

1 **Isolation of DNA from Plant Tissues using a Miniaturized Matrix Solid-phase**
2 **Dispersion Approach Featuring Ionic Liquid and Magnetic Ionic Liquid Solvents**

4 Shashini De Silva,¹ Iran Ocaña-Rios,¹ Cecilia Cagliero,² Morgan R. Gostel,³
5 Gabriel Johnson,⁴ and Jared L. Anderson^{1,*}

7 ¹ Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.

8 ² Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, I-10125, Turin, Italy.

9 ³ Botanical Research Institute of Texas, Fort Worth, Texas 76107-3400, USA.

10 ⁴ Smithsonian Institution, Suitland, Maryland 20746, USA.

12 **Abstract**

13 The isolation of high-quality plant genomic DNA is a major prerequisite in many plant
14 biomolecular analyses involving nucleic acid amplification. Conventional plant cell lysis and DNA
15 extraction methods involve lengthy sample preparation procedures that often require large amounts
16 of sample and chemicals, high temperatures and multiple liquid transfer steps which can introduce
17 challenges for high throughput applications. In this study, a simple, rapid, miniaturized ionic liquid
18 (IL)-based extraction method was developed for the isolation of genomic DNA from milligram
19 fragments of *Arabidopsis thaliana* plant tissue. This method is based on a modification of vortex-
20 assisted matrix solid-phase dispersion (VA-MSPD) in which the trihexyl(tetradecyl)phosphonium
21 bis(trifluoromethylsulfonyl)imide ($[P_{6,6,6,14}^+][NTf_2^-]$) IL or trihexyl(tetradecyl)phosphonium
22 tris(hexafluoroacetylacetato)nickelate(II) ($[P_{6,6,6,14}^+][Ni(hfacac)_3^-]$) magnetic IL (MIL) was directly
23 applied to treated plant tissue (~1.5 mg) and dispersed in an agate mortar to facilitate plant cell
24 lysis and DNA extraction, followed by recovery of the mixture with a qPCR compatible co-
25 solvent. This study represents the first approach to use ILs and MILs in a MSPD procedure to
26 facilitate plant cell lysis and DNA extraction. The DNA-enriched IL- and MIL-cosolvent mixtures
27 were directly integrated into the qPCR buffer without inhibiting the reaction while also
28 circumventing the need for additional purification steps prior to DNA amplification. Under
29 optimum conditions, the IL and MIL yielded 2.87 ± 0.28 and 1.97 ± 0.59 ng of DNA/mg of plant
30 tissue, respectively. Furthermore, the mild extraction conditions used in the method enabled plant
31 DNA in IL- and MIL-cosolvent mixtures to be preserved from degradation at room temperature.

32
33 Keywords: Plant DNA isolation; Ionic liquids; Magnetic ionic liquids; *Arabidopsis thaliana*;
34 Matrix solid phase dispersion; qPCR

36 * Corresponding author:

37 Jared L. Anderson

38 Department of Chemistry

39 Iowa State University

40 Ames, IA 50011

41 Tel.: +1 515-294-8356

42 E-mail address: andersoj@iastate.edu

44 **1. Introduction**

45 Many types of plant biomolecular analyses including genotyping [1], sequencing [2],
46 mutation screening [3], and plant pathogen detection [4] require amplification of nucleic acids by
47 polymerase chain reaction (PCR), considered to be the gold standard approach. The first step in
48 such applications is isolation of nucleic acids from the plant matrix, a challenging task that involves
49 tedious sample preparation procedures. Plants offer more complexity for cell lysis and DNA
50 extraction mainly due to the presence of rigid cell walls and varying levels of secondary
51 metabolites. Contaminants present in plant tissues, if not properly removed from DNA, can
52 ultimately result in PCR inhibition. Among the methods that have attempted to resolve these
53 challenges are the widely used cetyltrimethylammonium bromide (CTAB) [5] or sodium
54 dodecylsulfate (SDS) plant cell lysis protocols [6]. These traditional methods generally use
55 surfactants and heat to lyse the plant cell walls, resulting in release of the cellular components to
56 a buffer followed by multiple centrifugation steps to remove the insoluble particulate matter.
57 Additional purification of DNA from soluble proteins and polysaccharide contaminants is carried
58 out by phenol-chloroform extraction, followed by ethanol or isopropanol precipitation. Although
59 these methods give rise to high yields of DNA, major disadvantages include lengthy procedures,
60 multiple liquid handling and transfer steps, the use of harmful chemicals such as phenol and
61 chloroform and the requirement of large amounts of sample [7]. To accelerate extractions,
62 commercial solid-phase extraction kits with silica-based spin columns have been designed. These
63 kits utilize lysis buffers containing either CTAB or SDS, binding buffers comprised of chaotropic
64 salts to facilitate adsorption of DNA to the silica sorbent and wash buffers containing organic
65 solvents to elute and purify the DNA [8]. Conventional plant cell lysis and DNA extraction
66 methods require time-consuming sample preparation steps that often involve or generate numerous
67 quantitative polymerase chain reaction (qPCR) inhibitors, which can limit their applicability in
68 high throughput applications. To address these challenges, consolidated approaches that combine
69 rapid lysis and DNA extraction steps to shorten analyses while also eliminating unwanted
70 contamination are needed.

71 Recently, ionic liquids (ILs) and magnetic ionic liquids (MILs) have been explored as
72 novel solvents in the extraction of DNA from complex biological matrices. ILs are organic molten
73 salts featuring melting temperatures at or below 100 °C. They possess desirable physicochemical
74 properties such as negligible vapor pressures, high ionic conductivity, and high chemical stability

[9–11]. These properties, coupled with high tunability of cation and anion chemical structures, make ILs attractive solvents in a wide variety of bioanalytical applications [12]. Recent studies have demonstrated that ILs are capable of lysing cells from different biological materials such as plants, meat, viruses, or bacteria while also extracting DNA within very short periods of time [13–16]. MILs are a subclass of ILs that are produced by incorporating a paramagnetic component in the cation and/or anion [17–20]. MILs combine the advantageous properties of ILs with strong magnetic susceptibility permitting the rapid recovery of analyte-enriched MIL from aqueous solutions with the aid of an external magnet [21,22]. Due to their excellent extraction capabilities, MILs have been used for the extraction of nucleic acids from whole blood cells, as well as bacterial and plant cell lysates [23–26]. Some of these studies have demonstrated interactions that facilitate DNA extraction by these solvents include electrostatic interactions between the cation of the solvents and the negatively charged phosphate backbone of the DNA as well as hydrophobic interactions between alkyl chains of the solvents and the bases of DNA [23,24].

Marengo et al. first used MILs to extract genomic DNA from a plant cell lysate using dispersive liquid-liquid microextraction (DLLME) [25]. In this approach, a SDS based lysis step was performed at 100 °C to generate the plant lysate followed by extraction of DNA using MILs. Recently, Emaus et al. reported a one-step plant cell lysis and DNA extraction method incorporating hydrophobic ILs and MILs that circumvented the need for a lengthy temperature-controlled lysis step [27]. This study demonstrated that ILs and MILs alone are capable of lysing plant cells and extracting DNA from intact plant tissue and the amount of DNA extracted increases with longer times and higher temperatures. However, a drawback of using hydrophobic ILs and MILs in the direct extraction of genomic DNA from solid matrices, such as plants, is the high viscosity which interferes with the precision of measuring extraction efficiencies. Lukacs et al. has demonstrated that the diffusion of DNA fragments in the cytoplasm is impeded with increasing DNA size [28]. Therefore, the extraction of genomic DNA from solid matrices to highly viscous solvents provides a significant challenge as it is desired to attain highly quantitative and repeatable results when sampling fragments of plant tissue from the same specimen. Moreover, conventional methods are not amenable to miniaturization due to sample loss during multiple transfer and centrifugation steps, especially when minute amounts of plant samples are used.

To overcome the aforementioned challenges, optimization of IL/MIL-based nucleic acid isolation methods should emphasize the following features: (1) development of a miniaturized

106 method that incorporates very small amounts of plant sample to improve sample utility and reduce
107 consumption of solvents and sample preparation time; (2) blending of the plant tissue sample and
108 IL/MIL to completely disrupt the sample and maximize interactions with the solvent; (3) reduction
109 of IL/MIL viscosity by using components that are qPCR compatible; (4) rapid and efficient
110 extraction of DNA from very small plant samples at room temperature to avoid incubation at
111 elevated temperatures; (5) preservation of DNA from degradation and denaturation.

112 Matrix solid-phase dispersion (MSPD) is an ideal alternative to conventional sample
113 preparation methods and is able to fulfil a number of the aforementioned optimization features.
114 MSPD is a simple, efficient and versatile technique that was developed for the extraction of
115 analytes from solid, semi-solid and/or highly viscous biological samples [29–31]. A typical MSPD
116 procedure involves mechanical blending and dispersion of the sample with a suitable sorbent
117 material to obtain a homogenous mixture, followed by packing the blended sample into a solid
118 phase extraction (SPE) cartridge and elution of the target analytes with an appropriate solvent
119 [29,32]. Several modifications to the classical MSPD procedure have been developed to make the
120 procedure simple or to increase extraction yield [33]. Some modified procedures include
121 ultrasonic-assisted MSPD (UA-MSPD) [34], vortex-assisted MSPD (VA-MSPD) [35],
122 magnetically-assisted MSPD (MA-MSPD) [36], and Soxhlet-assisted MSPD (SA-MSPD) [37].
123 Among these modified MSPD procedures, VA-MSPD substitutes the column elution step of
124 classical MSPD with vortex to minimize solvent use and extraction time [33]. VA-MSPD involves
125 blending of the sample and sorbent mixture and transferring the mixture into a centrifuge tube,
126 followed by addition of the extraction solvent and a brief vortex step. Finally the sample is
127 centrifuged and the supernatant analyzed [33]. Recent advances in MSPD-based applications have
128 been made by employing new dispersant materials such as carbon nanotubes (CNTs) [38],
129 graphene [39], molecularly imprinted polymers [40] and ionic liquids [41,42]. Another interesting
130 feature of MSPD is the ability to miniaturize the entire process which aids in improving sample
131 utility while minimizing sample loss, consumption of solvents and sample preparation time
132 [33,43]. Additionally, the mild extraction conditions used in MSPD prevent analytes from
133 degradation and denaturation [30].

