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We expand studies of AlphaFold2 (AF2) in the context of intrinsic disorder prediction by comparing it
against a broad selection of 20 accurate, popular and recently released disorder predictors. We use 25%
larger benchmark dataset with 646 proteins and cover protein-level predictions of disorder content and
fully disordered proteins. AF2-based disorder predictions secure a relatively high Area Under receiver op-
erating characteristic Curve (AUC) of 0.77 and are statistically outperformed by several modern disorder
predictors that secure AUCs around 0.8 with median runtime of about 20 s compared to 1200 s for AF2.
Moreover, AF2 provides modestly accurate predictions of fully disordered proteins (F1 = 0.59 vs. 0.91 for the
best disorder predictor) and disorder content (mean absolute error of 0.21 vs. 0.15). AF2 also generates
statistically more accurate disorder predictions for about 20% of proteins that have relatively short se-
quences and a few disordered regions that tend to be located at the sequence termini, and which are absent
of disordered protein-binding regions. Interestingly, AF2 and the most accurate disorder predictors rely on
deep neural networks, suggesting that these models are useful for protein structure and disorder predic-
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1. Introduction

Intrinsically disordered proteins (IDPs) include one or more in-
trinsically disordered region(s) (IDR) that are absent of a well-de-
fined equilibrium structure under physiological conditions [1-3].
Bioinformatics studies suggest that IDPs are relatively common in
nature, with about a third of eukaryotic proteins that have long IDRs,
which are defined as regions with over 30 consecutive amino acids
[4-7]. IDPs contribute to many cellular functions, such as signaling,
transcription, translation, molecular assembly, molecular recogni-
tion, cell cycle regulation, formation of membraneless organelles,
and many others [8-15]. They are also found across several cellular
compartments [16,17]. The sequences and amino acids that form
IDRs have specific/intrinsic biases including depletion in aromatic
and bulky hydrophobic amino acids, enrichment in polar and
charged residues, and low compositional complexity [18-23]. These
biases make intrinsic disorder predictable from protein sequences.
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Consequently, many sequence-based computational predictors of
intrinsic disorder were developed over the last few decades, with the
first method that was published in 1979 [24]. Well over 100 disorder
predictors were developed so far [25-29]. The disorder prediction
community recently organized and published a large-scale com-
parative assessment of predictors, the Critical Assessment of protein
Intrinsic Disorder prediction (CAID) experiment [30]. It compara-
tively evaluated 43 methods concluding that some of the more re-
cently released tools produce relatively accurate results. In
particular, CAID and a subsequent empirical analysis found that deep
natural network-based methods produce the most accurate results
and outperform other types of predictive models [31].

Parallel to these efforts, significant work has been done to de-
velop and advance methods that predict protein structure from se-
quences. Arguably the key event that measures progress in the
structure prediction field is the biennial Critical Assessment of
techniques for protein Structure Prediction (CASP) experiment.
CASP14, which is the most current published edition, showed that
AlphaFold2 (AF2) provides a breakthrough by generating high
quality structure predictions [32,33]. This tool relies on a
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sophisticated deep network architecture that takes advantage of
multiple sequence alignments [34,35]. The impact of AF2 was fur-
ther amplified by the release of the database of AlphaFold2-pre-
dicted structures, AlphaFoldDB [36,37|. The most recent version of
this resource provides access to the structure predictions for over
214 million proteins, covering nearly the entire UniProt repository
[38]. Interestingly, there are several databases of the intrinsic dis-
order predictions that also include millions of proteins [39], such as
Database of Disorder Protein Predictions (D2P2) [40], MobiDB [41],
and DescribePROT [42].

A recent commentary uses a popular movie analogy to char-
acterize the AF2 predictions as “the good, the bad and the ugly”,
which correspond to the majority of accurate predictions, some poor
quality predictions, and the ugly predictions for the sequences of
IDRs, respectively [43]. While AF2 cannot reliably predict “struc-
tures” of IDRs since they are devoid of well-defined structures, an
interesting question is whether it can accurately identify where the
disordered regions are in an input protein sequence, which is the
objective of the disorder predictors. A few studies looked into this
question and two alternative approaches were devised to produce
scores that can be used to predict IDRs using outputs generated by
AF2. The first approach was proposed in the AF2 article and it relies
on predicted local distance difference test (pLDDT) values, the per-
amino acids confidence scores output directly by AF2 [35]. The
second way takes advantage of a previously made observation that
the disordered regions have substantially larger surface area com-
pared to the structured regions [44|. Consequently, a few subsequent
works use relative solvent accessibility (RSA) generated from the
AF2-predicted structure to identify IDRs [45-47].

We summarize three studies that quantify predictive quality of
the AF2-derived scores for the disorder prediction in Table 1. The
first study applied AF2 to predict disorder and for several other tasks
including prediction of ligand binding sites and structures of protein
complexes [45]. The authors showed that the AF2-based disorder
predictions are better than the results from a popular disorder
predictor, IUPred2, but they did not include other more accurate
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several popular/highly-cited approaches, and a selection of recent
methods that were published after CAID ended. We consider both
the RSA-based and the pLDDT-based disorder predictions for AF2
while one of the past studies did not utilize the RSA-based ap-
proach [46] that was shown to outperform the pLDDT-based dis-
order predictions [47]. Moreover, we extend scope of the three
published articles that focused on the residue-level disorder pre-
dictions by additionally covering protein-level predictions of dis-
order content (i.e., the overall fraction of disordered residues in the
protein sequence) and fully disordered proteins. The latter two
aspects are commonly evaluated in the disorder prediction field
[30,49-51]. Furthermore, we investigate several other practical
aspects, such as runtime and predictive performance for specific
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current disorder predictors excel.
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2. Materials and methods
2.1. Datasets

We benchmark AF2 and disorder predictors on the complete
main test dataset from the CAID experiment with 646 proteins that
relies on the disorder annotations from DisProt [30]. We down-
loaded the disorder annotations from https://idpcentral.org/caid/
data/1/reference/disprot-disorder.txt and the disordered binding
annotations from https://idpcentral.org/caid/data/1/reference/dis-
prot-binding.txt; we use the latter to identify binding IDRs. Two
most recent evaluations of AF2-based disorder predictions also
sourced their test data from the CAID assessment [46,47]. However,
one of them utilized 475 of the 646 test proteins (74%) while the
second is limited to 489 of 646 test proteins (76%). We use 646
protein sequences with 336,595 residues, among which there are
831 IDRs that are composed of 54,604 disordered residues, and 255
binding IDRs containing 21,294 disordered binding residues.

