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Abstract— The Orphanet Rare Disease Ontology (ORDO) 

provides a structured vocabulary encapsulating rare diseases. 

Downstream applications of ORDO depend on its accuracy to 

effectively perform their tasks. In this paper, we implement an 

automated quality assurance pipeline to identify missing is-a 

relations in ORDO. We first obtain lexical features from concept 

names. Then we generate related and unrelated feature sharing 

concept-pairs, where a feature sharing concept-pair can further 

generate derived term-pairs. If an unrelated and related feature 

sharing concept-pair generate the same derived term-pair, then 

we suggest a potential missing is-a relation between the unrelated 

feature sharing concept-pair. Applying this approach on the 2022-

06-27 release of ORDO, we obtained 705 potential missing is-a 

relations. Leveraging external ontological information in the 

Unified Medical Language System, we validated 164 missing is-a 

relations. This indicates that our approach is a promising way to 

audit is-a relations in ORDO, even though further domain expert 

evaluation is still needed to validate the remaining potential 

missing is-a relations identified. 

Keywords—Rare diseases, Orphanet, Orphanet rare disease 

ontology, ontology quality assurance 

I. INTRODUCTION  

According to the Orphan Drug Act, a rare disease is a 
disease or a condition that affects less than 200,000 people in 
the United States [1]. Over 30 million individuals in the US are 
affected by more than 7,000 rare diseases. Many can be life-
threatening and without any treatments. Developing treatments 
strategies is a challenge due to various reasons such as 
insufficient information and inability to conduct clinical trials 
due to smaller number of patients [2]. 

In 1997, Orphanet was established in France to collect 
scarce information on rare disease in order to improve 

diagnosis, care, and treatment. Orphanet together with the 
European Bioinformatics Institute jointly developed the 
Orphanet Rare Disease Ontology (ORDO) capturing the 
relationships between rare diseases, genes and other related 
information. ORDO also contains links to other biomedical 
ontologies, databases, and classification systems. ORDO is 
updated and released every six months [3]. Figure 1 shows the 
general hierarchy of ORDO. 

The number of investigations leveraging big data in 
biomedicine is increasing in a rapid manner due to the easy-to-
use tools available and the reduced computational costs 
associated with these analyses. However, most biomedical data 
are heterogeneous spread across different systems. This 
heterogeneity makes it difficult to obtain valuable insights from 
this biomedical data. Biomedical ontologies like ORDO 
address this issue by playing a vital role in data integration, 
retrieval, reasoning and decision support by providing a 
common language enabling effective use of biomedical data 
[4]. However, errors existing in biomedical ontologies could be 
problematic in their effective use and may bring about 
questions about their trustworthiness. Quality control pipelines 
are generally included as part of their management lifecycle to 
identify and fix errors. However, similar to Software Quality 
Assurance, it is impossible to identify all errors at the time of a 
release. Many biomedical ontologies rely on user feedback as 
part of its quality assurance effort. The size of modern 
biomedical ontologies and their complexity has become a 
barrier in utilizing manual strategies to identify errors. Hence, 
the development of automated or semi-automated methods has 
become a pressing need in Ontology Quality Assurance.  

Identifying errors in a biomedical ontology is a discovery-
oriented task. Methods developed attempt to discover different 
types of quality issues in an ontology. Different strategies have 
been explored for this purpose [5]. For example, abstraction 
networks are a widely used quality assurance technique based 
on graph summarization [6]–[9]. An abstraction of the graph 
structure is obtained by grouping terms in an ontology based on 
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certain criteria. Abstraction network-defined characteristics 
together with manual review is used to identify errors. He et al. 
has investigated differences between hierarchies of two 
ontologies to import concept from one ontology to another [10], 
[11]. Agrawal et al. has explored rule-based and machine 
learning-based strategies to identify lexically similar concepts 
that should be modeled similarly. Different modelling 
strategies among such lexically concepts may potentially 
denote errors [12]–[14]. In previous work, we have investigated 
non-lattice subgraphs (graph fragments that violate the 
desirable lattice property) to uncover missing hierarchical 
relations and concepts in SNOMED CT, the National Cancer 
Institute (NCI) thesaurus, and Gene Ontology [15]–[24]. In 
addition, we have introduced an automated, lexical-based 
quality assurance pipeline where hierarchically related and 
unrelated concept-pairs with the same difference are leveraged 
to identify missing and erroneous hierarchical relations in an 
ontology [25]–[28]. 

