 
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poofed static location coordinates are fed as longitude, latitude, 

nd altitude; whereas the spoofed dynamic coordinates are fed as 

ser motion files obtained with SatGen 3 software tool that al- 

ows for generating National Marine Educators Association file with 

ustom-velocity moving coordinates. It also enables timing the at- 

ack, which allows for choosing the exact date and time for attack 

nitiation. Figure 2 shows the logged altitudes and ground speeds 

f the four squares during authentic flightpaths, which indicate 

mall discrepancies compared to the predefined counterparts due 

o GPS measurement tolerances. Moreover, deceleration in ground 

peed in the case of square a 4 occurs at the corners to allow 

hanging the yaw angle. Recorded videos demonstrating an exam- 

le of each attack type (i.e., Static, Dynamic 1, Dynamic 2) are pro- 

ided in (Resources). The extracted signal features from the drone’s 

nboard GPS module during the experimental setup are given in 

able 2 . A total of 19166, 6923, 7503, and 3914 samples are ex- 

racted for Authentic, Static, Dynamic 1, and Dynamic 2 setups, re- 

pectively (i.e., 37,506 overall samples). Table 3 shows the result- 

ng distribution of these samples for the four squares, which sug- 

ests a high degree of balance, leading to avoiding under- or over- 

ampling. These collected samples can be found at (Resources). 

. Classifiers Development 

After the successful extraction of GPS features and collection of 

ata samples necessary for the detection and classification of the 

ttacks, it is empirical that the resulting datasets be preprocessed 

rior to training and evaluating the classifiers. The preprocessing 
3 
f the collected data is presented in Section 3.1 , whereas the ML 

raining and performance evaluation of the resulting classifiers are 

etailed in Sections 3.2 and 3.3 , respectively. 

.1. Preprocessing of Collected Datasets 

The processing of collected data is performed by elimi- 

ating the features with redundant values. These features are 

x_type (value = 3), jamming_state (value = 0), vel_ned_valid 

value = True), timestamp_time_relative (value = 0), heading 

value = NaN), heading_offset (value = 0), and selected (value = 0). 

n addition, timestamp is eliminated since it stores the startup time 

f the system, and therefore is not specific to or affected by the 

ttack. Then, the correlations between the remaining 19 features 

re calculated with the Spearman correlation algorithm, which as- 

umes nonlinearity among features, and are presented in Figure 3 

 Hauke and Kossowski, 2011 ). A correlation of | c | > 0.8 is used for

onsidering a pair as highly correlated, leading to identifying ( alt, 

lt_ellipsoid ), ( eph, epv ), and ( vel, c_variance ) as correlated pairs. 

nce these pairs are specified, elimination based on feature im- 

ortance is carried out. To this end, the relative importance of all 

eatures is computed according to their mean decrease in impu- 

ity as depicted in Figure 4 . As a result, alt_ellipsoid and eph are

iscarded, leading to a dataset of 17 features. However, the vel fea- 

ure is not eliminated from the feature set due to its contribution 

n improving the classification accuracy (i.e., misdetection rate) of 

he static and dynamic spoofing attacks. Finally, a standard scaling 

f the samples is carried out such that x ij ́ = ( x ij – μj )/ σ j , where
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Table 2 

Summary of the extracted features from the GPS module. 

Extracted Feature Short Description Unit 

timestamp Time since system starts μ-seconds 

lat Latitude in 1E–7 Degrees 

lon Longitude in 1E–7 Degrees 

alt Altitude in 1E–3 above sea level Millimeters 

alt_ellipsoid Altitude in 1E–3 above ellipsoid Millimeters 

s_variance_m_s GPS speed accuracy estimate m/s 

c_variance_rad GPS course accuracy estimate Radians 

fix_type The type of the GNSS fix 

0-1: no fix 

2: 2D fix –

3: 3D fix –

4: Radio Technical Commission for Maritime Services code differential –

5: Real-time kinematic, float –

6: Real-time kinematic, fixed –

8: Extrapolated –

eph GPS horizontal position accuracy Meters 

epv GPS vertical position accuracy Meters 

hdop Horizontal dilution of precision –

vdop Vertical dilution of precision –

noise_per_ms GPS noise per millisecond dB 

jamming_indicator Indication of jamming occurrence –

jamming_state Indication of jamming detection by receiver 

0: Unknown –

1: OK –

2: Warning –

3: Critical –

vel_m_s GPS ground speed m/s 

vel_n_m_s GPS North velocity m/s 

vel_e_m_s GPS East velocity m/s 

vel_d_m_s GPS Down velocity m/s 

cog_rad Course over ground (movement direction, not heading) Radians 

vel_ned_valid True if north-east-down (NED) coordinates velocity is valid –

timestamp_time_relative Timestamp + timestamp_time_relative μ-seconds 

Time of the UTC timestamp since system start 

time_utc_usec UTC timestamp μ-seconds 

satellites_used Number of satellites used –

heading Heading angle of XYZ body frame relative to NED Radians 

NaN: Not available 

Updated: Used for dual antenna GPS 

heading_offset Heading offset of dual antenna array in body frame Radian 

NaN : Not applicable 

Value: [–π , π ] 

selected GPS device selection (if multiple receivers connected) 