We apply these data to create a few additional datasets that in-
clude IDPs with specific types of IDRs selected based on their size,
location, and function. We separate IDRs by size into long regions
(>30 consecutive residues) vs. short regions (<30). This threshold
was used in past works [4,49], and it roughly divides IDRs into those
that are long enough to correspond to protein domains [52] vs.
shorter region that may serve as linkers or loops in folded proteins
[49]. We also consider location of IDRs in the sequence, in particular
separating IDRs that are at the sequence termini vs. those inside the

ShortIDR

IDR1 (length=26)
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protein chain, given their different functional roles [53]. Moreover,
we identify a functional subclass of IDRs that are involved in binding
to partner molecules, which is often accompanied by binding in-
duced folding [54-56]. Correspondingly, we develop four datasets
that include IDPs that have: 1) only short IDRs (shortIDR); 2) at least
one long IDR (longIDR); 3) at least one binding IDR (bindingIDR);
and 4) no IDRs at the sequence termini (non-terminusIDR). The
binding IDRs are annotated at the region level, which means that an
entire IDR is annotated as binding even if only some of its residues
interact with a ligand. This is consistent with the annotations in
DisProt and the CAID experiment [30,48]. We illustrate a few ex-
amples that represent these four types of disordered proteins in
Fig. 1. We also establish collections of fully disordered proteins
(FDPs) following the approach from the CAID experiment [30], i.e.,
assuming that proteins with a high disorder content set at few dif-
ferent cut-offs (99%, 90%, and 80%) are fully disordered (i.e., FDP99,
FDP90, and FDP80 datasets, respectively). We summarize the re-
sulting datasets in Table 2.

2.2. Disorder predictions

We compare predictions generated by AF2 with 20 disorder
predictors that we identified in three complementary ways. First, we
include the top 10 disorder predictors from the CAID experiment
[30] (in alphabetical order): AUCpreD [57], AUCpreD-np|[57], Dis-
oMine[58], EspritzD[59], fIDPIr[60], fIDPnn[60], RawMSA[61], SPOT-
Disorder1[62], SPOT-Disorder2[63], and Single-Disorder-Single[64].

LSM?7 protein
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N
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Fig. 1. Illustrative examples of proteins that represent the four types of intrinsically disordered proteins: shortIDR (i.e., have only short IDRs), longIDR (have at least one long IDR),
bindingIDR (have at least one binding IDR); and non-terminusIDR (do not have IDRs at the sequence termini). We identify proteins by their DisProt and UniProt identifiers. We

draw IDRs as brown (for non-binding) and purple (for binding) segments.
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Table 2

Datasets that we use in the comparative analysis.
Dataset name Number of Number Number of Median

proteins of IDRs disordered IDR
residues length

CAID 646 831 54,604 34
shortIDR 226 281 5062 17
longIDR 420 550 49,542 61
bindingIDR 231 285 23,366 54
non-terminusIDR 318 387 17,971 26
FDP99 45 45 7201 136
FDP90 49 49 8041 138
FDP80 56 57 8986 132

Second, we include six most cited predictors based on the citation
analysis from [65] (in alphabetical order): DisEMBL-465[66], Dis-
EMBL-HL[66], DISOPRED3[67], IUPred-short[68], IUPred-long[68],
and VSL2B[69]. Third, we include four predictors that were released
after CAID experiment was completed: ODiNPred [70], IDPseq2seq
[71], Metapredict [72], and RFPR[73]. We collected predictions of the
top 10 predictors and the six most cited predictors directly from the
CAID assessment data at https://idpcentral.org/caid/data/1/predic-
tions/. We used webservers and standalone programs provided by
the authors to collect predictions of the four most recent tools.

2.3. AlphaFold2 predictions

The two published studies relied on the pre-computed AF2’s
predictions from the AlphaFoldDB database, which caused their
partial coverage at about 75% of the CAID dataset [46,47]. We col-
lected prediction directly by using the standalone AF2 software. This
allowed us to improve the coverage and measure the AF2 runtime.
We were able to make predictions for 632 proteins out of the 646
proteins in the CAID dataset (98% coverage). As we discuss in the
introduction, there are two ways to use the AF2’s predicted structure
to compute residue-level scores that can be used for the disorder
prediction. The original approach introduced by the authors of AF2 is
to use the pLDDT values. Correspondingly, we define AF2-pLDDT
disorder prediction as 1 — pLDDT/100. The other way, which we call
AF2-RSA, relies on the RSA values computed from the putative
structure that are processed using a sliding window of size 25 [47].
The RSA is calculated by normalizing the DSSP calculated solvent
accessibility using the maximum accessibility of a fully extended
Gly-X-Gly peptide [74]. We use the implementation from https://
github.com/BioComputingUP/AlphaFold-disorder to generate AF2-
RSA disorder prediction.

The outputs of AF2 include five ranked structure predictions. We
consider two scenarios: the default scenario where we use the top-
ranked prediction vs. the optimized-rank scenario where we use one
of the five structure models that produces the most accurate dis-
order prediction. The second scenario simulates a hypothetical
prediction where the AF2’s models would be optimally re-ranked to
maximize quality of the disorder predictions.

The experimental annotations of disorder from CAID, the AF2-
pLDDT and AF2-RSA disorder predictions, and the results produced
by the 20 disorder predictors are available in Supplementary
Dataset S1.

2.4. Metrics for the evaluation of disorder predictions

Disorder predictions include two values that are generated for
each amino acid in an input protein sequence: real-valued propen-
sities and binary scores. The latter categorize residues as either
disordered or ordered, and they are typically derived from the pro-
pensities using a cut-off, i.e., residues with propensities above the
cut-off are predicted as disordered and otherwise they are predicted
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as ordered. We apply metrics that were utilized in recent disorder
prediction assessments to evaluate predictions for both output types
[27,30,31,47,75]. We assess the putative propensities with two
popular metrics: area under receiver operating characteristic curve
(AUC) and area under the precision-recall curve (AUPRC). We gen-
erate the binary predictions from the propensities produced by each
predictor using a threshold that results in the correct number of
disordered residues over the entire CAID dataset. This adequately
calibrates the binary predictions between methods and facilitates
direct comparisons. These thresholds are listed in Table 3. We
evaluate binary predictions using several measures including Mat-
thew correlation coefficient (MCC), F1, and sensitivity:

2*TP

Fl= —+~———
2*TP + FP + FN
MCC = TP*TN — FPSFN
3/(TP + FP)*(TP + FN)*(TN + FP)*(TN + FN)
sensitivity = s
TP + FN

where TP and TN are the numbers of correctly predicted disordered
and structured residues, respectively; FN is the number of dis-
ordered residues incorrectly predicted as structured residues; and FP
is the number of structured residues incorrectly predicted as dis-
ordered residues. We use AUC, AUPRC, MCC and F1 to evaluate the
residue-level disorder predictions.

