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Abstract— The Orphanet Rare Disease Ontology (ORDO)
provides a structured vocabulary encapsulating rare diseases.
Downstream applications of ORDO depend on its accuracy to
effectively perform their tasks. In this paper, we implement an
automated quality assurance pipeline to identify missing is-a
relations in ORDO. We first obtain lexical features from concept
names. Then we generate related and unrelated feature sharing
concept-pairs, where a feature sharing concept-pair can further
generate derived term-pairs. If an unrelated and related feature
sharing concept-pair generate the same derived term-pair, then
we suggest a potential missing is-a relation between the unrelated
feature sharing concept-pair. Applying this approach on the 2022-
06-27 release of ORDO, we obtained 705 potential missing is-a
relations. Leveraging external ontological information in the
Unified Medical Language System, we validated 164 missing is-a
relations. This indicates that our approach is a promising way to
audit is-a relations in ORDO, even though further domain expert
evaluation is still needed to validate the remaining potential
missing is-a relations identified.

Keywords—Rare diseases, Orphanet, Orphanet rare disease
ontology, ontology quality assurance

I. INTRODUCTION

According to the Orphan Drug Act, a rare disease is a
disease or a condition that affects less than 200,000 people in
the United States [1]. Over 30 million individuals in the US are
affected by more than 7,000 rare diseases. Many can be life-
threatening and without any treatments. Developing treatments
strategies is a challenge due to various reasons such as
insufficient information and inability to conduct clinical trials
due to smaller number of patients [2].

In 1997, Orphanet was established in France to collect
scarce information on rare disease in order to improve
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diagnosis, care, and treatment. Orphanet together with the
European Bioinformatics Institute jointly developed the
Orphanet Rare Disease Ontology (ORDO) capturing the
relationships between rare diseases, genes and other related
information. ORDO also contains links to other biomedical
ontologies, databases, and classification systems. ORDO is
updated and released every six months [3]. Figure 1 shows the
general hierarchy of ORDO.

The number of investigations leveraging big data in
biomedicine is increasing in a rapid manner due to the easy-to-
use tools available and the reduced computational costs
associated with these analyses. However, most biomedical data
are heterogeneous spread across different systems. This
heterogeneity makes it difficult to obtain valuable insights from
this biomedical data. Biomedical ontologies like ORDO
address this issue by playing a vital role in data integration,
retrieval, reasoning and decision support by providing a
common language enabling effective use of biomedical data
[4]. However, errors existing in biomedical ontologies could be
problematic in their effective use and may bring about
questions about their trustworthiness. Quality control pipelines
are generally included as part of their management lifecycle to
identify and fix errors. However, similar to Software Quality
Assurance, it is impossible to identify all errors at the time of a
release. Many biomedical ontologies rely on user feedback as
part of its quality assurance effort. The size of modern
biomedical ontologies and their complexity has become a
barrier in utilizing manual strategies to identify errors. Hence,
the development of automated or semi-automated methods has
become a pressing need in Ontology Quality Assurance.

Identifying errors in a biomedical ontology is a discovery-
oriented task. Methods developed attempt to discover different
types of quality issues in an ontology. Different strategies have
been explored for this purpose [5]. For example, abstraction
networks are a widely used quality assurance technique based
on graph summarization [6]-[9]. An abstraction of the graph
structure is obtained by grouping terms in an ontology based on
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Figure 1. The hierarchy of the 2022-06-27 release of ORDO

certain criteria. Abstraction network-defined characteristics
together with manual review is used to identify errors. He et al.
has investigated differences between hierarchies of two
ontologies to import concept from one ontology to another [10],
[11]. Agrawal et al. has explored rule-based and machine
learning-based strategies to identify lexically similar concepts
that should be modeled similarly. Different modelling
strategies among such lexically concepts may potentially
denote errors [12]-[14]. In previous work, we have investigated
non-lattice subgraphs (graph fragments that violate the
desirable lattice property) to uncover missing hierarchical
relations and concepts in SNOMED CT, the National Cancer
Institute (NCI) thesaurus, and Gene Ontology [15]-[24]. In
addition, we have introduced an automated, lexical-based
quality assurance pipeline where hierarchically related and
unrelated concept-pairs with the same difference are leveraged
to identify missing and erroneous hierarchical relations in an
ontology [25]-[28].

