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A B S T R A C T

In this paper, we present a rigorous and systematic approach for evaluating the linearized elastic stiffnesses
of triclinic 2D materials. Unlike orthorhombic and hexagonal materials, triclinic 2D materials exhibit in-plane
extension-shear coupling effects wherein axial stresses can cause a shear strain and a shear stress can induce
axial strains. In the presented approach, the elastic stiffnesses of a 2D material are evaluated by curve fitting
a constitutive model to either the strain energy densities or the stresses obtained for different strain states in
strain space. The approach can be used to determine all the mechanical properties of a triclinic 2D material,
including the coefficients of mutual influence that characterize the extension-shear coupling. The proposed
approach is illustrated by evaluating the stiffness tensor of triclinic 2D rhenium disulfide using first principles
calculations. The Young’s and shear moduli, the Poisson’s ratios and the coefficients of mutual influence of
rhenium disulfide are presented along with the directional dependence of its mechanical properties. In addition,
the degree of anisotropy of rhenium disulfide is discussed.

1. Introduction

Two-dimensional (2D) materials are attracting increased attention
due to their salient physical properties that are advantageous in a
multitude of applications such as in the semiconductor industry [1,2]. It
is important to fully understand the elastic properties of 2D materials
in order to use them effectively in applications [2–4]. Studies on the
linear and nonlinear elastic response of 2D materials belonging to
the hexagonal, orthorhombic and monoclinic symmetry classes have
been published [5–15]. Triclinic 2D materials are characterized by
the lack of any crystal symmetry (e.g., see [16]) and are important
in applications [17,18]. Technetium diselenide, rhenium diselenide
and rhenium ditelluride [10] are examples of triclinic 2D materials.
Studies concerning the linear elastic response of triclinic 2D materi-
als [19,20] and multilayer triclinic 2D materials [21] are presented in
the literature. However, previous studies have focused on quantifying
specific mechanical properties such as the Young’s moduli and Poisson’s
ratios [20].

Due to the lack of symmetry, triclinic materials exhibit extension-
shear coupling effects wherein axial stresses induce a shear strain and
shear stresses induce normal strains (e.g., see [22]). The extension-
shear coupling effects are quantified by the coefficients of mutual
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influence, first introduced in [23]. For orthorhombic and hexagonal
materials, the coefficients of mutual influence are zero (e.g., see [5,6,
16]). Although the coefficients of mutual influence appear in the theory
of anisotropic elasticity [24] and have been studied for materials on
the continuum scale [25,26], to the best of our knowledge, there have
been no studies about the coefficients of mutual influence of triclinic
2D materials.

The mechanical properties of a triclinic 2D material, such as the
coefficients of mutual influence, can be evaluated from its stiffness
tensor (e.g., see [5]). The stiffness tensors and higher order elastic
constants have been determined for 2D materials of higher symmetry
using a polynomial based hyperelastic constitutive model [5–9,27–31].
In order to determine the elastic stiffnesses for infinitesimal defor-
mations, we assume a quadratic polynomial hyperelastic constitutive
model wherein the strain energy density is expanded as a second order
polynomial in terms of the components of the strain tensor which
results in linear relations between the components of the stress and
strain tensors (e.g., see [32]). It is possible to evaluate the elastic
stiffnesses of a triclinc 2D material by fitting its quadratic constitutive
model to the strain energy densities corresponding to a set of strained
states [5,6]. Alternatively, the elastic stiffnesses of a triclinc 2D material
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can be evaluated by fitting its linear stress–strain relations to the
stresses obtained from uniaxial and shear stress simulations [7–9,27–
31]. Curve fitting using the strain energy densities presents numerous
advantages over stress based curve fitting in the case of nonlinear
deformations [5]. In this paper we use both energy and stress based
curve fitting for comparison. We illustrate the procedure by evaluating
the elastic stiffnesses of triclinic 2D rhenium disulfide.

Rhenium disulfide is a triclinc 2D material belonging to the point
group P1̄ (e.g., see [33]) whose properties are favorable in applica-
tions such as logic and optoelectronic devices [4,34]. The full three-
dimensional stiffness tensor of rhenium disulfide is presented in [10,35]
and on the Materials Project [36–38]. The three-dimensional stiffness
tensors presented in [35,37,38] correspond to that of multilayer rhe-
nium disulfide due to the use of periodic boundary conditions with a
small separation distance in the direction perpendicular to the prin-
cipal material plane. The elastic properties of rhenium disulfide have
been evaluated in [39], however, the relations to obtain these elastic
properties and the structure of the elastic stiffnesses used correspond
to that for a material of hexagonal symmetry. The nonlinear elastic
response of 2D rhenium disulfide is investigated in [40] using a fifth
order polynomial constitutive model, but the material is treated as a
hexagonal material. There has been a lack of systematic studies to
characterize the comprehensive linear elastic response of a triclinic
2D material, such as rhenium disulfide, including the coefficients of
mutual influence. Furthermore, the plane stress reduced stiffness tensor
of monolayer 2D rhenium disulfide has not been previously reported.

In this paper, we present an approach for determining the elastic
stiffnesses of a triclinic 2D material which in-turn can be used to obtain
the mechanical properties of the material, including the coefficients of
mutual influence. The approach is illustrated by evaluating the plane
stress reduced stiffness tensor of rhenium disulfide using plane-wave
density functional theory (DFT, e.g., see [41]). The Young’s moduli,
shear modulus, Poisson’s ratios and coefficients of mutual influence
of rhenium disulfide are determined using its stiffness tensor. The
variation of the directional mechanical properties of rhenium disulfide
is investigated and some of its stiffnesses and moduli are compared to
that published in the literature. Subsequently, we discuss the degree
of anisotropy of rhenium disulfide based on its directional moduli.
It is observed that the directional coefficients of mutual influence
of rhenium disulfide do not collectively vanish, therefore, rhenium
disulfide exhibits extension-shear coupling in the linear elastic regime,
unlike any orthorhombic or hexagonal 2D material (e.g., see [5]).