We follow CAID and use the F1 and sensitivity metrics to evaluate
the protein-level predictions of the fully disordered proteins, i.e.,
application of disorder predictors to identify whether a given se-
quence is fully disordered or not. The protein-level predictions of
disorder content (% of disordered residues in the protein) require
separate metrics since both the prediction and the native annotation
are real-valued. We compute the native content values as the frac-
tion of the native disordered residues in a given protein chain. We
calculate the predicted content values as the fraction of the binary
predictions of disorder that are established using the calibration cut-
off. We follow past research on the disorder and secondary structure
content prediction [51,76,77] and use the Mean Squared Error (MAE)
and the Spearman Correlation Coefficients (SCC) to quantify the
accuracy of the disorder content predictions:

n
MAE = L Y Ixi — ai
i3
6Y.d?
SCC:l—#
nn?-1)

where n is the number of proteins in the dataset, a; are the native
content values, x; are the predicted content values, and d; is the
difference of ranks between the predicted and the native content
values. We opt to apply SCC rather than the Person correlation
coefficient since the latter is more susceptible to outliers.

2.5. Statistical analysis

We assess statistical significance of differences in predictive
performance between disorder predictions generated by different
methods. In particular, we compare all predictors against the top-
ranked method, AF2-pLDDT and AF2-RSA. These tests aim to eval-
uate robustness of the differences over different datasets, which is
why we compare results using several different subsets of the test
datasets, which are either disjoint or have a small overlap. For the
residue-level tests and the protein-level disorder content tests on
the CAID, shortIDR, longIDR, bindingIDR, and non-terminusIDR da-
tasets we perform significance tests using 20 disjoint set of 5%
proteins, selected at random. The protein-level assessment for the
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Table 3
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Comparative assessment for the residue-level disorder predictions on the CAID dataset. We sort predictors by the area under receiver operating characteristic curve (AUC) values.
The “Threshold” column provides the cut-off values that we use to convert the real-valued propensities into the binary scores. We assess statistical significance of the differences
when compared with the top-ranked fIDPnn, AF2-RSA, and AF2-pLDDT, which we highlight using bold font; we show results next to the measured metric using the x|y|z format,
where x denotes that fIDPnn is significantly better (+), worse (-), and not different (=) than the results from a given predictor at p-value = 0.05; y compares against AF2-RSA; and z
compares against AF2-pLDDT. Acronyms: area under the precision-recall curve (AUPRC) and Matthew correlation coefficient (MCC).

Predictor Threshold Coverage (%) AUC AUPRC MCC F1

fIDPnn 0.337 100 0.814 /-/- 0475 [-[- 0.358 /-/- 0.462 [-/-
fIDPIr 0.417 100 0.793 +/-/- 0422 +/-/- 0323 +/- |- 0.433 +/-/-
AF2-RSAoptimized-rank 0.857 98 0.785+/-[- 0.357 +/[-/- 0.248 +[=[- 0.380+/=/-
RawMSA 0.683 100 0.780+/=[- 0.414 +/-[- 0.288 + /= - 0.404 + [-[-
Espritz-D 0.477 100 0.774+ [= |- 0.410 + /-/- 0.289 +/-/- 0.406 + [-/-
AF2-RSA 0.847 98 0.768 +/ |- 0.325+/ |- 0.203+/ /- 0.343+/ |-
DisoMine 0.563 100 0.765+ = |- 0.388 +/- /- 0.244 +|= |- 0367 + /= -
SPOT-Disorder2 0.824 94 0.760 + [= |- 0.340 + /= /- 0.200 + /= /- 0351 +/=/-
AUCpred 1.000 100 0.757 +[= - 0.479 = |-[- 0.258 + /= - 0.399 +/-/-
SPOT-Disorder-Single 0.764 100 0.757 + [= /- 0318 + /= /- 0221 +/=/- 0.348 + /= -
IDPseq2seq 0.976 100 0.754+ [= |- 0.322+/=/- 0.209 + /= /- 0.339+/=/-
AUCpred-np 1.000 100 0.751 + [+ - 0.428 + [-/- 0.226 + /= |- 0.349+ /= |-
Metapredict 0.615 100 0.746 + [+ |- 0.340 + /= /- 0.241+ /= /- 0.365+ /= /-
SPOT-Disorder1 0.945 100 0.744 + [+ [- 0.268 + [+ [= 0.143 + [+ = 0.284+ /==
[UPred-short 0.613 100 0.739+ [+ = 0311 +/=/- 0221+ /== 0349+ /= -
AF2-pLDDToptimized-rank 0.657 99 0.737 + [+ [= 0289+ /== 0.160 + /= [= 0290+ /==
IUPred-long 0.719 100 0.737 + [+ |= 0.298 + /== 0.218 +/=|- 0.346 + /= -
ODiNPred 0.996 100 0.734+ [+ [= 0.314 + [+ = 0.207 + /= /- 0.330+/=/-
VSL2B 0.905 100 0.732+ [+ = 0.301 +/=/- 0.203+/=/- 0.333+/=/-
AF2-pLDDT 0.628 99 0.722+ [+ 0.272 + [+ 0.137 + [+ 0.278 + [+
RFPR 1.000 100 0.721 + [+ [= 0.338+/=/- 0.109 + [+ [= 0219+ [+ [+
DISOPRED3 0.965 100 0.701 + [+ [+ 0.290+ /== 0122+ [+ /= 0.263 + [+ /=
DisEMBL-465 0.533 100 0.685 + [+ [+ 0.283 + [+ /= 0.196 + [+ - 0.328 + /= /-
DisEMBL-HL 0.131 100 0.654 + [+ [+ 0274+ [+ [= 0170+ [+ /= 0302+ /=/=

prediction of fully disordered proteins has smaller number of posi-
tive samples (between 45 and 56 fully disordered proteins), which is
why we use a larger sampling rate to be able to reliably estimate
predictive quality. Thus, we use 20 sets of 20% proteins for the as-
sessments on the FDP99, FDP90, and FDP80 datasets. We perform
paired t-test (using the same sampled datasets) if the underlying
measurements are normal; otherwise, we use the Wilcoxon rank
test. We test normality with the Anderson-Darling test at the p-value
of 0.05.

