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Abstract- Unmanned Aerial Networks (UAVs) are prone to
several cyber-atttacks, including Global Positioining Spoofing
attacks. For this purpose, numerous studies have been
conducted to detect, classify, and mitigate these attacks, using
Artificial Intelligence technqiues; howver, most of these studies
provided techniques with low detection, high misdetection, and
high bias rates. To fill this gap, in this paper, we propose three
supervised deep learning techniques, namely Deep Neural
Network, U Neural Network, and Long Short Term Memory.
These models are evaluated in terms of Accuracy, Detection
Rate, Misdetection Rate, False Alarm Rate, Training Time per
Sample, Prediction Time, and Memory Size. The simulation
results indicated that the U Neural Network outperforms other
models with accuracy of 98.80%, a probability of detection of
98.85%, a misdetection of 1.15%, a false alarm of 1.8%, a
training time per sample of 0.22 seconds, a prediction time of 0.2
seconds, and a memory size of 199.87 MiB. In addition, these
results depicted that the Long Short Term Memory model
provides the lowest performance among other models for
detecting these attacks on UAVs.

Keywords— Artificial intelligence, deep learning deep neural
network, global positioning system, long short-term memory,
machine learning, supervised learning, unmanned aerial network,
U-neural network.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) navigation and
localization have been active research topics over the past
decade. One of the most popular and widely used technologies
is the Global Positioning System (GPS), which is suitable for
the outdoor environment. In addition, GPS is relatively
inexpensive, easy to deploy, and accurate compared to other
localization technologies [1]. In light of GPS's widespread use
in sensitive applications, such as UAVs and the fact that GPS
signals are unencrypted and open to the public, cyber-
criminals are targeting GPS receivers using jamming and
spoofing attacks.

As aresult of a jamming attack, the UAV may lose access
to the GPS link, resulting in being forced to turn to alternative
but temporary localization techniques, such as vision-based
localization or return to home technique [2]. A GPS spoofing
attack, on the other hand, sends erroneous and fake GPS
signals to a target's receiver without alarming it, resulting in
the hijacking or crash of the UAV depending on the
complexity of the attack [3].

Artificial intelligence (AI) has been discovered to be a
great candidate for detecting cyber-attacks in a heterogeneous
and unpredictable environment [2, 3, 4, 5]. Al techniques can
efficiently and quickly find hidden patterns in massive
volumes of data, making them ideal for large and complex
networks. Al-based detection techniques can be costly in
terms of training and deployment. In addition, their
computational power and memory needs should be assessed,
particularly in systems with limited size, weight, and power
(SWaP), such as UAV [6, 7]. Therefore, it is important to
consider the training cost and the deployment of the models
on UAVs.

Several studies proposed machine learning-based (ML)
and deep learning-based (DL) detection techniques to detect
and classify GPS spoofing attacks. For instance, the authors of
[8] proposed two dynamic ML-based models, namely Metric
Optimized Dynamic selector and Weighted Metric Optimized
Dynamic selector to detect GPS spoofing attacks on UAVs. In
this study, the authors developed a one-stage ensemble
method to identify the feature importance and correlated
features from the dataset and train the data using ensemble
selectors.

In [9], the authors focused on tree-based ML models,
specifically Random Forest, Gradient Boost, Extreme
Gradient Boosting, and Light Gradient Boosting to detect
these attacks. In another work [10], the authors compared the
performance of instance-based ML techniques, including K-
nearest neighbor, Radius Neighbor, Linear Support Vector
Machine, C- Support Vector Machine, and Nu- Support
Vector Machine. In both works, the authors used confusion
matrix-based metrics such as accuracy, probability of
detection, false alarm, and probability of misdetection. The
evaluation also included memory and processing time
requirements.

