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Abstract- Unmanned Aerial Networks (UAVs) are prone to 

several cyber-atttacks, including Global Positioining Spoofing 

attacks. For this purpose, numerous studies have been 

conducted to detect, classify, and mitigate these attacks, using 

Artificial Intelligence technqiues; howver, most of these studies 

provided techniques with low detection, high misdetection, and 

high bias rates. To fill this gap, in this paper, we propose three 

supervised deep learning techniques, namely Deep Neural 

Network, U Neural Network, and Long Short Term Memory. 

These models are evaluated in terms of  Accuracy, Detection 

Rate, Misdetection Rate, False Alarm Rate, Training Time per 

Sample, Prediction Time, and Memory Size. The simulation 

results indicated that the U Neural Network outperforms other 

models with accuracy of 98.80%, a probability of detection of 

98.85%, a misdetection of 1.15%, a false alarm of 1.8%, a 

training time per sample of 0.22 seconds, a prediction time of 0.2 

seconds, and a memory size of 199.87 MiB. In addition, these 

results depicted that the Long Short Term Memory model 

provides the lowest performance among other models for 

detecting these attacks on UAVs. 

 

Keywords— Artificial intelligence, deep learning deep neural 

network, global positioning system, long short-term memory, 
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I. INTRODUCTION  

Unmanned Aerial Vehicles (UAVs) navigation and 
localization have been active research topics over the past 
decade. One of the most popular and widely used technologies 
is the Global Positioning System (GPS), which is suitable for 
the outdoor environment. In addition, GPS is relatively 
inexpensive, easy to deploy, and accurate compared to other 
localization technologies [1]. In light of GPS's widespread use 
in sensitive applications, such as UAVs and the fact that GPS 
signals are unencrypted and open to the public, cyber-
criminals are targeting GPS receivers using jamming and 
spoofing attacks. 

 As a result of a jamming attack, the UAV may lose access 
to the GPS link, resulting in being forced to turn to alternative 
but temporary localization techniques, such as vision-based 
localization or return to home technique [2]. A GPS spoofing 
attack, on the other hand, sends erroneous and fake GPS 
signals to a target's receiver without alarming it, resulting in 
the hijacking or crash of the UAV depending on the 
complexity of the attack [3]. 

Artificial intelligence (AI) has been discovered to be a 
great candidate for detecting cyber-attacks in a heterogeneous 
and unpredictable environment [2, 3, 4, 5]. AI techniques can 
efficiently and quickly find hidden patterns in massive 
volumes of data, making them ideal for large and complex 
networks. AI-based detection techniques can be costly in 
terms of training and deployment. In addition, their 
computational power and memory needs should be assessed, 
particularly in systems with limited size, weight, and power 
(SWaP), such as UAV [6, 7]. Therefore, it is important to 
consider the training cost and the deployment of the models 
on UAVs. 

Several studies proposed machine learning-based (ML) 
and deep learning-based (DL) detection techniques to detect 
and classify GPS spoofing attacks. For instance, the authors of 
[8] proposed two dynamic ML-based models, namely Metric 
Optimized Dynamic selector and Weighted Metric Optimized 
Dynamic selector to detect GPS spoofing attacks on UAVs. In 
this study, the authors developed a one-stage ensemble 
method to identify the feature importance and correlated 
features from the dataset and train the data using ensemble 
selectors.  

 In [9], the authors focused on tree-based ML models, 
specifically Random Forest, Gradient Boost, Extreme 
Gradient Boosting, and Light Gradient Boosting to detect 
these attacks. In another work [10], the authors compared the 
performance of instance-based ML techniques, including K-
nearest neighbor, Radius Neighbor, Linear Support Vector 
Machine, C- Support Vector Machine, and Nu- Support 
Vector Machine.  In both works, the authors used confusion 
matrix-based metrics such as accuracy, probability of 
detection, false alarm, and probability of misdetection. The 
evaluation also included memory and processing time 
requirements.  

