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A B S T R A C T

Murnaghan’s polynomial based nonlinear elastic constitutive model has been previously applied to 2D materials
of hexagonal symmetry. We present a general approach for determining the nonlinear elastic constants of 2D
materials of arbitrary symmetries and any constitutive polynomial order. The methodology, which is based on
ray sampling of the strain energy density in strain space, is independent of the energy calculation method.
The ray based methodology is verified by evaluating the elastic constants of graphene which is a hexagonally
symmetric 2D material previously considered in the literature. The methodology is then applied to determine
the elastic constants of black phosphorus, an orthorhombic 2D material whose comprehensive nonlinear elastic
behavior has not been previously considered in the literature. The energy calculations are carried out using
plane-wave density functional theory. Detailed convergence analyses are performed to assess the accuracy of
the nonlinear elastic constants. The linearized mechanical properties of black phosphorus are obtained from
the elastic constants for comparison with the results published in the literature.

1. Introduction

A two-dimensional (2D) material is defined as a material whose
atomic structure is composed of one layer of atoms, or a few layers
of tightly bonded atomic planes. This class of materials is proving to
be increasingly important in different applications (Du et al., 2015;
Akinwande et al., 2017; Lee et al., 2013; Fisher, 2018; Xiao et al., 2016;
Ling et al., 2015; Inamuddin et al., 2019). Two-dimensional materials
span different crystal symmetries from hexagonal (e.g., graphene) to
triclinic (e.g., rhenium disulfide). It is necessary to understand the
nonlinear elastic behavior of 2D materials of arbitrary symmetries in
order to effectively employ them in applications. Black phosphorus, is
an example of an orthorhombic 2D material. The mechanical behavior
of black phosphorus has been investigated in some papers (Jiang and
Park, 2014; Wang et al., 2015; Cao et al., 2017; Li and Yang, 2018;
Tao et al., 2015; Setoodeh and Farahmand, 2018; Chen et al., 2016)
but a comprehensive framework for the nonlinear elastic behavior of
black phosphorus is still lacking which is also the case for many 2D
materials of low crystal symmetry.

Several different approaches have been presented in the litera-
ture to model the mechanical behavior of certain 2D materials (Xu
et al., 2012; Jia, 2015; Fish et al., 2007; Mukhopadhyay et al., 2017;
Yang et al., 2016; Davydov, 2011; Cadelano et al., 2009; Ghaffari
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et al., 2019). A thermodynamically rigorous nonlinear elastic con-
stitutive model, valid for any material symmetry, was proposed by
Murnaghan (1937). This model is based on a partial Maclaurin series
expansion of the hyperelastic strain energy density in terms of the
components of the Green–St. Venant strain tensor. Birch (1947) applied
the theory for cubic crystals. Murnaghan’s constitutive relation has
been successfully used to model a multitude of materials including 2D
materials of hexagonal symmetry, e.g., graphene (Wei et al., 2009),
silicon carbide (Peng, 2020), germanium carbide (Peng et al., 2013),
hexagonal boron-nitride (Peng et al., 2012b), MoS2 (Cooper et al.,
2013), borophene (Faghihnasiri et al., 2019), graphyne (Peng et al.,
2012a) and FeB2 (Ahmadi et al., 2019). In order to model a material
using Murnaghan’s constitutive relation, it is necessary to determine a
set of material specific elastic constants. A larger number of linearly
independent elastic constants need to be determined for materials of
lower symmetry, e.g., an orthorhombic material has more linearly
independent elastic constants than a hexagonal material. Furthermore,
a larger number of elastic constants need to be determined as the order
of the constitutive polynomial increases.

It is important to develop a systematic methodology to determine
the elastic constants of a 2D material that is independent of the ma-
terial’s symmetry and the order of the constitutive polynomial. The
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Fig. 1. Equivalent continuum of an arbitrary crystal.

methodology presented in the literature for calculating the elastic
constants of 2D materials, primarily of hexagonal symmetry, is based
on curve fitting for the elastic constants using the stress–strain curves.
In the case of 2D materials of arbitrary symmetries, it is not always
clear

(a) how many stress–strain simulations need to be performed,
(b) what deformations need to be applied to the material in each

simulation,
(c) in what order the curve fitting should be carried out, especially

for increasing constitutive polynomial orders, and
(d) the order of the polynomial necessary to achieve a certain accu-

racy.

The objective of the current work is to present a systematic method-
ology to determine the nonlinear elastic constants of 2D materials of
arbitrary symmetries. We use Murnaghan’s thermodynamically rigor-
ous constitutive model which is based on a polynomial expansion of
the strain energy density in terms of the components of the Green–
St. Venant strain tensor. While Murnaghan’s constitutive model has
been previously employed to analyze 2D materials (Wei et al., 2009;
Peng, 2020; Peng et al., 2013, 2012b; Cooper et al., 2013; Faghihnasiri
et al., 2019; Peng et al., 2012a; Ahmadi et al., 2019), those approaches
are tailored towards the analysis of hexagonal materials using up to
fifth order polynomial expansions. The present methodology can be
used for materials of arbitrary symmetries. Furthermore, in the current
methodology, the order of the constitutive polynomial can be increased
as needed to accurately capture the nonlinear elastic response of highly
strained 2D materials. The methodology is based on ray sampling of
the strain energy density in strain space and is independent of the way
the strain energy is calculated. The number and direction of the rays,
in addition to the number of strain states per ray, can be varied to
achieve any desired accuracy in the elastic constants. In the present
work, density functional theory is used to calculate the energies. The
methodology is verified by comparing the calculated elastic constants
of graphene to previously published work. Subsequently, the ray based
methodology is used to determine the nonlinear elastic constants of
black phosphorus which is an element of the class of materials of
orthorhombic symmetry. The comprehensive nonlinear elastic behav-
ior of the latter materials symmetry class has not been previously
considered in the literature. Detailed convergence analyses have been
performed to assess the accuracy of the elastic constants of black
phosphorus. Furthermore, the effect of the order of the constitutive
polynomial on the accuracy of the predicted strain energy densities is
evaluated.

2. Constitutive model

In the present work, the Einstein summation convention (e.g., see
Slaughter (2002)) is used except where otherwise specified and the
Voigt and tensorial notations are used interchangeably. Furthermore,
𝑬, 𝑺 and 𝑊 represent the Green–St. Venant strain tensor, the second
Piola–Kirchhoff stress tensor and the strain energy density, respectively.

Fig. 1 shows an arbitrary 2D material represented by the crystal
A and its equivalent continuum represented by the domain C . In
Fig. 1, and in the rest of this paper, 𝒆𝟏 is defined as the longitudinal
direction and 𝒆𝟐 is defined as the lateral direction. The equivalent
continuum, for a material studied at the nanoscale, is defined as a
fictitious continuum material having the same dimensions and the same
symmetry as the studied crystal in addition to behaving similarly under
the same physical conditions. In essence, the equivalent continuum is
a hypothetical material that is physically equivalent to the crystal. For
example, the strain energy is the same for the same strain state shown
in Fig. 1, i.e., 𝑊C = 𝑊A. Since the strain energies are the same for
any given strain state, the stresses will follow via the hyperelastic con-
stitutive relations (e.g., see Slaughter (2002)) and thus a constitutive
model representing the equivalent continuum’s behavior represents the
crystal’s behavior.