0: GPS1 –

1: GPS2 –

2: GPS3 –

3: Blending multiple receivers –

Table 3 

Distribution of the collected data samples. 

Clean Samples Attack Samples 

Static 

20m 1703 1716 

35m 1793 1771 

50m 1744 1720 

70m 1685 1716 

Dynamic 1 

20m 1826 1835 

35m 2120 1955 

50m 1980 1890 

70m 2000 1823 

Dynamic 2 

20m 994 898 

35m 1046 915 

50m 1069 905 

70m 1206 1196 

Total Samples 19166 18340 
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 ij ́ is the scaled i th sample of the j th feature, and μj and σ j are 

he mean and standard deviation of the sample values within the 

 
th feature, respectively. 
4 
.2. ML Training Process 

Once data processing is completed, two datasets are created 

rom the collected samples. The first dataset is referred to as 

Dataset 1: location-dependent” and conveys all 17 features for ML 

raining and testing; whereas the second dataset is referred to as 

Dataset 2: location-independent”, which excludes lat, lon , and alt 

i.e., 14 features for ML training and testing). The overarching goal 

or each of these two datasets is to evaluate the performance dif- 

erence that location-specific features impose. This differentiation 

lso facilitates ML modeling for fixed-route applications (e.g., pub- 

ic transportations). Several three-class ML classifiers are trained, 

ested, and evaluated. These three classes are Clean, Static, and 

ynamic, which denote no attack, the presence of a static attack, 

nd the presence of a dynamic attack, respectively. The developed 

lassifiers are random forest (RF), K-nearest neighbor (KNN), multi- 

ayer perceptron (MLP), logistic regression (LR), decision tree (DT), 

upport vector machine (SVM), and naïve Bayes (NB). 

Each of these classifiers represents a particular category 

n ML modeling, which are ensemble-based, instance-based, 

egularization-based, tree-based, neural network-based, and 
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Figure 3. Resulting Spearman correlation of features according to the training and validation datasets in (Resources). 

Figure 4. Relative importance of features according to the training and validation 

datasets in (Resources). 
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ayesian-based modeling. The hyperparameters of all classifiers 

re optimized using randomized search algorithm, which facilitates 

he optimum configuration for each classifier model for a given 

ataset. Candidate hyperparameters are fed to the algorithm in 

orm of user-defined range, and the resulting optimized hyper- 

arameters are provided in Table 4 . The classifiers are trained, 

alidated, and tested with Datasets 1 and 2 considering their 

orresponding optimum hyperparameters. 

.3. Performance Evaluation of the Developed Classifiers 

The following metrics are used for evaluating the performance 

f the adopted classifiers: 

etectionRate(DR) = 

T P + T N 

T P + T N + F P + F N 

(1) 

recision = 

T P 

T P + F P 
(2) 
5 
ecall = 

T P 

T P + F N 

(3) 

1 − score(FS) = 

2 × Precision × Recall 

Precision + Recall 
(4) 

alseAlarmRate(FAR) = 

F P 

F P + T N 

(5) 

isdetectionRate(MDR) = 

F N 

T P + F N 

(6) 

In (1)-(6), TP, TN, FP , and FN represent the positive samples pre- 

icted as positive (i.e., true positive), negative samples predicted as 

egative (i.e., true negative), negative samples predicted as positive 

i.e., false positive), and positive samples predicted as negative (i.e., 

alse negative), respectively. The detection rate (DR) calculates the 

ercentage of the correctly predicted samples in the dataset. The 

recision measures the classifier performance in classing negative 

amples as negatives and positive samples as positives. The recall 

easures the ability of the classifier to correctly predict all pos- 

tive samples. The F1-score (FS) calculates the harmonic mean of 

he precision and recall. The false alarm rate (FAR) measures the 

robability of false detection. Finally, the misdetection rate (MDR) 

easures the probability of not detecting an attack. 