2. Theoretical background

In this paper, we consider an arbitrary triclinic material as shown in
Fig. 1. Triclinic materials are often studied using non-orthogonal unit
cells in atomistic simulations to account for the lack of symmetry in
their crystal structure (e.g., see [35,38]). However, it is also possible
to analyze a triclinic material using a Cartesian coordinate system.
In the present work, we analyze the materials in a global Cartesian,
i.e., orthonormal, basis

{
𝒆𝒊
}
as shown in Fig. 1 for simplicity and rep-

resent the lattice vectors in the global basis. Once the elastic stiffnesses
have been evaluated in the global Cartesian basis, the Young’s modulus
can be determined in any direction, including the lattice parameter
directions in the principal material plane. Throughout this paper, the
global Cartesian basis

{
𝒆𝒊
}
is used unless otherwise specified and the

subscripts 1, 2 and 3 refer to the longitudinal direction 𝒆𝟏, the lateral
direction 𝒆𝟐 and the out-of-plane direction 𝒆𝟑, respectively.

2.1. Notational details

The linear elastic response of triclinic materials is studied in order
to determine their elastic stiffnesses and by extension their mechanical
properties. We use the Green–St. Venant strain tensor 𝑬 in the present
work (e.g., see [32]) since it is a rigorous strain measure that can

Fig. 1. A triclinic 2D material in a global Cartesian basis. The rendering of the crystal
is done using XCrySDen [42].

be used to represent both linear and nonlinear strains. The Green–
St. Venant strain tensor 𝑬 reduces to the infinitesimal strain tensor 𝜺 in
the case of infinitesimal deformations (e.g., see [32]). The Voigt con-
traction [43] is employed for the components of the Green–St. Venant
strain tensor where,

𝐸1 = 𝐸11, 𝐸2 = 𝐸22, 𝐸3 = 𝐸33, 𝐸4 = 2𝐸23, 𝐸5 = 2𝐸13, 𝐸6 = 2𝐸12. (1)

In Eq. (1), 𝐸𝑖𝑖 represents the normal strain in the 𝒆𝒊 direction and 𝐸𝑖𝑗

the shear strain in the 𝒆𝒊-𝒆𝒋 plane. The second Piola–Kirchhoff stress
tensor 𝑺 is used as the stress measure (e.g., see [32]). In the case of
infinitesimal deformations, the second Piola–Kirchhoff stress tensor 𝑺
reduces to the Cauchy stress tensor 𝝈 (e.g., see [32]). We use the Voigt
notation [43] for the components of the stress tensor as follows,

𝑆1 = 𝑆11, 𝑆2 = 𝑆22, 𝑆3 = 𝑆33, 𝑆4 = 𝑆23, 𝑆5 = 𝑆13, 𝑆6 = 𝑆12, (2)

where 𝑆𝑖𝑖 represents the normal stress in the 𝒆𝒊 direction and 𝑆𝑖𝑗 the
shear stress in the 𝒆𝒊-𝒆𝒋 plane. The Voigt notation and the tensorial
notation are interchangeably used in this work, the difference will
be clear in context. Furthermore, Einstein’s summation convention
(e.g., see [32]) is implied over all dummy subscript index pairs unless
otherwise specified.

2.2. Constitutive model

The triclinic 2D material is analyzed using Murnaghan’s hyperelastic
polynomial constitutive model [44,45]. Since the deformations of inter-
est are infinitesimal, a second order polynomial expansion of the strain
energy density 𝑊 in terms of the strain components is used wherein

𝑊 = 𝐶𝑖𝐸𝑖 +
1

2
𝐶𝑖𝑗𝐸𝑖𝐸𝑗 , (3)

where 𝐶𝑖 and 𝐶𝑖𝑗 are elastic constants and the subscript indices 𝑖 and
𝑗 vary in {1, 2, 3, 4, 5, 6}. The stress components are obtained using
Eq. (3) and the hyperelastic constitutive relations in an orthonormal
basis (e.g., see [32]) as follows,

𝑆𝑖 =
𝜕𝑊

𝜕𝐸𝑖

= 𝐶𝑖 + 𝐶𝑖𝑗𝐸𝑗 . (4)

In the present work, we do not consider prestressed 2D materials, thus,
𝑺 = 𝟎 when 𝑬 = 𝟎 which implies that 𝐶𝑖 = 0 for all 𝑖 ∈ {1, 2, 3, 4, 5, 6}.
Furthermore, we study 2D materials under plane stress conditions
(e.g., see [5,6]), i.e., 𝑆3 = 𝑆4 = 𝑆5 = 0. Therefore, the strain energy
density can be expressed in terms of three of the six strain components,
e.g., the longitudinal axial strain 𝐸1, the lateral axial strain 𝐸2 and the
in-plane shear strain 𝐸6. Consequently,

𝑊 =
1

2
𝑄𝑖𝑗𝐸𝑖𝐸𝑗 , (5)

where 𝑄𝑖𝑗 are the plane stress reduced elastic constants and the sub-
script indices 𝑖 and 𝑗 vary now in {1, 2, 6}. It follows from Eqs. (4) and
(5) that

𝑆𝑖 = 𝑄𝑖𝑗𝐸𝑗 , (6)

which represents the linearized stress–strain relations under plane
stress conditions (e.g., see [32]). The plane stress reduced elastic
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constants 𝑄𝑖𝑗 will be referred to as just elastic constants or elastic
stiffnesses hereinafter for simplicity. It is noted that the elastic stiff-
nesses satisfy the symmetry relation 𝑄𝑖𝑗 = 𝑄𝑗𝑖 for all 𝑖, 𝑗 ∈ {1, 2, 6}

(e.g., see [5]).