Murnaghan (1937) proposed a thermodynamically consistent, non-
linear elastic constitutive model in which they expanded the strain
energy density as a partial Maclaurin series in terms of the components
of the Green–St. Venant strain tensor. In the present work we use a
form similar to the one presented by Hiki (1981), where the total
energy density 𝑈 is expanded in terms of the components of the
Green–St. Venant strain tensor 𝑬 as

𝑈 = 𝑈0 + 𝐶𝑖𝐸𝑖 +
1

2!
𝐶𝑖𝑗𝐸𝑖𝐸𝑗 +

1

3!
𝐶𝑖𝑗𝑘𝐸𝑖𝐸𝑗𝐸𝑘+

1

4!
𝐶𝑖𝑗𝑘𝑙𝐸𝑖𝐸𝑗𝐸𝑘𝐸𝑙 +

1

5!
𝐶𝑖𝑗𝑘𝑙𝑚𝐸𝑖𝐸𝑗𝐸𝑘𝐸𝑙𝐸𝑚 +… ,

(1)

where, 𝑈0 is the energy density of the undeformed state, i.e., when
𝑬 = 𝟎, and

𝐸1 = 𝐸11, 𝐸2 = 𝐸22, 𝐸3 = 𝐸33, 𝐸4 = 2𝐸23, 𝐸5 = 2𝐸13, 𝐸6 = 2𝐸12, (2)

in Voigt notation (Voigt, 1910). It is noted that 𝐸1, 𝐸2 and 𝐸3 are the
normal strains in the 1, 2 and 3 directions, respectively and 𝐸4, 𝐸5 and
𝐸6 are the shear strains in the 2-3, 1-3 and 1-2 planes, respectively. The
constants 𝐶𝑖, 𝐶𝑖𝑗 , 𝐶𝑖𝑗𝑘,… are elastic constants. Generally, the energy
density 𝑈 is defined per unit reference, undeformed, volume. For 2D
materials, since thickness is not always uniquely defined, we define 𝑈

in terms of energy per unit reference area. Therefore, the units of 𝑈
used are J/m2 which is equivalent to N/m. It follows that the elastic
constants are presented as membrane elastic constants in N/m. The
strain energy density 𝑊 follows from Eq. (1) as

𝑊 = 𝑈 − 𝑈0 = 𝐶𝑖𝐸𝑖 +
1

2!
𝐶𝑖𝑗𝐸𝑖𝐸𝑗 +

1

3!
𝐶𝑖𝑗𝑘𝐸𝑖𝐸𝑗𝐸𝑘+

1

4!
𝐶𝑖𝑗𝑘𝑙𝐸𝑖𝐸𝑗𝐸𝑘𝐸𝑙 +

1

5!
𝐶𝑖𝑗𝑘𝑙𝑚𝐸𝑖𝐸𝑗𝐸𝑘𝐸𝑙𝐸𝑚 +…

(3)

By the hyperelastic constitutive relations in an orthonormal basis
(e.g., see Slaughter (2002)), the components of the second Piola–
Kirchhoff stress, 𝑺, can be expressed, in Voigt notation, as

𝑆𝑖 =
𝜕𝑊

𝜕𝐸𝑖

= 𝐶𝑖 + 𝐶𝑖𝑗𝐸𝑗 +
1

2!
𝐶𝑖𝑗𝑘𝐸𝑗𝐸𝑘 +

1

3!
𝐶𝑖𝑗𝑘𝑙𝐸𝑗𝐸𝑘𝐸𝑙

+
1

4!
𝐶𝑖𝑗𝑘𝑙𝑚𝐸𝑗𝐸𝑘𝐸𝑙𝐸𝑚 +… , (4)
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where 𝑆𝑖 are the Voigt contractions of the components of the second
Piola–Kirchhoff stress tensor, defined as,

𝑆1 = 𝑆11, 𝑆2 = 𝑆22, 𝑆3 = 𝑆33, 𝑆4 = 𝑆23, 𝑆5 = 𝑆13, 𝑆6 = 𝑆12. (5)

The current work does not include prestressed materials, although the
constitutive model in Eq. (4) can capture the effect of prestresses. It
follows that for the undeformed state, i.e., 𝑬 = 𝟎, the material is stress
free, i.e., 𝑺 = 𝟎, therefore,

𝐶𝑖 = 0, for all 𝑖 ∈ {1, 2, 3, 4, 5, 6} , (6)

and the strain energy density expansion reduces to

𝑊 =
1

2!
𝐶𝑖𝑗𝐸𝑖𝐸𝑗 +

1

3!
𝐶𝑖𝑗𝑘𝐸𝑖𝐸𝑗𝐸𝑘 +

1

4!
𝐶𝑖𝑗𝑘𝑙𝐸𝑖𝐸𝑗𝐸𝑘𝐸𝑙

+
1

5!
𝐶𝑖𝑗𝑘𝑙𝑚𝐸𝑖𝐸𝑗𝐸𝑘𝐸𝑙𝐸𝑚 +… (7)

2.1. Plane stress constitutive model

In the case of 2D materials, we are interested in the in-plane me-
chanics with the out-of-plane, i.e., 𝒆𝟑, direction left unrestrained. This
corresponds to traction free boundary conditions on the top and bottom
surfaces of the 2D material, i.e., plane stress boundary conditions,
therefore,

𝑆3 = 𝑆4 = 𝑆5 = 0. (8)

Eqs. (8) constitute a nonlinear system of three constraints. Therefore,
applying these constraints to the constitutive model will allow us to
express three of the strains, e.g., 𝐸3, 𝐸4 and 𝐸5, as a function of
the other three. We choose to let the in-plane longitudinal strain 𝐸1,
the in-plane lateral strain 𝐸2, and the in-plane shear strain 𝐸6 be the
independent strains since we consider 2D materials and the applied
deformations are in-plane. This implies that

𝑊 = 𝑊
(
𝐸1, 𝐸2, 𝐸3

(
𝐸1, 𝐸2, 𝐸6

)
, 𝐸4

(
𝐸1, 𝐸2, 𝐸6

)
, 𝐸5

(
𝐸1, 𝐸2, 𝐸6

)
, 𝐸6

)

=
∼
𝑊

(
𝐸1, 𝐸2, 𝐸6

)
,

(9)

where
∼
𝑊 shows the change in the form of 𝑊 which now depends only

on the in-plane strains. In what follows, we will drop the tilde and use
𝑊 to represent

∼
𝑊 for the sake of simplicity. Following Eq. (9), the

problem can be reformulated as

𝑊 =
1

2!
𝑄𝑖𝑗𝐸𝑖𝐸𝑗 +

1

3!
𝑄𝑖𝑗𝑘𝐸𝑖𝐸𝑗𝐸𝑘 +

1

4!
𝑄𝑖𝑗𝑘𝑙𝐸𝑖𝐸𝑗𝐸𝑘𝐸𝑙

+
1

5!
𝑄𝑖𝑗𝑘𝑙𝑚𝐸𝑖𝐸𝑗𝐸𝑘𝐸𝑙𝐸𝑚 +… (10)

where 𝑄𝑖𝑗 , 𝑄𝑖𝑗𝑘,… are the plane stress reduced elastic constants and
the indices 𝑖, 𝑗,…∈{1, 2, 6}. 𝑸 has a similar mathematical structure to
𝑪 for each order but with reduced matrix dimensions. We will refer
to the plane stress reduced elastic constants as simply elastic constants
for convenience. The second Piola–Kirchhoff stress components follow
from Eq. (10) as,

𝑆𝑖 =
𝜕𝑊

𝜕𝐸𝑖

= 𝑄𝑖𝑗𝐸𝑗 +
1

2!
𝑄𝑖𝑗𝑘𝐸𝑗𝐸𝑘 +

1

3!
𝑄𝑖𝑗𝑘𝑙𝐸𝑗𝐸𝑘𝐸𝑙

+
1

4!
𝑄𝑖𝑗𝑘𝑙𝑚𝐸𝑗𝐸𝑘𝐸𝑙𝐸𝑚 +… (11)

In general, any polynomial order 𝑁𝑝 can be used in the expansion of
the strain energy density

𝑊 =

𝑁𝑝∑
𝑘=2

1

𝑘!
𝑄𝑖1𝑖2…𝑖𝑘

𝐸𝑖1
𝐸𝑖2

…𝐸𝑖𝑘
. (12)

It will be shown later that a 5th order expansion (𝑁𝑝 = 5) is sufficient
for black phosphorus. The methodology presented in the current work
for the calculation of elastic constants does not make any assumptions
about the order of the expansion.

