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In this paper, machine learning (ML) modeling is proposed for the detection and classification of global
positioning system (GPS) spoofing in unmanned aerial vehicles (UAVs). Three testing scenarios are imple-
mented in an outdoor yet controlled setup to investigate static and dynamic attacks. In these scenarios,
authentic sets of GPS signal features are collected, followed by other sets obtained while the UAV is under
spoofing attacks launched with a software-defined radio (SDR) transceiver module. All sets are standard-
ized, analyzed for correlation, and reduced according to feature importance prior to their exploitation in
training, validating, and testing different multiclass ML classifiers. The resulting performance evaluation
of these classifiers shows a detection rate (DR), misdetection rate (MDR), and false alarm rate (FAR) better
than 92%, 13%, and 4%, respectively, together with a sub-millisecond detection time. Hence, the proposed
modeling facilitates accurate real-time GPS spoofing detection and classification for UAV applications.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

The use of unmanned aerial vehicles (UAVs) has increased
in the past few years in many applications, such as remote
sensing, agriculture, search and rescue missions, 3D mapping,
costal engineering, and disaster management (Shakhatreh et al.,
2019, Naidoo et al.,, 2011, Nex and Remondino, 2014, Radoglou-
Grammatikis et al., 2020, Drummond et al., 2015, Erdelj and Na-
talizio, 2016). To this end, the UAV market has grown significantly
and is expected to reach USD 100B by 2030 (Unmanned Aerial
Vehicle (UAV) Drones Market Size 2022-2030). This growth is at-
tributed to the rapid development in emerging navigation and
control technologies that enable swarm networking and colli-
sion avoidance protocols (Shakhatreh et al., 2019). However, UAV-
specific solutions for cybersecurity vulnerabilities are not ade-
quately addressed. These vulnerabilities potentially lead to dam-
aging private properties and infrastructure, not to mention threat-
ening public safety as recently reported in many incidents world-
wide (Electromagnetic Interference Behind Darling Harbour Drone
Crash, SkyJack Software Finds and Hijacks Drones, HK$1 million in
damage caused by GPS jamming that caused 46 drones to plum-
met during Hong Kong show, Drone Crash Due To GPS Interference,
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Drones crash during light display at lantern festival). Therefore, it is
paramount to develop detection and mitigation methodologies for
the different types of cyberattacks against UAVs. Machine learning
(ML) modeling for real-time detection and classification of global
positioning system (GPS) spoofing is of a special interest to this
work. GPS spoofing mitigation, on the other hand, is addressed
with other techniques including inter-vehicle ranging and data
sharing, inconsistency evaluations of GPS statistical properties, spa-
tial processing of the GPS angle of arrival, signal strength and noise
floor computations, null steering and beam forming, adaptive fil-
tering, and time correlation estimation of the received GPS signals
(Carson et al., 2016, Haider and Khalid, 2016, Jahromi et al., 2012,
Ahmad et al., 2019, Sathaye and Ranganathan, 2020, Lee et al,,
2020).

GPS spoofing attack affects the location awareness of a UAV by
broadcasting a fake GPS signal that outpowers authentic transmis-
sions to enforce a different position that serves the adversary inter-
est (da Silva, 2017). Various detection solutions to this attack were
proposed, such as evaluating the autocorrelation of the received
signals or calculating position tolerances via the GPS and inertial
measurement unit (IMU) modules (Khan et al., 2020, Wang et al.,
2020). However, these methods introduce a high computational
complexity and require high-precision sensors. Other solutions uti-
lized antenna arrays for enabling a multi-stage spatial process-
ing of the received signal to calculate the correlation in posi-
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tion error (Broumandan and Curran, 2017, Rothmaier et al., 2021,
Jansen et al., 2016). Nevertheless, these solutions introduce addi-
tional hardware components and may not be suitable for UAV ap-
plications. A vision-based solution that exploits a camera and the
IMU module to measure the UAV velocity and compare it to that
obtained by the GPS receiver was proposed in (Qiao et al., 2017).
Although this solution has demonstrated an excellent performance
in detecting spoofing, it imposes greater challenges to the onboard
processor due to the sophisticated processing of images. Spoofing
detection via analyzing the civilian and encrypted GPS signals were
explored in (O’'Hanlon et al., 2013). However, this approach requires
information from another reference GPS receiver outside the attack
range, which can be impractical, particularly in the scenario where
the location of the attacker is unknown. The use of the automatic
gain control (AGC) unit in the GPS receiver as a solution for de-
tecting spoofing attacks was studied in (Akos, 2012). This solution,
however, is affected by the noise level at the GPS frequency band,
the environmental conditions, and the quality of the AGC unit.