134 In this study, a microscale sample preparation method was developed through the
135 integration of ILs and MILs into a miniaturized VA-MSPD procedure to extract genomic DNA
136 from plants. The treated plant tissue was ground with either IL or MIL to facilitate simultaneous

137 and homogenous plant cell disruption and extraction of DNA into the solvent followed by recovery
138 of the mixture with a co-solvent. The recovered plant extract was briefly vortexed and separated
139 by centrifugation. A number of experimental parameters including sample dehydration approach,
140 type of tissue, mass of plant tissue, type and volume of extraction solvent as well as volume of co-
141 solvent were assessed and optimized. The sample preparation approach was coupled with qPCR
142 to enable highly sensitive quantification of genomic DNA from milligram fragments of
143 *Arabidopsis thaliana* plant tissue. An additional purification step prior to the amplification step
144 was not required due to compatibility of the solvents with qPCR. DNA stored in IL- and MIL-
145 cosolvent mixtures was capable of being amplified after 21 days of storage.

146 **2. Materials and methods**

147 **2.1 Reagents, Materials and Equipment**

148 Nickel(II) chloride (98%), 1,1,1,5,5,5-hexafluoroacetylacetone (99%) and ammonium
149 hydroxide (28–30% solution in water) were purchased from Acros Organics (Morris Plains, NJ,
150 USA). Cobalt(II) chloride (97%), lithium bis[(trifluoromethyl)sulfonyl]imide ($[\text{Li}^+][\text{NTf}_2^-]$),
151 methanol (99.7%) and hexane ($\geq 98.5\%$) were purchased from Sigma-Aldrich (St. Louis, MO,
152 USA). Trihexyl(tetradecyl)phosphonium chloride $[\text{P}_{6,6,6,14}^+][\text{Cl}^-]$ (97.7%) was purchased from
153 Strem Chemicals (Newburyport, MA, USA). Dimethyl formamide (99.8%), dimethyl sulfoxide
154 (DMSO) ($\geq 99.7\%$), optically clear PCR caps, tube strips and isopropanol (99.9%) were acquired
155 from Thermo Fisher Scientific (Waltham, MA, USA). Anhydrous diethyl ether (99.0%) was
156 purchased from Avantor Performance Materials Inc. (Center Valley, PA, USA). All primers were
157 acquired from Integrated DNA Technologies (Coralville, IA, USA). SsoAdvanced Universal
158 SYBR Green Supermix purchased from Bio-Rad Laboratories (Hercules, CA, USA) was used for
159 the qPCR assays. SYBR Green I (10,000x) was purchased from Life Technologies (Carlsbad, CA,
160 USA). All aqueous solutions were prepared using 18.4 M Ω cm deionized water obtained from a
161 Millipore Milli-Q water purification system (Bedford, MA, USA). An Elechomes UH401 food
162 dehydrator (Elechomes, China) was used for removal of residual solvent in the leaf dehydration
163 experiments. An Eppendorf I24 incubator shaker (Eppendorf, Hamburg, Germany) was used as an
164 incubator for extraction experiments. An Agate mortar (50 mm O.D. x 43 mm I.D. x 12 mm depth)
165 with a pestle was acquired from MSE supplies (Tucson, AZ, USA). A household microwave oven

166 (Kenmore, Model 405.73099310, 900W) was used for experiments involving microwave
167 treatment of the samples.

168 **2.2 MIL and IL synthesis**

169 The IL and MILs explored in this study were synthesized and characterized based on
170 previously reported procedures [17]. Their chemical structures are shown in Table 1. The
171 synthesized MILs and IL were stored in a desiccator when not in use.

172 **2.3 Plant growth conditions**

173 Wild-type *Arabidopsis thaliana* (L.) Heynh, Col 0 seeds purchased from Arabidopsis
174 Biological Resource Center (Ohio State University, Columbus, OH, USA) were grown at 25 °C
175 under ambient conditions. Plant leaves were collected approximately 2 weeks after germination
176 using sterilized scissors. All leaves were air-dried at room temperature until a constant weight was
177 reached, unless otherwise specified.

178

179 **2.4 Preparation of DNA standard and qPCR amplification**

180 Genomic DNA required for the preparation of standard solutions was isolated using a
181 NucleoSpin Plant II commercial kit (Macherey–Nagel, Düren, Germany) following the
182 manufacturer's specifications. The concentration of DNA isolated by the kit was determined by
183 fluorometric detection using Qubit 4.0 fluorometer (ThermoFisher Scientific, Waltham, MA,
184 USA) with the double-stranded DNA (dsDNA) high sensitivity assay.

185 Quantification of DNA extracted by the ILs and MILs was performed using qPCR by
186 amplification of the internal transcriber spacer (ITS) region of the plant genome that is conserved
187 amongst plants [44]. The forward and reverse primers for qPCR amplification of the ITS region
188 were 5'-GCA TCG ATG AAG AAC GCA GC-3' and 5'-TCC TCC GCT TAT TGA TAT GC-3',
189 respectively [44]. The qPCR buffer used for reactions containing 0.5 µL of the $[P_{6,6,6,14}^+][NTf_2^-]$
190 IL-DMSO-water, $[P_{6,6,6,14}^+][Ni(hfacac)_3^-]$ MIL-DMSO, or $[P_{6,6,6,14}^+][Co(hfacac)_3^-]$ MIL-DMSO
191 mixtures required 1× SsoAdvanced Universal SYBR Green Supermix, 200 nM of each ITS primer
192 and an additional 1× SYBR green I for a total volume of 20 µL. All reactions were performed on
193 a Bio-Rad CFX96 Touch Real-time PCR thermocycler (Hercules, CA, USA) according to the
194 following thermocycling protocol: initial denaturation step of 10 min at 95 °C and 40 cycles

195 comprised of a 15 s denaturation step at 95 °C and a 45 s annealing step at 65 °C followed by an
196 optical detection step. Melt curve analysis was carried out after qPCR amplification starting at 65
197 °C for 5 s and increasing to 95 °C in 0.5 °C increments. The cycle of quantification (Cq) values
198 obtained by the qPCR experiments were used to assess the amount of amplifiable DNA. To
199 determine the mass of genomic DNA extracted by $[P_{6,6,6,14}^+][NTf_2^-]$ IL and $[P_{6,6,6,14}^+][Ni(hfacac)_3^-]$
200 MIL, a 5-point calibration curve was constructed by plotting the Cq (cycle of quantification) value
201 against the log of mass of DNA per reaction. The qPCR efficiency and linearity were calculated
202 for all calibration curves to assess any possible inhibition that may hinder amplification. All qPCR
203 experiments were carried out in triplicate, unless specified otherwise.

204

205 **2.5 Extraction procedures**

206

207 **2.5.1 IL-based direct solid-liquid extraction**

208 The general IL-based direct solid-liquid extraction procedure used in this study is shown
209 in Figure 1. A 10 μ L volume of $[P_{6,6,6,14}^+][NTf_2^-]$ IL, $[P_{6,6,6,14}^+][Ni(hfacac)_3^-]$ MIL or
210 $[P_{6,6,6,14}^+][Co(hfacac)_3^-]$ MIL was added to 1.0 mg of air-dried *A. thaliana* plant material placed
211 within a qPCR tube and incubated at room temperature for 1 h. The DNA-enriched IL or MIL was
212 recovered and 0.5 μ L of the recovered solution was added to the qPCR assay for quantification.
213 All extractions were conducted in triplicate. The effects of incubation time, temperature, solvent
214 volume, and sample pretreatment were examined in this study.

215

216 **2.5.2 IL-based direct solid-liquid extraction using a co-solvent**

217 To mitigate viscosity issues of the IL and the MIL, DMSO and DMF were explored as co-
218 solvents. The fresh and air-dried tissues were cut into 4 symmetrical parts and the cut leaf
219 fragments were weighed and immersed in 15 μ L of the IL or MIL within a qPCR tube and
220 incubated at room temperature for 1 h. After incubation, the co-solvent was added to the IL-plant
221 mixture and vortexed for 30 s to homogenize the solution. A 0.5 μ L volume of the mixture was
222 added to the qPCR assay for quantification. The effects of different volume of DMSO and DMF
223 on qPCR were also explored.

224

225 **2.5.3 Modification of IL-based vortex assisted matrix solid phase dispersion (VA-MSPD)**
226 **approach**

227 The modified IL-based VA-MSPD procedure used in this study is shown in Figure 2. A
228 1.5 ± 0.2 mg mass of pretreated plant tissue was transferred into an Agate mortar and $15 \mu\text{L}$ of the
229 IL or MIL was added to the sample using a $25 \mu\text{L}$ gas tight syringe and dispersed using a pestle
230 until all fragments of plant tissue were ground to fine particles. DMSO was added to the mixture
231 in $15 \mu\text{L}$ aliquots and homogenized. The plant-IL-DMSO mixture was transferred into a qPCR
232 tube and $15 \mu\text{L}$ of water was added to the mixture. The mixture was vortexed for 30 s followed by
233 a centrifugation step for 30 s at 13000 g. The optimized volume ratio of IL: DMSO: water was
234 1:2:1 (v/v/v) and 1:4 (v/v) for MIL: DMSO. No water was added to the MIL: DMSO mixture. A
235 $0.5 \mu\text{L}$ volume aliquot of the supernatant was placed into a qPCR tube for downstream analysis.

236 **3. Results and discussion**

237 **3.1 IL-based direct solid-liquid extraction**

238 ILs and MILs have been shown to efficiently lyse and extract DNA from complex
239 biological matrices such as blood, bacterial cells, and plants [14,16,26]. The compatibility of
240 hydrophobic ILs and MILs with qPCR makes downstream analysis efficient because DNA within
241 the IL/MIL can be desorbed using the elevated temperatures of the qPCR thermocycling protocol
242 [45]. In this study, one IL and two MILs featuring the trihexyl(tetradecyl)phosphonium cation
243 ($[\text{P}_{6,6,6,14}^+]$) and multiple anions such as $[\text{NTf}_2^-]$, $[\text{Ni}(\text{hfacac})_3^-]$ and $[\text{Co}(\text{hfacac})_3^-]$ were chosen.
244 Selection of the solvents is based on previous studies where they were used to extract DNA from
245 plants and shown to be compatible with qPCR [25,27,45]. Extraction of DNA directly from plant
246 tissue was based on applying the IL/MIL to a 1.0 mg cut fragment of dried tissue followed by
247 incubation and recovery of the DNA-enriched solvent for qPCR analysis. Amplification was
248 achieved for the $[\text{P}_{6,6,6,14}^+][\text{NTf}_2^-]$ IL, $[\text{P}_{6,6,6,14}^+][\text{Ni}(\text{hfacac})_3^-]$ MIL and $[\text{P}_{6,6,6,14}^+][\text{Co}(\text{hfacac})_3^-]$
249 MIL (as shown in Figure 3) indicating that all solvents are capable of lysing and extracting DNA
250 from very small portions of plant tissue.