Table 1
Total number of independent plane stress reduced elastic constants to be determined
for each polynomial order 𝑁𝑝 and different material symmetries.

Polynomial
order 𝑁𝑝

Hexagonal
symmetry

Orthorhombic
symmetry

Triclinic
symmetry

𝑁𝑝 = 2 2 4 6
𝑁𝑝 = 3 5 10 16
𝑁𝑝 = 4 9 19 31
𝑁𝑝 = 5 14 31 52

Using the index notation, it can be shown that the plane stress
reduced elastic constants satisfy the symmetry

𝑄𝑎1…𝑎𝑖…𝑎𝑗…𝑎𝑙
= 𝑄𝑎1…𝑎𝑗…𝑎𝑖…𝑎𝑙

, 𝑖, 𝑗 ∈ {1, 2,… , 𝑙} , (13)

for any transposition of two indices and thus any arbitrary permutation
(e.g., see Pinter (1990)). Table 1 shows the total number of linearly
independent plane stress reduced elastic constants that need to be
determined for each material symmetry and order of the constitutive
polynomial. The number of elastic constants increases with decreasing
material symmetry and with increasing order of the polynomial used
for the constitutive model.

Following from Eq. (13), the number of linearly independent elastic
constants of order 𝑝 for a triclinic material is the number of distinct
solutions

(
𝑁1, 𝑁2, 𝑁6

)
to the equation

𝑁1 +𝑁2 +𝑁6 = 𝑝, (14)

where 𝑁1, 𝑁2 and 𝑁6 represent the number of indices corresponding to
1, 2 and 6, respectively, in 𝑄𝑖1𝑖2…𝑖𝑝

. Therefore, for a polynomial order
𝑁𝑝, the total number of elastic constants to be determined for a triclinic
material is given by (e.g., see Feller (1968)),

𝑁𝑝∑
𝑝=2

(
𝑝 + 3 − 1

𝑝

)
=

1

2

𝑁𝑝∑
𝑝=2

(
𝑝2 + 3𝑝 + 2

)
. (15)

In the case of 2D materials that exhibit symmetry, the number of
independent elastic constants can be determined using character theory
(e.g., see Bhagavantam and Suryanarayana (1949)).

2.2. Linearized mechanical properties

While the polynomial based constitutive model is applicable for
finite deformations, in certain applications, we may be interested in
the linearized mechanical properties of the material under infinitesimal
deformations. The linearized mechanical properties can also be used for
experimental validation under small deformations.

In the case of infinitesimal deformations, the Green–St. Venant
strain tensor 𝑬 reduces to the infinitesimal strain tensor 𝜺. Similarly,
the second Piola–Kirchhoff stress tensor 𝑺 reduces to the Cauchy stress
tensor 𝝈. In the linear elastic regime where ∣∣ 𝑬 ∣∣<<1, Eq. (11) reduces
to,

𝜎𝑖 = 𝑄𝑖𝑗𝜀𝑗 , (16)

since the higher powers of the infinitesimal strain components are
negligible. The compliance relations (e.g., see Hyer (2009)), following
from Eq. (16), can be written as,

⎧⎪⎨⎪⎩

𝜀1
𝜀2
𝜀6

⎫⎪⎬⎪⎭
=

⎡⎢⎢⎢⎣

1

𝑌1
−

𝜈21

𝑌2

𝜂16

𝐺

−
𝜈12

𝑌1

1

𝑌2

𝜂26

𝐺
𝜂61

𝑌1

𝜂62

𝑌2

1

𝐺

⎤⎥⎥⎥⎦

⎧⎪⎨⎪⎩

𝜎1
𝜎2
𝜎6

⎫⎪⎬⎪⎭
=

⎡
⎢⎢⎣

𝑄11 𝑄12 𝑄16

𝑄12 𝑄22 𝑄26

𝑄16 𝑄26 𝑄66

⎤
⎥⎥⎦

−1 ⎧⎪⎨⎪⎩

𝜎1
𝜎2
𝜎6

⎫⎪⎬⎪⎭
, (17)

where 𝑌𝑖 represents the Young’s modulus in the 𝑖th direction, 𝐺 repre-
sents the in-plane shear modulus, 𝜈𝑖𝑗 are the Poisson’s ratios, 𝜂𝑖6 = 𝜀𝑖∕𝜀6
(when only 𝜎6 ≠ 0 and 𝑖 ∈ {1, 2}) are the coefficients of mutual
influence of the first kind and 𝜂6𝑖 = 𝜀6∕𝜀𝑖 (when only 𝜎𝑖 ≠ 0 and
𝑖 ∈ {1, 2}) are the coefficients of mutual influence of the second kind.
Closed form expressions for all the linearized mechanical properties can
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Fig. 2. A representative ray in the strain space .

be obtained using Eq. (17) by inverting the 𝑸 matrix. In the case of an
orthorhombic material (or higher symmetry) 𝑄16 = 𝑄26 = 0, therefore,
the closed form expressions for the linearized mechanical properties can
be expressed in terms of the second order elastic constants as,

𝑌1 = 𝑄11−
𝑄2

12

𝑄22

, 𝑌2 = 𝑄22−
𝑄2

12

𝑄11

, 𝐺 = 𝑄66, 𝜈12 =
𝑄12

𝑄22

, 𝜈21 =
𝑄12

𝑄11

.

(18)

3. Ray based methodology

In the current methodology, the elastic constants of a 2D material
are obtained by equating the strain energies of the crystal and that
of the equivalent continuum for the same deformation. The energy
calculations for the crystal are done in the atomic domain. An arbitrary
2D strain state, can be represented in Voigt notation as

𝑬 =
[
𝐸1 𝐸2 𝐸6

]𝑇
, (19)

where 𝐸1 is the longitudinal normal strain, 𝐸2 is the lateral normal
strain and 𝐸6 is the in-plane shear strain. Let  be the R3 space spanned
by the sets of scalars 𝐸1, 𝐸2 and 𝐸6. We refer to  as strain space. We
note that  geometrically represents the strain states but the strain is
considered as a tensor (by definition) and not a vector. In the remainder
of this paper, all the deformations considered are homogeneous, and do
not cause fracture, thus the resulting strains will identically satisfy the
compatibility conditions. We define a strain ray  as a line segment,
starting at the origin of  (under the standard R3 basis) and extending
to any desired strain state. A ray can be uniquely identified by its
azimuthal angle 𝜃 and its polar angle 𝜙 as shown in Fig. 2.

A point on the ray, corresponding to a strain state, can be rep-
resented by the angles defining the ray direction in addition to the
Euclidean norm 𝑟 =∣∣ 𝑬 ∣∣, i.e., its spherical coordinates, as

⎧
⎪⎨⎪⎩

𝐸1 = 𝑟 sin𝜙 cos 𝜃

𝐸2 = 𝑟 sin𝜙 sin 𝜃

𝐸6 = 𝑟 cos𝜙

. (20)

The strain curve fitting range is [0, 𝑅], where 𝑅 represents a strain
norm limit chosen to avoid non-smooth and unstable locations in the
energy landscape that typically occur at large strain states. Therefore,
the condition for any strain state 𝑬 on a ray is ∣∣ 𝑬 ∣∣≤ 𝑅, i.e., all strain
states fall within the spherical domain,

𝜮 = {𝑬 ∈  ∣ ∣∣ 𝑬 ∣∣≤ 𝑅} . (21)

Fig. 3. Representative unit cell geometry.

We note that although a spherical domain 𝜮 is used, the shape of the
strain sampling region does not necessarily have to be spherical.