The aforementioned literature survey suggests the need for de-
veloping real-time UAV-specific GPS spoofing detection and classi-
fication techniques with reasonable computational resources and
minimal to no modifications to the already-existing hardware.
These techniques must consider testing setups that pair both sim-
ulations and measurements to represent realistic attack scenarios.
Therefore. this work explores, and ultimately validates, a solution
for GPS spoofing detection and classification utilizing ML. The so-
lution presented herein differs from other reported solutions in the
following facets:

I Unlike (Carson et al., 2016, Sathaye and Ranganathan, 2020,
Broumandan and Curran, 2017, Jansen et al., 2016, Zhang et al.,
2012, Wang et al., 2018), the proposed approach neither re-
quires new sensors nor modifications to the existing hardware
(e.g., receiver circuitry). Rather, it can be integrated with stan-
dard receivers and ubiquitous modules.
The datasets used for training and validating the ML classi-
fiers are collected from testing setups that characterize authen-
tic and spoofed autonomous flights. In such setups, the flights
are created with a commercial flight controller and software in-
terface, and attacks are launched with a software-defined ra-
dio (SDR) module. On the contrary, other reported approaches
based their solutions on either simulated attacks or by launch-
ing attacks in a confined lab environment that fails in capturing
authentic GPS signals (Wang et al., 2020, Jansen et al., 2016,
O’Hanlon et al., 2013, Zhang et al.,, 2012, Wang et al., 2018,
Xue et al., 2020, Jiang et al., 2021, Dang et al., 2022).
ML techniques for spoofing detection were discussed in
(Xue et al, 2020, Jiang et al, 2021, Dang et al., 2022). How-
ever, these techniques are computationally expensive because
of utilizing deep learning or image-based classification, leading
to increased training and detection time. On the other hand, the
classifiers developed in this work are trained and tested con-
sidering minimal use of computational resources for enabling
real-time spoofing detection.

IV All collected datasets and trained classifiers are made accessible
to the research community. The datasets convey features that
are extracted from a commercial GPS module. As a result, these
datasets and classifiers can be utilized in promoting the cyber-
security in other research fields, such as transportation services,
autonomous vehicles, and robotics.
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The remaining of this paper is organized as follows:
Section 2 discusses the underlined experimental setup, which
elaborates on the spoofing attacks and the collection of signal
features. Section 3 discusses the classifiers development, which
entails the processing of the collected datasets, details the ML
training process, and provides a performance evaluation for the
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Table 1

Properties of each square in the experimental setup.
Side length a; (m) a; =20 a, =35 as = 50 a; =70
Altitude h (m) 10 5 3 5
Ground speed v (m/sec) 1.00 1.50 2.20 5.00
Spoofer antenna gain (dB) 72 76 80 85

different detection and classification models. Finally, Section 4 con-
cludes this study and provides insight into future work.

2. Experimental Setup

The experimental setup for collecting signal features is illus-
trated in Figure 1. This setup consists of four square-like flight-
paths, each with a square side length of aj= 20 m, a, = 35 m,
as = 50 m, and a4 = 70 m. All squares are centered at the ad-
versary (i.e., spoofer) and are assigned with different UAV flight
altitudes and velocities, as detailed in Table 1. The attacks are
launched at an open-source UAV from COEX, which is equipped
with a u-blox M8 GPS receiver and a PX4 flight controller that
enables the logging of several GPS features during flight. Mission
plans are created with QGroundControl software tool, which al-
lows for monitoring and controlling the UAV. Attack files are cre-
ated with gps-sdr-sim, which uses the satellite ephemeris data and
the coordinates of the fake location to generate a file with the bit
stream of the attack. It is noteworthy to point out that ephemeris
data is available at (Daily GPS Broadcast Ephemeris Files). Finally,
the attacks are launched via a universal software radio periph-
eral B-210 SDR from National Instruments, which is interfaced with
GNURadio installed on Linux virtual machine. A safe zone is desig-
nated for the testing area to avoid disturbing other surrounding
electronics. This is achieved by adjusting the SDR (i.e., spoofer)
transmitter gain while observing the GPS reception with a hand-
held GPS receiver.