251 The effect of incubation time on extraction efficiency was examined by carrying out
252 extractions from 5 minutes to 24 h at 25 °C. Increasing the incubation time from 5 minutes to 24
253 h did not result in a significant change of the Cq values, as shown in Figure S1, indicating that

254 there is no dependency of time on the extraction. However, to provide sufficient time, an
255 incubation time of 1 h was chosen for subsequent experiments. The application of heat is common
256 in many conventional plant cell lysis methods to facilitate efficient lysis of the plant cells within a
257 short period of time. Therefore, the effect of temperature was examined in the IL-based direct
258 solid-liquid extraction method. As shown in Figure S2, qPCR data did not reveal significant
259 changes in the Cq values under varying temperature conditions indicating that it does not affect
260 the amount of DNA extracted from small portions of plant tissue. It is possible that the amount of
261 DNA present in 1 mg portions of dried plant tissue is sufficiently small such that an increase in
262 incubation temperature and incubation time does not result in significant increases in the amount
263 of DNA extracted. The volume of the extraction phase was also evaluated. A 10 μ L volume of IL
264 was used to extract DNA from 1 mg of plant to allow sufficient coating of plant tissue by the IL
265 and this volume gave rise to best precision with the lowest standard deviation (as shown in Table
266 S1). Extractions utilizing IL volumes lower than 10 μ L (such as 8 μ L and 9 μ L) resulted in lower
267 Cq values. However, these volumes were not sufficient to completely coat the plant tissue.
268 Extractions utilizing larger volume of IL, such as 12 μ L, resulted in higher Cq values which is
269 likely due to dilution of DNA in the IL (Figure S3).

270 It is a common practice to dry plant tissue prior to DNA extraction to improve preservation
271 of nucleic acids in the leaves for long term storage [5,46]. Therefore, the effect of different drying
272 methods was investigated by keeping the weight of the plant tissue and the volume of the IL
273 constant at 1 mg and 10 μ L, respectively. As shown in Figure S4, tissue that was subjected to
274 isopropanol treatment for 24 h resulted in higher amount of DNA extracted (lower Cq values). It
275 was interesting to observe that DNA was extracted from the leaves when they were subjected to
276 microwave treatment for 3 minutes. All tissues that were subjected to treatment prior to extraction
277 gave rise to lower Cq values compared to the fresh tissue, indicating that more DNA is extracted
278 from the treated tissue. Although the IL-based direct solid-liquid extraction method was
279 compatible with fresh tissue, less DNA was detected (based on the higher Cq value) due to the
280 high water content compared to the dry tissue. Fresh leaves were observed to lose more than 90 %
281 of their weight due to drying. By taking the percentage of weight loss into consideration, the mass
282 of fresh tissue that needs to be used is approximately 17 mg. A 10 μ L volume of the IL was not
283 sufficient to completely coat 17 mg of fresh plant tissue, resulting in inaccuracy when measuring
284 the amount of DNA extracted. The volume of IL was kept to a minimum of 10 μ L because higher

285 volumes of IL have been shown to increase the Cq value as well as the standard deviation, as
286 shown on Table S1.

287 The IL and MILs were successful in lysing plant cells and extracting DNA from small
288 portions of plant tissue enabling successful qPCR amplification. However, direct addition of 0.5
289 μ L of the IL into the qPCR buffer yielded an amplification efficiency of 87.8 %, which made
290 reliable quantification of extracted DNA mass challenging. Furthermore, the standard deviation in
291 the Cq values obtained when examining the effect of time, temperature, IL volume and sample
292 pretreatment (Figures S1-S4) were high and exhibited poor repeatability. It was hypothesized that
293 the IL viscosity may hinder the partitioning of high molecular weight DNA resulting in non-
294 uniform distribution of DNA within the IL and higher standard deviations. Therefore, a new
295 approach that incorporates two qPCR compatible co-solvents was explored in an effort to dissolve
296 and dilute the solvents, achieve reduced viscosity, as well as mitigate any inhibitory effects caused
297 in qPCR.

298

299 **3.2 IL-based direct solid-liquid extraction employing a co-solvent**

300 To reduce the viscosity of IL and MIL, DMSO and DMF were chosen as co-solvents as
301 they are well-known qPCR compatible solvents that are commonly used to enhance amplification
302 [47,48]. For an improved procedure featuring the co-solvent, fresh and air-dried fragments of plant
303 tissue were cut into 4 symmetric sections and DNA from each cut leaf fragment was extracted
304 using 15 μ L of the IL for 1 h at room temperature. This was followed by the addition of an equal
305 volume of co-solvent to dissolve the IL such that the ratio of the IL: DMSO was 1:1 (v/v). qPCR
306 experiments were carried out in triplicate for each extraction to examine precision of the method.
307 As the cut leaf fragments for the fresh and air-dried tissue represent the same sample, the average
308 Cq for all qPCR experiments and each type of tissue was calculated. As shown in Table 2, the
309 average Cq values for extractions with the fresh tissue was 26.92 ± 2.39 and that for dry tissue was
310 21.57 ± 0.84 . Since dry tissue gave rise to less variability, subsequent studies were carried out
311 using only air-dried tissue.

312 For optimization studies, different ratios of IL to DMSO were evaluated. The standard
313 deviation of the Cq values obtained for the extractions was very high in case of the 1:2 (v/v) (as
314 shown in Table S2) and 1:3 (v/v) ratios (data not shown) when compared to that of the 1:1 (v/v)
315 composition. Similarly, 1:1 (v/v) and 1:2 (v/v) ratios of IL:DMF were tested, and the standard

316 deviations were compared. As shown in Table S2, it was observed that the standard deviation
317 associated with the Cq values when using 1:1 (v/v) and 1:2 (v/v) of IL-DMF mixtures resulted in
318 higher standard deviation values. Although higher volumes of the co-solvent were used with the
319 purpose of decreasing the IL viscosity, high standard deviations among the Cq values were still
320 observed when the qPCR experiments were performed in triplicate, possibly due to extraction of
321 other plant components which may affect amplification. Therefore, to eliminate any interfering
322 components (e.g., chlorophyll) from the plant matrix, fresh leaves were immersed in ethanol for
323 12 h in an incubator at 37 °C (as shown in Figure S5) followed by DNA extraction from the pre-
324 treated tissue.

325

326 **3.2.1 Evaluating the effect of co-solvent and plant matrix on qPCR**

327 To investigate the effect of co-solvent on qPCR, 10.2 pg of *A. thaliana* genomic DNA was
328 spiked into 15 µL of the IL and incubated at room temperature for 1 hour. After incubation, the
329 DNA-enriched IL was vortexed for 30 s with an equal volume of co-solvent such that the ratio of
330 IL: co-solvent was 1:1 (v/v), followed by centrifugation for 30 s at 13000 g. A control experiment
331 was carried out in which the same mass of plant genomic DNA was spiked into 15 µL of water
332 and incubated at room temperature for 1 h. After incubation, an equal volume of water was added,
333 vortexed for 30 s, and then centrifuged for 30 s. To investigate the effect of plant matrix on qPCR,
334 1.5 mg of plant tissue treated with ethanol was subjected to DNA extraction at room temperature
335 for 1 h using 15 µL of the IL. After extraction, the DNA-enriched IL was vortexed for 30 s with
336 an equal volume of co-solvent and centrifuged for 30 s at 13000 g. The final 1:1 (v/v) DNA
337 enriched IL co-solvent mixture was then analyzed by qPCR. As observed in Figure 4, the Cq values
338 obtained for plant genomic DNA in water and in 1:1 (v/v) IL-DMSO mixture were 24.34 ± 0.16
339 and 25.10 ± 0.53 , respectively. A significant difference in Cq values was not observed for plant
340 genomic DNA in water and the 1:1 (v/v) IL-DMSO mixture confirming that the 1:1 (v/v) IL-
341 DMSO mixture did not inhibit the reaction. However, the Cq value was shifted by more than 5
342 cycles to 29.90 ± 0.63 in the 1:1 (v/v) IL-DMF mixture, as shown in Figure 4, compared to that of
343 the control, indicating inhibition of the enzymatic reaction due to the presence of DMF. Similarly,
344 the Cq value for the extracted plant DNA in the 1:1 (v/v) IL-DMF mixture was shifted by
345 approximately 5 cycles compared to that in 1:1 (v/v) IL-DMSO mixture (as shown in Figure 4),
346 further confirming that DMF inhibits the amplification reaction. Therefore, DMSO was chosen as

347 the co-solvent for IL dissolution and dilution. It was also observed that the standard deviation of
348 the C_q values was higher for extractions involving the plant tissue compared to the control
349 experiments where DNA was spiked into the sample. This difference may be due to the variability
350 arising from not grinding the sample with the IL as well as the static solid-liquid extraction
351 approach resulting in non-uniform distribution of DNA within the IL. To overcome these
352 challenges, a method involving mechanical grinding of the sample with the IL to facilitate
353 simultaneous sample disruption and blending of the plant matrix with the IL in a homogenous
354 fashion was developed.

355

356 **3.3 Modified IL-based VA-MSPD approach**

357 MSPD is an analytical procedure based on mechanical blending of the sample with a
358 dispersant material in a mortar and pestle to maximize sample disruption and interaction
359 [30,32,43]. Recent advances in MSPD-based applications have employed ILs for the extraction of
360 synthetic dyes in condiments as well as phenolic acids and flavonoids in raw propolis [41,42].
361 However, studies that employ ILs or MILs in MSPD for the extraction of nucleic acids have not
362 yet been reported. The modified IL-based VA-MSPD method employed in the study was based on
363 grinding the homogenized plant material with the IL or MIL instead of using solid dispersive
364 materials or co-sorbents. To develop an optimal IL-based MSPD method for extracting DNA from
365 plant tissue, various parameters including tissue type, mass of plant tissue, type and volume of
366 extraction solvent, volume of diluent as well as different plant dehydration methods were all
367 assessed.