3. Results and discussion
3.1. Comparative evaluation of the residue-level disorder predictions

This is a typical assessment scenario that was considered by the
past studies that evaluated AF2 [46,47]. We compare AF2-pLDDT and
AF2-RSA against the 20 disorder predictors that cover the best per-
formers in CAID, popular methods and recently published tools.
Table 3 summarizes these results.

We observe that AF2-RSA performs significantly better that AF2-
pLDDT across the four metrics (p-value < 0.05). Similar observation
was made in ref. [47], although without assessing statistical sig-
nificance of the differences. The pLDDT scores estimate the degree of
agreement between the predictions and the experimental structure
and so they could indicate that prediction is poor because the cor-
responding part of the “structure space” is not accurately covered by
the deep network model or because that part of the sequence is
disordered. On the other hand, unusually high solvent accessibility
implies lack of structure, which seems to be a better proxy for the
intrinsic disorder.

The optimized rank version of AF2-pLDDT performs slightly
better than the regular AF2-pLDDT with AUC =0.737 vs. 0.722, but
this improvement is not statistically significant (p-value > 0.05). The
improvement for the AF2-RSA is a little bigger, with AUC =0.785 for
the optimized rank version vs. 0.768 for the regular AF2-RSA, and
this difference is statistically significant (p-value <0.05). This sug-
gests that AF-RSA based approach to the disorder prediction could be
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further improved by reranking the predicted models in a way that
reflects their capability for the intrinsic disorder prediction.

The overall best disorder predictor is fIDPnn, which agrees with
the results in CAID [30,78]. We find that fIDPnn’s predictions are
statistically better than the AF2-RSA approach, with AUC =0.814 vs.
0.768 (p-value <0.05) and F1 =0.46 vs. 0.34 (p-value <0.05). Overall,
four disorder predictors perform better than AF2-RSA, including
fIDPnn, fIDPIr (a version of fIDPnn that uses a logistic regression
model instead of the deep neural network), rawMSA, and Espritz-D.
The results in ref. [47] are similar and show that AF2-RSA is ranked
sixth after fIDPnn, fIDPIr, rawMSA, ESpritz-D and DisoMine. The
slight difference stems from the fact that we use the entire CAID
dataset while that study uses about 76% of the CAID proteins. The
four methods that were published after CAID experiment was
completed, IDPseq2seq [71], Metapredict [72], ODiNPred [70], and
RFPR [73] perform modestly well with AUCs of 0.754, 0.746, 0.734,
and 0.721, respectively. Using the AUC values, we find that AF2-RSA
is statistically better than Metapredict, ODiNPred and RFPR (p-
value <0.05) while the overall best fIDPnn outperforms the four
tools (p-value < 0.05).

The top five predictors of disorder (fIDPnn, fIDPlr, rawMSA,
ESpritz-D and AF2-RSA) are characterized by a wide spectrum of
runtime values. CAID evaluated the runtime and the corresponding
median per-protein values range between 8 s for ESpritz-D, 20 s for
fIDPnn and fIDPIr, and about 300 s for rawMSA [47]. We measured
the per-protein runtime for AF2-RSA, which has the median value of
1270s, with 5th and 95th percentile runtimes of 980 and 38505,
respectively. This includes the median time of about 980s to pro-
duce multiple alignment (5th percentile of 810 s and 95th percentile
of 1870s) with the remaining runtime spent on encoding the net-
work inputs from the alignment and processing these inputs
through the deep network. While we use a different hardware ar-
chitecture than CAID, which means that our estimate should not be
directly compared to the CAID’s results, the magnitudes of the dif-
ferences are so substantial that we argue that AF2-RSA is at least 50
times slower than the better performing fIDPnn and ESpritz-D
methods. However, we note that pre-computed AF2 predictions are
available for millions of proteins [36], which effectively nullifies the
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runtime constrains as long as the protein of interest is included in
the corresponding database.

Moreover, Table 3 provides coverage values that quantify how
many proteins from the CAID datasets were successfully predicted
by a given tool, rounded to a nearest percentage point. AF2-RSA
failed to produce predictions for about 2% of the test proteins,
compared to fIDPnn, fIDPIr, rawMSA and ESpritz-D that secure the
100% coverage. The lowest coverage of about 94% is for SPOT-Dis-
order2, which is limited to predicting proteins with sequences
shorter than 750 amino acids. This aspect again gives a slight ad-
vantage to the modern disorder predictors that provide higher levels
of coverage.

Altogether, our analysis suggests that the best disorder predictors
outperform the AF2-based disorder predictions by a substantial
margin, are substantially faster, and provide a slightly higher cov-
erage.

3.2. Comparative evaluation of the residue-level disorder predictions for
different types of disordered proteins

We investigate whether predictive quality varies across different
types of disordered proteins including those that have only short
IDRs (shortIDR dataset), that have at least one long IDR (longIDR
dataset); that do not have IDRs at the sequence termini (non-
terminusIDR dataset), and disordered proteins with binding IDRs
(bindingIDR dataset). Table 4 summarizes these results while using
AUC values to quantify the predictive performance.