2.3. Mechanical properties of triclinic 2D materials

The stress–strain relations shown in Eq. (6) can be written in
expanded form as

⎧⎪⎨⎪⎩

𝑆1

𝑆2

𝑆6

⎫⎪⎬⎪⎭
=

⎡
⎢⎢⎣

𝑄11 𝑄12 𝑄16

𝑄12 𝑄22 𝑄26

𝑄16 𝑄26 𝑄66

⎤
⎥⎥⎦

⎧⎪⎨⎪⎩

𝐸1

𝐸2

𝐸6

⎫⎪⎬⎪⎭
. (7)

Eq. (7) can be inverted to obtain the compliance relations and by
extension the mechanical properties of a triclinic 2D material as follows
(e.g., see [5]),

⎧⎪⎨⎪⎩

𝐸1

𝐸2

𝐸6

⎫⎪⎬⎪⎭
=

⎡
⎢⎢⎣

𝑄11 𝑄12 𝑄16

𝑄12 𝑄22 𝑄26

𝑄16 𝑄26 𝑄66

⎤
⎥⎥⎦

−1 ⎧⎪⎨⎪⎩

𝑆1

𝑆2

𝑆6

⎫⎪⎬⎪⎭
=

⎡⎢⎢⎢⎣

1

𝑌1
−

𝜈21

𝑌2

𝜂16

𝐺

−
𝜈12

𝑌1

1

𝑌2

𝜂26

𝐺
𝜂61

𝑌1

𝜂62

𝑌2

1

𝐺

⎤⎥⎥⎥⎦

⎧⎪⎨⎪⎩

𝑆1

𝑆2

𝑆6

⎫⎪⎬⎪⎭
, (8)

where 𝑌𝑖 represents the Young’s modulus in the 𝒆𝒊 direction, 𝐺 is the
shear modulus in the 𝒆𝟏-𝒆𝟐 plane, 𝜈12 and 𝜈21 are the Poisson’s ratios in
the 𝒆𝟏-𝒆𝟐 plane, 𝜂𝑖6 are the coefficients of mutual influence of the first
kind and 𝜂6𝑖 are the coefficients of mutual influence of the second kind.
The Poisson’s ratio 𝜈12 is the negative of the ratio of the lateral strain 𝐸2

to the longitudinal strain 𝐸1 when the material is only subjected to an
axial stress 𝑆1. In comparison, 𝜈21 is defined as the negative of the ratio
of the longitudinal strain 𝐸1 to the lateral strain 𝐸2 when the material is
only subjected to an axial lateral stress 𝑆2. In general for an anisotropic
material, 𝜈12 ≠ 𝜈21 but they are related through the reciprocity relation
(e.g., see [32])
𝜈12

𝑌1
=

𝜈21

𝑌2
, (9)

which follows from the symmetry of the elastic stiffnesses. Triclinic
materials also exhibit extension-shear coupling wherein a shear stress
𝑆6 will induce normal strains 𝐸1 and 𝐸2 which are quantified by the co-
efficients of mutual influence of the first kind 𝜂16 and 𝜂26, respectively.
Similarly, a normal stress 𝑆1 or 𝑆2 will induce a shear strain 𝐸6 which
is quantified by the coefficients of mutual influence of the second kind
𝜂61 and 𝜂62, respectively. Since the stiffness matrix 𝑸 is symmetric, the
coefficients of mutual influence satisfy the following relations,
𝜂61

𝑌1
=

𝜂16

𝐺
and

𝜂62

𝑌2
=

𝜂26

𝐺
. (10)

As shown in Eq. (8), the closed form expressions for the mechanical
properties are obtained by taking the inverse of a stiffness tensor 𝑸 as
follows,

𝑌1 = 𝑄11 −
𝑄2

12

𝑄22

−

(
𝑄16𝑄22 −𝑄12𝑄26

)2
𝑄22

(
𝑄22𝑄66 −𝑄2

26

) ,

𝑌2 = 𝑄22 −
𝑄2

12

𝑄11

−

(
𝑄12𝑄16 −𝑄11𝑄26

)2
𝑄11

(
𝑄11𝑄66 −𝑄2

16

) ,

𝐺 = 𝑄66 +
𝑄22𝑄

2
16

− 2𝑄12𝑄16𝑄26 +𝑄11𝑄
2
26

𝑄2
12

−𝑄11𝑄22

,

𝜈12 =
𝑄12

𝑄22

+
𝑄26

(
𝑄12𝑄26 −𝑄22𝑄16

)

𝑄22

(
𝑄22𝑄66 −𝑄2

26

) ,

𝜂16 =
𝑄22𝑄16 −𝑄12𝑄26

𝑄2
12

−𝑄11𝑄22

,

𝜂26 =
𝑄11𝑄26 −𝑄12𝑄16

𝑄2
12

−𝑄11𝑄22

,

(11)

where the remaining Poisson’s ratio 𝜈21 and coefficients of mutual
influence 𝜂61 and 𝜂62 can be determined using Eqs. (9) and (10),

respectively. It is noted that by comparison with the expressions for the
mechanical properties of an orthorhombic material (e.g., see [5]), the
last summand in each of the expressions presented in Eq. (11) accounts
for the anisotropy of a triclinic material. The latter terms, in addition
to 𝜂16 and 𝜂26, relate to extension-shear coupling and will vanish if
𝑄16 = 𝑄26 = 0 which is the case for any higher symmetry class.

2.4. Evaluating the elastic stiffnesses

The elastic constants 𝑄𝑖𝑗 of a triclinic 2D material can be evalu-
ated by curve fitting the constitutive model presented in Eq. (5) to
the strain energy densities obtained using density functional theory.
Alternatively, the elastic constants 𝑄𝑖𝑗 can be evaluated by curve fitting
the stress–strain relations shown in Eq. (6) to the stresses determined
using density functional theory. We present and use both approaches
for comparison purposes.

2.4.1. Curve fitting using the strain energy densities
In order to evaluate the elastic constants 𝑄𝑖𝑗 of a triclinic material

using the strain energy densities we use the ray based methodology [5,
6] which is based on curve fitting the polynomial constitutive model
shown in Eq. (5) to the strain energy densities corresponding to a
multitude of strain states sampled along rays in strain space.