In this paper, we adapt (and implement) this automated
quality assurance pipeline to ORDO for identification of missing
is-a relations. According to our knowledge, this work is the first
effort towards developing a systematic automated approach for
quality assurance of ORDO.

The rest of the paper is organized as follows. Section II
discusses the detailed steps of the automated quality assurance
pipeline. Section III shows the results obtained applying the
approach on ORDO. Section IV contains a discussion of the
results, limitation of the approach and future directions. Section
V concludes this paper.

II. METHODS

In this work, we use the OWL (Web Ontology Language)
release file of the 2022-06-27 release of ORDO. We first extract
the concept names and relations from the OWL file with
Owlready2: a python package for ontology-oriented
programming [29]. Our fully automated pipeline is based on
lexical features of concept names to suggest missing is-a
relations in ORDO. Our method leverages derived term-pairs;
which denotes the lexical differences between a pair of concepts.
If the same derived term pair is observed among a hierarchically
related and unrelated concept-pairs that share lexical feature(s),
we suggest a potential missing is-a relation between the
unrelated concept-pair. We use the Unified Medical Language
System (UMLYS) as a source to validate the identified missing is-
a relations. The detailed steps of the approach are as follows.



A. Obtaining lexical features of concept

Each concept in ORDO has a name. For example, the
concept with the ORDO identifier Orphanet:98497 has the
name “Genetic peripheral neuropathy”. We obtain a set of
lexical features from these concept names by performing the
following operations on the concept names:
converting the name to lower case
tokenizing the name to words
stemming the words
removing duplicated stemmed words.
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Figure 2. Related feature sharing concept-pair “Aggressive primary
cutaneous B-cell lymphoma™ (Orphanet:178554), “Aggressive B-cell
non-Hodgkin lymphoma” (Orphanet:300846) and unrelated feature
sharing concept-pair “Primary cutaneous lymphoma”
(Orphanet:542), “Non-Hodgkin lymphoma” (Orphanet:547). Both
the concept-pairs derive the same DTP: ({ ‘cutan’, ‘primari’}, { ‘non-

hodgkin’}).
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For instance, for the concept “Genetic peripheral neuropathy”
(Orphanet:98497), the lexical features would be {‘genet’,
‘peripher’, ‘neuropathi’}. Note that as can be seen from the
example, word stems are not always real words. Stemming is
performed in this work to normalize different variations of the
same word. We use the Snowball Stemmer with the python
natural language processing library Natural Language Toolkit
(NLTK) for stemming [30].

B. Extracting feature sharing concept-pairs

A pair of concepts is considered to be a feature sharing
concept-pair if they have at least a one common lexical feature.
For instance, consider the concepts “Genetic eye tumor”
(Orphanet:183619) with lexical features {‘genet’, ‘eye’,
‘tumor’} and “Rare genetic eye disease” (Orphanet:101435)
with lexical features {‘rare’, ‘genet’, ‘eye’, ‘diseas’}. These
two concepts will form a feature sharing concept-pair as they
have the common lexical features ‘genet’ and ‘eye’.

Feature sharing concept-pairs are further divided into two
categories: related and unrelated. If a feature sharing concept-
pair is connected by a direct or indirect is-a relation, it would
be considered as related and if not it would be considered as
unrelated. For example, the feature sharing concept-pair
“Genetic eye tumor” (Orphanet:183619) and “Rare genetic eye
disease” (Orphanet:101435) is related since there exists a
relation such that:

“Genetic eye tumor” is-a “Rare genetic eye disease”.

However, the feature sharing concept-pair “Neuroendocrine
tumor of the colon” (Orphanet:100080) and “Rare epithelial
tumor of colon” (Orphanet:423991) is considered to be
unrelated since there does not exists a direct or indirect is-a
relation between them.