The subsequent formulation is independent of the methodology used
for energy calculations in the atomic domain, e.g., molecular dynamics,
density functional theory, etc. For a given strain state 𝑬, the strain
energy density is computed as,

𝑊 (𝑬) =
1

𝐴0

(
𝛺𝐄 −𝛺0

)
, (22)

where 𝛺𝐄 represents the total energy for the strained state and 𝛺0 is
the ground state energy (undeformed state). We note that 𝛺0 = 𝐴0𝑈0

and 𝛺𝐄 = 𝐴0𝑈 , 𝑈0 and 𝑈 are defined in Eq. (1). 𝐴0 represents the area
of the undeformed configuration.

The overall idea of the ray based methodology is to use linear
least squares curve fitting to determine the elastic constants using a
set of sampling points {𝑬} in  and their corresponding strain energy
densities {𝑊 }. The sampling points are limited to the bounded region
𝜮. A ray sampling procedure in  was chosen because of,

1. the reduced number of energy calculations needed as compared
to a conventional box sampling on a regular grid,

2. the possibility of refinement in terms of points per ray in addi-
tion to rays at different angles,

3. the computational convenience as compared to full Monte-Carlo
sampling, and

4. the possibility to submit array jobs to high performance comput-
ing clusters, i.e., one array of jobs where each job corresponds
to a ray which makes the computations more parallelizable.

3.1. Methodology

For a unit cell containing 𝑁𝑎 atoms, we define AAA and LLL as
respectively the matrices containing the atomic coordinates and lattice
parameters of the unit cell in the form

AAA =

⎡⎢⎢⎣

𝑎11 𝑎21 … 𝑎𝑁𝑎1

𝑎12 𝑎22 … 𝑎𝑁𝑎2

𝑎13 𝑎23 … 𝑎𝑁𝑎3

⎤⎥⎥⎦
, LLL =

⎡⎢⎢⎣

𝑙11 𝑙12 𝑙13
𝑙21 𝑙22 𝑙23
𝑙31 𝑙32 𝑙33

⎤⎥⎥⎦
,

(23)

where 𝑎𝑖𝑗 represents the 𝑖th atom’s 𝑗th coordinate and 𝑙𝑖𝑗 represents the
𝑖th component of the 𝑗th lattice vector. An example unit cell is shown
in Fig. 3.
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Fig. 4. Flowchart for the ray based methodology.

The underformed area 𝐴0 in Eq. (22) can be computed using the
underformed lattice vectors as

𝐴0 =∣∣ 𝑒𝑖𝑗𝑘L𝑖1L𝑗2𝒆𝑘 ∣∣, (24)

where L𝑖𝑗 are the components of the lattices matrix in the unde-
formed configuration, 𝑒𝑖𝑗𝑘 represents the Levi-Civita permutation tensor
(e.g., see Slaughter (2002)), 𝒆𝑘 is the 𝑘th unit vector in the coordinate
frame and ∣∣ ⋅ ∣∣ represents the Euclidean norm.

The unit cell, e.g., the one shown in Fig. 3, is deformed following
deformation gradients corresponding to incremental strain states on dif-
ferent rays. This is achieved by modifying the appropriate entries in the
matrix LLL and allowing the atomic coordinates to relax, i.e., updating
AAA , accordingly to reach a local minimum configuration in the energy
landscape. The elastic constants determination procedure follows the
general idea of refining by adding more rays as long as the global
root mean square error (RMS) in the strain energy density is larger
than a given tolerance 𝜖. The condition number of the curve fitting
matrices (e.g., see Golub and Van Loan (1996)) is checked to avoid
ill conditioned matrices. The global logical flowchart of the ray based
methodology is shown in Fig. 4. For each pair 𝑖, 𝑗 labeling respectively
the rays and points per ray, or equivalently the value 𝐼 for the counter
in Fig. 4, the strain in Voigt notation can be determined via Eq. (20)
as,

𝑬𝐼 = 𝑗
𝑅

𝑁

[
sin𝜙𝑖 cos 𝜃𝑖 sin𝜙𝑖 sin 𝜃𝑖 cos𝜙𝑖

]𝑇
, (25)

where 𝑁 is the total number of strain states per ray. This follows from
the fact that a ray is uniquely defined by its direction angles and a
strain state is represented by its spherical coordinates in . Eq. (25) is
based on the choice of equidistant sampling points on a ray. However,
in general sampling points can be distributed arbitrarily on a ray.

The detailed procedure to find the elastic constants of a material
using the ray based methodology, shown in the flowchart in Fig. 4, is
as follows:

1. relax the atomic coordinates and lattice parameters to reach the
ground state configuration, AAA , LLL ,

2. retrieve the ground state energy 𝛺0,
3. compute the area 𝐴0 of the undeformed configuration from the
relaxed lattice parameters,

4. define a set of𝑁 rays and discretize each with𝑁 corresponding
strain states,

5. initiate the strain state counter 𝐼 = 1,
6. loop over all the 𝑖 and 𝑗 values varying respectively over the
number of rays and the number of points per ray:

(i) determine 𝑬𝐼 via Eq. (25),
(ii) approximate and store the deformation gradient 𝑭 𝐼 given

𝑬𝐼 ,
(iii) update the deformed lattice parameters LLL 𝐼 using 𝑭 𝐼 ,
(iv) using atomistic simulations, relax the atomic coordinates

to reach the minimum energy configuration for the given
deformation, i.e., update AAA 𝐼 ,

(v) retrieve the energy 𝛺𝐼 for the strained state correspond-
ing to LLL 𝐼 and AAA 𝐼 using atomistic simulations,

(vi) compute and store the strain energy density using Eq. (22)
as 𝑊𝐼 =

(
𝛺𝐼 −𝛺0

)
∕𝐴0,

(vii) Increment 𝐼 ,

7. compute and store the actual strain states 𝑬𝑎
𝐼
corresponding to

the stored deformation gradients 𝑭 𝐼 ,
8. given the stored actual strains

{
𝑬𝑎

𝐼

}
and strain energy densities

{𝑊 }, check the condition numbers of the curve fitting matrices
and curve fit to obtain the elastic constants 𝑄𝑖𝑗 , 𝑄𝑖𝑗𝑘,…,

9. compute the root mean square errors. Add more rays as neces-
sary.

The unit cell boundary conditions used are periodic in all direc-
tions with a large 𝒍𝟑 vector, as shown in Fig. 3, to avoid interlayer
interactions. This is equivalent to considering quasi-infinite crystals,
i.e., studying the asymptotic behavior as the material’s in-plane dimen-
sions are much larger than its thickness. This is the case in general for
2D materials in application. This assumption can be relaxed to study
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finite systems by increasing the distance between the atoms in adjacent
unit cells. The important aspects of the algorithmic steps are discussed
in the following sections.

3.2. Rays choice

In this methodology, we choose the number and orientation of the
rays and the number of strain states per ray. The specific ray directions
are not very critical provided a sufficient number of rays are used. We
recommend starting with uniaxial rays, i.e., only one non-vanishing
strain component, e.g., 𝐸1, then successively adding one non-vanishing
strain component at a time.

Although the ray based methodology is formulated to be indepen-
dent of the material symmetries, the latter can be considered when
choosing the rays. The more symmetric the material is, the fewer the
rays required to determine its elastic constants since symmetry will
imply that some elastic constants are linearly dependent. For example,
in the case of a hexagonal material, considering just a two-dimensional
subspace of  will be sufficient, e.g., considering only longitudinal tests
𝐸1 and 𝐸2 and biaxial tests 𝐸1-𝐸2 with no need to include 𝐸6 due to the
linear dependence of the elastic constants containing the index 6. For
an orthorhombic material, the whole space  needs to be considered
(i.e., even triaxial tests) but fewer rays will be needed as compared to
a triclinic material.