We first define strain space as the space spanned by the scalars 𝐸1,
𝐸2 and 𝐸6. Each point in strain space corresponds to a specific strain
state as defined by the values of the longitudinal normal strain 𝐸1,
lateral normal strain 𝐸2 and shear strain 𝐸6. We sample points along
rays in strain space to curve fit for the elastic constants of a triclinic
2D material and we limit our sampling region to a sphere of radius
𝑅 centered at the origin (e.g., see [5]). Since a ray’s direction can be
uniquely defined using the ray’s azimuthal angle 𝜃 and polar angle
𝜙, the components of a strain state on a ray can be written in Voigt
notation as

⎧⎪⎨⎪⎩

𝐸1 = 𝑟 cos 𝜃 sin𝜙,

𝐸2 = 𝑟 sin 𝜃 sin𝜙,

𝐸6 = 𝑟 cos𝜙,

(12)

where 𝑟 denotes the Euclidean norm (e.g., see [5]). For each strain state,
the strain energy density is computed using atomistic simulations. In
this work, we employ density functional theory [46,47].

The first step in evaluating the elastic constants of a material using
the ray based methodology is to choose a set of sampling rays by
defining their directions 𝜃 and 𝜙, in addition to the strain states on each
ray defined by their norms 𝑟. We consider that  sampling rays are
used with  equidistant strain states on each ray excluding the origin.
We can index our strain states using 2 integers 𝑖 and 𝑗 representing
the ray number and the strain state on the ray, respectively. Thus,
𝑖 ∈ {1, 2,… ,} and 𝑗 ∈

{
1, 2,… ,

}
. A sample strain tensor 𝑬(𝑖,𝑗)

can be written in Voigt notation as

⎧⎪⎨⎪⎩

𝐸
(𝑖,𝑗)

1

𝐸
(𝑖,𝑗)

2

𝐸
(𝑖,𝑗)

6

⎫⎪⎬⎪⎭
= 𝑗

𝑅



⎧⎪⎨⎪⎩

cos 𝜃𝑖 sin𝜙𝑖

sin 𝜃𝑖 sin𝜙𝑖

cos𝜙𝑖

⎫⎪⎬⎪⎭
, (13)

where 𝜃𝑖 and 𝜙𝑖 are the azimuthal angle and polar angle of the 𝑖th
ray, respectively. The second step in the ray based methodology is to
compute the strain energy density 𝑊 (𝑖,𝑗) corresponding to the strain
state 𝑬(𝑖,𝑗) for all 𝑖 and 𝑗. We do so using plane-wave density functional
theory as follows,

𝑊 (𝑖,𝑗) =
1

𝛺

(
 (𝑖,𝑗) −  (0,0)

)
, (14)

where 𝛺 is the ground state area of the system (to obtain stiffnesses in
N/m, e.g., see [5]),  (𝑖,𝑗) is the total energy of the material subjected
to the strain tensor 𝑬(𝑖,𝑗) and  (0,0) is the ground state energy of the
system. In order to determine  (𝑖,𝑗) using density functional theory,
we deform the material unit cell following the deformation gradient
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𝑭 (𝑖,𝑗) corresponding to the strain 𝑬(𝑖,𝑗). To obtain the upper triangular
deformation gradient 𝑭 (𝑖,𝑗) corresponding to the strain tensor 𝑬(𝑖,𝑗), we
use the Cholesky decomposition (e.g., see [48,49]) of

2𝑬(𝑖,𝑗) − 𝑰 = 𝑭 (𝑖,𝑗)𝑇 𝑭 (𝑖,𝑗), (15)

where 𝑰 is the identity tensor. The Cholesky decomposition shown in
Eq. (15) exists since by definition, 2𝑬 − 𝑰 = 𝑭 𝑇𝑭 and 𝑭 𝑇𝑭 is sym-
metric positive-definite (e.g., see [48]). In the case of two-dimensional
deformations, the strain tensor 𝑬(𝑖,𝑗) is represented by a 2 × 2 matrix,
therefore the deformation gradient 𝑭 (𝑖,𝑗), obtained through Cholesky
decomposition, is,

𝑭 (𝑖,𝑗) =

⎡
⎢⎢⎢⎢⎢⎢⎣

√
2𝐸

(𝑖,𝑗)

1
+ 1

𝐸
(𝑖,𝑗)

6√
2𝐸

(𝑖,𝑗)

1
+ 1

0

√√√√√2𝐸
(𝑖,𝑗)

2
+ 1 −

𝐸
(𝑖,𝑗)2

6

2𝐸
(𝑖,𝑗)

1
+ 1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (16)

It is noted that 2𝐸1+1 > 0 for any physically allowable strain state since
otherwise the deformation would correspond to an area collapsing into
a line (e.g., see [32]).

We defineLLL as the matrix in which each column corresponds to the
components of the in-plane lattice vectors of the unit cell in the

{
𝒆𝒊
}

basis, i.e.,

LLL =

[
𝑙
(1)

1
𝑙
(2)

1

𝑙
(1)

2
𝑙
(2)

2

]
, (17)

where 𝒍(𝑖) are the in-plane lattice vectors defining the unit cell being
simulated. The deformation can be applied as follows,

LLL
(𝑖,𝑗) = 𝑭 (𝑖,𝑗)

LLL
(0,0), (18)

where LLL (𝑖,𝑗) is the deformed lattices matrix and LLL (0,0) is the matrix of
ground state lattice parameters. After the lattice vectors are deformed
to that corresponding to LLL (𝑖,𝑗), the atomic coordinates are relaxed to
reach the local minimum energy configuration of the material and
obtain  (𝑖,𝑗).