The authors of [11] used the variations in the fundamental 
frequency of the GPS signal as input features of different ML 
models. The extracted features are jitter and shimmer based 
along with the frequency modulation. The authors performed 
a K-fold analysis on the selected models. Results showed that 
the SVM model with a polynomial kernel function is the best-
performing model. Despite the acceptable results these 
techniques showed, they still suffer from some critical 
limitations, such as high bias rates, overfitting, low detection 
rates, and difficulty interpreting the results. Therefore, a 
holistic solution is needed to easily interpret the results and 



deal with overfitting issues. For this purpose, DL techniques 
have been proposed to provide acceptable results, and reduce 
the bias rate, and overfitting issues.  

To address the concerns raised above, numerous studies in 
the literature investigate the performance of DL models in 
detecting cyberattacks in different cyber-physical systems [3]. 
To this end, few works have focused on GPS spoofing 
detection using DL models. For instance, the authors of [12] 
proposed a GPS replay attack detection method based on a 
supervised DL model, namely ANN. In this study, the authors 
showed the effect of several extracted features from the 
received signal on detection performance. The best results 
were obtained by combining five parameters, namely satellite 
vehicle number, pseudo-range, carrier phase, Doppler shift, 
and signal-to-noise ratio. In [13], the authors retrieved three 
signal properties as input features of a supervised DL model, 
namely a multi-layer neural network. These three input 
features are early-late phase, delta, and signal level. The 
proposed method has been evaluated using software-based 
GPS simulators.  

In [14], the authors proposed another supervised DL 
model, namely LSTM that monitors the derived PVT 
information from the GPS signal using this DL model. In [15], 
the authors used a supervised CNN-based model, namely 
Residual Neural Network to detect GPS spoofing attacks, 
using the satellite imagery matching approach. The DL-based 
detection techniques discussed above have shown an 
improvement in performance compared to ML-based 
detection techniques, especially in terms of decreasing the 
false alarm rate. However, they still suffer from a high 
misdetection rate. This can be due to a variety of reasons, such 
as the complexity of the detection task, the quality and 
quantity of the training data, and the specific architecture and 
hyperparameters of the DL models.   

In this paper, DL-supervised learning models are classified 
into three classes, Artificial Neural Network (ANN), 
Convolutional Neural Network (CNN), and Recurrent Neural 
Network (RNN)-based models. From each of the categories, 
these models are selected: Deep Neural Network (DNN), U 
Neural Network (U-Net), and Long Short-Term Memory 
(LSTM) to train, test, and validate the given data, respectively. 
In addition, we evaluated the models in terms of Accuracy, 
Detection Rate, Misdetection Rate, and False Alarm Rate. The 
paper also adds the Training Time per Sample, Prediction 
Time, and Memory Size to the evaluation criteria to address 
the issue of SWaP consideration. In short, the important 
contributions of this paper are summarized as follows: 

• Introducing a classification of supervised DL models, 

• Developing three supervised DL models, namely DNN, U-
Net, and LSTM to detect and classify GPS spoofing attacks 
on UAVs, 

• Providing a comprehensive comparison of these models in 
terms of Accuracy, Detection Rate, Misdetection Rate, 
False Alarm Rate, Training Time per Sample, Prediction 
Time, and Memory Size, 

• Studying, comparing, and discussing the result of this 
study with other studies in literature. 

This paper's remainder is organized as follows: Section II 
discusses the materials used in this study. Section III 
highlights the results, while Section IV outlines the 
conclusion.  

II. MATERIALS 

The corresponding dataset used for training and testing 

the DL models, described in [9], is briefly reviewed in this 

section, followed by a discussion of the data pre-processing 

techniques, classification models, and evaluation metrics 

used in this work. 

A. Dataset 

The dataset used in this work was developed and 

generated by the authors of [9]. The dataset, as shown in 

Table I, has 13 extracted features from three different GPS 

receiver stages. Table I depicts the abbreviations of the 

features along with their brief explanations. The dataset 

contains three simulated GPS spoofed attacks, namely 

simplistic, intermediate, and sophisticated attacks. The 

dataset also includes normal GPS signals collected using a 

software-defined radio in different scenarios. A binary class 

consisting of GPS spoofing attacks and normal GPS signal 

instances is considered for training, testing, and validating the 

results to offer accurate predictions and easy interpretation. It 

is worth mentioning that the used dataset consists of 14000 

samples, including 7000 attacks and 7000 normal traffic 

samples.  