The predictive quality varies rather considerably between these
different types of IDPs. Proteins with long IDRs are the easiest to
predicts, where an average AUC of the top four disorder predictors is
0.807, AF2-RSA’s AUC is 0.793 and the average AUC across all
methods that exclude the optimized rank versions of AF2 is 0.763.
We speculate that a potential explanation for that is that AF2-RSA
and disorder predictors, which utilize a sliding window approach
(i.e., disordered status of the residue in the middle of a sequence
segment/window is predicted using information about all residues
in that window), benefit from a strong signal that long IDRs provide.
In other words, for long IDRs many/majority of residues in a window

Table 4
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are disordered, allowing predictive models to more easily differ-
entiate such window from a window that covers structured residues.
The IDPs with binding IDRs are the second easiest to predict, with
the corresponding AUCs of 0.758 (the top 4 average), 0.721 (AF2-
RSA), and 0.690 (all average), respectively. The binding IDRs typically
fold upon binding, and some can fold into multiple different con-
formation depending on the particular ligand that they interact with
[79,80]. This arguably makes them more similar to structured re-
gions when compared to IDRs that do not fold, which in turn should
make binding IDRs harder to predict. One plausible explanation why
proteins with binding IDRs are predicted with relatively high accu-
racy is that these IDRs are also rather long (Table 2). This is in
contrast with the other two classes of IDPs, which include much
shorter IDRs (Table 2) and which are substantially more difficult to
predict accurately, with AUCs mostly below 0.7 (Table 4). More
specifically, AUC for the IDPs that lack IDRs at the termini are 0.703
(top 4 average), 0.690 (AF2-RSA), and 0.669 (all average); and for
IDPs with short IDRs they are 0.701, 0.653, and 0.652, respectively.
We note that these trends are consistent across the AF2-based pre-
dictions and the results generated by the disorder predictors. The
most accurate predictions across all four types of IDPs are secured by
fIDPnn, which is consistently statistically better than all other tools
(p-value <0.05). The fIDPnn’s AUCs range between 0.824 for IDPs
with the long IDRs and 0.744 for the IDP with the non-ter-
minus IDRs.

3.3. Comparative evaluation of the protein-level disorder content
predictions

We study accuracy of the disorder predictors and AF2 in the
context of estimating the per-protein disorder content (Table 5). We
find that the mean absolute errors (MAEs) and Spearmen correlation
coefficients (SCCs) vary considerably between the predictors. The
best results are produced by fIDPnn, with MAE = 0.152 and relatively
high correlation of 0.59. These predictions are statistically better
than the result of all other methods (p-value<0.05), except for
DisEMBL that produces only slightly higher MAE of 0.161. Interest-
ingly, both versions of DisEMBL and IUPred-short obtain low values

Comparative assessment of the AUC values for the residue-level disorder predictions for datasets that consider short IDRs (shortIDR), long IDRs (longIDR), binding IDRs
(bindingIDR), and proteins with no IDRs at the sequence termini (non-terminusIDR). We sort predictors by their area under receiver operating characteristic curve (AUC) values on
the CAID dataset (Table 3). We assess statistical significance of the differences when compared with the top-ranked fIDPnn, AF2-RSA, and AF2-pLDDT, which we highlight using
bold font; we show results next to the measured metric using the x|y|z format where x denotes that fIDPnn is significantly better (+), worse (-), and not different (=) than the

results from a given predictor at p-value =0.05; y compares against AF2-RSA; and z compares against AF2-pLDDT.

Predictor longIDR shortIDR bindingIDR non-terminusIDR
fIDPnn 0.824 |-/- 0.755 |-/- 0.795 |-/ 0.744 |-|-
fIDPIr 0.805+ /-/- 0.728 + /|- 0.767 +/- |- 0.724+|= -
AF2-RSAoptimized-rank 0.807 +/-/- 0.669 + /-/- 0.739 +/-/- 0.710+ /= /-
RawMSA 0.805 + /-/- 0.660 + /= /- 0.731+/-/- 0.687 + /==
Espritz-D 0.795 + /= |- 0.661 + /- 0.739 + /-/- 0.655 + |= =
AF2-RSA 0.793 +/ |- 0.653+/ - 0.721+/ |- 0.690+/ |-
DisoMine 0.784+ [+ - 0.676 + |-[- 0.721+/=/- 0.652+ ==
SPOT-Disorder2 0.782+ [+ |- 0.658+ /= |- 0.707 + [+ |- 0.660 + /==
AUCpred 0.768 + [+ [- 0.681+/-/- 0.688 + [+ - 0.684+ /==
SPOT-Disorder-Single 0.774+ [+ |- 0.641 + [+ - 0.689 + [+ - 0.677 + /==
IDPseq2seq 0.773 + [+ - 0.644 + [+ [- 0.676 + [+ [- 0.669 + /==
AUCpred-np 0.766 + [+ |- 0.668 + /-/- 0.683 + [+ - 0.673 +/=/=
Metapredict 0.761 + [+ - 0.664 +/-|- 0.690 + [+ - 0.675+ /==
SPOT-Disorder1 0.765+ [+ |- 0.628+ [+ [= 0.662 + [+ |- 0.663 + /==
[UPred-short 0.755+ [+ /- 0.666 + /- 0.702 + [+ /- 0.679+ /==
AF2-pLDDToptimized-rank 0.753 + [+ /- 0.655+ /= - 0.663 + [+ /- 0.689+ /= /-
[UPred-long 0.759 + [+ - 0.603 + [+ [+ 0.701 + [+ /- 0.673+ /==
ODiNPred 0.758 + [+ |- 0.622+ [+ [+ 0.690 + [+ /- 0.669 + /= [=
VSL2B 0.750 + [+ - 0.619+ [+ [+ 0.673 + [+ /- 0.676+ (==
AF2-pLDDT 0.739 + [+ 0.638++/ 0.642+ [+ 0.664+/=[=
RFPR 0.750 + [+ - 0.558 + [+ [+ 0.632+ [+ [+ 0.645 + = [+
DISOPRED3 0.722 + [+ [+ 0.580 + [+ [+ 0.620 + [+ [+ 0.634 + [+ [+
DisEMBL-465 0.698 + [+ [+ 0.643 + [+ [- 0.637 + [+ [= 0.632 + [+ [+
DisEMBL-HL 0.659 + [+ [+ 0.676 + [-/- 0.608 + [+ [+ 0.592 + [+ [+
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Table 5

Comparative assessment of the protein-level disorder content predictions on the CAID
dataset. We calculate the putative content values as the fraction of the binary predictions
of disorder that are established using the threshold that calibrates predictions across
methods, and which results in a correct number of predicted disordered residues over
the entire CAID dataset. We sort predictors by their area under receiver operating
characteristic curve (AUC) values on the CAID dataset (Table 3). We assess statistical
significance of the differences when compared with the top-ranked fIDPnn, AF2-RSA, and
AF2-pLDDT, which we highlight using bold font; we show results next to the measured
metric using the X|y|z format where x denotes that fIDPnn is significantly better (+),
worse (-), and not different (=) than the results from a given predictor at p-value =0.05; y
compares against AF2-RSA; and z compares against AF2-pLDDT. Acronyms: Mean
Squared Error (MAE) and the Spearman Correlation Coefficients (SCC).