The authors of [11] used the variations in the fundamental
frequency of the GPS signal as input features of different ML
models. The extracted features are jitter and shimmer based
along with the frequency modulation. The authors performed
a K-fold analysis on the selected models. Results showed that
the SVM model with a polynomial kernel function is the best-
performing model. Despite the acceptable results these
techniques showed, they still suffer from some critical
limitations, such as high bias rates, overfitting, low detection
rates, and difficulty interpreting the results. Therefore, a
holistic solution is needed to easily interpret the results and



deal with overfitting issues. For this purpose, DL techniques
have been proposed to provide acceptable results, and reduce
the bias rate, and overfitting issues.

To address the concerns raised above, numerous studies in
the literature investigate the performance of DL models in
detecting cyberattacks in different cyber-physical systems [3].
To this end, few works have focused on GPS spoofing
detection using DL models. For instance, the authors of [12]
proposed a GPS replay attack detection method based on a
supervised DL model, namely ANN. In this study, the authors
showed the effect of several extracted features from the
received signal on detection performance. The best results
were obtained by combining five parameters, namely satellite
vehicle number, pseudo-range, carrier phase, Doppler shift,
and signal-to-noise ratio. In [13], the authors retrieved three
signal properties as input features of a supervised DL model,
namely a multi-layer neural network. These three input
features are early-late phase, delta, and signal level. The
proposed method has been evaluated using software-based
GPS simulators.

In [14], the authors proposed another supervised DL
model, namely LSTM that monitors the derived PVT
information from the GPS signal using this DL model. In [15],
the authors used a supervised CNN-based model, namely
Residual Neural Network to detect GPS spoofing attacks,
using the satellite imagery matching approach. The DL-based
detection techniques discussed above have shown an
improvement in performance compared to ML-based
detection techniques, especially in terms of decreasing the
false alarm rate. However, they still suffer from a high
misdetection rate. This can be due to a variety of reasons, such
as the complexity of the detection task, the quality and
quantity of the training data, and the specific architecture and
hyperparameters of the DL models.

In this paper, DL-supervised learning models are classified
into three classes, Artificial Neural Network (ANN),
Convolutional Neural Network (CNN), and Recurrent Neural
Network (RNN)-based models. From each of the categories,
these models are selected: Deep Neural Network (DNN), U
Neural Network (U-Net), and Long Short-Term Memory
(LSTM) to train, test, and validate the given data, respectively.
In addition, we evaluated the models in terms of Accuracy,
Detection Rate, Misdetection Rate, and False Alarm Rate. The
paper also adds the Training Time per Sample, Prediction
Time, and Memory Size to the evaluation criteria to address
the issue of SWaP consideration. In short, the important
contributions of this paper are summarized as follows:

¢ Introducing a classification of supervised DL models,

¢ Developing three supervised DL models, namely DNN, U-
Net, and LSTM to detect and classify GPS spoofing attacks
on UAVs,

¢ Providing a comprehensive comparison of these models in
terms of Accuracy, Detection Rate, Misdetection Rate,
False Alarm Rate, Training Time per Sample, Prediction
Time, and Memory Size,

e Studying, comparing, and discussing the result of this
study with other studies in literature.

This paper's remainder is organized as follows: Section 11
discusses the materials used in this study. Section III
highlights the results, while Section IV outlines the
conclusion.

II. MATERIALS

The corresponding dataset used for training and testing
the DL models, described in [9], is briefly reviewed in this
section, followed by a discussion of the data pre-processing
techniques, classification models, and evaluation metrics
used in this work.

A. Dataset

The dataset used in this work was developed and
generated by the authors of [9]. The dataset, as shown in
Table I, has 13 extracted features from three different GPS
receiver stages. Table I depicts the abbreviations of the
features along with their brief explanations. The dataset
contains three simulated GPS spoofed attacks, namely
simplistic, intermediate, and sophisticated attacks. The
dataset also includes normal GPS signals collected using a
software-defined radio in different scenarios. A binary class
consisting of GPS spoofing attacks and normal GPS signal
instances is considered for training, testing, and validating the
results to offer accurate predictions and easy interpretation. It
is worth mentioning that the used dataset consists of 14000
samples, including 7000 attacks and 7000 normal traffic
samples.