Two spoofing attack types are investigated in this work: static
and dynamic. In the static attack featured in Figure 1(a), the ad-
versary transmits a fake GPS signal with a single location that
differs from the correct one. This attack spoofs the UAV by en-
forcing a lock to a fixed position even though the UAV is in mo-
tion. On the other hand, the dynamic attack is created by launch-
ing spoofed GPS transmissions with moving location coordinates.
This attack enforces the UAV to travel a flightpath designed by the
adversary. These attack types are considered for the square with
a; = 20 m. The configuration of the static attack entails collect-
ing authentic and spoofed GPS feature samples. The authentic sam-
ples are collected while the UAV is hovering at the center of each
square side. Then, attacks are launched to create a fake location
at each of the four square corners, followed by collecting samples
for the same set of features. The configuration of the dynamic at-
tack (i.e., Dynamic 1) illustrated in Figure 1(b) involves placing the
UAV at one of the square corners. Authentic features are collected
while the UAV is executing a predefined mission along the perime-
ter of the square. Then, a spoofed signal with the same flight-
path information is launched, and samples for the same set of fea-
tures are collected. After this attack is completed, another varia-
tion of the dynamic attack (i.e., Dynamic 2) is also launched, where
the spoofed flightpath conveys a midflight deviation, as shown in
Figure 1(c). This deviation causes the UAV to change (i.e., correct)
its course during mission execution. The same setups for these at-
tacks are repeated for squares a,s;4. For each square, the trans-
mitter (i.e., spoofer) gain is selected such that the signal power
is at the threshold of spoofing the onboard GPS receiver as sum-
marized in Table 1. Also, the collection of feature samples is per-
formed over multiple days to diversify the data samples with dif-
ferent satellite constellations. It is paramount to point out that the
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Figure 1. Experimental setup: (a) static attack. Triangles and stars represent the authentic and spoofed UAV positions, respectively, (b) dynamic attack 1 flightpaths, and (c)

dynamic attack 2 flightpaths. Greyed area depicts the safe zone.
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Figure 2. Logged authentic flightpaths of a single flight for each of the four squares: (a) altitude above ground level, and (b) ground speed. The datasets in (Resources) are

for multiple flights with altitudes above sea level.

spoofed static location coordinates are fed as longitude, latitude,
and altitude; whereas the spoofed dynamic coordinates are fed as
user motion files obtained with SatGen 3 software tool that al-
lows for generating National Marine Educators Association file with
custom-velocity moving coordinates. It also enables timing the at-
tack, which allows for choosing the exact date and time for attack
initiation. Figure 2 shows the logged altitudes and ground speeds
of the four squares during authentic flightpaths, which indicate
small discrepancies compared to the predefined counterparts due
to GPS measurement tolerances. Moreover, deceleration in ground
speed in the case of square a4 occurs at the corners to allow
changing the yaw angle. Recorded videos demonstrating an exam-
ple of each attack type (i.e., Static, Dynamic 1, Dynamic 2) are pro-
vided in (Resources). The extracted signal features from the drone’s
onboard GPS module during the experimental setup are given in
Table 2. A total of 19166, 6923, 7503, and 3914 samples are ex-
tracted for Authentic, Static, Dynamic 1, and Dynamic 2 setups, re-
spectively (i.e., 37,506 overall samples). Table 3 shows the result-
ing distribution of these samples for the four squares, which sug-
gests a high degree of balance, leading to avoiding under- or over-
sampling. These collected samples can be found at (Resources).

3. Classifiers Development

After the successful extraction of GPS features and collection of
data samples necessary for the detection and classification of the
attacks, it is empirical that the resulting datasets be preprocessed
prior to training and evaluating the classifiers. The preprocessing

of the collected data is presented in Section 3.1, whereas the ML
training and performance evaluation of the resulting classifiers are
detailed in Sections 3.2 and 3.3, respectively.