TABLE I. LISTS OF THE FEATURES IN THE CORRESPONDING DATASET. 

Feature Abbreviations Descriptions 

Satellite 

Vehicle 

Number   

PRN  Unique identification number of the 

satellite 

The Carrier 

Doppler  
DO  The Carrier Doppler is the result of the 

satellite and receiver motion. It is 

expressed as a frequency drift  

Pseudo-
Range   

PD  It refers to the distance between the 
satellite and the receiver. It is calculated 

as the difference between transmission 

and reception time. 

Receiver 
Time   

RX  It is the receiver time given in seconds 
after the start of time of the week. 

Time of the 

week   
TOW  The time elapsed in seconds since the 

start of the week given by the satellite 
clock 

Carrier Phase 

Cycles  
CP  It is the beat frequency drift between the 

satellite signal and the receiver generated 

carrier.  

Early 
Correlator   

EC  It is at half chip spacing before prompt 
correlator 

 Late 

Correlator   
LC  It is at half chip spacing after prompt 

correlator 

 Prompt 
Correlator  

PC  The measurement made during coarse 
acquisition code tracking.  

Prompt in 

phase 

correlator   

PIP  It is the in-phase component of PC  

Prompt 
Quadrature   

PQP  It is the quadrotor component of PC  



Tacking 

Carrier 

Doppler  

TCD  It refers to the continuous estimate of the 

carrier doppler at the tracking loop 

Carrier to 

noise Ratio   
 C/N0  The ratio of the received carrier strength 

and the noise 

 

B. Data Pre-processing 

In this study, the data pre-processing step refers to the 

necessary techniques performed before training the models 

on the corresponding data. There has been some discussion 

about how GPS redundancy could affect the performance of 

AI models [16]. For this reason, it is important to identify the 

correlated features that need to be discarded from the dataset. 

According to the results in [9], two features, RX and TCD, 

which are substantially correlated with TOW and CP, 

respectively, are removed. As a result, the remaining 11 

features, namely PRN, DO, PD, TOW, CP, EC, LC, PC, PIP, 

PQP, and C/N0, are considered for model training, testing, 

and validation.  

The second step of data pre-processing is data imputation. 

In this stage, missing values are imputed to the corresponding 

data. In this work, mode imputation is employed, which 

replaces the missing value with the highest frequency. 

Finally, in the third step, data normalization is performed 

using the Min-Max Scalers, which subtracts the minimum 

value (excluding the outliers) in the feature and divides it by 

its range. It is worth mentioning that the given data was 

balanced, hence, no technique was required to balance the 

classes [17-19]. 

C. Classification Models 

Fig. 1 provides a schematic overview of the supervised 

DL models along with their categories. As one can observe, 

the supervised DL models are classified into three categories, 

namely Artificial Neural Network (ANN), Convolutional-

Neural Network (CNN), and Recurrent Neural Network 

(RNN)-based models. A short description of these models is 

provided as follows:  

 
Fig. 1. Classification of Supervised Deep Learning Models. 

C.1.Artificial Neural Network 

One of the most well-known DL approaches is ANN-

based models.  These DL models consist of multiple 

processing elements, namely inputs, and outputs that perform 

based on the pre-defined activation functions, which makes 

them simple and efficient. Although their learning process is 

quite sluggish, DL models in this category often yield good 

detection rates. In this study, a DNN model is applied as a 

candidate in ANN-based models to train, test, and validate the 

results. In general, the DNN consists of an input layer, 

followed by N hidden layers, and an output layer. A simple 

architecture of this model is presented in Fig. 2. The model 

has a value in the input layer equal to the number of features 

in the given dataset. The hidden layers, which are located 

between the input and output layers, perform based on a 

weight function. This function exploits the weights of inputs 

and directs them via an activation function to the output.  

DNN models usually have more than two hidden layers 

(i.e.  N>2). The output layer shows the number of classes.  In 

addition, an important motivation of DNN models is the 

trade-off between accuracy and the complexity in their 

designs This suggests that employing a DNN model with 

more hidden layers can increase computational complexity, 

testing and training time, and rate of convergence [20].   

 
Fig. 2. Architecture of a Deep Neural Network Model. 

C.2. U Neural Network 

CNN-based models are another type of supervised DL. 