TABLE 1. LISTS OF THE FEATURES IN THE CORRESPONDING DATASET.

Feature Abbreviations Descriptions

Satellite IPRN Unique identification number of the
'Vehicle satellite
Number

The Carrier |DO The Carrier Doppler is the result of the
IDoppler satellite and receiver motion. It is
expressed as a frequency drift

IPseudo- PD It refers to the distance between the
IRange satellite and the receiver. It is calculated
as the difference between transmission
land reception time.

It is the receiver time given in seconds

IReceiver IRX

Time after the start of time of the week.

Time of the [TOW The time elapsed in seconds since the

week start of the week given by the satellite
clock

Carrier Phase [CP [t is the beat frequency drift between the

Cycles satellite signal and the receiver generated
carrier.

[Early EC It is at half chip spacing before prompt

Correlator correlator

Late LC It is at half chip spacing after prompt

Correlator correlator

Prompt PC The measurement made during coarse

Correlator acquisition code tracking.

[Prompt in IPTP [t is the in-phase component of PC
phase
correlator
IPrompt IPQP
Quadrature

It is the quadrotor component of PC




Tacking TCD [t refers to the continuous estimate of the

Carrier carrier doppler at the tracking loop
[Doppler
Carrier to C/No The ratio of the received carrier strength

noise Ratio and the noise

B. Data Pre-processing

In this study, the data pre-processing step refers to the
necessary techniques performed before training the models
on the corresponding data. There has been some discussion
about how GPS redundancy could affect the performance of
Al models [16]. For this reason, it is important to identify the
correlated features that need to be discarded from the dataset.
According to the results in [9], two features, RX and TCD,
which are substantially correlated with TOW and CP,
respectively, are removed. As a result, the remaining 11
features, namely PRN, DO, PD, TOW, CP, EC, LC, PC, PIP,
PQP, and C/NO, are considered for model training, testing,
and validation.

The second step of data pre-processing is data imputation.
In this stage, missing values are imputed to the corresponding
data. In this work, mode imputation is employed, which
replaces the missing value with the highest frequency.
Finally, in the third step, data normalization is performed
using the Min-Max Scalers, which subtracts the minimum
value (excluding the outliers) in the feature and divides it by
its range. It is worth mentioning that the given data was
balanced, hence, no technique was required to balance the
classes [17-19].

C. Classification Models

Fig. 1 provides a schematic overview of the supervised
DL models along with their categories. As one can observe,
the supervised DL models are classified into three categories,
namely Artificial Neural Network (ANN), Convolutional-
Neural Network (CNN), and Recurrent Neural Network
(RNN)-based models. A short description of these models is
provided as follows:

Artificial Neural
Netvork basad —— Deep Neural Network
Convolutional Neural U-Net

Network-base

Recurrent Neural Long Short-Term
Network-based Memory

Supervised Deep Learning Models

Fig. 1. Classification of Supervised Deep Learning Models.
C.1.Artificial Neural Network

One of the most well-known DL approaches is ANN-
based models. These DL models consist of multiple
processing elements, namely inputs, and outputs that perform

based on the pre-defined activation functions, which makes
them simple and efficient. Although their learning process is
quite sluggish, DL models in this category often yield good
detection rates. In this study, a DNN model is applied as a
candidate in ANN-based models to train, test, and validate the
results. In general, the DNN consists of an input layer,
followed by N hidden layers, and an output layer. A simple
architecture of this model is presented in Fig. 2. The model
has a value in the input layer equal to the number of features
in the given dataset. The hidden layers, which are located
between the input and output layers, perform based on a
weight function. This function exploits the weights of inputs
and directs them via an activation function to the output.

DNN models usually have more than two hidden layers
(i.e. N>2). The output layer shows the number of classes. In
addition, an important motivation of DNN models is the
trade-off between accuracy and the complexity in their
designs This suggests that employing a DNN model with
more hidden layers can increase computational complexity,
testing and training time, and rate of convergence [20].
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Fig. 2. Architecture of a Deep Neural Network Model.