Predictor MAE ScC
fIDPnn 0.152 /-/- 0.589 /-/-
fIDPIr 0.180 + /-/- 0.521 +/-/-
AF2-RSAoptimized-rank 0211 +/=/- 0.092 + /= -
RawMSA 0.186 + /-/- 0.230 + /-
Espritz-D 0.212+/=/- 0.477 + [-[-
AF2-RSA 0.213+/ - 0.084+/ -
DisoMine 0.195+ /= /- 0.478 + [-/-
SPOT-Disorder2 0.206 + /= |- 0242+ [-/-
AUCpred 0.195+ /= /- 0242+ /-/-
SPOT-Disorder-Single 0.197 + = |- 0.237 +/-/-
IDPseq2seq 0211 +/=/- 0173 +/=-
AUCpred-np 0.188 + /-/- 0.234 +/-/-
Metapredict 0.181 +/-/- 0.300 + /-/-
SPOT-Disorder1 0.232+/=/- 0.129+ /= -
[UPred-short 0172 +/-/- 0.350 +/-/-
AF2-pLDDToptimized-rank 0.252 + [+ [+ -0.339+ [+ /=
[UPred-long 0.197 + [= /- 0.205 + [-/-
ODiNPred 0.199+ /= /- 0.167 + /-/-
VSL2B 0.201+/=/- 0.175 + [-/-
AF2-pLDDT 0.246 + [+ -0.341 + [+
RFPR 0.244 + == 0.100 + /-/-
DISOPRED3 0.240+ /= |= -0.088 + [+ /-
DisEMBL-465 0.161 = /-/- 0.414+ [+ /-
DisEMBL-HL 0.163 = /-/- 0.384 + [+ /-

of MAE and relatively high values of SCC. This is consistent with
observations in ref. [49] where authors applied a different dataset.
Moreover, we observe that both AF2-RSA and AF2-pLDDT under-
perform relative to their residue-level predictions. In particular, AF2-
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RSA obtains near zero correlation while AF2-pLDDT has a low ne-
gative correlation. These low correlations mean that the putative
disorder is distributed across proteins in a way that does not cor-
relate with the amount of native disorder. This is in line with the
observations from ref. [47], which observed that AF2-pLDDT under-
predicts disorder while AF2-RSA over-predicts disorder. Overall,
correlations between the quality of the binary residue-level pre-
dictions (F1 and MCC in Table 3) and the protein-level content
predictions that are derived from these binary predictions (MAE and
SCCin Table 5) over the considered predictors are modest, at around
-0.65 for MAE (i.e., negative since lower errors are better) and 0.55
for SCC. This means that the best residue-level predictions not ne-
cessarily convert into the best content predictions. Examples include
[UPred-short and DisEMBL that perform relatively poorly at the re-
sidue level while generating rather accurate content prediction vs.
SPOT-Disorder2 and AF2-RSA that produce accurate residue-level
predictions while securing relatively high MAE > 0.2 and low SCC <
0.25 for the protein-level content predictions.

3.4. Comparative evaluation of the protein-level predictions of fully
disordered proteins

Following the assessment in CAID [30], we consider protein-level
prediction of the fully disordered proteins which are defined as IDPs
with a very high disorder content. Since there are no well-defined
cut-offs, we consider three scenarios where fully disordered proteins
are defined based on the disorder content > 0.99,> 0.90 and > 0.80,
similar to what was done in CAID. We summarize these results in
Table 6. The best predictions are secured by fIDPnn, which obtains F1
of about 0.90 and sensitivity of 0.83 across the three scenarios. Its
predictions are also statistically better than the results of all other
tools (p-value <0.05). Similar to the residue-level predictions of
disorder (Table 3), four disorder predictors (flDPnn, fIDPIr, rawMSA
and ESpritz-D) are significantly better than AF-RSA across the three
definitions of the fully disordered proteins and both metrics
(p-value <0.05). Moreover, AF2-RSA is statistically better than
AF2-pLDDT (p-value <0.05), where the latter predictor generates

Comparative assessment of the protein-level predictions of fully disordered proteins (FDPs) on the FDP99, FDP90, and FDP80 datasets. We sort predictors by their area under
receiver operating characteristic curve (AUC) values on the CAID dataset (Table 3). We assess statistical significance of the differences when compared with the top-ranked fIDPnn,
AF2-RSA, and AF2-pLDDT, which we highlight using bold font; we show results next to the measured metric using the x|y|z format where x denotes that fIDPnn is significantly
better (+), worse (-), and not different (=) than the results from a given predictor at p-value = 0.05; y compares against AF2-RSA; and z compares against AF2-pLDDT.