368 **3.3.1 Sample pretreatment**

369 Initial experiments employing IL-based VA-MSPD were conducted by grinding 1.5 mg of
370 air-dried plant tissue with 25 μ L of the IL, followed by recovering the mixture into a qPCR tube
371 with 25 μ L of DMSO. Due to its high viscosity, weighing or pipetting the IL was found to be
372 challenging. Therefore, a 25 μ L gas tight syringe was used to add the IL directly to the plant tissue
373 that had been previously placed in the mortar. After grinding the sample with IL, DMSO was
374 added in 15 μ L and 10 μ L respective aliquots and dispersed slowly with the pestle. The mortar was
375 then tilted to facilitate separation of the solution from the plant tissue followed by recovery in a
376 qPCR tube. As shown in Figure S6, the IL extract contained a green layer which was found to be

377 repeatedly interfering with the recovery of the clear supernatant for qPCR. It was confirmed that
378 the green layer was chlorophyll, as it glowed red under blue light at 470 nm [49]. Therefore,
379 chlorophyll removal was deemed necessary suggesting the need for a sample pretreatment step.

380 Chlorophyll is a water insoluble pigment that can be easily removed with the use of organic
381 solvents [50]. Hexane, absolute ethanol, methanol, and isopropanol were used for the removal of
382 chlorophyll from fresh leaves by immersing them in the respective organic solvents at 37 °C in an
383 incubator for 33 h. Residual solvent in the leaves was removed by placing them in a food
384 dehydrator at 35 °C for 1 h and then recording the weight loss. All solvents, except for hexane,
385 were observed to completely soak the leaves resulting in chlorophyll being leached from the tissues
386 leaving an off-white color. As shown in Figure S7, ethanol treatment resulted in the highest weight
387 loss and lowest RSD values. Previous studies have demonstrated the utilization of ethanol as a
388 low-cost alternative to commonly used expensive methods for tissue preservation, such as
389 lyophilization and liquid nitrogen treatment [46]. Ethanol preservation not only inactivates many
390 nucleases and removes secondary metabolites but also makes the leaves more amenable for
391 grinding and disruption [5,51]. Due to its ability in preserving the tissue and removing chlorophyll
392 and secondary metabolites, ethanol was chosen as the optimal solvent for sample pretreatment.

393 The time taken for chlorophyll to leach into ethanol was observed to vary from leaf-to-leaf
394 depending on the chlorophyll content. Therefore, to make the pretreatment process constant for
395 every leaf fragment, fresh leaves were immersed in absolute ethanol for 12 h at 37 °C in an
396 incubator to provide sufficient time for the chlorophyll to leach from the leaves (as shown in Figure
397 S5). Any residual solvent in the leaves was removed in the food dehydrator at 35 °C for 3 h. Fresh
398 leaves were observed to lose more than 90 % of weight when immersed in ethanol for 12 h
399 compared to approximately 2 % weight loss when the dehydrated leaves were placed in the food
400 dehydrator for 3 hours (Figure S8). After ethanol treatment, chlorophyll from the leaves was
401 removed making the solution glow red under blue light (Figure S9a). The ethanol dehydrated
402 leaves did not glow red under blue light illumination compared to the fresh leaves (Figure S9b and
403 S9c) confirming all chlorophyll was removed from the leaves. Therefore, ethanol dehydrated
404 leaves were used for subsequent experiments.

405 **3.3.2 Optimization of IL: DMSO ratio**

406 In optimization of IL:DMSO ratio, the mass of ethanol dehydrated tissue was kept constant
407 at 1.5 mg and 25 μ L of the IL was added directly to the plant tissue placed in an Agate mortar. The
408 plant tissue was dispersed with the IL until it was ground to a fine powder. DMSO was added in
409 two aliquots of 15 μ L and 10 μ L such that the final ratio of IL: DMSO was 1:1 (v/v). It was
410 observed that an IL volume of 25 μ L provided a higher volume for 1.5 mg of plant tissue and the
411 viscosity of 1:1 (v/v) IL: DMSO mixture was not greatly reduced compared to that of the neat IL.
412 Data from qPCR indicated a higher standard deviation for the Cq values of 3.02 cycles (Figure
413 S10) which may be due to larger volumes of IL compared to the mass of the plant tissue, resulting
414 in a more viscous mixture. Therefore, the volume of IL used for the extraction was decreased to
415 15 μ L and the volume of DMSO added to recover the plant-IL mixture was increased to 30 μ L.
416 DMSO was added in 15 μ L aliquots, followed by recovery into a qPCR tube. Next, 15 μ L of water
417 was added to further reduce the viscosity of the final mixture. After a brief vortexing step of 30 s
418 and a centrifugation step of 30 s at 13000 g, a 0.5 μ L volume of the clear supernatant was analyzed
419 by qPCR. The representative photographs of the developed MSPD procedure are shown in Figure
420 5. Although the neat IL was not soluble in water, the IL-DMSO mixture was found to be miscible
421 in water. The viscosity of the final IL-DMSO-water mixture was greatly reduced compared to that
422 of the neat IL. qPCR data revealed that the decrease in IL viscosity resulted in a remarkable
423 decrease in the standard deviation values from 3.02 to 0.24 cycles, as shown in Figure S11.

424 The DNA enriched IL-DMSO-Water mixture was stored at room temperature for 48 hours
425 with the plant matrix to test if the addition of DMSO facilitates the extraction of additional DNA
426 from the plant tissue. The Cq values were found to be constant for DNA in IL-DMSO-Water
427 mixture even after 48 hours at room temperature (Figure S12), indicating that DNA extracted by
428 the IL was stable and DMSO did not contribute to additional extraction from the plant tissue.

429 MILs have been previously used in MSPD for the extraction of pesticides from vegetables
430 [31]. However, MSPD has never been combined with MILs for the extraction of DNA. As with
431 the $[P_{6,6,6,14}^+][NTf_2^-]$ IL, the viscosity of the $[P_{6,6,6,14}^+][Ni(hfacac)_3^-]$ MIL and
432 $[P_{6,6,6,14}^+][Co(hfacac)_3^-]$ MILs also affected the qPCR data. By keeping the MIL volume constant
433 at 15 μ L, the volume of DMSO added was varied until the viscosity of the final mixture was greatly
434 reduced resulting in a homogenous mixture. By varying the composition from 1:3 (v/v) MIL:
435 DMSO to 1:3:1 (v/v/v) MIL: DMSO: water, the standard deviation for the qPCR experiments was

436 reduced from 1.9 to 1.2 cycles (Figure S13). However, addition of water resulted in precipitation
437 of the MIL. By increasing the ratio of MIL:DMSO to 1:4, the standard deviation was reduced to
438 0.34 (Figure S13) indicating that DMSO greatly reduces the viscosity of the MIL and improves
439 repeatability. The optimum ratio of MIL:DMSO was found to be 1:4 for both the Ni and Co MILs.

440 When performing MSPD with the Co MIL, it was observed that the MIL blends well with
441 the plant matrix due to its hydrophobicity. However, upon addition of DMSO, a precipitate was
442 formed, as shown on Figure S14. The neat Co MIL was not observed to precipitate upon mixing
443 with DMSO indicating that some components of the plant matrix may be responsible for
444 precipitation when DMSO is added to the Co MIL. Due to this, the solution that was recovered
445 consisted of mostly DMSO resulting in significant amounts of MIL being trapped in the plant
446 matrix. Therefore, the Co MIL was not used for further experiments.

447 To quantify the mass of DNA extracted by the IL and Ni MIL under optimum conditions,
448 standard curves were constructed by incorporating IL-DMSO-water and MIL-DMSO mixtures
449 into the qPCR buffer. In qPCR, amplification efficiency is calculated by the slope of the standard
450 curve and an amplification efficiency of 100 % relates to the ability of the DNA polymerase
451 enzyme to double the amount of DNA in the reaction mixture with each cycle [52,53]. However,
452 the amplification efficiency in practice is generally in the range of 90-105 % [53]. Amplification
453 efficiencies lower than 90% or higher than 105% indicate the presence of inhibitors that ultimately
454 affect quantification [45]. Therefore, it is important to investigate the influence that IL-DMSO-
455 water and MIL-DMSO mixtures within the qPCR buffer have on amplification efficiency. As
456 observed in Figure S15, the amplification efficiency associated with IL-DMSO-water and MIL-
457 DMSO in the PCR mixture was found to be within 90-105%, representing a significant advantage
458 of directly incorporating DNA-enriched IL-DMSO-water and MIL-DMSO mixtures into the qPCR
459 master mix.

460 After optimizing the dehydration method, extraction conditions and composition of qPCR
461 buffer, triplicate extractions were carried out using 1.5 mg of treated plant tissue and 15 μ L of the
462 IL and the Ni MIL. The optimum extraction conditions are summarized on Table 3. The
463 $[P_{66614}^+][NTf_2^-]$ IL and $[P_{66614}^+][Ni(hfacac)_3^-]$ MIL extracted 2.87 ± 0.28 ng of DNA/mg of plant
464 tissue and 1.97 ± 0.59 ng of DNA/mg of plant tissue, respectively. The performance of the IL-based

465 VA-MSPD method was compared with the NucleoSpin Plant II commercial kit, as shown in Table
466 S3. The NucleoSpin Plant II commercial kit was found to extract DNA per milligram of plant
467 tissue indicating that the mass of DNA isolated by the developed MSPD method is not as high, but
468 can be considered significant based on the sample size and the amount of chemicals used. The
469 mass of dried plant tissue used with the commercial kit was 20 mg compared to 1.5 mg that was
470 used in the IL-based VA-MSPD method. Having a method that requires minute amounts of sample
471 to extract sufficient amounts of DNA for subsequent downstream applications would be very
472 useful, especially when analyzing ancient plant specimens. Additionally, the IL-based direct solid-
473 liquid extraction method and IL-based VA-MSPD methods stand out for their miniaturized
474 process, simplicity and low time requirement for the extraction compared to conventional methods
475 that require an incubation period, large amounts of sample and solvents, and multiple
476 centrifugation steps. Due to these advantages, the developed methods can be used as an alternative
477 to kits. DNA extracted by both methods is of sufficient quantity for downstream applications
478 involving DNA amplification such as loop-mediated isothermal amplification (LAMP) or qPCR.
479 However, the IL-based direct solid-liquid extraction method would be more suitable for
480 applications such as LAMP, which provides qualitative information whereas modified IL-based
481 VA-MSPD method would be more useful for applications requiring precise quantitative
482 information. The stability of DNA in the IL-DMSO-water and Ni MIL-DMSO mixtures upon
483 storage at room temperature for 21 days was also investigated, as shown in Figure 6(a) and 6(b).
484 Successful qPCR amplification was achieved after preservation using the IL/MIL-based VA-
485 MSPD procedure, indicating that measurable amounts of DNA remain even after 21 days.
486 However, as shown in Figure 6(a), the DNA mass in IL-DMSO-water was constant up to 48 hours
487 followed by a decrease after this time period. Variability in the DNA mass may be attributed to
488 inefficient amplification arising from the polymerase chain reaction. MIL-DMSO mixtures
489 demonstrated greater DNA stability up to 14 days compared to IL-DMSO-water mixtures (Figure
490 6(b)). This agrees with previous studies which showed that salmon testes DNA and plasmid DNA
491 stored with DNase I were stable within a hydrophobic MIL for up to 72 h at room temperature
492 [54]. However, this study demonstrates that the longevity of the extracted plant genomic DNA can
493 be extended by using MIL-DMSO mixtures, making this method ideal not only for extraction but
494 also for storage prior to analysis.