3.1. Preprocessing of Collected Datasets

The processing of collected data is performed by elimi-
nating the features with redundant values. These features are
fix_type (value = 3), jamming_state (value = 0), vel_ned_valid
(value = True), timestamp_time_relative (value = 0), heading
(value = NaN), heading_offset (value = 0), and selected (value = 0).
In addition, timestamp is eliminated since it stores the startup time
of the system, and therefore is not specific to or affected by the
attack. Then, the correlations between the remaining 19 features
are calculated with the Spearman correlation algorithm, which as-
sumes nonlinearity among features, and are presented in Figure 3
(Hauke and Kossowski, 2011). A correlation of |c| > 0.8 is used for
considering a pair as highly correlated, leading to identifying (alt,
alt_ellipsoid), (eph, epv), and (vel, c_variance) as correlated pairs.
Once these pairs are specified, elimination based on feature im-
portance is carried out. To this end, the relative importance of all
features is computed according to their mean decrease in impu-
rity as depicted in Figure 4. As a result, alt_ellipsoid and eph are
discarded, leading to a dataset of 17 features. However, the vel fea-
ture is not eliminated from the feature set due to its contribution
in improving the classification accuracy (i.e., misdetection rate) of
the static and dynamic spoofing attacks. Finally, a standard scaling
of the samples is carried out such that x;" = (x; - u;)/o;, where
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Table 2
Summary of the extracted features from the GPS module.
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Extracted Feature Short Description Unit
timestamp Time since system starts p-seconds
lat Latitude in 1E-7 Degrees
lon Longitude in 1E-7 Degrees
alt Altitude in 1E-3 above sea level Millimeters
alt_ellipsoid Altitude in 1E-3 above ellipsoid Millimeters
s_variance_m_s GPS speed accuracy estimate m/s
c_variance_rad GPS course accuracy estimate Radians
fix_type The type of the GNSS fix

0-1: no fix

2: 2D fix -

3: 3D fix -

4: Radio Technical Commission for Maritime Services code differential -

5: Real-time kinematic, float -

6: Real-time kinematic, fixed -

8: Extrapolated -
eph GPS horizontal position accuracy Meters
epv GPS vertical position accuracy Meters
hdop Horizontal dilution of precision -
vdop Vertical dilution of precision -
noise_per_ms GPS noise per millisecond dB
jamming_indicator Indication of jamming occurrence -
jamming_state Indication of jamming detection by receiver

0: Unknown -

1: OK -

2: Warning -

3: Critical -
vel_m_s GPS ground speed m/s
vel_n_m_s GPS North velocity m/s
vel_e_m_s GPS East velocity m/s
vel_d_m_s GPS Down velocity m/s
cog_rad Course over ground (movement direction, not heading) Radians
vel_ned_valid True if north-east-down (NED) coordinates velocity is valid -
timestamp_time_relative Timestamp + timestamp_time_relative p-seconds

Time of the UTC timestamp since system start
time_utc_usec UTC timestamp p-seconds
satellites_used Number of satellites used -
heading Heading angle of XYZ body frame relative to NED Radians

NaN: Not available

Updated: Used for dual antenna GPS
heading_offset Heading offset of dual antenna array in body frame Radian

NaN : Not applicable
Value: [-7, 7]

selected GPS device selection (if multiple receivers connected)
0: GPS1 -
1: GPS2 -
2: GPS3 -
3: Blending multiple receivers -
Table 3

Distribution of the collected data samples.

Clean Samples  Attack Samples

Static

20m 1703 1716
35m 1793 1771
50m 1744 1720
70m 1685 1716
Dynamic 1

20m 1826 1835
35m 2120 1955
50m 1980 1890
70m 2000 1823
Dynamic 2

20m 994 898
35m 1046 915
50m 1069 905
70m 1206 1196

Total Samples 19166 18340

x;;" is the scaled ith sample of the jth feature, and uj and o; are
the mean and standard deviation of the sample values within the
jth feature, respectively.