Figure 5 summarizes the approach for detecting and classify- 

ng the underlined spoofing attacks, which entails preparing and 

aunching the attacks, extracting GPS features, collecting and pro- 

essing samples, and developing multiclass classifiers. Table 5 il- 

ustrates the resulting classifiers evaluation scores. Training, vali- 

ation, and testing are performed on a 64-bit Windows 10 ma- 

hine with AMD Ryzen 7 3700X CPU @ 3.6 GHz and 32 GB of 

DR4-3600 MHz memory. The reported scores are averaged over 

en independent runs, each of which the samples in the datasets 

re shuffled and split into 70% in training and 30% in validation 

i.e., 10-fold cross validation). Testing is carried out by introduc- 

ng the classifiers to subsets that are not used during the training 

nd validation stages. To this end, the datasets from squares a 1,3,4 
re exploited for training and validating the classifiers; whereas 
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Table 4 

Optimized hyperparameters for each of the three-class ML classifiers. 

Category Classifier Dataset 1: Location-dependent Dataset 2: Location-independent 

Ensemble RF Quality of split criterion: Entropy Quality of split criterion: Entropy 

Maximum tree depth: 394 Maximum tree depth: 394 

Minimum number of samples at a leaf node: 39 Minimum number of samples at a leaf node: 39 

Minimum number of samples to split a node: 489 Minimum number of samples to split a node: 489 

Number of trees: 757 Number of trees: 757 

Cost-Complexity pruning parameter: 0.00114063 Cost-Complexity pruning parameter: 0.00114063 

Instance KNN Leaf size: 728 Leaf size: 728 

Number of neighbors: 538 Number of neighbors: 755 

Weight function: Distance Weight function: Distance 

Nearest neighbor computation algorithm: Ball Tree Nearest neighbor computation algorithm: K-D Tree 

Distance metric: Manhattan Distance metric: Manhattan 

Power parameter for the distance metric: 6 Power parameter for the distance metric: 6 

SVM Norm used in penalty: L1 Norm used in penalty: L2 

Loss function: Squared Hinge Loss function: Squared Hinge 

Dual optimization algorithm: False Dual optimization algorithm: False 

Maximum number of iterations: 777 Maximum number of iterations: 1159 

Regularization parameter: 3.50658 Regularization parameter: 6.29736 

Regularization LR Optimization algorithm: Stochastic avg. gradient descent Optimization algorithm: Newton’s method 

Norm used in penalty: L2 Norm used in penalty: None 

Regularization parameter: 7.210172 Regularization parameter: 4.4248 

Maximum number of iterations: 459 Maximum number of iterations: 904 

Tree DT Quality of split criterion: entropy Quality of split criterion: entropy 

Maximum tree depth: 394 Maximum tree depth: 394 

Minimum number of samples at a leaf node: 39 Minimum number of samples at a leaf node: 39 

Minimum number of samples to split a node: 489 Minimum number of samples to split a node: 489 

Node split strategy: Best Node split strategy: Best 

Cost-Complexity pruning parameter: 0.00140636 Cost-Complexity pruning parameter: 0.3489472 

Neural network MLP Optimization algorithm: Limited-memory 

Broyden–Fletcher–Goldfarb–Shanno 

Optimization algorithm: Limited-memory 

Broyden–Fletcher–Goldfarb–Shanno 

Hidden layers and neurons: two with 221 & 170 neurons each Hidden layers and neurons: one with 602 neurons 

Activation function: Logistic Activation function: Logistic 

Maximum number of iterations: 954 Maximum number of iterations: 596 

L2 regularization term strength: 0.001761192 L2 regularization term strength: 0.533722 

Early stopping: True Early stopping: True 

Bayesian Gaussian NB Smoothing parameter for calculation stability: 0.433139 Smoothing parameter for calculation stability: 

1.724043e-6 

Figure 5. Flowgraph summarizing the development of the classifiers for GPS spoofing attack detection and classification. 

Table 5 

Metrics for the three-class GPS spoofing detection and classification models (TT: training time, PT: prediction time). 

Location-dependent Location-independent 

Model DR (%) Precision (%) FS FAR (%) MDR (%) TT (ms) PT (ms) DR (%) Precision (%) FS FAR (%) MDR (%) TT (ms) PT (ms) 