Predictor FDP99 dataset FDP90 dataset FDP80 dataset

F1 sensitivity F1 sensitivity F1 sensitivity
fIDPnn 0.906 /-/- 0.829 /-/- 0911 /-/- 0.839 /-/- 0.898 /-/- 0.827 [-/-
fIDPIr 0.872+/-/- 0.772 +/-[- 0.878 +/-/- 0.783 +/-/- 0.862 + [-/- 0.767 + [-/-
AF2-RSAoptimized-rank 0.518 + [+ /- 0.350 + [+ /- 0.555+ [+ /- 0.384 + [+ /- 0.534+ [+ /- 0.366 + [+ -
RawMSA 0.799 + /-/- 0.666 + /-/- 0.804 + /-/- 0.672 + [-/- 0.762 + [-/- 0.619 + /-/-
Espritz-D 0.864 + /-/- 0.760 + /-/- 0.866 + /-/- 0.764 + [-/- 0.843 +/-/- 0.731 +/-/-
AF2_RSA 0.557+/ |- 0.386+/ /- 0.594 +/ [- 0423+ [- 0.567+/ |- 0.398+/ |-
DisoMine 0.817 +/-[- 0.690 + /-/- 0.826 +/-/- 0.707 + [-/- 0.823 +/-/- 0.707 + [-/-
SPOT-Disorder2 0.665 + /-/- 0.498 + [-/- 0.681 +/-/- 0.517 + /-/- 0.662 + [-/- 0.498 + |-/~
AUCpred 0.706 + /-/- 0.546 + /-/- 0.711 +/-/- 0.555 + /-/- 0.692 + /-/- 0.537 + /-/-
SPOT-Disorder-Single 0.635 + /-/- 0.465 + [-/- 0.650 + /-/- 0.482 +/-/- 0.619 + /-/- 0.451 + [-/-
IDPseq2seq 0.627 + [-/- 0.457 + [-/- 0.640 + /-/- 0.470 + [-[- 0.616 + /-/- 0.445 + [-/-
AUCpred-np 0.579+/=/- 0.408 + /= |- 0.585+ /= - 0.415+ /= - 0.567 + /= |- 0399+ /= /-
Metapredict 0.657 + -/~ 0.489 + [-/- 0.672 + [-/- 0.506 + /-/- 0.645 + [-/- 0.479 + [-[-
SPOT-Disorder1 0.523 +/=/- 0354+ /= - 0.549 + [+ - 0378 + [+ /- 0.529 + [+ /- 0.362 + [+ /-
[UPred-short 0.605 + /-/- 0.434+ |-/- 0.624 + /-/- 0.454 + |-/- 0.609 + /-/- 0.441 + [+ [-
AF2-pLDDToptimized-rank 0.023 + [+ /- 0.012 + [+ [+ 0.028 + [+ [+ 0.014 + [+ [+ 0.027 + [+ [+ 0.014+ [+ [+
[UPred-long 0.645 + /-/- 0.477 + [-[- 0.662 +/-/- 0.495 + /-/- 0.641+ /-/- 0.474 + [+ |-
ODiNPred 0.524 + [= - 0354+ /= |- 0.518 + [+ /- 0.349 + [+ /- 0.509 + [+ [- 0.341 + [+ /-
VSL2B 0.607 + /-/- 0.436 + /-/- 0.619 + /-/- 0.448 + [-[- 0.590 + /= /- 0.419+ /= /-
AF2_pLDDT 0.069 + [+/ 0.036 +[+/ 0.069 + [+ 0.036 +[+/ 0.063 + [+ 0.033+/+/
RFPR 0.479 + [+ [- 0315+ [+ [+ 0.505 + [+ [= 0.338+/+ /- 0.467 + [+ |- 0.305 + [+ /-
DISOPRED3 0.347 + [+ [- 0.210 + [+ [+ 0361+ /+/- 0.220 + [+ /- 0.331+/+/- 0.198 + [+ /-
DisEMBL-465 0.614 + [+ - 0.443 + [-/- 0.613 + /= /- 0.443 + [= |- 0.589+ /= /- 0.421+ /= /-
DisEMBL-HL 0.572 +[=- 0.400 + = |- 0.557 + [= - 0387 +/=/- 0.533+/=/- 0.366 + /= /-
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Fig. 2. Comparison of the sequence-derived markers between proteins for which AF2-RSA generates competitive predictions (blue box plots) vs. proteins for which AF2-RSA is
statistically outperformed by disorder predictions or generates lower accuracy predictions (red box plots). The markers include: (panel a) sequence length; (panel b) putative
content of binding IDRs; (panel c) number of putative IDRs; (panel d) composite score of distance to terminus and content of the putative disorder; (panel e) distance of putative
IDRs to a closest terminus; (panel f) putative disorder content; (panel g) maximal length of putative IDRs; and (panel h) putative content of coiled-coils. Box plots represent
distributions of the marker values in a given protein set where we show the 5th, 25th, 50th (median), 75th and 95th percentiles and where cross represents the average. Statistical
significance of differences is annotated above the box plots: ns means difference is not significant; * means significant.

results at a near random levels. Overall, the residue-level F1 values
(Table 3) are highly correlated with the F1 values for the prediction
of fully disorder proteins (Table 6), with correlations at about 0.76
across the three scenarios. Moreover, results across the three fully
disordered protein definitions are highly correlated when con-
sidering both F1 and sensitivity (correlations of 0.99). Altogether, we
find that AF2-RSA provides modestly accurate predictions of fully
disordered proteins, AF2-pLDDT should not be used to identify fully
disordered proteins, and several disorder predictors outperform
AF2-RSA.

3.5. Sequence-derived markers identify proteins for which AF2-RSA
outperforms disorder predictors

Our results suggest that several disorder predictors are more
accurate and faster than AF2-RSA when tested on large datasets of
proteins. However, quality of disorder predictions varies widely
across individual proteins [50], which motivated us to investigate
whether AF2-RSA-based predictions could be competitive for certain
types of disordered proteins. In other words, we attempt to identify
sequence-derived markers that can be used to identify proteins for
which AF2 predicts disorder as accurately or better than the best
disorder predictors. We measure predictive performance with AUC
and use the CAID dataset. We have to exclude 45 fully disordered
proteins for which we cannot compute AUC since they do not in-
clude native structured residues. We use the sequence, disorder

predicted from sequence with the most accurate fIDPnn [60], pro-
tein-binding IDRs and coiled-coil regions predicted from sequence
with popular ANCHOR [81] and DeepCoil [82] methods, respectively,
to derive several diverse markers. The inclusion of the coiled-coils is
motivated by an observation that they are often disordered and may
transition into the structured state via intramolecular interactions
[83]. We consider eight markers: 1) sequence length; 2) putative
disorder content; 3) putative content of protein-binding IDRs; 4)
number of putative IDRs; 5) maximal length of putative IDRs; 6)
putative content of coiled-coil regions; 7) distance of putative IDRs
to a closest terminus (proxy for presence of putative IDRs at the
terminus); and 8) a composite score that considers distance to ter-
minus and content of the putative disorder. We calculate the com-
posite score as sum of the distances of putative disordered residues
to the nearest terminus divided by the sequence length. Low values
of this score indicate that the disorder content is low and/or disorder
is located at the termini. We consider IDRs that are defined as se-
quence segments of at least 4 consecutive putative disordered re-
sidues. We divide the CAID dataset into two subsets: proteins for
which AF2-RSA is competitive (i.e., it generates highly accurate
predictions that are statistically as accurate as the results of the best
disorder predictors vs. proteins for which AF2-RSA is statistically
outperformed by disorder predictions or generates lower accuracy
predictions. The first group includes 195 proteins for which AF2-
RSA’s AUC>0.814 (i.e., AUC is greater than an expected value of a
highly accurate AUC that equals to the overall/dataset-level AUC of
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the best performing fIDPnn from Table 3) and for which protein-
level AUC of AF2-RSA is within the 5% confidence interval of the
AUCs of the considered 19 disorder predictors. This means that AF2-
RSA generates competitive disorder predictions for about one-third
of the IDPs from the CAID dataset. The remaining proteins constitute
the second subset.