In this paper, we adapt (and implement) this automated 
quality assurance pipeline to ORDO for identification of missing 
is-a relations. According to our knowledge, this work is the first 
effort towards developing a systematic automated approach for 
quality assurance of ORDO. 

The rest of the paper is organized as follows. Section II 
discusses the detailed steps of the automated quality assurance 
pipeline. Section III shows the results obtained applying the 
approach on ORDO. Section IV contains a discussion of the 
results, limitation of the approach and future directions. Section 
V concludes this paper. 

II. METHODS 

In this work, we use the OWL (Web Ontology Language) 
release file of the 2022-06-27 release of ORDO. We first extract 
the concept names and relations from the OWL file with 
Owlready2: a python package for ontology-oriented 
programming [29]. Our fully automated pipeline is based on 
lexical features of concept names to suggest missing is-a 
relations in ORDO. Our method leverages derived term-pairs; 
which denotes the lexical differences between a pair of concepts. 
If the same derived term pair is observed among a hierarchically 
related and unrelated concept-pairs that share lexical feature(s), 
we suggest a potential missing is-a relation between the 
unrelated concept-pair. We use the Unified Medical Language 
System (UMLS) as a source to validate the identified missing is-
a relations. The detailed steps of the approach are as follows. 

Figure 1. The hierarchy of the 2022-06-27 release of ORDO 



 

 

A. Obtaining lexical features of concept 

Each concept in ORDO has a name. For example, the 
concept with the ORDO identifier Orphanet:98497 has the 
name “Genetic peripheral neuropathy”. We obtain a set of 
lexical features from these concept names by performing the 
following operations on the concept names: 

• converting the name to lower case 

• tokenizing the name to words 

• stemming the words 

• removing duplicated stemmed words. 
 

 
Figure 2. Related feature sharing concept-pair “Aggressive primary 

cutaneous B-cell lymphoma” (Orphanet:178554), “Aggressive B-cell 

non-Hodgkin lymphoma” (Orphanet:300846) and unrelated feature 

sharing concept-pair “Primary cutaneous lymphoma” 

(Orphanet:542), “Non-Hodgkin lymphoma” (Orphanet:547). Both 

the concept-pairs derive the same DTP: ({‘cutan’, ‘primari’}, {‘non-

hodgkin’}). 

For instance, for the concept “Genetic peripheral neuropathy” 
(Orphanet:98497), the lexical features would be {‘genet’, 
‘peripher’, ‘neuropathi’}. Note that as can be seen from the 
example, word stems are not always real words. Stemming is 
performed in this work to normalize different variations of the 
same word. We use the Snowball Stemmer with the python 
natural language processing library Natural Language Toolkit 
(NLTK) for stemming [30].  

B. Extracting feature sharing concept-pairs 

A pair of concepts is considered to be a feature sharing 

concept-pair if they have at least a one common lexical feature. 

For instance, consider the concepts “Genetic eye tumor” 

(Orphanet:183619) with lexical features {‘genet’, ‘eye’, 

‘tumor’} and “Rare genetic eye disease” (Orphanet:101435) 

with lexical features {‘rare’, ‘genet’, ‘eye’, ‘diseas’}. These 

two concepts will form a feature sharing concept-pair as they 

have the common lexical features ‘genet’ and ‘eye’. 

Feature sharing concept-pairs are further divided into two 

categories: related and unrelated. If a feature sharing concept-

pair is connected by a direct or indirect is-a relation, it would 

be considered as related and if not it would be considered as 

unrelated. For example, the feature sharing concept-pair 

“Genetic eye tumor” (Orphanet:183619) and “Rare genetic eye 

disease” (Orphanet:101435) is related since there exists a 

relation such that:  
 

  “Genetic eye tumor” is-a “Rare genetic eye disease”. 

 
However, the feature sharing concept-pair “Neuroendocrine 

tumor of the colon” (Orphanet:100080) and “Rare epithelial 

tumor of colon” (Orphanet:423991) is considered to be 
unrelated since there does not exists a direct or indirect is-a 

relation between them. 