3.3. Obtaining deformation gradients from strains

To calculate the strain energy density 𝑊 for a given strain state
𝑬 using atomistic simulations, a unit cell deformation is required.
Therefore, it is necessary to determine a deformation gradient 𝑭 corre-
sponding to the given strain state 𝑬. Solving for 𝑭 analytically from the
relation 𝑬 =

1

2

(
𝑭 𝑇𝑭 − 𝑰

)
can be challenging for arbitrary strain states

because 𝑬 is a nonlinear function of 𝑭 and both are tensor quantities.
In this work, we present a way to approximate the deformation gradient
as

𝑭 =

⎡
⎢⎢⎣

𝐸11 + 1 0 0

2𝐸12 𝐸22 + 1 0

2𝐸13 2𝐸23 𝐸33 + 1

⎤
⎥⎥⎦
=

⎡⎢⎢⎣

𝐸1 + 1 0 0

𝐸6 𝐸2 + 1 0

0 0 1

⎤⎥⎥⎦
. (26)

We note that the deformation gradient approximation shown in Eq. (26)
is intended to deform the lattice vectors, therefore, 𝐸13 = 𝐸23 = 𝐸33 = 0

since there is no out-of-plane strain applied on the unit cell. However,
the atomic coordinates are still allowed to relax in the 3-direction and
the 1-3 and 2-3 planes which induces out-of-plane normal and shear
strains on the 2D material within the unit cell. It is noted that there is no
unique deformation gradient for a given strain state due to invariance
under rigid-body motion. The approximation shown in Eq. (26), while
not unique, leads to a triangular deformation gradient matrix for conve-
nience in deforming the unit cell. The actual or exact Green–St. Venant
strain tensor corresponding to the approximated deformation gradient
is, by definition,

𝑬𝑎 =
1

2

(
𝑭 𝑇𝑭 − 𝑰

)
. (27)

The actual Green strains should be used for the curve fitting. It is
noted that the strain correction shown in Eq. (27) causes the rays to
deviate from a straight line but this does not affect the procedure or
the accuracy of the results. An alternative way to obtain a deformation
gradient from the strain tensor is the Cholesky decomposition of

𝑭 𝑇𝑭 = 2𝑬 + 𝑰 , (28)

which is a positive definite matrix thus yielding a unique Cholesky
factorization (e.g., see Golub and Van Loan (1996)). We note that
the Cholesky factorization will yield an upper triangular matrix for
the deformation gradient 𝑭 . The Cholesky factorization process, while
stable, is a numerical process which will yield some inaccuracies in
the terms of 𝑭 . Although the aforementioned inaccuracies are minor,

they might affect the simplicity of deforming the unit cell thus causing
some noise in the energy outputs. Furthermore, having a closed form
expression as the one shown in Eq. (26) is more efficient than the
Cholesky process especially if three-dimensional deformation gradients
are considered. Łepkowski (2020) presents a way to determine elastic
constants of the model shown in Eq. (7) by solving analytically for the
symmetric deformation gradients using matrix square roots. Determin-
ing matrix square roots analytically limits the choice of strain states and
thus the applicability of the approach to materials of low symmetry.
Numerically, matrix square roots are more computationally demanding
than using a closed form expression. It is to be noted that the symmetric
deformation gradients are not as convenient as triangular deformation
gradients for the simulation cell deformations, e.g., in the case of in-
plane shear, two lattice vectors will need to be deformed instead of
only one.

3.4. Unit cell deformations

Due to the periodic crystalline nature of 2D materials, they can
be represented as a set of periodic unit cells with certain periodicity
vectors, therefore, simulating one of the unit cells is sufficient to
generate results for the whole quasi-infinite crystal, and by extension its
equivalent continuum. We note that the subsequent formulation is used
to show that deformation of the unit cell translates smoothly into the
equivalent continuum. It does not necessarily correspond to the atomic
displacements at similar locations in the equivalent continuum, i.e., it is
not an application of the Cauchy–Born rule (e.g., see Ericksen (2008)).
The in-plane periodicity, i.e., lattice, vectors 𝒍𝟏 and 𝒍𝟐 of a unit cell
define an R2 basis and thus any point 𝒙 in the crystal can be represented
as,

𝒙 = 𝛼 ⋅ 𝒍𝟏 + 𝛽 ⋅ 𝒍𝟐, (29)

where 𝛼 and 𝛽 are real coefficients. By extension, any vector 𝒙 in the
equivalent continuum can be represented using Eq. (29) (the origin of
the Cartesian coordinate basis is assumed to be a point in the equivalent
continuum). Therefore, the deformed vector 𝒙′ under the effect of a
deformation gradient 𝑭 is given by,

𝒙′ = 𝑭𝒙 = 𝛼 ⋅ 𝑭 𝒍𝟏 + 𝛽 ⋅ 𝑭 𝒍𝟐. (30)

It follows that deforming the lattice parameters of one unit cell, will
smear the deformation into the whole quasi-infinite 2D material. There-
fore, a deformation gradient 𝑭 acts on the crystal through,

LLL
′ = 𝑭 ⋅LLL , (31)

where LLL is the lattice vectors matrix. Figs. 5, which represent a few
unit cells under different prescribed deformations, show that deforming
the unit cell smears the deformation periodically.

For the system to be at its minimum energy for each considered
strain state (e.g., see Tadmor and Miller (2016)), the atomic coordinates
need to be relaxed at every step in order for the system to reach the
ground state or local minimum energy configuration given the current
strain state. The strain energy densities can be calculated for a given
deformation gradient using any atomistic simulation technique. In the
present work, we use density functional theory to calculate the strain
energies.

3.5. Curve fitting procedure

Consider a set of elastic constants of all orders represented in vector
form as 𝝌 , where 𝝌 is a vector containing M linearly independent
elastic constants that we are interested in determining through curve
fitting. Given a set of N strain states

{
𝑬(𝑖) ∣ 𝑖 ∈ {1, 2,… ,N }

}
, for

each strain state 𝑬(𝛼), the corresponding strain energy 𝑊 (𝛼) obtained
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Fig. 5. Unit cells subjected to different strain states.

through atomistic simulations, is equated to the strain energy from the
constitutive model (10) as

𝑊 (𝛼) = 𝑊 (𝛼)
(
𝑬(𝛼)

)
=

1

2!
𝑄𝑖𝑗𝐸

(𝛼)
𝑖

𝐸
(𝛼)
𝑗

+
1

3!
𝑄𝑖𝑗𝑘𝐸

(𝛼)
𝑖

𝐸
(𝛼)
𝑗

𝐸
(𝛼)

𝑘
+

1

4!
𝑄𝑖𝑗𝑘𝑙𝐸

(𝛼)
𝑖

𝐸
(𝛼)
𝑗

𝐸
(𝛼)

𝑘
𝐸

(𝛼)

𝑙
+

1

5!
𝑄𝑖𝑗𝑘𝑙𝑚𝐸

(𝛼)
𝑖

𝐸
(𝛼)
𝑗

𝐸
(𝛼)

𝑘
𝐸

(𝛼)

𝑙
𝐸(𝛼)
𝑚

+…

(32)

No summation over 𝛼 is implied in Eq. (32). Some terms in Eq. (32)
may vanish due to the strain states considered and the latter equation
can be re-arranged in matrix form in terms of the non-vanishing terms
as

𝑊 (𝛼) =
[
𝑃 (𝑖, 𝑗) ×

1

2!
𝐸

(𝛼)
𝑖

𝐸
(𝛼)
𝑗

…𝑃 (𝑖, 𝑗, 𝑘) ×
1

3!
𝐸

(𝛼)
𝑖

𝐸
(𝛼)
𝑗

𝐸
(𝛼)

𝑘
…

]

×
{
𝑄𝑖𝑗 … 𝑄𝑖𝑗𝑘 …

}𝑇
, (33)

where no summation is implied on any index and 𝑃
(
𝑖1, 𝑖2,… , 𝑖𝑛

)
takes

into account the symmetries of the 𝑸 matrices shown in Eq. (13). 𝑃
represents the number of permutations of 𝑖1, 𝑖2,… , 𝑖𝑛, which combina-
torially gives

𝑃
(
𝑖1, 𝑖2,… , 𝑖𝑛

)
=

𝑛!