C. Extracting derived term pairs from feature sharing
concept-pairs
Let L(A) and L(B) represent lexical features of feature
sharing concepts 4 and B respectively. A Derived Term Pair
(DTP) obtained by this feature sharing concept-pair is defined
as:
DTP(4,B) = ({L(A) — L(B)},{L(B) — L(A)})

Related feature sharing
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r}. z e Hereditary spastic
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Figure 3. Related feature sharing concept-pair “Pure hereditary
spastic paraplegia” (Orphanet:102012). “Hereditary spastic
paraplegia” (Orphanet:685) and unrelated feature sharing concept-
pair “Pure mitochondrial myopathy” (Orphanet:254854),
“Mitochondrial myopathy” (Orphanet:206966). Both the concept-
pairs derive the same DTP: ({ ‘pure’}, {}).

In other words, a DTP is constructed by removing the
common lexical features from the lexical features of each
concept. For instance, the related feature sharing concept-pair
“Aggressive  primary  cutaneous  B-cell  lymphoma”
(Orphanet:178554), with lexical features: {‘aggress’ ‘primari’
‘cutan’ ‘b-cell’ ‘lymphoma’} and “Aggressive B-cell Non-
Hodgkin lymphoma” (Orphanet:300846) with lexical features
{‘aggress’ ‘b-cell’ ‘non-hodgkin’ ‘lymphoma’} in Figure 2 has
the common lexical features ‘aggress, ‘b-cell’, and ‘lymphoma’.
Removing these from both sets of lexical features would yield
the DTP: ({‘cutan’, ‘primari’}, {‘non-hodgkin’}).

Note that the DTP is directional, ie., DTP(A4,B) #
DTP(B, 4). In addition, in situations where the lexical features
of one concept is a subset of another, i.e., L(A) € L(B), then
one set of the DTP would be an empty set. For example, the
unrelated feature sharing concept-pair “Pure mitochondrial
myopathy” (Orphanet:254854), “Mitochondrial myopathy”
(Orphanet:206966) in Figure 3 would generate the DTP:
({‘pure’}, {}) since the lexical features of Orphanet:206966 is a
subset of Orphanet:254854.

If L(A) = L(B), then, the DTP would be two empty sets. We
would not consider such DTPs in this work. In addition, if both
the sets in a DTP are all stop words, such DTPs are ignored as
well. The stop words considered in this work are: ‘with’, ‘of’,
‘and’, ‘or’, ‘and/or’, ‘no’, ‘not’, “‘without’, ‘due to’, ‘secondary



to’, ‘except’, ‘by’, ‘after’, ‘able’, ‘removal’, ‘replacement’,
‘NOS”’.

D. Identifying missing is-a relations

If a related feature sharing concept-pair (4, B) and an
unrelated feature sharing concept-pair (C, D) generate the

same DTP, i.e.,
DTP(A,B) = DTP(C,D)

then, this is considered to be denoting a missing is-a relation
between C and D such that C is-a D.

For example, in Figure 2, the related feature sharing concept-
pair “Aggressive primary cutaneous B-cell Ilymphoma”
(Orphanet:178554),  “Aggressive ~ B-cell ~ non-Hodgkin
lymphoma” (Orphanet:300846) generate the DTP: ({‘cutan’,
‘primari’}, {‘non-hodgkin’}). The same DTP is also obtained by
the unrelated feature sharing concept-pair sharing concept-pair
“Primary cutaneous Ilymphoma” (Orphanet:542), “Non-
Hodgkin lymphoma” (Orphanet:547). Therefore, our approach
suggests the missing is-a relation:

Orphanet 542 is-a Orphanet 547
between the unrelated feature sharing concept-pair.