These models are commonly used to learn feature spatial 

hierarchies using a backpropagation approach. CNN-based 

models include Residual Neural Networks, Densely 

Connected Neural Networks, Alex Neural Networks, Le-

Neural Networks, and more. Yet, despite their high 

performance, these models have several drawbacks, such as 

requiring massive quantities of data, complex architecture, 

and reduced computing efficiency.  

As a result, a new sort of CNN model, known as the U-

Neural Network (U-Net), has been suggested to address these 

problems. The u-Net architecture was modified and improved 

so that it could perform with fewer samples, resulting in more 

accurate classification and segmentation. This model's U-

shape design is divided into two halves, as seen in Fig. 3, 

Analysis Path (Encoder) and Synthesis Path (Decoder).  

The encoder architecture is composed of numerous 

convolutions, followed by Rectified Linear Unit (ReLu) and 

batch normalization. The Maxpool function minimizes the 

spatial dimension while increasing the number of feature 

channels and cutting the spatial dimension in half during the 



down sampling phase (Conv + ReLu). The encoder is 

followed by the decoder, which consists of an up-sampling 

stage for the feature map, followed by a convolution layer 

(UpConv). The convolution layers, typically followed by the 

ReLu function (Conv + ReLu), can minimize the number of 

features by half. Another convolution is used, along with the 

SoftMax function, at the last layer to map the channels into 

the required number of classes, as shown in Fig. 4. 

Summation (also known as Skip connection) can be used to 

prevent data loss. In fact, without Summation, data loss may 

occur from one layer to another layer. This function performs 

as a bridge between Encoder and Decoder and can be used as 

an effective tool to recover the details of the output class [21]. 

 

Fig. 3. Architecture of U-Net. 

C.3. Long Short-Term Memory 

RNN-based models belong to the supervised DL category 

with chain-like topologies of repeating modules (known as 

cells), and the cells are utilized as memory to retain essential 

data from previous processing stages. The LSTM model is a 

subset of RNN-based models that incorporate interaction per 

cell to learn long-term dependencies and memorize data over 

time. The architecture of this model consists of several blocks 

(or cells) as shown in figure 4. The cell state and the hidden 

layer are both transferred to the next cell in LSTM. The cell 

state is considered to be the main chain of data flow, allowing 

the data to move forward unchanged.   

In this context, the data can be added or removed from the 

cell state through sigmoid gates. In the hidden layer, the input 

weights are applied and directed to the output layer via the 

Sigmoid function. The gates are mostly the same as a layer or 

series of matrix operations, which has multiple individual 

weights [17]. The LSTM model is designed to prevent long-

term dependency problems since it uses some cells as the 

controlling tool for memorizing procedures. The initial step 

in building LSTM is to detect unimportant data and remove 

it from the cell in that step. 

The Sigmoid function is mainly responsible for this 

procedure, taking the output of the last LSTM unit (ℎ) at 

the time t-1 and the current input X at time t. The Sigmoid 

function also decides the parts that are removed from the old 

output. In addition, the forget gate, f, is a vector ranging from 

0 to 1, associated with the number of the cell state, (). 

The Sigmoid layer is responsible for the new data that is 

updated or ignored, whereas the Tanh layer provides a weight 

to the values which they passed and indicates their level of 

importance. These values are multiplied to update the new 

cell state. Then, the new memory is summed up with the old 

memory, resulting in  . In the end, the output can be 

computed based on the output cell state. Therefore, a Sigmoid 

layer decides the part of the cell state that makes it to the 

output, while the output of the Sigmoid gate is multiplied by 

the new data by the Tanh layer from the cell state with a 

ranging value between –1 and 1 [22]. 

 
Fig. 4. Architecture of LSTM. 

D. Evaluation Metrics 

To evaluate and compare the efficiency of these 

supervised DL models, several evaluation metrics are used, 

namely Accuracy (ACC), Detection Rate (DR), Misdetection 

Rate (MisR), False Alarm Rate (FAR), Training Time Per 

Sample (TTPS), Prediction Time (PT), and Memory Size 

(MR). These metrics are defined as following: 

• ACC: Total number of the correctly classified spoofed 

attacks and normal traffic over the whole number of the 

signals, 

• DR: The rate of correctly classifying malicious signals as 

spoofed signals over the number of the spoofed signals. 