3.2. ML Training Process

Once data processing is completed, two datasets are created
from the collected samples. The first dataset is referred to as
“Dataset 1: location-dependent” and conveys all 17 features for ML
training and testing; whereas the second dataset is referred to as
“Dataset 2: location-independent”, which excludes lat, lon, and alt
(i.e., 14 features for ML training and testing). The overarching goal
for each of these two datasets is to evaluate the performance dif-
ference that location-specific features impose. This differentiation
also facilitates ML modeling for fixed-route applications (e.g., pub-
lic transportations). Several three-class ML classifiers are trained,
tested, and evaluated. These three classes are Clean, Static, and
Dynamic, which denote no attack, the presence of a static attack,
and the presence of a dynamic attack, respectively. The developed
classifiers are random forest (RF), K-nearest neighbor (KNN), multi-
layer perceptron (MLP), logistic regression (LR), decision tree (DT),
support vector machine (SVM), and naive Bayes (NB).

Each of these classifiers represents a particular category
in ML modeling, which are ensemble-based, instance-based,
regularization-based, tree-based, neural network-based, and
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Bayesian-based modeling. The hyperparameters of all classifiers
are optimized using randomized search algorithm, which facilitates
the optimum configuration for each classifier model for a given
dataset. Candidate hyperparameters are fed to the algorithm in
form of user-defined range, and the resulting optimized hyper-
parameters are provided in Table 4. The classifiers are trained,
validated, and tested with Datasets 1 and 2 considering their
corresponding optimum hyperparameters.

3.3. Performance Evaluation of the Developed Classifiers

The following metrics are used for evaluating the performance
of the adopted classifiers:

TP+ TN

DetectionRate(DR) = TP+ TN+ FP L EN

(1)
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TP
Recall = m (3)

2 x Precision x Recall

F1 —score(FS) = Precision + Recall “)
FalseAlarmRate(FAR) = Fp (5)
“ FP+TN
MisdetectionRate(MDR) = —FN (6)
" TP+FN

In (1)-(6), TP, TN, FP, and FN represent the positive samples pre-
dicted as positive (i.e., true positive), negative samples predicted as
negative (i.e., true negative), negative samples predicted as positive
(i.e., false positive), and positive samples predicted as negative (i.e.,
false negative), respectively. The detection rate (DR) calculates the
percentage of the correctly predicted samples in the dataset. The
precision measures the classifier performance in classing negative
samples as negatives and positive samples as positives. The recall
measures the ability of the classifier to correctly predict all pos-
itive samples. The F1-score (FS) calculates the harmonic mean of
the precision and recall. The false alarm rate (FAR) measures the
probability of false detection. Finally, the misdetection rate (MDR)
measures the probability of not detecting an attack.

Figure 5 summarizes the approach for detecting and classify-
ing the underlined spoofing attacks, which entails preparing and
launching the attacks, extracting GPS features, collecting and pro-
cessing samples, and developing multiclass classifiers. Table 5 il-
lustrates the resulting classifiers evaluation scores. Training, vali-
dation, and testing are performed on a 64-bit Windows 10 ma-
chine with AMD Ryzen 7 3700X CPU @ 3.6 GHz and 32 GB of
DDR4-3600 MHz memory. The reported scores are averaged over
ten independent runs, each of which the samples in the datasets
are shuffled and split into 70% in training and 30% in validation
(i.e., 10-fold cross validation). Testing is carried out by introduc-
ing the classifiers to subsets that are not used during the training
and validation stages. To this end, the datasets from squares a;34
are exploited for training and validating the classifiers; whereas
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Table 4