𝑁1! ⋅𝑁2! ⋅𝑁6!
, (34)

where 𝑁1, 𝑁2 and 𝑁6 represent the number of indices 1, 2 and 6,
respectively, in the sequence 𝑖1, 𝑖2,… , 𝑖𝑛. The system shown in Eq. (33)
can be assembled in matrix form as,

𝑩 ⋅ 𝝌 = 𝑾 , (35)

where 𝑩 is an N × M matrix whose entries are products of strain
components, 𝝌 is an M × 1 vector of linearly independent elastic
constants and 𝑾 is an N × 1 vector of corresponding strain energy
densities. If an insufficient number of independent rays, or points per
ray, are used, the condition number of 𝑩𝑇𝑩 may be high in which
case either the generalized inverse or the Moore–Penrose pseudoinverse
(e.g., see Golub and Van Loan (1996), Ben-Israel and Greville (2001)
and Lawson and Hanson (1974)) can be used to solve the linear least
squares system shown in Eq. (35). It is recommended to avoid such sit-
uations, since, even though the result given by the generalized inverse
might replicate accurately the simulation data points, the existence of
a unique solution is not necessarily guaranteed (e.g., see Ben-Israel and
Greville (2001)). In order to remedy this situation, more rays or more
points per ray are added to obtain a well conditioned matrix 𝑩𝑇𝑩 and
the resulting linear least squares problem is solved as (e.g., see Strang
(1986)),

𝝌 =
(
𝑩𝑇𝑩

)−1
⋅

(
𝑩𝑇𝑾

)
. (36)

The root mean square error in the curve fit is defined as

RMS =
∣∣ 𝑾 − 𝑩 ⋅ 𝝌 ∣∣√

N

. (37)

It is possible to apply Eq. (36) to all the sampling points on all the
rays simultaneously to obtain a global curve fit. Another approach is to

apply it incrementally to different subsets of . Applying the equation
incrementally will help decouple the system of linear equations and
reduce the effect of triaxial (𝐸1,2,6 ≠ 0) curve fitting errors on biaxial
and uniaxial results.

In the incremental curve fitting approach, we first curve fit for the
elastic constants corresponding to the uniaxial tests sequentially. For
example, given a uniaxial test where 𝐸1 is the only non-zero strain
component, then by Eq. (33), it can be seen that the only elastic
constants that do not vanish are 𝑄11, 𝑄111, 𝑄1111 and 𝑄11111 for a fifth
order polynomial expansion and therefore we solve for these constants.
A similar process can be used for the other uniaxial tests. In the case
of biaxial tests, the contribution of the previously determined uniaxial
elastic constants to the strain energy is subtracted from the simulation
energies on the right hand side of Eq. (35) to obtain the biaxial
elastic constants. A similar approach is used to determine the constants
corresponding to the triaxial tests. It is important to choose specific rays
to be able to perform an incremental curve fit, e.g., uniaxial rays. If the
rays are chosen differently, or in a way that does not follow the above
procedure, we recommend global curve fitting. The ray based approach
works independently of how the curve fitting is carried out.

Algorithm 1: Incremental curve fitting for the elastic constants

1 Define an ordered sequence of sets of rays (e.g., Table 2):
𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6, 𝑠7;

2 Assemble the linear least squares coefficients matrix 𝑩𝑖 and the
vector of strain energies 𝑾 𝑖 corresponding to each set of rays
𝑠𝑖, 𝑖 ∈ {1, 2,… , 7};

3 𝝌1 =
(
𝑩𝑇

1
𝑩1

)−1
⋅

(
𝑩𝑇

1
𝑾 1

)
;

4 for 𝑖 ∈ {2, 3, 4, 5, 6, 7} do

5
∼
𝝌=

[
𝝌𝑇
1
𝝌𝑇
2

… 𝝌𝑇
𝑖−1

]𝑇 ;
6

∼

𝑩=
[
𝑩1 𝑩2 … 𝑩𝑖−1

]
;

7 𝝌 𝑖 =
(
𝑩𝑇

𝑖
𝑩𝑖

)−1
⋅

(
𝑩𝑇

𝑖

[
𝑾 𝑖−

∼

𝑩 ⋅

∼
𝝌

])
;

8 end

9 𝝌 =
[
𝝌𝑇
1
𝝌𝑇
2
𝝌𝑇
3
𝝌𝑇
4
𝝌𝑇
5
𝝌𝑇
6
𝝌𝑇
7

]𝑇 ;

Algorithm 1 shows the exact procedure to perform an incremental
curve fit. We define 𝑠1, 𝑠2,… , 𝑠7 as the sets of longitudinal uniaxial,
lateral uniaxial, shear uniaxial, normal biaxial, longitudinal-shear bi-
axial, lateral-shear biaxial and triaxial sampling rays, respectively. The
geometric representation of each 𝑠𝑖 and the form of the corresponding
strain states in 𝑠𝑖 are shown in Table 2. The incremental curve fitting
process, is based on sequential curve fitting where the elastic constants
determined in the previous tests, may be necessary in subsequent tests.
Accordingly, the order of 𝑠5 and 𝑠6 is based on a lower triangular de-
formation gradient, e.g., Eq. (26), and the order should be swapped for
an upper triangular deformation gradient, e.g., Cholesky factorization.
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Table 2
Sets of rays used for incremental curve fitting to determine the elastic constants.

Set of rays Geometric representation Strain state

𝑠1 𝑬 =
[
𝐸1 0 0

]𝑇
Uniaxial longitudinal

𝑠2 𝑬 =
[
0 𝐸2 0

]𝑇
Uniaxial lateral

𝑠3 𝑬 =
[
0 0 𝐸6

]𝑇
Uniaxial shear

𝑠4 𝑬 =
[
𝐸1 𝐸2 0

]𝑇
Biaxial normal

𝑠5 𝑬 =
[
𝐸1 0 𝐸6

]𝑇
Biaxial longitudinal-shear

𝑠6 𝑬 =
[
0 𝐸2 𝐸6

]𝑇
Biaxial lateral-shear

𝑠7 𝑬 =
[
𝐸1 𝐸2 𝐸6

]𝑇
Triaxial

The vector of linearly independent elastic constants determined from
the rays in 𝑠𝑖 is labeled 𝝌 𝑖.

In the case of materials with symmetry, e.g., hexagonal, some
elastic constants may be zero and there may exist linear relations
between other elastic constants. In such cases, the elastic constants
can be obtained using linear least squares with equality constraints
(e.g., see Lawson and Hanson (1974)).

3.6. Energy calculations

Density functional theory (DFT) (Hohenberg and Kohn, 1964; Kohn
and Sham, 1965) is particularly effective for the study of the me-
chanical behavior of materials at the atomic scale. This follows from
the Kohn–Sham assumption that the electron density varies slowly
with time. This translates to an infinitesimal change in the electron
density when infinitesimal strain increments are applied, and infinites-
imal strain increments need to be applied to maintain thermodynamic
equilibrium throughout the process. Furthermore, with the DFT peri-
odic unit cell formulation, a small representative set of atoms can be
analyzed to simulate a quasi-infinite 2D crystal.

Quantum-Espresso (Giannozzi et al., 2017, 2009) was used as a
platform for the Kohn–Sham self-consistent computations to solve
the Hohenberg–Kohn density functional theory equations (Kohn and
Sham, 1965; Hohenberg and Kohn, 1964) using a plane-wave ba-
sis (e.g., see Tadmor and Miller (2016)). Projector augmented wave
pseudopotentials (Blöchl, 1994) are used in this work to obtain accu-
racies comparable to using full electron potentials. The Perdew–Burke–
Ernzerhof generalized gradient approximation is used (Perdew et al.,
1996). We note that the generalized gradient approximation is used
instead of the local-density approximation due to its higher accuracy
especially when dealing with inter-atomic bond lengths (e.g., see Lee
(2017)). The generalized gradient approximation is also more accu-
rate than the local density approximation for black phosphorus (Ap-
palakondaiah et al., 2012). The pseudopotentials we used for both
graphene and black phosphorus originated from Pslibrary 1.0.0 (Dal
Corso, 2014). The accuracy and precision of the pseudopotentials in
Pslibrary 1.0.0 have been assessed in Lejaeghere et al. (2016) and
Prandini et al. (2018).