Similarly, in Figure 3, the DTP ({‘pure’}, {}) is obtained
from the related feature sharing concept-pair “Pure hereditary
spastic paraplegia” (Orphanet:102012) and “Hereditary spastic
paraplegia” (Orphanet:685) as well as the unrelated feature
sharing concept-pair  “Pure  mitochondrial — myopathy”
(Orphanet:254854), “Mitochondrial myopathy”
(Orphanet_206966). Therefore, in this instance, we suggest:

Orphanet:254854 is-a Orphanet 206966

E. Validating identified missing is-a relations

The identified cases are potentially missing is-a relations
needing to be further validated to confirm their correctness. We
leverage the Unified Medical Language System (UMLS) which
integrates and links term from many biomedical terminologies.
The basic building blocks of the UMLS are atoms which are
concept names from different source terminologies. Each atom
will have an atom unique identifier (AUI). A UMLS concept
with a Concept Unique Identifier (CUI) aggregates all the
atoms that represent a single meaning [31], [32]. For example,
the UMLS concept “Fracture of carpal bone” (with CUI
C0016644) is linked to atom “Fracture of carpal bone” (with
AUI A3023601) from SNOMEDCT and atom “Fractured
carpal bone” (with AUI A32452940) from Human Phenotype
Ontology.

To validate a potential missing is-a relation, we first try to
map the two concepts to UMLS atoms. Note that what we
perform is a normalized map where the ORDO concepts in the
potential missing is-a relations and the UMLS atoms are
normalized. The normalization process includes lowercase
conversion, lemmatization, stop word removal, and synonym
replacement as performed in one of our previous works [33].

After obtaining mappings, we further check if UMLS
records a direct or indirect hierarchical relation between the
mapped atoms. If so, the missing is-a relation is considered to
be validated.

III. RESULTS

The 2022-06-27 release of ORDO contains 15,302 concepts.
Applying the above discussed automated pipeline on this
version of ORDO, we obtained 705 potential missing is-a
relations. Table 1 shows the top 10 DTPs that identified the
most number of potential missing is-a relations. For example,
the DTP ({‘genet’}, {}) identified 154 potential missing is-a
relations.

Table 1. The 10 DTPs that identified the most number of potential
missing is-a relations.

DTP Number of potential missing is-a
obtained

({genet}, {}) 154
({type, 1}, {}) 58
({type, 2}. {}) 57
({type, 3}, {}) 32
({genet}, {rare} 26
({autosom, domin}, {}) 23
({x-link}, {}) 17
({recess, autosom}, {}) 17
({isol}, {}) 10
({juvenil}, {}) 10

A. Validation of potential missing is-a relations

Out of the 705 potential missing is-a relations identified by the
approach, 164 were validated through UMLS. These 164 were
validated through 210 distinct UMLS atom-pairs meaning the
concepts can be mapped to and relations validated by multiple
atom-pairs. For example, our method suggested a missing is-a
relation between the concepts “Chronic endophthalmitis”
(Orphanet:279891) and “Endophthalmitis” (Orphanet:199323).
Orphanet:279891 was mapped to atom  “Chronic
endophthalmitis” (with AUI A2892272) from SNOMED CT
and the atom “chronic endophthalmitis” (with AUI
A14149447) from MEDCIN. In addition, “Endophthalmitis”
(Orphanet:199323) was mapped to both the atoms
“Endophthalmitis” (with AUI A2881177) from SNOMED CT
and the atom “endophthalmitis” (with AUI A13899807) from
MEDCIN. UMLS records is-a relations: A2892272 is-a
A2881177 in the SNOMED CT and A14149447 is-a
A13899807 in MEDCIN. Therefore, this missing is-a relations
has been validated through both SNOMED CT and MEDCIN.

Table 2 shows 10 validated cases of missing is-a relations
out of the 164 that were validated in total. For instance, the
relation “Primary cutaneous lymphoma” (Orphanet:542) is-a
“Non-Hodgkin lymphoma” (Orphanet:547) is a valid missing
is-a relation.



Table 2. Ten examples of valid missing is-a relations identified by

our method.