495 **4. Conclusions**

496 This study is the first to integrate ILs and MILs into a modified VA-MSPD approach to
497 enable cell lysis and extraction of genomic DNA from milligram fragments of treated *Arabidopsis*
498 *thaliana* plant tissue. Compared to traditional methods that often incorporate tedious and laborious
499 protocols, the present method enables DNA extraction with small amounts of sample and solvents
500 while avoiding lengthy incubation steps to shorten the overall sample preparation time to a few
501 minutes. DNA extracted by this approach was of sufficient quality and purity for subsequent
502 nucleic acid amplification methods such as qPCR and could be preserved when stored at room
503 temperature in IL- and MIL-DMSO mixtures. The hydrophobicity of the IL and MIL assisted in
504 blending the extraction solvents with the dried plant matrix thereby facilitating cell lysis and
505 subsequent DNA extraction, possibly through electrostatic interactions as well as hydrophobic
506 interactions while also limiting their solubility in the qPCR buffer. An objective of the study was
507 to understand more clearly the interactions that take place between ILs and MILs with the plant
508 matrix and DNA. Future studies should seek to exploit the paramagnetic nature of MILs to
509 facilitate their recovery and analysis in an entirely automated process. The versatility of the
510 lysis/extraction approach and quality of recovered DNA makes it an appealing route for
511 combination with downstream isothermal amplification methods that enable field analysis,
512 particularly in plant disease diagnostics.

513

514 **Acknowledgements**

515 J.L.A. acknowledges funding from the Chemical Measurement and Imaging Program at
516 the National Science Foundation (Grant No. CHE-2203891). J.L.A. and S.D.S. thank the Alice
517 Hudson Professorship for support. Iran Ocaña-Rios acknowledges the U.S.-Mexico Commission
518 for Educational and Cultural Exchange (COMEXUS) for the Fulbright García-Robles Visiting
519 Scholar Award.

520

521

522

523 **References**

524 [1] N. Hamajima, PCR-CTPP: a new genotyping technique in the era of genetic epidemiology,
525 Expert Rev. Mol. Diagn. 1 (2001) 119–123. <https://doi.org/10.1586/14737159.1.1.119>.

526

527 [2] S.F. Emonet, G. Grard, N.M. Brisbarre, G.N. Moureau, S. Temmam, R.N. Charrel, X. de
528 Lamballerie, Long PCR Product Sequencing (LoPPS): A shotgun-based approach to
529 sequence long PCR products, Nat. Protoc. 2 (2007) 340–346.
530 <https://doi.org/10.1038/nprot.2006.453>.

531

532 [3] A.N. Stepanova, J.M. Alonso, PCR-based screening for insertional mutants, in: J. Salinas,
533 J.J. Sanchez-Serrano (Eds.), *Arabidopsis Protocols*, Humana Press, New Jersey, 2006, pp.
534 163-172. <https://doi.org/10.1385/1-59745-003-0:163>

535

536 [4] E. Ward, S.J. Foster, B.A. Fraaije, H.A. McCartney, Plant pathogen diagnostics:
537 Immunological and nucleic acid-based approaches, Ann. Appl. Biol. 145 (2004) 1–16.
538 <https://doi.org/10.1111/j.1744-7348.2004.tb00354.x>.

539

540 [5] M.G. Murray, J.W. Pitas, Plant DNA from alcohol-preserved samples, Plant Mol. Biol. Rep.
541 14 (1996) 261–265. <https://doi.org/10.1007/BF02671661>.

542

543 [6] M. Danaeifar, New horizons in developing cell lysis methods: A review, Biotechnol.
544 Bioeng. 119 (2022) 3007-3021. <https://doi.org/10.1002/bit.28198>.

545

546 [7] A. V. Ivanov, I. V. Safenkova, A. V. Zherdev, B.B. Dzantiev, The potential use of
547 isothermal amplification assays for in-field diagnostics of plant pathogens, Plants. 10 (2021)
548 2424. <https://doi.org/10.3390/plants10112424>

549

550 [8] R. Boom, C. J. Sol, M.M. Salimans, C.L. Jansen, P. M. Wertheim-van Dillen, J. van der
551 Noordaa, Rapid and Simple Method for Purification of Nucleic Acids, J. Clin. Microbiol.
552 28 (1990) 495-503. <https://journals.asm.org/journal/jcm>.

553

554 [9] Y. Shi, Y.L. Liu, P.Y. Lai, M.C. Tseng, M.J. Tseng, Y. Li, Y.H. Chu, Ionic liquids promote
555 PCR amplification of DNA, *Chem. Commun.* 48 (2012) 5325–5327.
556 <https://doi.org/10.1039/c2cc31740k>.

557

558 [10] M.J. Trujillo-Rodríguez, P. Rocío-Bautista, V. Pino, A.M. Afonso, Ionic liquids in
559 dispersive liquid-liquid microextraction, *Trends Anal. Chem.* 51 (2013) 87–106.
560 <https://doi.org/10.1016/j.trac.2013.06.008>.

561

562 [11] Z. Lei, B. Chen, Y. M. Koo, D.R. MacFarlane, Introduction: Ionic Liquids, *Chem. Rev.* 117
563 (2017) 6633–6635. <https://doi.org/10.1021/acs.chemrev.7b00246>.

564

565 [12] K.D. Clark, M.J. Trujillo-Rodríguez, J.L. Anderson, Advances in the analysis of biological
566 samples using ionic liquids, *Anal. Bioanal. Chem.* 410 (2018) 4567–4573.
567 <https://doi.org/10.1007/s00216-018-0898-9>.

568

569 [13] A.K. Ressmann, E.G. García, D. Khlan, P. Gaertner, R.L. Mach, R. Krska, K. Brunner, K.
570 Bica, Fast and efficient extraction of DNA from meat and meat derived products using
571 aqueous ionic liquid buffer systems, *New J. Chem.* 39 (2015) 4994–5002.
572 <https://doi.org/10.1039/c5nj00178a>.

573

574 [14] S. Fuchs-Telka, S. Fister, P. J. Mester, M. Wagner, P. Rossmanith, Hydrophobic ionic
575 liquids for quantitative bacterial cell lysis with subsequent DNA quantification, *Anal.*
576 *Bioanal. Chem.* 409 (2017) 1503–1511. <https://doi.org/10.1007/s00216-016-0112-x>.

577

578 [15] S. Fister, S. Fuchs, P. Mester, I. Kilpeläinen, M. Wagner, P. Rossmanith, The use of ionic
579 liquids for cracking viruses for isolation of nucleic acids, *Sep. Purif. Technol.* 155 (2015)
580 38–44. <https://doi.org/10.1016/j.seppur.2015.03.035>.

581

582 [16] R. Martzy, K. Bica-Schröder, Á.M. Pálvölgyi, C. Kolm, S. Jakwerth, A.K.T. Kirschner, R.
583 Sommer, R. Krska, R.L. Mach, A.H. Farnleitner, G.H. Reischer, Simple lysis of bacterial

584 cells for DNA-based diagnostics using hydrophilic ionic liquids, *Sci. Rep.* 9 (2019) 13994.
585 <https://doi.org/10.1038/s41598-019-50246-5>.

586

587 [17] S.A. Pierson, O. Nacham, K.D. Clark, H. Nan, Y. Mudryk, J.L. Anderson, Synthesis and
588 characterization of low viscosity hexafluoroacetylacetone-based hydrophobic magnetic
589 ionic liquids, *New J. Chem.* 41 (2017) 5498–5505. <https://doi.org/10.1039/c7nj00206h>

590

591 [18] O. Nacham, K.D. Clark, H. Yu, J.L. Anderson, Synthetic strategies for tailoring the
592 physicochemical and magnetic properties of hydrophobic magnetic ionic liquids, *Chem.*
593 *Mater.* 27 (2015) 923–931. <https://doi.org/10.1021/cm504202v>.

594

595 [19] O. Nacham, K.D. Clark, J.L. Anderson, Synthesis and characterization of the
596 physicochemical and magnetic properties for perfluoroalkyl ester and Fe(iii) carboxylate-
597 based hydrophobic magnetic ionic liquids, *RSC Adv.* 6 (2016) 11109–11117.
598 <https://doi.org/10.1039/c5ra25002a>.

599

600 [20] N.M. Abbasi, V.R. Zeger, A. Biswas, J.L. Anderson, Synthesis and characterization of
601 magnetic ionic liquids containing multiple paramagnetic lanthanide and transition metal
602 centers and functionalized diglycolamide ligands, *J. Mol. Liq.* 361 (2022) 119530.
603 <https://doi.org/10.1016/j.molliq.2022.119530>.

604

605 [21] R.E. del Sesto, T.M. McCleskey, A.K. Burrell, G.A. Baker, J.D. Thompson, B.L. Scott, J.S.
606 Wilkes, P. Williams, Structure and magnetic behavior of transition metal based ionic
607 liquids, *Chem. Commun.* (2008) 447–449. <https://doi.org/10.1039/B711189D>.

608

609 [22] G. Mafra, A.A. Vieira, J. Merib, J.L. Anderson, E. Carasek, Single drop microextraction in
610 a 96-well plate format: A step toward automated and high-throughput analysis, *Anal. Chim.
611 Acta.* 1063 (2019) 159–166. <https://doi.org/10.1016/j.aca.2019.02.013>.

612

613

614 [23] K.D. Clark, O. Nacham, H. Yu, T. Li, M.M. Yamsek, D.R. Ronning, J.L. Anderson,
615 Extraction of DNA by Magnetic Ionic Liquids: Tunable Solvents for Rapid and Selective
616 DNA Analysis, *Anal. Chem.* 87 (2015) 1552–1559. <https://doi.org/10.1021/ac504260t>.