• MisR: The rate of the spoofed signals that are classified 

wrongly as normal traffic over the number of the spoofed 

signals, 

• FAR: The rate of normal traffic that are classified as 

spoofed signals over the number of the non-spoofed 

signals, 

• TTPS: The time that is needed in the training process for 

every sample,  



• PT: The time that is needed for classification, detection, 

and prediction of the samples in the given dataset, 

• MR: The size of the memory during the training, testing, 

and validating of the DL model.  

 

III. RESULTS 

In this study, to evaluate the performance of the selected 

models, we perform a 10-time re-sampling framework. 

Within every split, the corresponding data is partitioned into 

60% training, 20% testing, and 20% validation. During the 

training process of DL models, using hyperparameters 

without any validation or even applying K cross-validation 

techniques may lead to over-fitting issues.  

In addition, we investigate the values of the parameters 

used, which indicate exponential improvements in the 

models’ performance. It is worth mentioning that Adaptive 

Moment Estimation (ADAM) optimizer and activation 

functions, namely Sigmoid and ReLu are used during the 

training, testing, and validating of the DL models. As we 

discussed, three supervised DL models, namely DNN, U-Net, 

and LSTM are used. Later, the classification models are 

trained, and the models are evaluated in terms of the selected 

metrics. These simulations are performed using intel core i7-

10750H, 16.0 GB memory, and CPU of 2.60 GHz, for 200 

Epochs and a batch size of 10.  The results of these models 

are provided in Figure 6, and Tables II and III.  

Fig. 5 and Table II represent the outcomes of our 

evaluation for supervised DL models in terms of the selected 

metrics.  We observe that overall, the highest-performance 

model is obtained by U-Net, followed by DNN, and LSTM. 

It is noticed that the detection of GPS spoofing attacks using 

the U-Net model achieves a respectable testing accuracy of 

98.80%, a probability of detection of 98.85%, a misdetection 

of 1.15%, a false alarm of 1.8%, a training time per sample of 

0.22 seconds, a prediction time of 0.2 seconds, and a memory 

size of 199.87 MiB.  In addition to this model, the DNN 

model provides satisfactory results and slightly lower 

performance than the U-Net model.  

The DNN model achieves a testing accuracy of 94.3%, a 

probability of detection of 95.6%, a misdetection of 4.4%, a 

false alarm of 6.2%, a training time per sample of 0.40 

seconds, a prediction time of 0.28 seconds, and a memory 

size of 235.19 MiB. In contrast, as shown in the following 

figure and table, the LSTM model has a lower testing 

accuracy of 92.9 % and a probability of detection of 93.1%, 

a higher misdetection of 6.9%, a false alarm of 8.2%, a 

training time per sample of 0.95 seconds, a prediction time of 

0.25 seconds, and a memory size of 360.76 MiB. Similar 

observations can be found for training data on these DL 

models.   

 

To summarize, from Figure 6, the accuracy and 

probability of detection of these selected supervised DL 

models reached at least 92% and above, while their 

probability of misdetection and false alarm are at most 8.2% 

and less. The best evaluation performance is obtained by the 

U-Net, although the LSTM is observed as the lowest 

performance model.  Although the LSTM model is a 

powerful DL technique and performs well in time series data, 

it does not exceed the performance of the U-Net or DNN 

model. It is also worth mentioning that the training 

performance of these models is slightly better than their 

testing performance of them. In general, U-Net is a model that 

is spatially and temporally deep. Thus, according to our 

simulation results, the U-Net model has a high flexibility to 

be applied for detecting and classifying GPS attacks on 

UAVs.  

 
TABLE II. TRAINING AND PREDICTION TIME AND MEMORY SIZE 

UTILIZATION PER SAMPLE FOR SUPERVISED DL MODELS. 

 

As it is clearly outlined in Table II, all timing and memory 

usage metrics of these supervised models are achieved good 

results, whereas the U-Net provides an excellent efficiency in 

terms of these metrics and can be considered an efficient DL 

model among other supervised models. Moreover, since U-

Net consists of two parts, encoder and decoder, it can encode 

and extracts features and decode the results, resulting in a 

more efficient model, compared to other models.  