C. Extracting derived term pairs from feature sharing 

concept-pairs 

Let L(A) and L(B) represent lexical features of feature 
sharing concepts A and B respectively. A Derived Term Pair 
(DTP) obtained by this feature sharing concept-pair is defined 
as: 

,  =  − ,  −  
 

 
Figure 3. Related feature sharing concept-pair “Pure hereditary 

spastic paraplegia” (Orphanet:102012). “Hereditary spastic 

paraplegia” (Orphanet:685) and unrelated feature sharing concept-

pair “Pure mitochondrial myopathy” (Orphanet:254854), 

“Mitochondrial myopathy” (Orphanet:206966). Both the concept-

pairs derive the same DTP: ({‘pure’}, {}). 

In other words, a DTP is constructed by removing the 
common lexical features from the lexical features of each 
concept. For instance, the related feature sharing concept-pair 
“Aggressive primary cutaneous B-cell lymphoma” 
(Orphanet:178554), with lexical features: {‘aggress’ ‘primari’ 
‘cutan’ ‘b-cell’ ‘lymphoma’} and “Aggressive B-cell Non-

Hodgkin lymphoma” (Orphanet:300846) with lexical features 
{‘aggress’ ‘b-cell’ ‘non-hodgkin’ ‘lymphoma’} in Figure 2 has 
the common lexical features ‘aggress, ‘b-cell’, and ‘lymphoma’. 
Removing these from both sets of lexical features would yield 
the DTP: ({‘cutan’, ‘primari’}, {‘non-hodgkin’}). 

Note that the DTP is directional, i.e., ,  ≠

, . In addition, in situations where the lexical features 

of one concept is a subset of another, i.e.,  ⊂ , then 
one set of the DTP would be an empty set. For example, the 
unrelated feature sharing concept-pair “Pure mitochondrial 

myopathy” (Orphanet:254854), “Mitochondrial myopathy” 
(Orphanet:206966) in Figure 3 would generate the DTP: 
({‘pure’}, {}) since the lexical features of Orphanet:206966 is a 
subset of Orphanet:254854. 

If  = , then, the DTP would be two empty sets. We 
would not consider such DTPs in this work. In addition, if both 
the sets in a DTP are all stop words, such DTPs are ignored as 
well. The stop words considered in this work are: ‘with’, ‘of’, 
‘and’, ‘or’, ‘and/or’, ‘no’, ‘not’, ‘without’, ‘due to’, ‘secondary 



 

 

to’, ‘except’, ‘by’, ‘after’, ‘able’, ‘removal’, ‘replacement’, 
‘NOS’. 

D. Identifying missing is-a relations 

If a related feature sharing concept-pair (A, B) and an 
unrelated feature sharing concept-pair (C, D) generate the 
same DTP, i.e.,  

,  = ,  

then, this is considered to be denoting a missing is-a relation 
between C and D such that C is-a D. 

For example, in Figure 2, the related feature sharing concept-
pair “Aggressive primary cutaneous B-cell lymphoma” 
(Orphanet:178554), “Aggressive B-cell non-Hodgkin 
lymphoma” (Orphanet:300846) generate the DTP: ({‘cutan’, 
‘primari’}, {‘non-hodgkin’}). The same DTP is also obtained by 
the unrelated feature sharing concept-pair sharing concept-pair 
“Primary cutaneous lymphoma” (Orphanet:542), “Non-
Hodgkin lymphoma” (Orphanet:547). Therefore, our approach 
suggests the missing is-a relation:  

Orphanet_542 is-a Orphanet_547 

between the unrelated feature sharing concept-pair. 

Similarly, in Figure 3, the DTP ({‘pure’}, {}) is obtained 
from the related feature sharing concept-pair “Pure hereditary 
spastic paraplegia” (Orphanet:102012) and “Hereditary spastic 
paraplegia” (Orphanet:685) as well as the unrelated feature 
sharing concept-pair “Pure mitochondrial myopathy” 
(Orphanet:254854), “Mitochondrial myopathy” 
(Orphanet_206966). Therefore, in this instance, we suggest: 