617

618 [24] X. Wang, M. Liu, X. Ding, Guanidinium Hydrophobic Magnetic Ionic Liquid-Based
619 Dispersive Droplet Extraction for the Selective Extraction of DNA, *Langmuir*. 37 (2021)
620 11665–11675. <https://doi.org/10.1021/acs.langmuir.1c01567>.

621

622 [25] A. Marengo, C. Cagliero, B. Sgorbini, J.L. Anderson, M.N. Emaus, C. Bicchi, C.M. Bertea,
623 P. Rubiolo, Development of an innovative and sustainable one-step method for rapid plant
624 DNA isolation for targeted PCR using magnetic ionic liquids, *Plant Methods*. 15 (2019) 23.
625 <https://doi.org/10.1186/s13007-019-0408-x>.

626

627 [26] M.N. Emaus, J.L. Anderson, Simultaneous cell lysis and DNA extraction from whole blood
628 using magnetic ionic liquids, *Anal. Bioanal. Chem.* 412 (2020) 8039-8049.
629 <https://doi.org/10.1007/s00216-020-02941-w>.

630

631 [27] M.N. Emaus, C. Cagliero, M.R. Gostel, G. Johnson, J.L. Anderson, Simple and efficient
632 isolation of plant genomic DNA using magnetic ionic liquids, *Plant Methods*. 18 (2022) 37.
633 <https://doi.org/10.1186/s13007-022-00860-8>.

634

635 [28] G.L. Lukacs, P. Haggie, O. Seksek, D. Lechardeur, N. Freedman, A.S. Verkman, Size-
636 dependent DNA mobility in cytoplasm and nucleus, *J. Biol. Chem.* 275 (2000) 1625–1629.
637 <https://doi.org/10.1074/jbc.275.3.1625>.

638

639 [29] S.A. Barker, Matrix solid phase dispersion (MSPD), *J. Biochem. Biophys. Methods*. 70
640 (2007) 151–162. <https://doi.org/10.1016/j.jbbm.2006.06.005>.

641

642 [30] A.L. Capriotti, C. Cavalieri, P. Foglia, R. Samperi, S. Stampachiacchieri, S. Ventura, A.
643 Laganà, Recent advances and developments in matrix solid-phase dispersion, *TrAC -
644 Trends Anal. Chem.* 71 (2015) 186–193. <https://doi.org/10.1016/j.trac.2015.03.012>.

645

646 [31] T.G. Chatzimitakos, J.L. Anderson, C.D. Stalikas, Matrix solid-phase dispersion based on
647 magnetic ionic liquids: An alternative sample preparation approach for the extraction of
648 pesticides from vegetables, *J. Chromatogr. A.* 1581–1582 (2018) 168–172.
649 <https://doi.org/10.1016/j.chroma.2018.11.008>.

650

651 [32] S.A. Barker, A.R. Long, C.R. Short, Isolation of drug residues from tissues by solid phase
652 dispersion, *J. Chromatogr.* 475 (1989) 353-361. [https://doi.org/10.1016/S0021-9673\(01\)89689-8](https://doi.org/10.1016/S0021-9673(01)89689-8)

654

655 [33] X. Tu, W. Chen, A review on the recent progress in matrix solid phase dispersion,
656 *Molecules.* 23 (2018) 2367. <https://doi.org/10.3390/molecules23112767>.

657

658 [34] J.J. Ramos, R. Rial-Otero, L. Ramos, J.L. Capelo, Ultrasonic-assisted matrix solid-phase
659 dispersion as an improved methodology for the determination of pesticides in fruits, *J.*
660 *Chromatogr. A.* 1212 (2008) 145–149. <https://doi.org/10.1016/j.chroma.2008.10.028>.

661

662 [35] G.I. Hertzog, K.L. Soares, S.S. Caldas, E.G. Primel, Study of vortex-assisted MSPD and
663 LC-MS/MS using alternative solid supports for pharmaceutical extraction from marketed
664 fish, *Anal. Bioanal. Chem.* 407 (2015) 4793–4803. <https://doi.org/10.1007/S00216-015-8685-3>.

666

667 [36] C. Diao, C. Li, X. Yang, A. Sun, R. Liu, Magnetic matrix solid phase dispersion assisted
668 dispersive liquid liquid microextraction of ultra trace polychlorinated biphenyls in water
669 prior to GC-ECD determination, *Microchim. Acta*, 183 (2016) 1261-1268.
670 <https://doi.org/10.1007/s00604-016-1761-3>.

671

672 [37] S. Ma, X. Tu, J. Dong, P. Long, W. Yang, X. Miao, W. Chen, Z. Wu, Soxhlet-assisted
673 matrix solid phase dispersion to extract flavonoids from rape (*Brassica campestris*) bee
674 pollen, *J.Chromatogr. B.* 1005 (2015) 17–22.
675 <https://doi.org/10.1016/J.JCHROMB.2015.09.038>.

676

677 [38] G. Fang, G. Min, J. He, C. Zhang, K. Qian, S. Wang, Multiwalled carbon nanotubes as
678 matrix solid-phase dispersion extraction absorbents to determine 31 pesticides in agriculture
679 samples by gas chromatography–mass spectrometry, *J. Agric. Food Chem.* 57 (2009) 3040–
680 3045. <https://doi.org/10.1021/JF803913Q>.

681

682 [39] Q. Liu, J. Shi, J. Sun, T. Wang, L. Zeng, N. Zhu, G. Jiang, Graphene-assisted matrix solid-
683 phase dispersion for extraction of polybrominated diphenyl ethers and their methoxylated
684 and hydroxylated analogs from environmental samples, *Anal. Chim. Acta* 708 (2011) 61–
685 68. <https://doi.org/10.1016/J.ACA.2011.09.017>.

686

687 [40] H. Yan, F. Qiao, H.R. Kyung, Molecularly imprinted-matrix solid-phase dispersion for
688 selective extraction of five fluoroquinolones in eggs and tissue, *Anal. Chem.* 79 (2007)
689 8242–8248. <https://doi.org/10.1021/ac070644q>

690

691 [41] Z. Wang, L. Zhang, N. Li, L. Lei, M. Shao, X. Yang, Y. Song, A. Yu, H. Zhang, F. Qiu,
692 Ionic liquid-based matrix solid-phase dispersion coupled with homogeneous liquid–liquid
693 microextraction of synthetic dyes in condiments, *J. Chromatogr. A* 1348 (2014) 52–62.
694 <https://doi.org/10.1016/j.chroma.2014.04.086>.

695

696 [42] Z. Wang, R. Sun, Y. Wang, N. Li, L. Lei, X. Yang, A. Yu, F. Qiu, H. Zhang, Determination
697 of phenolic acids and flavonoids in raw propolis by silica-supported ionic liquid-based
698 matrix solid phase dispersion extraction high performance liquid chromatography-diode
699 array detection, *J. Chromatogr. B* 969 (2014) 205–212.
700 <https://doi.org/10.1016/j.jchromb.2014.08.022>.

701

702 [43] T. Deng, D. Wu, C. Duan, X. Yan, Y. Du, J. Zou, Y. Guan, Spatial profiling of gibberellins
703 in a single leaf based on microscale matrix solid-phase dispersion and precolumn
704 derivatization coupled with ultraperformance liquid chromatography-tandem mass
705 spectrometry, *Anal. Chem.* 89 (2017) 9537–9543.
706 <https://doi.org/10.1021/acs.analchem.7b02589>.

707

708 [44] T.J. White, T.D. Bruns, S.B. Lee, J.W. Taylor, Amplification and direct sequencing of
709 fungal ribosomal RNA genes for phylogenetics, in: M.A. Innis, D.H. Gelfand, J.J. Sninsky,
710 T.J. White (Eds.), PCR Protocols: A guide to methods and applications, Academic Press,
711 San Diego, 1990, pp 315-322.

712

713 [45] M.N. Emaus, K.D. Clark, P. Hinnens, J.L. Anderson, Preconcentration of DNA using
714 magnetic ionic liquids that are compatible with real-time PCR for rapid nucleic acid
715 quantification, *Anal. Bioanal. Chem.* 410 (2018) 4135–4144.
716 <https://doi.org/10.1007/s00216-018-1092-9>.

717

718 [46] E.A. Bressan, M.L. Rossi, L.T. Gerald, A. Figueira, Extraction of high-quality DNA from
719 ethanol-preserved tropical plant tissues, *BMC Res. Notes.* 7 (2014) 268.
720 <https://doi.org/10.1186/1756-0500-7-268>

721

722 [47] R. Chakrabarti, C.E. Schutt, The enhancement of PCR amplification by low molecular
723 weight amides, *Nucleic Acids Res.* 29 (2001) 2377-2381.
724 <https://doi.org/10.1093/nar/29.11.2377>

725

726 [48] M.A. Jensen, M. Fukushima, R.W. Davis, DMSO and betaine greatly improve amplification
727 of GC-rich constructs in de novo synthesis, *PLoS One.* 5 (2010) e11024.
728 <https://doi.org/10.1371/journal.pone.0011024>.

729

730 [49] L. Donaldson, N. Williams, Imaging and spectroscopy of natural fluorophores in pine
731 needles, *Plants.* 7 (2018) 10. <https://doi.org/10.3390/plants7010010>.

732

733 [50] R. Halim, A. Hosikian, S. Lim, M.K. Danquah, Chlorophyll extraction from microalgae: A
734 review on the process engineering aspects, *Int. J. Chem. Eng.* (2010) 391632.
735 <https://doi.org/10.1155/2010/391632>

736

737 [51] D. Dhakshanamoorthy, R. Selvaraj, Extraction of genomic DNA from Jatropha sp. using
738 modified CTAB method, *J. Biol. Plant Biol.* 54 (2009) 117-125.

739

740 [52] P. Kralik, M. Ricchi, A basic guide to real time PCR in microbial diagnostics: Definitions,
741 parameters, and everything, *Front. Microbiol.* 8 (2017) 108.
742 <https://doi.org/10.3389/fmicb.2017.00108>.

743

744 [53] G. Johnson, T. Nolan, S.A. Bustin, Real-Time Quantitative PCR, Pathogen Detection and
745 MIQE, in: M. Wilks (Eds.), *PCR detection of microbial pathogens, Methods in Molecular*
746 *Biology*, 943, 2013, Humana Press, Totowa, New Jersey. [https://doi.org/10.1007/978-1-
747 60327-353-4_1](https://doi.org/10.1007/978-1-60327-353-4_1).

748

749 [54] K.D. Clark, M. Sorensen, O. Nacham, J.L. Anderson, Preservation of DNA in nuclease-rich
750 samples using magnetic ionic liquids, *RSC Adv.* 6 (2016) 39846–39851.
751 <https://doi.org/10.1039/c6ra05932e>.