Table 3 shows the Quantum-Espresso parameters used for the ma-
terials considered in this paper. 𝐾𝑥, 𝐾𝑦 and 𝐾𝑧 represent the number

Table 3
Converged parameter values used for Quantum-Espresso calculations.

Parameter Graphene Black phosphorus

𝐾𝑥, 𝐾𝑦 20 12
𝐾𝑧 2 2
Total energy convergence threshold 10−8 Ry 10−10 Ry
Electron energy convergence threshold 10−8 Ry 10−10 Ry
Force convergence threshold 10−8 eV∕Å 10−8 eV∕Å
Kinetic energy cut-off 150 Ry 100 Ry
𝑧 lattice vector dimension 10 Å 15 Å

Fig. 6. Strain region used to determine the elastic constants of graphene with the rays
shown in blue. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

of points in the Monkhorst–Pack K-space sampling mesh (Monkhorst
and Pack, 1976), in each reciprocal space direction, respectively. These
parameters were determined using convergence analyses of the ground
state energy.

3.7. Verification of the methodology

We assess the efficacy of the proposed ray based methodology by
evaluating the elastic constants of graphene and comparing with the
values published by Wei et al. (2009). It is noted that Wei et al. (2009)
verified their results with the corresponding curves in Liu et al. (2007).
Graphene is chosen because it is a simple hexagonal system whose
elastic constants require few rays to be determined and are available in
the literature (Wei et al., 2009) for comparison. Furthermore, graphene
has been extensively studied in the literature (e.g., see Akinwande et al.
(2017), Papageorgiou et al. (2017) and Zakharchenko et al. (2009))
and inaccurate results can be easily identified. Moreover, the unit cell
size and number of electrons in graphene allow for computationally
efficient refinements of the methodology. We choose a fifth order poly-
nomial expansion of the strain energy density for comparison with (Wei
et al., 2009). In the case of hexagonal symmetries, e.g., graphene,
sampling rays in the 𝐸1-𝐸2 subspace of  are sufficient due to linear
dependence of the other constants (e.g., see Wei et al. (2009) and
Cooper et al. (2013)). Therefore 𝜮 is a circle of radius 𝑅 in the
𝐸1-𝐸2 plane. We choose 𝑅 = 0.1 which corresponds to 10% strain
and the global root mean square error tolerance 𝜖 = 10−3 J/m2. An
incremental curve fitting approach is used to determine the elastic
constants. A convergence analysis is performed to assess the number
of rays necessary to obtain accurate results. It is found that the rays
shown in blue in Fig. 6 are sufficient to obtain accurate results. In
the case of incremental curve fitting, the angles corresponding to the
biaxial rays (30◦, 45◦, 135◦, 210◦, 225◦ and 315◦) could have been
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Table 4
The elastic constants of graphene.

Constant (N/m) Ray based methodology Wei et al. (2009)

𝑄11 353.49 358.1
𝑄12 62.90 60.4
𝑄111 −2981.66 −2817.0
𝑄222 −2939.29 −2693.3
𝑄112 −486.43 −337.1
𝑄1111 20964.69 13416.2
𝑄2222 17723.12 10358.9
𝑄1112 3383.27 759.0
𝑄1122 3287.30 2 582.8
𝑄11111 −243000.09 −31383.8
𝑄22222 −126423.34 −33446.7
𝑄11112 28063.74 −88.4
𝑄12222 −77485.55 −13046.6
𝑄11122 −67805.88 −12960.5

chosen differently so long as a sufficient number of rays are used in
conjunction with a convergence study. The elastic constants obtained
using the ray based methodology are shown in Table 4 along with the
results from Wei et al. (2009).

The strain energies obtained from the model with the elastic con-
stants determined using ray based curve fitting are shown in Fig. 7 for
different rays, along with the results obtained from DFT and from the
model using the elastic constants determined by Wei et al. (2009). As
can be seen in the figure, the results compare well with those obtained
using the Wei et al. (2009) elastic constants. The global root mean
square error obtained using the ray based methodology is 5.05 × 10−4

J/m2 as compared to the value obtained using the Wei et al. (2009)
elastic constants of 0.022 J/m2. Fig. 8 shows the results for a uniaxially
loaded graphene sheet. A strain 𝐸1 is applied while keeping 𝑆2 =

𝑆6 = 0, i.e., under uniaxial stress conditions. The lateral strain 𝐸2 is
shown as predicted by the constitutive model with the elastic constants
determined using the ray based methodology, with the Wei et al. (2009)
elastic constants and as predicted by the DFT simulations.

We attribute the differences in the numerical results for the elastic
constants between the ray based methodology and Wei et al. (2009)
to the fact that they performed the curve fitting using the second
Piola–Kirchhoff stresses while we used the strain energy densities.
Furthermore, the Wei et al. (2009) curve fitting was done using uniaxial
and equibiaxial tensile tests only, i.e., in the first quadrant of the 𝐸1-
𝐸2 subspace which may account for the differences shown in Fig. 8.
We note that the higher order elastic constants exhibited a larger
nominal difference between the ones determined using the ray based
methodology as compared to the elastic constants from Wei et al.
(2009). This is attributed to the high sensitivity of the higher order
elastic constants on the strain range, especially that the curve fitting
was done up to fracture in Wei et al. (2009), while our results were
obtained in the region of strain space where strain norms are less than
or equal to 10%.

Since the Wei et al. (2009) results are determined computationally
using DFT, we further validate the linearized mechanical properties
of graphene. Due to hexagonal symmetry, the second order elastic
constants of graphene satisfy 𝑄11 = 𝑄22 and 𝑄66 =

1

2

(
𝑄11 −𝑄12

)
(e.g., see Nye (1985)). Therefore, by Eqs. (18), 𝑌1 = 𝑌2 = 𝑌 , 𝜈12 =

𝜈21 = 𝜈 and 𝐺 = 𝑌 ∕ [2 (1 + 𝜈)] in the linear elastic regime. Table 5
shows the linearized Young’s modulus and shear modulus of graphene
as calculated using Eqs. (18) and compared to the Young’s modulus pre-
sented in Papageorgiou et al. (2017) and the shear modulus presented
in Zakharchenko et al. (2009), respectively.

As seen in Table 5, the values compare well with the values reported
in the literature. Using the values presented in the current work, the
Poisson’s ratio of graphene is 𝜈 = 0.178.

4. Results and discussion for black phosphorus

In this section, we determine and validate the elastic constants of
black phosphorus which is an orthorhombic 2D material.

Fig. 7. Strain energy density 𝑊 as a function of the in-plane normal strains 𝐸1 and
𝐸2 corresponding to the rays used to determine the elastic constants of graphene.

Fig. 8. Lateral normal strain 𝐸2 induced by an applied longitudinal normal strain 𝐸1

on a uniaxially loaded graphene sheet in the longitudinal direction.

Table 5
The linearized mechanical properties of graphene.

Elastic property 𝑌 (N/m) 𝐺 (N/m)

Value in the current work 342.30 145.30
Value in the literature Experimental:

340 ± 50

(Papageorgiou
et al., 2017)

Monte-Carlo:
151.2 (Za-
kharchenko
et al., 2009)

4.1. Material geometry

The relaxed black phosphorus geometry, obtained using Quantum-
Espresso (Giannozzi et al., 2017, 2009), is shown in Fig. 9(a). The
visualizations were done using XCrySDen (Kokalj, 1999). Fig. 9(b)
shows the relaxed unit cell used for the DFT simulations. The 15 Å
(15 × 10−10 m) dimension in the 𝒆3 direction is chosen to avoid any
interlayer interactions resulting from the periodic boundary conditions.