Descendant

Ancestor

Primary cutaneous

Non-Hodgkin lymphoma

lymphoma (Orphanet:542) (Orphanet:547)

Von Willebrand disease type | Von Willebrand disease
3 (Orphanet:166096) (Orphanet:903)
Autosomal dominant Robinow syndrome
Robinow syndrome (Orphanet:97360)
(Orphanet:3107)

Bilateral generalized Bilateral polymicrogyria
polymicrogyria (Orphanet:268940)
(Orphanet:208447)

IgG4-related systemic
disease (Orphanet:596448)

1gG4-related disease
(Orphanet:284264)

Peeling skin syndrome type
C (Orphanet:263558)

Peeling skin syndrome
(Orphanet:817)

Pseudohypoaldosteronism
type 24 (Orphanet:88938)

Pseudohypoaldosteronism type
2 (Orphanet:757)

Congenital stromal corneal

Stromal corneal dystrophy

dystrophy
(Orphanet:101068)
Acquired motor neuron

(Orphanet_98626)

Motor neuron disease

disease (Orphanet:98506) (Orphanet:98503)
Transient congenital Congenital hypothyroidism
hypothyroidism (Orphanet:442)

(Orphanet:178045)

IV. DISCUSSION

In this paper, we introduced an automated pipeline to
identify missing is-a relations in ORDO. Our approach is based
on the Difference Term Pair (DTP) which holds unique lexical
features of a pair of concepts. From purely a lexical perspective,
in a related feature sharing concept-pair, the DTP holds the
information that makes the relation hold. This is because the
common lexical features removed from the DTP does not
contribute to the relation as they exist in both the concepts.
Therefore, when an unrelated concept-pair exhibit the same
DTP, we consider this as evidence to the potential existence of
a relation.

Table 3. The distance between the mapped atoms for the valid
missing is-a relations.

Distance Number of valid
missing is-a relations

1 160

2 2

3 2

A. The distance between the concepts in the valid missing is-a
relations

For the 164 validated missing is-a relations, we further
checked the distance between their mapped atoms in the
respective source terminologies which they were validated
from. The distance was measured as the number of direct is-a
relations linking the two atoms. Table 3 shows the distribution

of the distances. As can be seen, a vast majority of cases are
with a distance of 1 which means that they are direct is-a
relations in the source terminologies. Direct is-a relations are
generally easily fixable than indirect ones. To fix an indirect
relation, intermediate missing relations need to be identified
which could be complicated.

B. Comparison with related work

The approach discussed in this paper is an adaptation of a
previously introduced approach to identify missing is-a
relations in several biomedical terminologies including Gene
Ontology and SNOMED CT [25-28]. However, the difference
between this approach and the previous approaches is the usage
of stemming on the lexical features which further normalized
the lexical features.

C. Limitations and future work

As lexical features of concepts, we only considered the
stemmed set of words in their names. However, additional
attributes of concepts such as lexical features of the synonyms
or ancestors could be considered. These can not only be
obtained from ORDO, may also be obtainable from external
ontological sources in UMLS.

The fully automated UMLS-based validation is quick and
efficient since it does not require manual review. In addition, it
is also able to validate a considerable number of missing is-a
relations (23%). However, with this type of validation, we are
not able to measure the precision of the method. Therefore, we
propose to perform a manual review of a random sample of
potential missing is-a relations to properly quantify the
performance of the approach.

We will submit the 164 validated potential missing is-a
relations to ORDO developers so that after internal review, they
can make necessary changes to a future release of the ontology
based on our findings.

V. CONCLUSION

In this paper, we implemented a fully automated lexical
approach to identify missing is-a relations in the Orphanet Rare
Disease Ontology. Our method included obtaining lexical
features from concept names and generating feature sharing
concept-pairs. The feature sharing concept-pairs further
generated derived term-pairs. If the same derived term-pair
could be generated from both a related and an unrelated feature
sharing concept-pair, then we suggested a potential missing is-
a relation between the unrelated feature sharing concept-pair.
Applying this approach to the 2022-06-27 release of the
Orphanet Rare Disease Ontology, we obtained 705 potential
missing is-a relations. Leveraging the is-a relations of external
ontologies in the Unified Medical Language System, we
validated 164 missing is-a relations. This approach seems to
show promise in auditing is-a relations in the Orphanet Rare
Disease Ontology, though further manual review is needed to
confirm and validate the rest of the potential missing is-a
relations that could not be validated automatically.
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