C.2. U Neural Network

CNN-based models are another type of supervised DL.
These models are commonly used to learn feature spatial
hierarchies using a backpropagation approach. CNN-based
models include Residual Neural Networks, Densely
Connected Neural Networks, Alex Neural Networks, Le-
Neural Networks, and more. Yet, despite their high
performance, these models have several drawbacks, such as
requiring massive quantities of data, complex architecture,
and reduced computing efficiency.

As a result, a new sort of CNN model, known as the U-
Neural Network (U-Net), has been suggested to address these
problems. The u-Net architecture was modified and improved
so that it could perform with fewer samples, resulting in more
accurate classification and segmentation. This model's U-
shape design is divided into two halves, as seen in Fig. 3,
Analysis Path (Encoder) and Synthesis Path (Decoder).

The encoder architecture is composed of numerous
convolutions, followed by Rectified Linear Unit (ReLu) and
batch normalization. The Maxpool function minimizes the
spatial dimension while increasing the number of feature
channels and cutting the spatial dimension in half during the



down sampling phase (Conv + ReLu). The encoder is
followed by the decoder, which consists of an up-sampling
stage for the feature map, followed by a convolution layer
(UpConv). The convolution layers, typically followed by the
ReLu function (Conv + ReLu), can minimize the number of
features by half. Another convolution is used, along with the
SoftMax function, at the last layer to map the channels into
the required number of classes, as shown in Fig. 4.
Summation (also known as Skip connection) can be used to
prevent data loss. In fact, without Summation, data loss may
occur from one layer to another layer. This function performs
as a bridge between Encoder and Decoder and can be used as
an effective tool to recover the details of the output class [21].

Summation (Skip Connection)
Input a
| Maxpool
Conv +ReLu
»
) Maxpool

Conv +ReLu

Analysis Path (Encoder)

 Maxpool UpConv 7Ll §

Conv +ReLu
4*! 1

Conv +ReLu

SR 4
Conv +ReLu Maxpool

Fig. 3. Architecture of U-Net.

C.3. Long Short-Term Memory

RNN-based models belong to the supervised DL category
with chain-like topologies of repeating modules (known as
cells), and the cells are utilized as memory to retain essential
data from previous processing stages. The LSTM model is a
subset of RNN-based models that incorporate interaction per
cell to learn long-term dependencies and memorize data over
time. The architecture of this model consists of several blocks
(or cells) as shown in figure 4. The cell state and the hidden
layer are both transferred to the next cell in LSTM. The cell
state is considered to be the main chain of data flow, allowing
the data to move forward unchanged.

In this context, the data can be added or removed from the
cell state through sigmoid gates. In the hidden layer, the input
weights are applied and directed to the output layer via the
Sigmoid function. The gates are mostly the same as a layer or
series of matrix operations, which has multiple individual
weights [17]. The LSTM model is designed to prevent long-
term dependency problems since it uses some cells as the
controlling tool for memorizing procedures. The initial step
in building LSTM is to detect unimportant data and remove
it from the cell in that step.

The Sigmoid function is mainly responsible for this
procedure, taking the output of the last LSTM unit (h,_;) at
the time -/ and the current input X at time # The Sigmoid
function also decides the parts that are removed from the old
output. In addition, the forget gate, f, is a vector ranging from
0 to 1, associated with the number of the cell state, (Cy_q).
The Sigmoid layer is responsible for the new data that is
updated or ignored, whereas the Tanh layer provides a weight
to the values which they passed and indicates their level of
importance. These values are multiplied to update the new
cell state. Then, the new memory is summed up with the old
memory, resulting in C;. In the end, the output can be
computed based on the output cell state. Therefore, a Sigmoid
layer decides the part of the cell state that makes it to the
output, while the output of the Sigmoid gate is multiplied by
the new data by the Tanh layer from the cell state with a
ranging value between —1 and 1 [22].
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Fig. 4. Architecture of LSTM.