RF 90.89 90.04 0.90 4.29 15.90 7445.01 154.77 89.47 90.23 0.89 4.96 17.99 5659.51 159.38 

KNN 87.99 90.53 0.86 5.96 21.42 4.95 3752.68 84.68 88.27 0.81 7.39 27.35 3.31 3568.57 

MLP 89.64 90.24 0.89 4.83 17.54 6413.49 32.72 88.77 90.73 0.87 5.32 19.85 31207.65 44.07 

LR 90.53 91.13 0.90 4.42 16.09 1768.15 0.26 96.67 96.77 0.97 1.59 4.26 653.57 0.22 

DT 92.36 93.95 0.92 3.70 12.94 35.94 0.23 95.32 94.38 0.95 2.18 6.73 26.34 0.21 

SVM 89.84 90.66 0.89 4.84 17.37 925.33 0.29 88.44 89.25 0.88 5.40 17.97 50.99 0.26 

NB 91.17 91.10 0.91 4.12 14.01 2.70 0.82 51.66 26.69 0.35 33.3 66.67 2.41 0.66 

6 
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Figure 6. Degree of linear correlation between the location-dependent features and 

the class. 
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hose from square a 2 are utilized for testing. Results show that the 

ptimum classifier in classifying the location-dependent dataset is 

T with a DR of 92.36%, FAR of 3.70%, and MDR of 12.94%. On 

he other hand, the optimum classifier in classifying the location- 

ndependent dataset is LR with a DR, FAR, and MDR of 96.67%, 

.59%, and 4.26%, respectively. 

Table 5 also shows that the performance of the LR classifier 

s improved significantly in classifying the location-independent 

ataset in comparison to classifying the location-dependent 

ataset. This improvement is mainly due to eliminating the lat 

nd lon features, which are not linearly correlated with the class 

i.e., Clean, Static, Dynamic), as depicted in Figure 6 . This finding is 

btained after examining linear correlation between the location- 

pecific features and the class with Pearson algorithm. In addition, 

able 5 shows the average training time and prediction time for 

ach classifier. It is noticed that DT and LR algorithms have the 

ptimum prediction time of 0.23 ms and 0.22 ms, respectively. On 

he other hand, NB has the lowest training time of 2.70 ms con- 

idering the location-dependent dataset. This training time reduces 

o 2.41 ms in the case of eliminating the location-specific features 

rom the dataset at the expense of model accuracy. The afore- 

entioned prediction times account for all samples in the test- 

ng dataset (i.e., 9600 samples), leading to a 0.024 μs prediction 

ime per sample. Hence, this prediction rate enables real-time de- 

ection and classification. Finally, although the features/samples are 
Figure 7. Confusion matrices of the optimum classifiers: (a) DT for lo

7 
educed in the location-independent dataset, MLP algorithm expe- 

iences an increase in training time due to using a different set 

f hyperparameters as compared to those used for the location- 

ependent scenario. 

Figure 7 presents the confusion matrices of the optimum classi- 

ers for the location-dependent and location-independent datasets. 

hese matrices allow for evaluating the classifiers by illustrating 

he number of TP, TN, FP , and FN samples. For example, the DT 

onfusion matrix shown in Fig. 7 (a) indicates that 2,607 dynamic 

ttack samples are correctly classified; while only 21 are misclas- 

ified as Clean and 242 are misclassified as Static attack (i.e., to- 

al number of samples in the testing dataset labeled as Dynamic 

s 2,870). Accordingly, both classifiers exhibit low misclassifica- 

ion between classes. The subroutines used for training, validating, 

nd testing the classifier models and computing the correspond- 

ng evaluation metrics with the presence of the vel feature (i.e., 

able 5 ) and without the presence of this feature can be found in 

Resources). 

. Conclusion 

In this work, a ML-based approach for real-time detection and 

lassification of GPS spoofing attacks is presented. This approach 

ntails developing different classifiers utilizing realistic datasets 

btained from rigorous testing setups of authentic and spoofed 

ight scenarios. Such classifiers are evaluated with multiple met- 

ics for two dataset types (i.e., with and without location in- 

ormation). DRs of 92.63% and 96.67% are achieved considering 

he location-dependent and location-independent datasets, respec- 

ively. These DRs are assumed to satisfy a multitude of applications 

ince the flight controller used in this research registers five sam- 

le sets per second. Therefore, with these DRs, at least four of the 

ve registered sets will be correctly detected and classified. This 

erformance is intertwined with low MDR, FAR, and prediction 

ime, enabling real-time detection and classification. The proposed 

pproach does not require hardware modifications as it classifies 

poofing attacks based on the measurements of the commercial 

PS receivers irrespective of the UAV architecture, and the clas- 

ifier routines can be hosted inside the onboard microprocessor, 

here detection and classification occurs. However, the proposed 

pproach potentially introduces minimal software modifications to 

llow for forwarding GPS feature-related samples, which are typi- 

ally stored in the flight controller, to the microprocessor in real- 

ime. Future work includes exploring mitigation techniques as well 
cation-dependent and (b) LR for location-independent datasets. 
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s investigating the detection and classification of more sophisti- 

ated GPS spoofing attacks. 
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