Finally, after sampling for the strain energy densities, we use linear
least squares (e.g., see [50]) to globally curve fit and determine the
elastic constants [5] using (e.g., see [50,51])
[
𝑄11 𝑄22 𝑄66 𝑄12 𝑄16 𝑄26

]𝑇
=
(
𝑩𝑇𝑩

)−1 (
𝑩𝑇𝑾

)
, (19)

where using the injective map  =  (𝑖 − 1)+𝑗,𝑾 is the vector defined
using each (𝑖, 𝑗) pair as

𝑊 = 𝑊 (𝑖,𝑗), (20)

and the rows of the matrix 𝑩 are defined as,

𝐵,1…6

=
[
1

2
𝐸

(𝑖,𝑗)2

1

1

2
𝐸

(𝑖,𝑗)2

2

1

2
𝐸

(𝑖,𝑗)2

6
𝐸

(𝑖,𝑗)

1
⋅ 𝐸

(𝑖,𝑗)

2
𝐸

(𝑖,𝑗)

1
⋅ 𝐸

(𝑖,𝑗)

6
𝐸

(𝑖,𝑗)

2
⋅ 𝐸

(𝑖,𝑗)

6

]
.

(21)

More rays are added as necessary to increase the accuracy of the elastic
constants.

2.4.2. Curve fitting using the stresses
The elastic constants 𝑄𝑖𝑗 can also be determined using the stresses

corresponding to different strain states similarly to how this is done
in [7]. We can determine, using linear least squares (e.g., see [50,51]),
the 𝑖th column of the stiffness tensor using simulations where 𝐸𝑖 ≠ 0

for some 𝑖 ∈ {1, 2, 6} and 𝐸𝑗 = 𝐸𝑘 = 0 for 𝑗, 𝑘 ∈ {1, 2, 6}, 𝑗 ≠ 𝑘 and
𝑗, 𝑘 ≠ 𝑖 as follows,

𝑄𝑖𝑗 =
(


𝑇

)−1 (


𝑇𝑺𝒋

)
, (22)

where  is the column vector containing the applied strains 𝐸𝑖 and 𝑺𝒋 is
the column vector containing the corresponding stress components 𝑆𝑗 ,

Fig. 2. Six-atom rhenium disulfide unit cell used in the density functional theory
calculations. The rendering of the crystal is done using XCrySDen [42].

Table 1
Converged values of the parameters used in the Quantum-
Espresso calculations.

Parameter Value used

𝐾𝑥, 𝐾𝑦 14
𝐾𝑧 2
Total energy convergence threshold 10−9 Ry
Electron energy convergence threshold 10−10 Ry
Force convergence threshold 10−6 eV∕Å
Kinetic energy cut-off 150 Ry
𝑧 lattice vector dimension 20 Å

in the same order, computed using density functional theory. It is noted
that similarly to the ray based methodology, for a given strain state the
deformation gradient is determined using Cholesky decomposition as in
Eq. (16) and the unit cell is deformed accordingly following Eq. (18)
and the atomic coordinates relaxed to obtain the stresses.

3. Computational details

We illustrate the methodology presented in Section 2 by evalu-
ating the elastic stiffnesses of rhenium disulfide which is a triclinic
2D material. We calculate the energies and the stresses of differ-
ent rhenium disulfide configurations using plane-wave density func-
tional theory [46,47] employing the open source software Quantum-
Espresso [52,53]. Projector augmented wave pseudopotentials [54] and
the Perdew–Burke–Ernzerhof generalized gradient approximation [55]
are used. In order to determine the Quantum-Espresso parameters
to be used in the simulations, a convergence analysis is carried out
which consists of relaxing the six-atom rhenium disulfide unit cell
shown in Fig. 2, where the in-plane lattice vectors 𝒍(1) and 𝒍(2) and the
atomic coordinates are allowed to change to reach the ground state
configuration. The ground state energy as well as the components of
the in-plane lattice vectors are then compared for different values of
each parameter to assess convergence. It is noted that the parameter 𝑧
shown in Fig. 2 is studied and chosen to avoid any interactions between
adjacent cells of rhenium disulfide in the out-of-plane direction. The
corresponding out-of-plane lattice vector, which is orthogonal to the 𝒆𝟏-
𝒆𝟐 plane, remains unchanged in the simulations since we are studying
single layer rhenium disulfide.

The converged values that are used in all the simulations are pre-
sented in Table 1. 𝐾𝑥, 𝐾𝑦 and 𝐾𝑧 represent the Monkhorst–Pack K-space
discretization [56] in each reciprocal space direction, respectively.
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Fig. 3. Ground state geometry and unit cell of rhenium disulfide. The rendering of the crystals is done using XCrySDen [42].

4. Ground state configuration of rhenium disulfide

Using the Quantum-Espresso parameters presented in Table 1, we
perform a unit cell energy minimization to obtain the ground state
configuration of rhenium disulfide. Fig. 3(a) shows the ground state
unit cell in the unit cell coordinate system

{
𝝃𝒊
}
. The unit cell coordinate

system
{
𝝃𝒊
}
is oriented along the lattice vectors and is not Cartesian

since 𝝃𝟏 and 𝝃𝟐 are not orthogonal. Indeed, the ground state lattice
parameters matrix of rhenium disulfideLLL (0,0) in the

{
𝒆𝒊
}
basis is given

by,

LLL
(0,0) =

[
3.363 −0.078

−0.048 5.528

]
(Å). (23)

Fig. 3(b) shows the top view of the ground state configuration of
rhenium disulfide, along with the global and unit cell bases directions.
As can be seen in Fig. 3(b), the 𝝃𝟏 unit cell basis vector is at an angle
of 𝛼1 = −0.818◦ relative to the global basis vector 𝒆𝟏 and the unit cell
basis vector 𝝃𝟐 is at an angle of 𝛼2 = 0.808◦ relative to the global basis
vector 𝒆𝟐.

For computational convenience, we use six atoms in the unit cell
for our density functional theory simulations (cf. Fig. 3(a)) based on
the minimum number of atoms in a 2D rhenium disulfide conventional
unit cell [38,57]. The in-plane angle between the 𝝃𝟏 and 𝝃𝟐 axes in
this work is approximately 92◦ as shown in Fig. 3(a), whereas in other
conventional unit cells presented in the literature this angle is closer
to 120◦ [10,38,57]. While different conventional unit cells can be used
to study the same periodic system (e.g., see [41]) the resulting elastic
stiffnesses in the chosen global basis

{
𝒆𝒊
}
should remain unaffected.