D. Evaluation Metrics

To evaluate and compare the efficiency of these
supervised DL models, several evaluation metrics are used,
namely Accuracy (4CC), Detection Rate (DR), Misdetection
Rate (MisR), False Alarm Rate (FAR), Training Time Per
Sample (7TPS), Prediction Time (PT), and Memory Size
(MR). These metrics are defined as following:

ACC: Total number of the correctly classified spoofed
attacks and normal traffic over the whole number of the
signals,

DR: The rate of correctly classifying malicious signals as
spoofed signals over the number of the spoofed signals.
MisR: The rate of the spoofed signals that are classified
wrongly as normal traffic over the number of the spoofed
signals,

FAR: The rate of normal traffic that are classified as
spoofed signals over the number of the non-spoofed
signals,

TTPS: The time that is needed in the training process for
every sample,



PT: The time that is needed for classification, detection,
and prediction of the samples in the given dataset,

MR: The size of the memory during the training, testing,
and validating of the DL model.

III. RESULTS

In this study, to evaluate the performance of the selected
models, we perform a 10-time re-sampling framework.
Within every split, the corresponding data is partitioned into
60% training, 20% testing, and 20% validation. During the
training process of DL models, using hyperparameters
without any validation or even applying K cross-validation
techniques may lead to over-fitting issues.

In addition, we investigate the values of the parameters
used, which indicate exponential improvements in the
models’ performance. It is worth mentioning that Adaptive
Moment Estimation (ADAM) optimizer and activation
functions, namely Sigmoid and ReLu are used during the
training, testing, and validating of the DL models. As we
discussed, three supervised DL models, namely DNN, U-Net,
and LSTM are used. Later, the classification models are
trained, and the models are evaluated in terms of the selected
metrics. These simulations are performed using intel core i7-
10750H, 16.0 GB memory, and CPU of 2.60 GHz, for 200
Epochs and a batch size of 10. The results of these models
are provided in Figure 6, and Tables II and III.

Fig. 5 and Table II represent the outcomes of our
evaluation for supervised DL models in terms of the selected
metrics. We observe that overall, the highest-performance
model is obtained by U-Net, followed by DNN, and LSTM.
It is noticed that the detection of GPS spoofing attacks using
the U-Net model achieves a respectable testing accuracy of
98.80%, a probability of detection of 98.85%, a misdetection
of 1.15%, a false alarm of 1.8%, a training time per sample of
0.22 seconds, a prediction time of 0.2 seconds, and a memory
size of 199.87 MiB. In addition to this model, the DNN
model provides satisfactory results and slightly lower
performance than the U-Net model.

The DNN model achieves a testing accuracy of 94.3%, a
probability of detection of 95.6%, a misdetection of 4.4%, a
false alarm of 6.2%, a training time per sample of 0.40
seconds, a prediction time of 0.28 seconds, and a memory
size of 235.19 MiB. In contrast, as shown in the following
figure and table, the LSTM model has a lower testing
accuracy of 92.9 % and a probability of detection of 93.1%,
a higher misdetection of 6.9%, a false alarm of 8.2%, a
training time per sample of 0.95 seconds, a prediction time of
0.25 seconds, and a memory size of 360.76 MiB. Similar
observations can be found for training data on these DL
models.

To summarize, from Figure 6, the accuracy and
probability of detection of these selected supervised DL
models reached at least 92% and above, while their
probability of misdetection and false alarm are at most 8.2%
and less. The best evaluation performance is obtained by the
U-Net, although the LSTM is observed as the lowest
performance model. Although the LSTM model is a
powerful DL technique and performs well in time series data,
it does not exceed the performance of the U-Net or DNN
model. It is also worth mentioning that the training
performance of these models is slightly better than their
testing performance of them. In general, U-Net is a model that
is spatially and temporally deep. Thus, according to our
simulation results, the U-Net model has a high flexibility to
be applied for detecting and classifying GPS attacks on
UAVs.

TABLE I1. TRAINING AND PREDICTION TIME AND MEMORY SIZE
UTILIZATION PER SAMPLE FOR SUPERVISED DL MODELS.