Optimized hyperparameters for each of the three-class ML classifiers.
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Category Classifier Dataset 1: Location-dependent Dataset 2: Location-independent
Ensemble RF Quality of split criterion: Entropy Quality of split criterion: Entropy
Maximum tree depth: 394 Maximum tree depth: 394
Minimum number of samples at a leaf node: 39 Minimum number of samples at a leaf node: 39
Minimum number of samples to split a node: 489 Minimum number of samples to split a node: 489
Number of trees: 757 Number of trees: 757
Cost-Complexity pruning parameter: 0.00114063 Cost-Complexity pruning parameter: 0.00114063
Instance KNN Leaf size: 728 Leaf size: 728
Number of neighbors: 538 Number of neighbors: 755
Weight function: Distance Weight function: Distance
Nearest neighbor computation algorithm: Ball Tree Nearest neighbor computation algorithm: K-D Tree
Distance metric: Manhattan Distance metric: Manhattan
Power parameter for the distance metric: 6 Power parameter for the distance metric: 6
SVM Norm used in penalty: L1 Norm used in penalty: L2
Loss function: Squared Hinge Loss function: Squared Hinge
Dual optimization algorithm: False Dual optimization algorithm: False
Maximum number of iterations: 777 Maximum number of iterations: 1159
Regularization parameter: 3.50658 Regularization parameter: 6.29736
Regularization LR Optimization algorithm: Stochastic avg. gradient descent Optimization algorithm: Newton’s method
Norm used in penalty: L2 Norm used in penalty: None
Regularization parameter: 7.210172 Regularization parameter: 4.4248
Maximum number of iterations: 459 Maximum number of iterations: 904
Tree DT Quality of split criterion: entropy Quality of split criterion: entropy
Maximum tree depth: 394 Maximum tree depth: 394
Minimum number of samples at a leaf node: 39 Minimum number of samples at a leaf node: 39
Minimum number of samples to split a node: 489 Minimum number of samples to split a node: 489
Node split strategy: Best Node split strategy: Best
Cost-Complexity pruning parameter: 0.00140636 Cost-Complexity pruning parameter: 0.3489472
Neural network MLP Optimization algorithm: Limited-memory Optimization algorithm: Limited-memory

Broyden-Fletcher-Goldfarb-Shanno

Hidden layers and neurons: two with 221 & 170 neurons each

Activation function: Logistic

Maximum number of iterations: 954

L2 regularization term strength: 0.001761192
Early stopping: True

Broyden-Fletcher-Goldfarb-Shanno

Hidden layers and neurons: one with 602 neurons
Activation function: Logistic

Maximum number of iterations: 596

L2 regularization term strength: 0.533722

Early stopping: True

Bayesian Gaussian NB Smoothing parameter for calculation stability: 0.433139 Smoothing parameter for calculation stability:
1.724043e-6
Attack Launch
User-motion file generation with . . .
. tGg - Spoofed location generation with GNURadio interfaced with
atGen q
s-sdr-sim B-210 SDR
(for dynamic attacks) =
ML Classification \
Location-dependent/i_nd.epe_ndent datasets Correlation and Importance GPS feature extraction

S perparametersoptimeation  Spearman feature correlation evaluation © Authentic static & dynamic flight scenarios
 Training/validation (ay,34 collected samples) P o £ 5 2 S q
« Testing (a collected samples) o Mean decrease in impurity feature analysis ® Spoofed static & dynamic flight scenarios

Figure 5. Flowgraph summarizing the development of the classifiers for GPS spoofing attack detection and classification.

Table 5

Metrics for the three-class GPS spoofing detection and classification models (TT: training time, PT: prediction time).

Location-dependent

Location-independent

Model DR (%) Precision (%) FS FAR (%) MDR (%) TT (ms) PT(ms) DR (%) Precision (%) FS FAR (%) MDR (%) TT (ms) PT (ms)
RF 90.89 90.04 090 4.29 15.90 7445.01 154.77 89.47 90.23 089 4.96 17.99 5659.51 159.38
KNN 87.99 90.53 0.86 5.96 21.42 4.95 3752.68 84.68 88.27 0.81 7.39 27.35 3.31 3568.57
MLP 89.64 90.24 0.89 4383 17.54 6413.49 32.72 88.77 90.73 087 5.32 19.85 31207.65 44.07
LR 90.53 91.13 090 442 16.09 1768.15 0.26 96.67 96.77 097 1.59 4.26 653.57 0.22

DT 92.36 93.95 092 3.70 12.94 35.94 0.23 95.32 94.38 095 2.18 6.73 26.34 0.21
SVM 89.84 90.66 0.89 484 17.37 925.33 0.29 88.44 89.25 0.88 5.40 17.97 50.99 0.26

NB 91.17 91.10 091 4.12 14.01 2.70 0.82 51.66 26.69 035 333 66.67 241 0.66
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Figure 6. Degree of linear correlation between the location-dependent features and
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those from square a, are utilized for testing. Results show that the
optimum classifier in classifying the location-dependent dataset is
DT with a DR of 92.36%, FAR of 3.70%, and MDR of 12.94%. On
the other hand, the optimum classifier in classifying the location-
independent dataset is LR with a DR, FAR, and MDR of 96.67%,
1.59%, and 4.26%, respectively.