Orphanet:254854 is-a Orphanet_206966 

E. Validating identified missing is-a relations 

The identified cases are potentially missing is-a relations 
needing to be further validated to confirm their correctness. We 
leverage the Unified Medical Language System (UMLS) which 
integrates and links term from many biomedical terminologies. 
The basic building blocks of the UMLS are atoms which are 
concept names from different source terminologies. Each atom 
will have an atom unique identifier (AUI). A UMLS concept 
with a Concept Unique Identifier (CUI) aggregates all the 
atoms that represent a single meaning [31], [32]. For example, 
the UMLS concept “Fracture of carpal bone” (with CUI 
C0016644) is linked to atom “Fracture of carpal bone” (with 
AUI A3023601) from SNOMEDCT and atom “Fractured 

carpal bone” (with AUI A32452940) from Human Phenotype 
Ontology.  

To validate a potential missing is-a relation, we first try to 
map the two concepts to UMLS atoms. Note that what we 
perform is a normalized map where the ORDO concepts in the 
potential missing is-a relations and the UMLS atoms are 
normalized. The normalization process includes lowercase 
conversion, lemmatization, stop word removal, and synonym 
replacement as performed in one of our previous works [33]. 

After obtaining mappings, we further check if UMLS 
records a direct or indirect hierarchical relation between the 
mapped atoms. If so, the missing is-a relation is considered to 
be validated.  

III. RESULTS 

The 2022-06-27 release of ORDO contains 15,302 concepts. 
Applying the above discussed automated pipeline on this 
version of ORDO, we obtained 705 potential missing is-a 

relations. Table 1 shows the top 10 DTPs that identified the 
most number of potential missing is-a relations. For example, 
the DTP ({‘genet’}, {}) identified 154 potential missing is-a 

relations. 
 

Table 1. The 10 DTPs that identified the most number of potential 

missing is-a relations. 

DTP Number of potential missing is-a 

obtained 

({genet}, {}) 154 

({type, 1}, {}) 58 

({type, 2}, {}) 57 

({type, 3}, {}) 32 

({genet}, {rare} 26 

({autosom, domin}, {}) 23 

({x-link}, {}) 17 

({recess, autosom}, {}) 17 

({isol}, {}) 10 

({juvenil}, {}) 10 

A. Validation of potential missing is-a relations 

Out of the 705 potential missing is-a relations identified by the 
approach, 164 were validated through UMLS. These 164 were 
validated through 210 distinct UMLS atom-pairs meaning the 
concepts can be mapped to and relations validated by multiple 
atom-pairs. For example, our method suggested a missing is-a 

relation between the concepts “Chronic endophthalmitis” 
(Orphanet:279891) and “Endophthalmitis” (Orphanet:199323). 
Orphanet:279891 was mapped to atom “Chronic 

endophthalmitis” (with AUI A2892272) from SNOMED CT 
and the atom “chronic endophthalmitis” (with AUI 
A14149447) from MEDCIN. In addition, “Endophthalmitis” 
(Orphanet:199323) was mapped to both the atoms 
“Endophthalmitis” (with AUI A2881177) from SNOMED CT 
and the atom “endophthalmitis” (with AUI A13899807) from 
MEDCIN. UMLS records is-a relations: A2892272 is-a 

A2881177 in the SNOMED CT and A14149447 is-a 

A13899807 in MEDCIN. Therefore, this missing is-a relations 
has been validated through both SNOMED CT and MEDCIN. 
     Table 2 shows 10 validated cases of missing is-a relations 
out of the 164 that were validated in total. For instance, the 
relation “Primary cutaneous lymphoma” (Orphanet:542) is-a 

“Non-Hodgkin lymphoma” (Orphanet:547) is a valid missing 
is-a relation. 
 
 
 



 

 

Table 2. Ten examples of valid missing is-a relations identified by 

our method. 