Model Training Time Per | Prediction Time | Memory
Sample (Sec) (Sec) Size
(MiB)
DNN 0.40 0.18 235.19
U-Net 0.22 0.2 199.87
LSTM 0.95 0.25 360.76

As itis clearly outlined in Table II, all timing and memory
usage metrics of these supervised models are achieved good
results, whereas the U-Net provides an excellent efficiency in
terms of these metrics and can be considered an efficient DL
model among other supervised models. Moreover, since U-
Net consists of two parts, encoder and decoder, it can encode
and extracts features and decode the results, resulting in a
more efficient model, compared to other models.

In addition to these results, we provide a comprehensive
comparison between our simulation results and other studies
in literature. Table III provides a summary of our proposed
models and current studies using DL models in detecting and
classifying GPS spoofing attacks on UAVs. It is noticeable
that most of the studies in literature only focused on
supervised DL models; however, they discarded any
investigation on detecting GPS Spoofing attacks on UAVs
using unsupervised DL models. In addition, most of these
studies used limited evaluation metrics, resulting in difficult
interpretation of their results.

For instance, the authors of [13] proposed a DL model,
namely an artificial neural network, to detect GPS spoofing
attacks; however, they only used two metrics, namely True
detection rate and detection time. According to their results,
the proposed approach provided a high rate of true detection,
although the detection time is significantly higher than the
achieved results by the U-Net model. Also, in another study
[12], the authors used an artificial neural network with high



TABLE III. CURRENT STUDIES IN DETECTING GPS SPOOFING ATTACKS
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Misdetection, and False Alarm.

USING DL MODELS.
Ref. Used Model(s) Results
JAccuracy: 98.80%,
[Probability of detection: 98.85%,
Probability of misdetection: 1.15%,
Proposed| U-Net Probability of false alarm: 1.8%,
Training time per Sample: 0.22 Sec,
Prediction time:0.2 Sec,
Memory size: 199.87 MiB.
|Accuracy: 98.3%,
[12] Artificial Neural [Probability of detection: 99.2%,
Network Probability of misdetection: 0.8%,
Probability of false alarm of 2.6%.
[13] Artificial Neural [True detection Probability: 99.35%,
Network Detection time: 2.89 Sec.
[Accuracy: 89.5%,
Precision: 85.5%,
[15] Residual Neural [Recall:95.4%,

Networks

[Error Rate: 0.105,

[F1-Score: 90.2%.

accuracy, detection rates, and low false alarm and
misdetection rates. Despite these studies in the literature
providing acceptable results, the lack of investigation into the
efficiency of the proposed model makes it hard to compare
these models with the other studies, including our study in the
literature. It is also worth mentioning that this field of study
is at an early stage, and the results in the literature still need
to be improved.

Therefore, to address these challenges, this study fills the
gap by comparing the performance of different supervised
DL techniques from various categories, which outperform the
existing works. To demonstrate the efficiency of the proposed
models, we used timing and memory metrics. As a result, the
U-Net provides satisfactory results, leading to a high
potential to classify GPS spoofing attacks and normal traffic.



IV. CONCLUSION

Interest in detecting and classifying GPS spoofing attacks
on UAVs has been exponentially increased in the last few
years. For this purpose, several studies have been conducted
to detect these vulnerabilities; however, this field of study
still is at an early stage and needs to address the critical
challenges, such as high misdetection and false alarm rates.
This study aims to investigate the performance of different
supervised and deep learning models in detecting GPS
spoofing attacks on UAVs. The supervised deep learning
models are classified into three types, namely artificial neural
networks, convolutional neural networks, and recurrent
neural networks. In these categories, three models of Deep
Neural Network, U-Neural Network, and Long Short-term
Memory are selected for training, testing, and validating the
models. The evaluation was performed using seven metrics:
accuracy, detection rate, misdetection rate, false alarm rate,
training time per sample, prediction time, and memory size.
The simulation results indicated that the U-Neural Network
outperforms the other models in terms of these metrics.
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