We compare values of the eight markers between the two pro-
tein sets in Fig. 2. We find that the putative disorder and coiled-coils
content values, inclusion of long IDRs, and distance of IDRs to the
termini (Fig. 2e, f, g and h) cannot be used to reliably identify IDPs
for which AF2-RSA produces accurate results (p-values>0.18). In-
terestingly, the composite score that combines putative disorder
content and distance of disorder from termini (Fig. 2d) is statistically
significant (p-value = 0.03). This marker reveals that AF2-RSA pro-
duces accurate predictions of disorder for IDPs that have relatively
low disorder content and where this disorder is located at or close to
the sequence termini. This can be explained by the fact that AF2 was
trained using structures from PDB that have disorder which is often
located at the termini and that have relatively low disorder content
[84]. Three other markers are also statistically significant. AF-RSA is
biased to generate accurate disorder predictions for IDPs that have
short sequences (p-value <0.001; Fig. 2a), that have relatively few
putative IDRs (p-value = 0.005; Fig. 2c) and low (near-zero) content
of protein-binding IDRs (p-value = 0.007; Fig. 2b). We think that the
first two markers can be explained by the fact that PDB structures
typically cover short protein chains and that these sequences typi-
cally have relatively few IDRs [66,85]. Moreover, the third marker is
reinforced by a recent analysis that suggests that AF2’s predictions
suffer substantially lower quality for multimers [86]. We use these
four statistically significant markers to identify proteins for which
AF2-RSA generates very accurate disorder predictions. We select
proteins for which sequence length (Fig. 2a), content of protein
binding IDRs (Fig. 2b), number of IDRs (Fig. 2c), and the composite
score (Fig. 2d) are below the median values from the blue box plots.
This dataset has 106 proteins, which corresponds to approximately
20% of the IDPs in the benchmark dataset. We find that AF2-RSA
secures AUC =0.81 for these proteins, outperforming the best dis-
order predictors that are overall shown to be more accurate than
AF2-RSA (Table 3), including fIDPnn (AUC = 0.79), fIDPIr (AUC = 0.78),
rawMSA (AUC = 0.78), and Espritz-D (AUC = 0.77). The differences in
the AUC values between the AF2-RSA predictions and the results of
these best disorder predictors for this protein set are statistically
significant (p-value <0.01). Altogether, we conclude that AF2-RSA
should be used to identify disorder for smaller proteins that lack
protein-binding IDRs, and which have relatively few short IDRs that
are located at the sequence termini. The other IDPs should be pre-
dicted using modern disorder predictors.

4. Summary and conclusions

Similar to the previous studies [46,47,87], we find that AF2-RSA
outperforms AF2-pLDDT and that several modern disorder pre-
dictors outperform AF2-RSA by a statistically significant margin.
Moreover, we empirically demonstrate that some of these accurate
disorder predictors are also substantially faster and provide a
slightly higher coverage. We also provide several new insights. Using
the AF2-RSAoptimized-rank approach, we empirically observe that
AF-RSA could be modestly improved by reranking the AF2 predicted
models in a way that better reflects their potential for the disorder
prediction. We find that several disorder predictors outperform AF2-
RSA’s ability to predict fully disordered proteins and that AF2-pLDDT
should not be used to predict these proteins. Both AF2-RSA and AF2-
pLDDT provide poor predictions of disorder content while several
disorder predictors, such as fIDPnn, IUPred-short and DisEMBL ac-
curately predict the content values. Our empirical analysis that relies
on several sequence-derived markers suggests that AF2-RSA
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outperforms disorder predictors for about 20% of IDPs that have
short sequences absent of disordered protein-binding regions and
which have relatively few IDRs that are preferably located at the
sequence termini. We suggest that AF2 should be used to predict
disorder for these proteins since these results can be produced as a
byproduct of the structure predictions, incurring only a small addi-
tional computational cost. However, disorder predictors, such as
fIDPnn, fIDPIr, rawMSA and Espritz-D, should be used to make dis-
order predictions for the other disordered proteins.

We also identify a substantial variability in the predictive quality
across different types of disordered proteins. In particular, we ob-
serve that some IDPs are substantially harder to predict accurately
for AF2-RSA, AF2-pLDDT and disorder predictors, including IDPs that
lack IDRs at the sequence termini and those that have only short
IDRs. Recent literature offers additional insights concerning limita-
tions of AF2. The use of AF2 could lead to misinterpretations of
predicted “structures” of IDRs in the context of the sequence-en-
semble-function relationships that are characteristic for the inter-
actomes of disordered proteins [88]. Moreover, AF2’s predictions
were also shown to have lower quality for the proteins with dynamic
structures [89,90] and multimers [86].

In recent years, the disorder prediction field has moved towards
prediction of functional types of IDRs [91-94]|. The main focus is on
the regions that interact with ligands that include peptides, proteins,
DNA, RNA and lipids [91,92,95], however, some tools also predict
disordered linkers [96,97]. There are over three dozen of predictors
of binding IDRs, with majority of them targeting protein and peptide
binding IDRs [91]. Example popular methods include ANCHOR
[81,98,99], MoRFpred [100], MoRFeni; [101,102], and DISOPRED3
[67] that predict protein and peptide binding IDRs; DisoRDPbind
that predicts DNA, RNA and protein-binding IDRs; and SLiMFinder
[103] and SLiMSearch [104-106] that predict short linear sequence
motifs (SLiMs) that are often involved in the protein-protein and
protein-nucleic acids interactions. We also note the two recently
released tools that predict lipid binding IDRs: MemDis [107] and
DisoLipPred [108], and the DEPICTER webserver that predicts mul-
tiple types of functional IDRs [109,110]. Interestingly, AF2, the most
accurate disorder predictors [31], and some of the predictors of
binding IDRs rely on the deep neural network models [108,111-115].
This suggests that deep networks are useful for both protein struc-
ture and intrinsic disorder predictions.
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