752

753

754

755

756

757

758

759

760

761 **Table 1.** Chemical structures and formulas of ILs and MILs investigated in this study. The IL and
 762 two MILs are comprised of the $[P_{6,6,6,14}^+]$ cation and three different anions.

IL/ MIL	Chemical formula	Structure
1	$[P_{6,6,6,14}^+][NTf_2^-]$	<p>The phosphonium cation $[P_{6,6,6,14}^+]$ is shown with a central phosphorus atom bonded to four C_5H_{11} groups and one $C_{13}H_{27}$ group. The bis(trifluoromethylsulfonyl)imidate anion $[NTf_2^-]$ is shown with a central nitrogen atom bonded to two sulfonyl groups (SO_2CF_3) and one methyl group (CH_3).</p>
2	$[P_{6,6,6,14}^+][Ni(hfacac)_3^-]$	<p>The phosphonium cation $[P_{6,6,6,14}^+]$ is shown with a central phosphorus atom bonded to four C_5H_{11} groups and one $C_{13}H_{27}$ group. The tris(hexamethylbenzene-2,2,6,6-tetracarboxylato)nickel(II) anion $[Ni(hfacac)_3^-]$ is shown with a central nickel atom coordinated to three hexamethylbenzene-2,2,6,6-tetracarboxylate (hfacac) ligands. The ligand consists of a central benzene ring with four carboxylate groups (COO^-) and two hexamethylbenzene groups (C_6H_{30}) attached to the ring.</p>
3	$[P_{6,6,6,14}^+][Co(hfacac)_3^-]$	<p>The phosphonium cation $[P_{6,6,6,14}^+]$ is shown with a central phosphorus atom bonded to four C_5H_{11} groups and one $C_{13}H_{27}$ group. The tris(hexamethylbenzene-2,2,6,6-tetracarboxylato)cobalt(II) anion $[Co(hfacac)_3^-]$ is shown with a central cobalt atom coordinated to three hexamethylbenzene-2,2,6,6-tetracarboxylate (hfacac) ligands. The ligand consists of a central benzene ring with four carboxylate groups (COO^-) and two hexamethylbenzene groups (C_6H_{30}) attached to the ring.</p>

763

764

765 **Table 2.** Influence of 1:1 (v/v) DMSO:IL mixture on the Cq values obtained when extracting DNA
766 from *A. thaliana* fresh tissue and air-dried tissue using the $[P_{6,6,6,14}^+][NTf_2^-]$ IL.

767

Type of tissue	Air-dried tissue ^a				Fresh tissue ^a			
	1	2	3	4	1	2	3	4
Cut leaf fragment								
Mass of cut leaf fragment (mg)	1.2	1.5	1.3	1.4	6.8	5.7	6.6	5.1
Cq	21.76	22.14	20.77	21.60	25.64	25.71	29.77	26.53
SD	1.10	0.40	0.30	1.00	0.90	0.40	3.50	1.10

768 a. triplicate qPCR experiments were carried out for each extraction

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

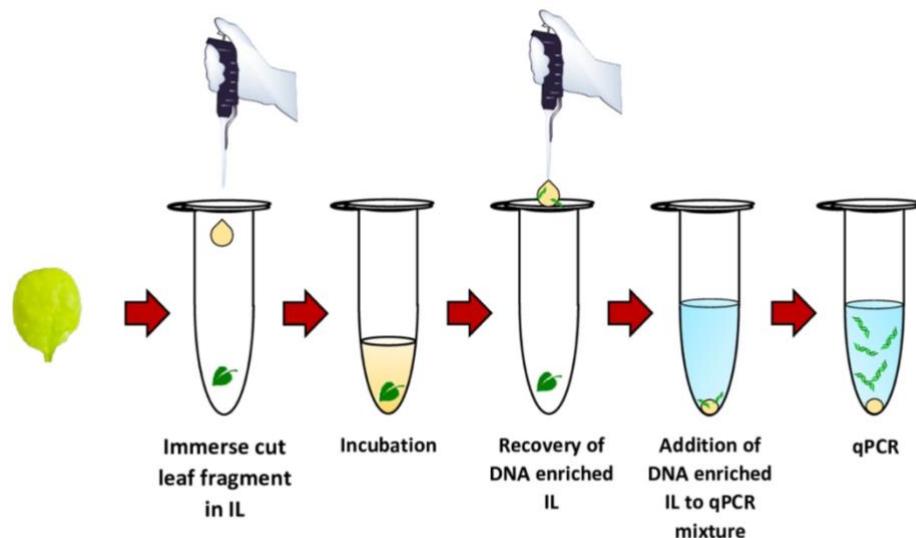
785

786

787

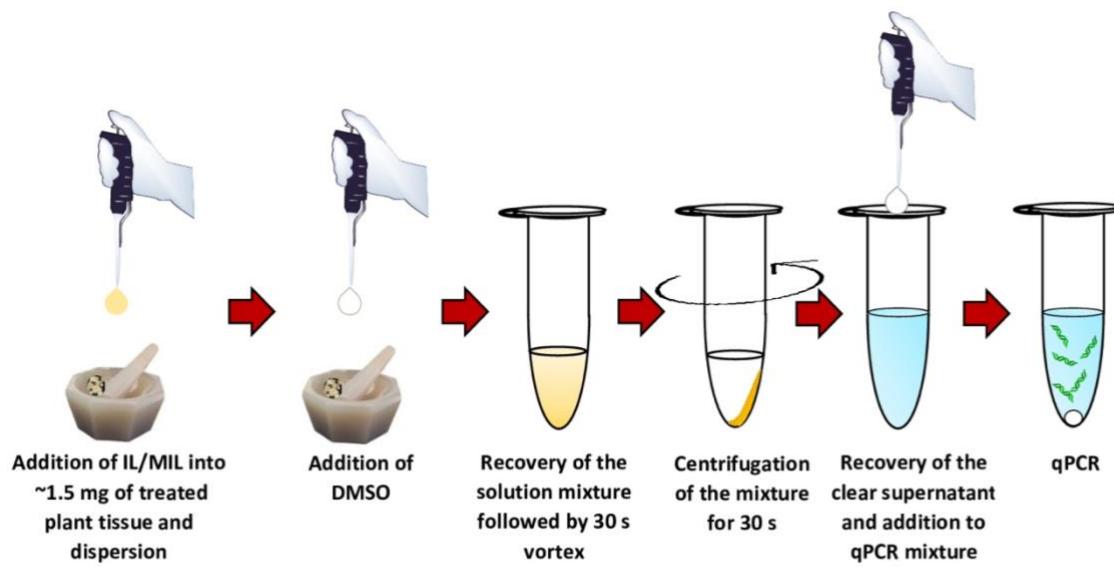
788

789

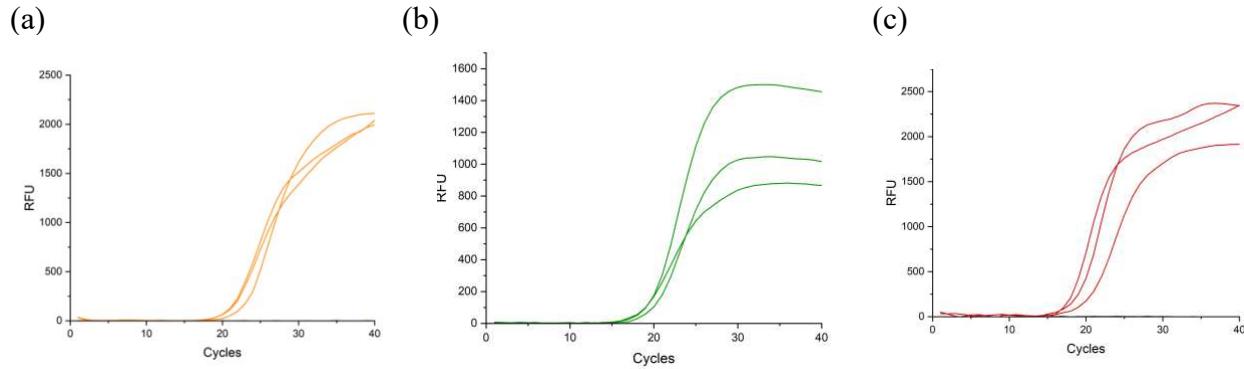

790

791 **Table 3.** Optimum extraction conditions for the $[P_{6,6,6,14}^+][NTf_2^-]$ IL and $[P_{6,6,6,14}^+][Ni(hfacac)_3^-]$
 792 MIL based VA-MSPD procedure using 1.5 mg of *A. thaliana* plant tissue treated with absolute
 793 ethanol for 12 h at 37 °C in an incubator shaker followed by the removal of residual solvent in the
 794 food dehydrator at 35 °C for 3 h.

IL/MIL used	Volume of IL/MIL (µL)	Volume of DMSO (µL)	Volume of water (µL)	Ratio of IL: DMSO: Water (v/v/v)
$[P_{6,6,6,14}^+][NTf_2^-]$	15	30	15	1:2:1
$[P_{6,6,6,14}^+][Ni(hfacac)_3^-]$	15	60	None	1:4