5. Elastic constants of rhenium disulfide

We evaluate the elastic constants of rhenium disulfide using density
functional theory. We present the results obtained using both stress and
energy based curve fitting for comparison (cf. Section 2.4).

Table 2
Ray directions used to sample for the strain energy density of rhenium
disulfide in strain space.

Elastic constant 𝜃 (◦∕180) 𝜙 (◦∕180)

𝑄11 {0, 1} 1∕2

𝑄22 ±1∕2 1∕2

𝑄66 0 {0, 1}

𝑄12 ±{1∕4, 3∕4} 1∕2

𝑄16 {0, 1} {𝑛∕8 ∣ 𝑛 ∈ {1, 2, 3, 5, 6, 7}}

𝑄26 ±1∕2 {𝑛∕8 ∣ 𝑛 ∈ {1, 2, 3, 5, 6, 7}}

5.1. Curve fitting using the energies

We choose the ray directions shown in Table 2 to evaluate the
elastic stiffnesses of rhenium disulfide using the ray based method-
ology [5]. It is noted that more rays are used in the 𝐸1-𝐸6 and
𝐸2-𝐸6 planes of strain space since 𝑄16 and 𝑄26 are smaller than the
other stiffnesses and therefore are more sensitive to small numerical
differences.

Furthermore, we consider  = 4 equidistant strain states on each
ray and the strain ball of radius 𝑅 = 2×10−3 = 0.2%, chosen within the
linear elastic regime. To ensure that the elastic stiffnesses evaluated
using curve fitting are accurate based on the number points per ray
chosen, we evaluate these elastic constants using 1, 2 and 4 equidistant
points per ray with the same 34 rays shown in Table 2. Furthermore,
to assess if the number of rays used is sufficient we perform the same
evaluations using 18 rays for comparison. The elastic constants obtained
from these analyses are presented in Table 3. As can be seen in Table 3,
the elastic constants evaluated using different numbers of rays and
points per ray are nearly identical. Therefore, it is concluded that the 34
rays shown in Table 2 with 4 points per ray are sufficient to accurately
determine the elastic constants of rhenium disulfide.
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Table 3
Elastic stiffnesses of rhenium disulfide obtained using 18 and 34 rays and 1, 2 and 4
equidistant points per ray to assess their accuracy.

Number of rays  18 34

Number of points per ray  1 2 4 1 2 4

𝑄11 (N/m) 104.6 104.6 104.6 104.6 104.6 104.6
𝑄22 (N/m) 144.5 144.5 144.6 144.5 144.5 144.6
𝑄66 (N/m) 47.4 47.5 47.5 47.4 47.5 47.5
𝑄12 (N/m) 27.4 27.4 27.4 27.4 27.4 27.4
𝑄16 (N/m) 6.9 6.9 6.9 6.9 6.8 6.8
𝑄26 (N/m) 1.3 1.3 1.3 1.3 1.3 1.3

The elastic constants obtained using energy based curve fitting are
presented in the stiffness tensor

𝑸(W) =

⎡⎢⎢⎣

104.6 27.4 6.8

27.4 144.6 1.3

6.8 1.3 47.5

⎤⎥⎥⎦
(N/m) , (24)

where the superscript (W) represents curve fitting using the energies.
The global root mean square error in the curve fit used to determine
the elastic constants shown in Eq. (24) is 1.99 × 10−5 J/m2.

5.2. Curve fitting using the stresses

In order to curve fit for the stiffnesses of rhenium disulfide using
the stresses, we run density functional theory simulations with  =

4 equidistant strain states per simulation. The simulations performed
consist of applying respectively tensile and compressive axial strains 𝐸1

and 𝐸2 and positive and negative shear strains 𝐸6. The elastic constants
obtained using stress based curve fitting are presented in the stiffness
tensor

𝑸(S) =

⎡⎢⎢⎣

103.9 26.8 6.9

26.9 143.9 1.8

6.8 1.4 47.5

⎤⎥⎥⎦
(N/m) , (25)

where the superscript (S) represents curve fitting using the stresses. As
can be seen in Eq. (25), curve fitting using the stresses does not result
in a perfectly symmetric stiffness tensor 𝑸 due to minor differences in
the density functional theory stresses corresponding to different simula-
tions, e.g., 𝑆6 from an 𝐸1 simulation and 𝑆1 from an 𝐸6 simulation. The
elastic constant 𝑄26 varies the most since it is smaller than the other
elastic constants and thus the most sensible to minor variations in the
data used for the curve fitting.

5.3. Discussion

There exist some differences between the components of the stiff-
ness tensors 𝑸(W) and 𝑸(S). Furthermore, 𝑸(S) is not symmetric which
violates the symmetry of the stiffness tensor shown in Eq. (8). The
stresses, which are obtained from the derivatives of the energy with
respect to the strains in density functional theory [58], are less ac-
curate than the corresponding energies since differentiation increases
computational inaccuracies. Furthermore, more rays, i.e., simulations,
are used for the curve fitting using the ray based methodology, which
accounts for a larger number of strain states. Therefore, the stiffnesses
obtained using the proposed energy based curve fitting method more
accurately describe the elastic response of rhenium disulfide when
subjected to different strain states in the chosen strain space sphere
than those obtained using stress based curve fitting. Therefore, we
conclude that 𝑸(W) is more accurate than 𝑸(S), especially since 𝑸(W)

is symmetric. Stress based curve fitting is a more efficient option since
it only required 6 simulations instead of 34. Therefore, in studies that
do not require high accuracy, stress based curve fitting can be used but
the symmetry of the tensor has to be enforced. We use 𝑸 = 𝑸(W) for
the subsequent analyses as the stiffness tensor of rhenium disulfide.

Table 4
Mechanical properties of rhenium disulfide obtained using its elastic stiffness tensor.