Table 5 also shows that the performance of the LR classifier
is improved significantly in classifying the location-independent
dataset in comparison to classifying the location-dependent
dataset. This improvement is mainly due to eliminating the lat
and lon features, which are not linearly correlated with the class
(i.e., Clean, Static, Dynamic), as depicted in Figure 6. This finding is
obtained after examining linear correlation between the location-
specific features and the class with Pearson algorithm. In addition,
Table 5 shows the average training time and prediction time for
each classifier. It is noticed that DT and LR algorithms have the
optimum prediction time of 0.23 ms and 0.22 ms, respectively. On
the other hand, NB has the lowest training time of 2.70 ms con-
sidering the location-dependent dataset. This training time reduces
to 2.41 ms in the case of eliminating the location-specific features
from the dataset at the expense of model accuracy. The afore-
mentioned prediction times account for all samples in the test-
ing dataset (i.e., 9600 samples), leading to a 0.024 ps prediction
time per sample. Hence, this prediction rate enables real-time de-
tection and classification. Finally, although the features/samples are

Predicted Label

Clean Static Dynamic
. . 1 5000
] 0 0
) 0.00% 0.00% 4000
E - 3000
Je 15 1,734 22
T 3 0.16% 18.06% 0.23%
g - 2000
6]
E 21 242 2,607 -1000
=3 0.22% 2.52% 27.15%
[a]
-0
(a)
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reduced in the location-independent dataset, MLP algorithm expe-
riences an increase in training time due to using a different set
of hyperparameters as compared to those used for the location-
dependent scenario.

Figure 7 presents the confusion matrices of the optimum classi-
fiers for the location-dependent and location-independent datasets.
These matrices allow for evaluating the classifiers by illustrating
the number of TP, TN, FP, and FN samples. For example, the DT
confusion matrix shown in Fig. 7(a) indicates that 2,607 dynamic
attack samples are correctly classified; while only 21 are misclas-
sified as Clean and 242 are misclassified as Static attack (i.e., to-
tal number of samples in the testing dataset labeled as Dynamic
is 2,870). Accordingly, both classifiers exhibit low misclassifica-
tion between classes. The subroutines used for training, validating,
and testing the classifier models and computing the correspond-
ing evaluation metrics with the presence of the vel feature (i.e.,
Table 5) and without the presence of this feature can be found in
(Resources).

4. Conclusion

In this work, a ML-based approach for real-time detection and
classification of GPS spoofing attacks is presented. This approach
entails developing different classifiers utilizing realistic datasets
obtained from rigorous testing setups of authentic and spoofed
flight scenarios. Such classifiers are evaluated with multiple met-
rics for two dataset types (i.e., with and without location in-
formation). DRs of 92.63% and 96.67% are achieved considering
the location-dependent and location-independent datasets, respec-
tively. These DRs are assumed to satisfy a multitude of applications
since the flight controller used in this research registers five sam-
ple sets per second. Therefore, with these DRs, at least four of the
five registered sets will be correctly detected and classified. This
performance is intertwined with low MDR, FAR, and prediction
time, enabling real-time detection and classification. The proposed
approach does not require hardware modifications as it classifies
spoofing attacks based on the measurements of the commercial
GPS receivers irrespective of the UAV architecture, and the clas-
sifier routines can be hosted inside the onboard microprocessor,
where detection and classification occurs. However, the proposed
approach potentially introduces minimal software modifications to
allow for forwarding GPS feature-related samples, which are typi-
cally stored in the flight controller, to the microprocessor in real-
time. Future work includes exploring mitigation techniques as well

Predicted Label

Clean Static Dynamic
' ' 5000
g 0 0
S 0.00% 0.00% 4000
5 - 3000
Sle 3 1,722 46
'_g ;,,'9 0.03% 17.94% 0.48%
3 - 2000
L
£ 44 199 2,627 - 1000
< 0.46% 2.07% 27.36%
=
-0
(b)

Figure 7. Confusion matrices of the optimum classifiers: (a) DT for location-dependent and (b) LR for location-independent datasets.
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as investigating the detection and classification of more sophisti-
cated GPS spoofing attacks.
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