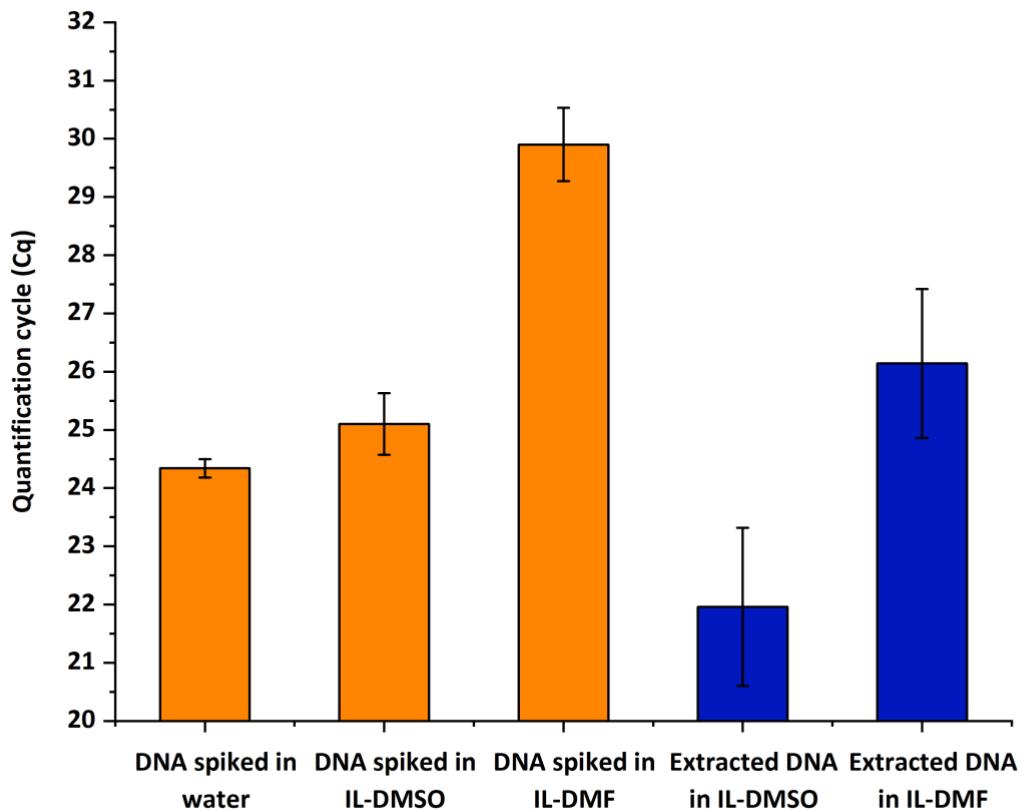

795

796
797
798
799
800
801
802
803
804
805
806



807 **Figure 1.** Schematic diagram for IL-based direct solid-liquid extraction of genomic DNA from 1
808 mg of air-dried *A. thaliana* plant tissue using 10 μ L of $[P_{6,6,6,14}^+][NTf_2^-]$ IL or the
809 $[P_{6,6,6,14}^+][Ni(hfacac)_3^-]$ or $[P_{6,6,6,14}^+][Co(hfacac)_3^-]$ MILs.

810
811
812
813
814
815
816



843
844
845

850
851 **Figure 3.** Amplification curves obtained by qPCR of the ITS target sequence of *A. thaliana*
852 genomic DNA extracted by placing 10 μ L of (a) $[P_{6,6,6,14}^+][NTf_2^-]$ IL and (b) $[P_{6,6,6,14}^+][Ni(hfacac)_3^-]$
853] MIL and (c) $[P_{6,6,6,14}^+][Co(hfacac)_3^-]$ MIL on 1.0 mg of dried *A. thaliana* plant tissue for 1 h at
854 25 $^{\circ}$ C. All experiments were conducted in triplicate.

855
856
857
858
859

860

861 **Figure 4.** Influence of IL co-solvent mixtures and plant matrix on the amplification of ITS target
 862 sequence of *A. thaliana* genomic DNA. Control experiments (orange bars) were carried out by
 863 spiking pure *A. thaliana* genomic DNA into 15 μ L of $[P_{6,6,6,14}^+][NTf_2^-]$ IL and water and incubating
 864 at room temperature for 1 h followed by the addition of 15 μ L of the co-solvent. Extraction
 865 experiments (blue bars) were carried out using 1.5 mg of *A. thaliana* pretreated plant tissue and 15
 866 μ L of $[P_{6,6,6,14}^+][NTf_2^-]$ IL at room temperature for 1 h followed by the addition of 15 μ L of the co-
 867 solvent. All experiments were conducted in triplicate.

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

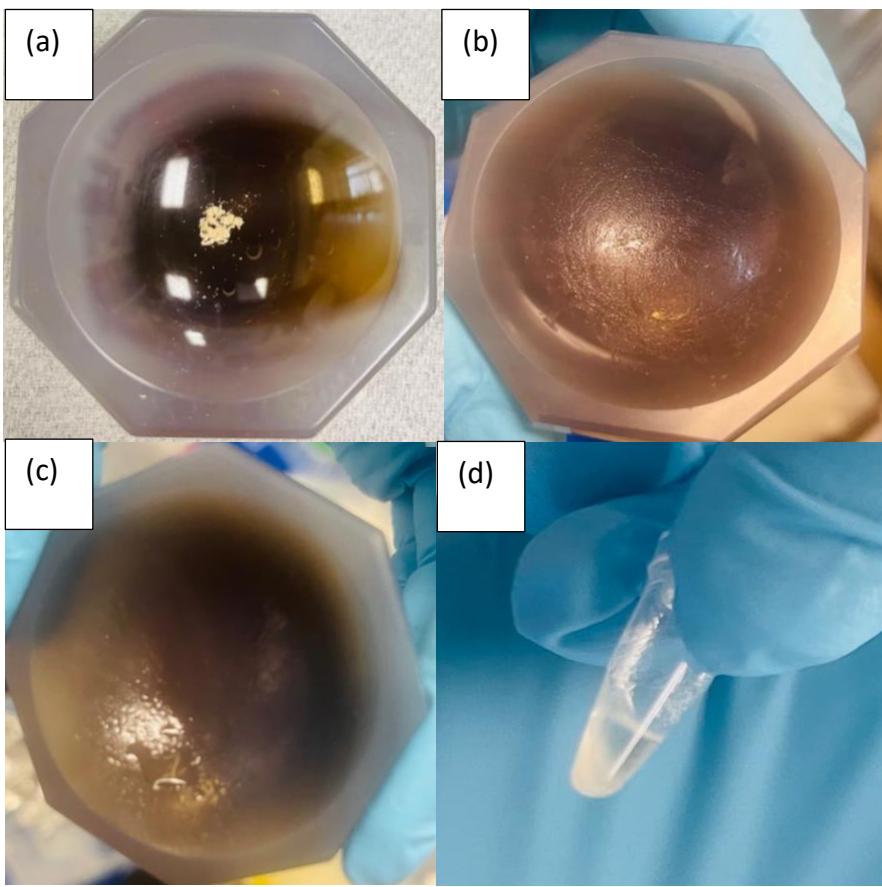
886

887

888

889

890


891

892

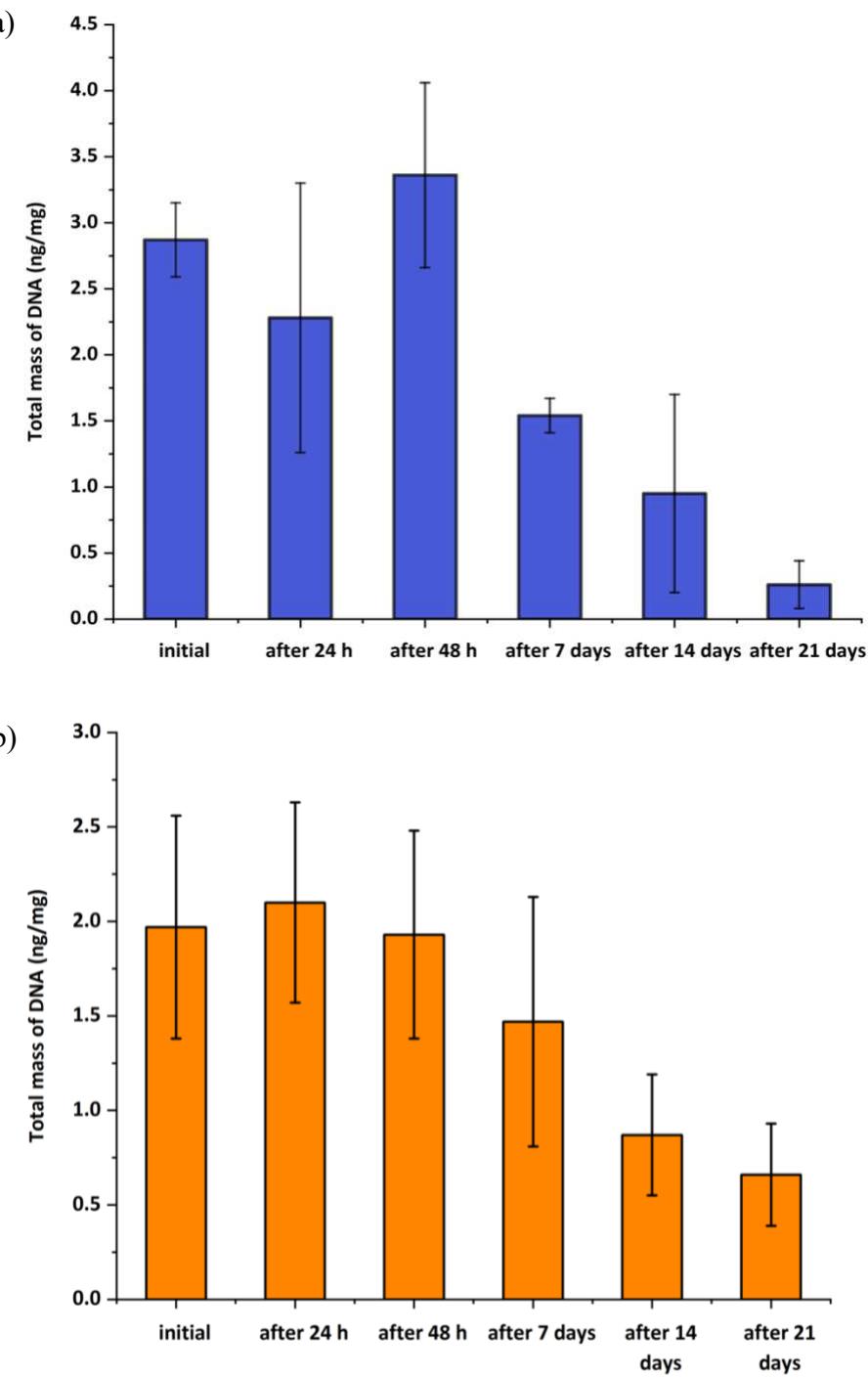
893

894

895

896 **Figure 5.** Representative photographs of various steps in the developed IL-based VA-MSPD
897 procedure: (a) ground plant tissue in Agate mortar with the IL; (b) plant tissue dispersed with IL;
898 (c) addition of DMSO for the recovery of plant-IL mixture and (d) clear supernatant that forms
899 after centrifugation.

900


901

902

903

904

905

Figure 6. Stability of extracted DNA over time from 1.5 mg of *A. thaliana* treated plant tissue using 15 μ L of (a) $[P_{6,6,6,14}^+][NTf_2^-]$ IL and (b) $[P_{6,6,6,14}^+][Ni(hfacac)_3^-]$ MIL. The MSPD procedure was used in the extraction and DNA was stored in IL-DMSO-water mixture and Ni MIL-DMSO mixture at room temperature. All experiments were conducted in triplicate.