𝑌1 (N/m) 𝑌2 (N/m) 𝐺 (N/m) 𝜈12 𝜈21 𝜂16 𝜂61 𝜂26 𝜂62

98.5 137.4 47.1 0.188 0.263 −0.066 −0.138 0.004 0.010

Fig. 4. Rotated global coordinate system
{
𝒆′
𝒊

}
used to analyze rhenium disulfide. The

rendering of the crystal is done using XCrySDen [42].

6. Mechanical properties of rhenium disulfide

The mechanical properties of rhenium disulfide obtained from the
stiffness tensor presented in Eq. (24) and the relations shown in Eq. (8)
are presented in Table 4.

6.1. Directional mechanical properties

It is of interest to analyze the directional variation of the mechanical
properties of rhenium disulfide. This is achieved by utilizing the rotated
coordinate system

{
𝒆′
𝒊

}
oriented at an angle 𝜃 relative to the

{
𝒆𝒊
}
basis,

as shown in Fig. 4.
It is possible to obtain the stiffness tensor of rhenium disulfide, in

Voigt notation, in the rotated coordinate system as follows [59]

𝑸 (𝜃) = 𝜞 𝑸𝜞 𝑇 , (26)

where

𝜞 =

⎡
⎢⎢⎣

cos2 𝜃 sin2 𝜃 2 cos 𝜃 sin 𝜃

sin2 𝜃 cos2 𝜃 −2 cos 𝜃 sin 𝜃

−cos 𝜃 sin 𝜃 cos 𝜃 sin 𝜃 cos2 𝜃 − sin2 𝜃

⎤
⎥⎥⎦
, (27)

𝑸 (𝜃) is the stiffness tensor in the coordinate system
{
𝒆′
𝒊

}
and 𝑸 is

presented in Eq. (24). Using the transformation shown in Eq. (26),
the directional mechanical properties can be obtained using Eq. (8) by
inverting 𝑸 (𝜃) as,

𝑸−1 (𝜃) =

⎡⎢⎢⎢⎢⎣

1

𝑌1(𝜃)
−

𝜈21(𝜃)

𝑌2(𝜃)

𝜂16(𝜃)

𝐺(𝜃)

−
𝜈12(𝜃)

𝑌1(𝜃)

1

𝑌2(𝜃)

𝜂26(𝜃)

𝐺(𝜃)
𝜂61(𝜃)

𝑌1(𝜃)

𝜂62(𝜃)

𝑌2(𝜃)

1

𝐺(𝜃)

⎤⎥⎥⎥⎥⎦
. (28)

Fig. 5 shows the directional Young’s moduli, shear modulus and Pois-
son’s ratios of rhenium disulfide on polar plots. As can be seen in
Fig. 5(a), the Young’s modulus in the longitudinal direction is at its
maximum value at around 𝜃 = 1.5◦, whereas the shear modulus is
maximum at about 𝜃 = −22.5◦. Fig. 6 shows the variation of the
directional coefficients of mutual influence of rhenium disulfide as the
angle 𝜃 varies from −90◦ to 90◦. It is noted that the latter range of
variation of the angle 𝜃 is sufficient since any angle outside of this range
is a 180◦ rotation of an angle within that range which does not affect
the properties.

As can be seen in Fig. 6, the coefficients of mutual influence do
not collectively vanish under any rotation of the basis. Therefore, it
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Fig. 5. Variation of the mechanical properties of rhenium disulfide as the global basis
is rotated.

Fig. 6. Variation of the coefficients of mutual influence of rhenium disulfide 𝜂16, 𝜂61,
𝜂26 and 𝜂62 as the global basis is rotated.

is concluded that rhenium disulfide does not act as an orthorhombic
material under any rotated configuration.

Using the angles 𝜃 = 𝛼1 = −0.818◦ and 𝜃 = 𝛼2 = 0.808◦, we
determine the Young’s moduli 𝑌𝜉1 and 𝑌𝜉2

along the unit cell directions
𝝃𝟏 and 𝝃𝟐, respectively. These results are presented in Table 5. Since the
angle between the 𝒆𝟏 and 𝝃𝟏 directions and that between the 𝒆𝟐 and 𝝃𝟐
directions is less than a degree, i.e., ||𝛼1|| , ||𝛼2|| < 1◦, the Young’s moduli
𝑌1 and 𝑌2 are within 0.4% of 𝑌𝜉1 and 𝑌𝜉2

, respectively.

7. Comparisons with published work

In this section we compare some of the results presented in this
paper with that in the published literature. Refs. [39,60] present results

Table 5
Young’s moduli along the rhe-
nium disulfide lattice vectors.

𝑌𝜉1 (N/m) 𝑌𝜉2 (N/m)

98.1 137.4

Table 6
Comparison of some of the elastic properties of rhenium disulfide presented in the
current work with that in [39]. The prime denotes elastic properties corresponding to
a coordinate system oriented at 𝜃 = 53.322◦ relative to the 𝒆

𝟏
direction (cf. Fig. 4).

Study 𝑄′
11
(N/m) 𝑄′

12
(N/m) 𝑌 ′

1
(N/m) 𝐺′ (N/m) 𝜈′

12

Current work 135.6 29.9 127.1 49.9 0.269
Ref. [39] 140.8 31.1 133.9 59.4 0.220
Difference (%) 3.8 4.0 5.4 19.0 18.2

for single layer rhenium disulfide along the path of shortest distances
between the rhenium atoms, i.e., a rotation corresponding to 𝜃 =

53.322◦ of the configuration of the current work (cf. Fig. 4). In this
section, we will denote the elastic properties with a prime to indicate
that they correspond to a coordinate system oriented at 𝜃 = 53.322◦

relative to the 𝒆𝟏 direction (cf. Fig. 4).
Rhenium disulfide has been studied under the assumption that it is a

hexagonal 2D material in [39]. Therefore, the results presented in [39]
assume higher symmetry than that exhibited by rhenium disulfide. A
hexagonal 2D material only possesses 2 linearly independent elastic
stiffnesses, e.g., 𝑄11 and 𝑄12, which are determined in [39] by curve
fitting using the stress–strain curves. While the relations used to evalu-
ate the mechanical properties of rhenium disulfide in [39] correspond
to that of a hexagonal material unlike those presented in Eq. (11), the
elastic stiffnesses are obtained using a curve fitting approach similar
to stress based curve fitting in the current work. Therefore, the values
of 𝑄′

11
and 𝑄′

12
in [39] can be conclusively compared to that in the

current work. The stiffnesses and mechanical properties from [39] are
compared to those in the current work in Table 6. As can be seen,
the elastic stiffnesses 𝑄′

11
and 𝑄′

12
compare well with those from [39].