Descendant Ancestor 

Primary cutaneous 

lymphoma (Orphanet:542) 
Non-Hodgkin lymphoma 

(Orphanet:547) 

Von Willebrand disease type 

3 (Orphanet:166096) 
Von Willebrand disease 

(Orphanet:903) 

Autosomal dominant 

Robinow syndrome 

(Orphanet:3107) 

Robinow syndrome 
(Orphanet:97360) 

Bilateral generalized 

polymicrogyria 
(Orphanet:208447) 

Bilateral polymicrogyria 
(Orphanet:268940) 

IgG4-related systemic 

disease (Orphanet:596448) 
IgG4-related disease 
(Orphanet:284264) 

Peeling skin syndrome type 

C (Orphanet:263558) 
Peeling skin syndrome 
(Orphanet:817) 

Pseudohypoaldosteronism 

type 2A (Orphanet:88938) 
Pseudohypoaldosteronism type 

2 (Orphanet:757) 

Congenital stromal corneal 

dystrophy 

(Orphanet:101068) 

Stromal corneal dystrophy 

(Orphanet_98626) 

Acquired motor neuron 

disease (Orphanet:98506) 
Motor neuron disease 

(Orphanet:98503) 

Transient congenital 

hypothyroidism 

(Orphanet:178045) 

Congenital hypothyroidism 

(Orphanet:442) 

 

IV. DISCUSSION 

In this paper, we introduced an automated pipeline to 
identify missing is-a relations in ORDO. Our approach is based 
on the Difference Term Pair (DTP) which holds unique lexical 
features of a pair of concepts. From purely a lexical perspective, 
in a related feature sharing concept-pair, the DTP holds the 
information that makes the relation hold. This is because the 
common lexical features removed from the DTP does not 
contribute to the relation as they exist in both the concepts. 
Therefore, when an unrelated concept-pair exhibit the same 
DTP, we consider this as evidence to the potential existence of 
a relation. 

 
Table 3. The distance between the mapped atoms for the valid 

missing is-a relations. 

Distance Number of valid 

missing is-a relations 

1 160 

2 2 

3 2 

 

A. The distance between the concepts in the valid missing is-a 

relations 

For the 164 validated missing is-a relations, we further 
checked the distance between their mapped atoms in the 
respective source terminologies which they were validated 
from. The distance was measured as the number of direct is-a 

relations linking the two atoms. Table 3 shows the distribution 

of the distances. As can be seen, a vast majority of cases are 
with a distance of 1 which means that they are direct is-a 

relations in the source terminologies. Direct is-a relations are 
generally easily fixable than indirect ones. To fix an indirect 
relation, intermediate missing relations need to be identified 
which could be complicated. 

B. Comparison with related work 

The approach discussed in this paper is an adaptation of a 
previously introduced approach to identify missing is-a 

relations in several biomedical terminologies including Gene 
Ontology and SNOMED CT [25-28]. However, the difference 
between this approach and the previous approaches is the usage 
of stemming on the lexical features which further normalized 
the lexical features. 

C. Limitations and future work 

As lexical features of concepts, we only considered the 
stemmed set of words in their names. However, additional 
attributes of concepts such as lexical features of the synonyms 
or ancestors could be considered. These can not only be 
obtained from ORDO, may also be obtainable from external 
ontological sources in UMLS. 

The fully automated UMLS-based validation is quick and 
efficient since it does not require manual review. In addition, it 
is also able to validate a considerable number of missing is-a 

relations (23%). However, with this type of validation, we are 
not able to measure the precision of the method. Therefore, we 
propose to perform a manual review of a random sample of 
potential missing is-a relations to properly quantify the 
performance of the approach. 

We will submit the 164 validated potential missing is-a 

relations to ORDO developers so that after internal review, they 
can make necessary changes to a future release of the ontology 
based on our findings. 

V. CONCLUSION 

In this paper, we implemented a fully automated lexical 
approach to identify missing is-a relations in the Orphanet Rare 
Disease Ontology. Our method included obtaining lexical 
features from concept names and generating feature sharing 
concept-pairs. The feature sharing concept-pairs further 
generated derived term-pairs. If the same derived term-pair 
could be generated from both a related and an unrelated feature 
sharing concept-pair, then we suggested a potential missing is-

a relation between the unrelated feature sharing concept-pair. 
Applying this approach to the 2022-06-27 release of the 
Orphanet Rare Disease Ontology, we obtained 705 potential 
missing is-a relations. Leveraging the is-a relations of external 
ontologies in the Unified Medical Language System, we 
validated 164 missing is-a relations. This approach seems to 
show promise in auditing is-a relations in the Orphanet Rare 
Disease Ontology, though further manual review is needed to 
confirm and validate the rest of the potential missing is-a 

relations that could not be validated automatically. 
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