In addition to these results, we provide a comprehensive 

comparison between our simulation results and other studies 

in literature. Table III provides a summary of our proposed 

models and current studies using DL models in detecting and 

classifying GPS spoofing attacks on UAVs.  It is noticeable 

that most of the studies in literature only focused on 

supervised DL models; however, they discarded any 

investigation on detecting GPS Spoofing attacks on UAVs 

using unsupervised DL models. In addition, most of these 

studies used limited evaluation metrics, resulting in difficult 

interpretation of their results. 

For instance, the authors of [13] proposed a DL model, 

namely an artificial neural network, to detect GPS spoofing 

attacks; however, they only used two metrics, namely True 

detection rate and detection time. According to their results, 

the proposed approach provided a high rate of true detection, 

although the detection time is significantly higher than the 

achieved results by the U-Net model. Also, in another study 

[12], the authors used an artificial neural network with high  

Model  Training Time Per 

Sample (Sec)  

Prediction Time  

(Sec)  
Memory 

Size  

(MiB)  

DNN  0.40  0.18  235.19  

U-Net  0.22  0.2  199.87  

LSTM  0.95  0.25  360.76  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE III.  CURRENT STUDIES IN DETECTING GPS SPOOFING ATTACKS 

USING DL MODELS. 

Ref.  Used Model(s)  Results  

 

 

 

Proposed

 

 

 

U-Net 

Accuracy:  98.80%, 

Probability of detection: 98.85%, 

Probability of misdetection: 1.15%, 

Probability of false alarm: 1.8%, 

Training time per Sample: 0.22 Sec, 

Prediction time:0.2 Sec, 

Memory size: 199.87 MiB. 

 

[12] 

 

Artificial Neural 
Network 

Accuracy:  98.3%, 

Probability of detection: 99.2%, 
Probability of misdetection: 0.8%, 

Probability of false alarm of 2.6%. 

[13] Artificial Neural 

Network 

True detection Probability: 99.35%, 

Detection time: 2.89 Sec. 

 
 

[15] 

 

 
 

Residual Neural 

Networks 

Accuracy: 89.5%, 
Precision: 85.5%, 

Recall:95.4%, 

Error Rate: 0.105, 
F1-Score: 90.2%. 
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accuracy, detection rates, and low false alarm and 

misdetection rates.  Despite these studies in the literature 

providing acceptable results, the lack of investigation into the 

efficiency of the proposed model makes it hard to compare 

these models with the other studies, including our study in the 

literature. It is also worth mentioning that this field of study 

is at an early stage, and the results in the literature still need 

to be improved. 

 

Therefore, to address these challenges, this study fills the 

gap by comparing the performance of different supervised 

DL techniques from various categories, which outperform the 

existing works. To demonstrate the efficiency of the proposed 

models, we used timing and memory metrics. As a result, the 

U-Net provides satisfactory results, leading to a high 

potential to classify GPS spoofing attacks and normal traffic. 

 

 
A) Results on Training Data. 

 

 
B) Results on Testing Data. 

 

Fig. 5.  Results of the Supervised Models on A) Training and B) Testing Data in terms of Accuracy, Probability of Detection, 

Misdetection, and False Alarm. 



IV. CONCLUSION 

Interest in detecting and classifying GPS spoofing attacks 

on UAVs has been exponentially increased in the last few 

years. For this purpose, several studies have been conducted 

to detect these vulnerabilities; however, this field of study 

still is at an early stage and needs to address the critical 

challenges, such as high misdetection and false alarm rates. 

This study aims to investigate the performance of different 

supervised and deep learning models in detecting GPS 

spoofing attacks on UAVs. The supervised deep learning 

models are classified into three types, namely artificial neural 

networks, convolutional neural networks, and recurrent 

neural networks. In these categories, three models of Deep 

Neural Network, U-Neural Network, and Long Short-term 

Memory are selected for training, testing, and validating the 

models. The evaluation was performed using seven metrics: 

accuracy, detection rate, misdetection rate, false alarm rate, 

training time per sample, prediction time, and memory size. 

The simulation results indicated that the U-Neural Network 

outperforms the other models in terms of these metrics.  
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