However, the Young’s modulus 𝑌 ′
1
, shear modulus 𝐺′ and Poisson’s

ratio 𝜈′
12
exhibit higher differences due to the hexagonal symmetry

assumption. The stiffness 𝑄′
11
is presented in [60] as 𝑄′

11
= 142N/m,

which compares well with the result in the current work and in [39].
Using the elastic stiffnesses from the current work, 𝑌 ′

2
= 100.2N/m and

𝜈′
21

= 0.212 but in [39] 𝑌 ′
2
and 𝜈′

21
are the same as 𝑌 ′

1
and 𝜈′

12
shown in

Table 6, respectively, since the material is assumed to be hexagonal.
It is noted that both Refs. [39,60] employed a rhenium disulfide unit

cell containing 12 atoms as opposed to 6 atoms as in the current work
(cf. Fig. 3(a)). This demonstrates that the periodic unit cell with 6 atoms
is sufficient to analyze rhenium disulfide since the elastic stiffnesses 𝑄′

11
and 𝑄′

12
in the current work compare well with those from [39,60] (cf.

Table 6).

8. Discussion about the anisotropy of rhenium disulfide

As discussed previously, the stiffnesses 𝑄16 and 𝑄26 of rhenium
disulfide do not simultaneously vanish under any rotation of the ba-
sis

{
𝒆𝒊
}
. Therefore, rhenium disulfide never acts as an orthorhombic

material. Besides the extension-shear coupling quantified by the 𝑄16

and 𝑄26, we can study the degree of anisotropy of rhenium disulfide
differently in terms of how closely its directional mechanical proper-
ties follow that of an isotropic material. Accordingly, we define the
anisotropy index 𝑃 as follows,

𝑃 =
𝑃max − 𝑃min

1

2

(
𝑃max + 𝑃min

) × 100%, (29)

where 𝑃 represents a mechanical property which can either be 𝑌1, 𝑌2,
𝐺, 𝜈12 or 𝜈21,

𝑃max = max
−90◦≤𝜃≤90◦

𝑃 (𝜃) and 𝑃min = min
−90◦≤𝜃≤90◦

𝑃 (𝜃) . (30)
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Table 7
Maximum and minimum directional moduli and Poisson’s ratios of rhenium disulfide
along with the angles at which they occur and the corresponding anisotropy indices
𝑃 .

Elastic
modulus 𝑃

Extremum Value
Angle of
occurrence 𝜃 (◦)

Anisotropy
index 𝑃

𝑌1
maximum 137.5 N/m −88.57

37.4%
minimum 94.2 N/m −17.22

𝑌2
maximum 137.5 N/m 1.43
minimum 94.2 N/m 72.78

𝐺
maximum 50.6 N/m −22.50

14.0%
minimum 44.0 N/m 22.50

𝜈12
maximum 0.301 70.70

55.1%
minimum 0.171 16.96

𝜈21
maximum 0.301 −19.30
minimum 0.171 −73.04

It is noted that the anisotropy index 𝑃 is not defined for the coef-
ficients of mutual influence. The anisotropy index 𝑃 is independent
of the basis used for the analysis. In the case of an isotropic material,
the moduli are invariant under rotations, thus, isotropic

𝑃
= 0% since

isotropic materials do not exhibit any anisotropy. Table 7 shows the
maximum and minimum directional moduli and Poisson’s ratios of
rhenium disulfide, the angles at which they respectively occur and the
corresponding anisotropy indices 𝑃 .

It can be seen in Table 7 that rhenium disulfide exhibits higher
anisotropy under axial deformations (𝑌𝑖

) as compared to shear (𝐺).
However, black phosphorus for example is more anisotropic axially
since 𝑌2 > 4𝑌1 (e.g., see [5]) which corresponds to 𝑌 > 120%. It is
noted that the anisotropy index is the same for both Young’s moduli
since 𝑌2 is a 90◦ rotation of 𝑌1. Similarly, in the case of Poisson’s
ratios, 𝜈21 is a 90◦ rotation of 𝜈12 and the anisotropy index takes into
account all the rotational range, so both Poisson’s ratios share the same
anisotropy index.

9. Conclusion

In this paper, we present an approach for determining the elastic
stiffnesses of a triclinic 2D material in a global basis. The presented
approach can be used to evaluate the mechanical properties of any
triclinic 2D material, including the coefficients of mutual influence
which relate shear to axial deformations. We illustrate the approach
by evaluating the anisotropic plane stress reduced stiffness tensor of
triclinic 2D rhenium disulfide. Both the strain energy density and
stresses in rhenium disulfide are computed using density functional
theory for different strain states and used to curve fit for the elastic
stiffnesses. While the stiffnesses obtained using energy based curve
fitting are more accurate and satisfy the symmetry requirements, stress
based curve fitting is more efficient since it requires fewer density
functional theory simulations. We determine the mechanical properties
of rhenium disulfide using its stiffness tensor and investigate their di-
rectional dependence. It is shown that at no angle do all the coefficients
of mutual influence of rhenium disulfide collectively vanish. Therefore,
rhenium disulfide always exhibits extension-shear coupling and does
not act as an orthorhombic material under any rotation of the global
basis. The degree of anisotropy of rhenium disulfide is discussed using
the directional elastic moduli.
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