Different definitions exist for the thickness of 2D materials. For ex-
ample, based on the Van der Waals radius of Phosphorus (e.g., see Bondi
(1964)), the thickness of black phosphorus is 𝑡 = 5.7 Å. The subsequent
results are determined independently of the thickness, e.g., the elastic
constants are presented as membrane elastic constants in N/m. To
obtain the elastic constants in Pa, the results should be divided by the
thickness.

4.2. Material symmetry

A material is invariant under a material symmetry transformation
represented by the matrix Γ when

𝑊 = 𝑊 (𝐄) = 𝑊
(
Γ
𝑇
𝐄Γ

)
, (38)
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Fig. 9. Geometry of black phosphorus in its ground state.

Table 6
Orthorhombic linearly independent elastic constants for polynomial constitutive models
up to fifth order.

Order of the
elastic constants

Linearly independent
elastic constants

Second (SOEC) 𝑄11 , 𝑄12 , 𝑄22 , 𝑄66

Third (TOEC) 𝑄111 , 𝑄112 , 𝑄122 , 𝑄166 , 𝑄222 , 𝑄266

Fourth (FOEC) 𝑄1111, 𝑄1112, 𝑄1122, 𝑄1166, 𝑄1222,
𝑄1266, 𝑄2222, 𝑄2266, 𝑄6666

Fifth (FfOEC) 𝑄11111, 𝑄11112 𝑄11122, 𝑄11166,
𝑄11222, 𝑄11266, 𝑄12222, 𝑄12266,
𝑄16666, 𝑄22222, 𝑄22266, 𝑄26666

for all 𝑬. Black phosphorus is an orthorhombic 2D material thus it is

invariant under the following in-plane reflection matrices

Γ𝟏 =

⎡⎢⎢⎣

−1 0 0

0 1 0

0 0 1

⎤⎥⎥⎦
, Γ𝟐 =

⎡⎢⎢⎣

1 0 0

0 −1 0

0 0 1

⎤⎥⎥⎦
. (39)

After performing the simplifications implied by Eqs. (38) and (39),

only the constants presented in Table 6 are found to be linearly inde-

pendent for a fifth order constitutive polynomial (and their symmetric

counterparts shown in Eq. (13)). The other elastic constants are found

to be identically zero due to material symmetry.

Table 7
Rays used to determine the elastic constants of black phosphorus.

Sampling ray in 

(𝐄)
𝜃(◦) 𝜙(◦) Number of

rays
Related elastic
constants

𝐸1 = 𝑟 cos 𝜃 {0, 180} 90 2 𝑄11, 𝑄111, 𝑄1111,
𝑄11111

𝐸2 = 𝑟 sin 𝜃 ±90 90 2 𝑄22, 𝑄222, 𝑄2222,
𝑄22222

𝐸6 = 𝑟 cos𝜙 0 {0, 180} 2 𝑄66, 𝑄6666

𝐸1 = 𝑟 cos 𝜃,
𝐸2 = 𝑟 sin 𝜃

{±30,±60,

±210,±240}

90 8 𝑄12, 𝑄112, 𝑄122,
𝑄1112, 𝑄1122, 𝑄1222,
𝑄11112, 𝑄11122,
𝑄11222, 𝑄12222

𝐸1 = 𝑟 sin𝜙 cos 𝜃,
𝐸6 = 𝑟 cos𝜙

{0, 180} {30, 60} 4 𝑄166, 𝑄1166, 𝑄11166,
𝑄16666

𝐸2 = 𝑟 sin𝜙 sin 𝜃,
𝐸6 = 𝑟 cos𝜙

±90 {30, 60} 4 𝑄266, 𝑄2266, 𝑄22266,
𝑄26666

𝐸1 = 𝑟 sin𝜙 cos 𝜃,
𝐸2 = 𝑟 sin𝜙 sin 𝜃,
𝐸6 = 𝑟 cos𝜙

{±45,±225} 45 4 𝑄1266, 𝑄11266, 𝑄12266

4.3. Choice of sampling rays

Table 7 shows the ray directions used for the curve fitting, in
addition to the elastic constants that are retrieved following the order
of the rows through incremental curve fitting from each ray direction.

Black phosphorus, due to its orthorhombic symmetry, behaves sym-
metrically with respect to shear, i.e., 𝑊

(
𝐸6

)
= 𝑊

(
−𝐸6

)
for any shear

strain 𝐸6, therefore more rays (or angles) were used for the 𝐸1-𝐸2

subspace as compared to other biaxial tests involving shear. In Table 7,
the term 𝑟 is the Euclidean norm of a strain state and depends on the
incremental strain step number and the number of points on each ray,
i.e., it depends on the discretization of the ray considered. The bounds
on 𝑟 can be found based on the fact that any strain state has to be in
𝜮. To determine the elastic constants of black phosphorus we choose a
strain ball of radius 𝑅. Therefore, for a ray that contains 𝑁 equidistant
strain states,

𝑟 ∈

{
𝑗 ⋅

𝑅

𝑁

|||| 𝑗 ∈ {1, 2,… , 𝑁}

}
. (40)

4.4. Bounds on the curve fitting region in strain space

The curve fitting region in strain space used to determine the elastic
constants of black phosphorus is chosen to avoid non-smooth and un-
stable locations in the strain energy landscape. Non-smoothness occurs
at strain states that correspond to points of structural degeneracies
(e.g., see Mehboudi et al. (2016)) or to energy release (e.g., see Liu
et al. (2016)) due to fracture. Instabilities are represented by strain
states corresponding to unstable crystal structures.

It was noted in Mehboudi et al. (2016) and Barraza-Lopez et al.
(2021) based on density functional theory results that black phospho-
rus and monochalcogenide monolayers exhibit ground state structural
degeneracies. This can cause a cusp in the energy landscape as demon-
strated in Mehboudi et al. (2016) and Barraza-Lopez et al. (2018).
We analyzed the energy landscape for black phosphorus to identify
structural degeneracies. Point 𝐴 in Fig. 10 represents the ground state
configuration considered in the current work (Fig. 9). Point 𝐴′ corre-
sponds to a 90◦ rotation about the 𝒆𝟑 axis (Fig. 9) of the configuration
represented by point 𝐴. The strain energy density is plotted along the
ray starting at point 𝐴 and going to point 𝐴′ in Fig. 10, and vice-versa.
We note that in Fig. 10, the strain energy is plotted as a function of
𝑙11 and 𝑙22 which represent the in-plane lattice parameters. In both ray
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Fig. 10. Cusp in the energy landscape of black phosphorus caused by the degeneracies
in its ground state.

directions, the strain energy values match for the same location in the
𝑙11-𝑙22 plane. A cusp can be seen along both rays at point 𝐶 in Fig. 10,
where two configurations have the same lattice parameters 𝑙11 = 𝑙22
although one is a 90◦ rotation of the other. At the intermediate points
having the same energy on either side of the cusp, e.g., points 𝐵 and 𝐵′,
the corresponding configuration are 90◦ rotations of one another. The
cusp in Fig. 10 corresponds to a strain norm of 25.74%. When using the
ray based methodology the presence of non-smooth locations will affect
the accuracy of the obtained elastic constants and therefore the strain
space sampling region should be chosen to avoid them based on the
starting ground state. The ray based methodology can be employed to
determine the elastic constants of black phosphorus whether starting
from point 𝐴 or 𝐴′ as long as the cusp is not included in the curve
fitting region. It is noted that at each of the points 𝐴 and 𝐴′, there are
two corresponding degenerate ground states which are 180◦ rotations
of one another (e.g., see Mehboudi et al. (2016)).

The experimental range used to study the mechanical behavior of
2D materials typically includes some nonlinear behavior. For example,
in Huang et al. (2010) the range [−3%, 4%] is used to study graphene
using Raman spectroscopy. The rupture strain of a few layers of black
phosphorus has been determined using atomic force microscopy to be
about 9.2% in tension (Tao et al., 2015). The latter rupture limit is
based on a linearized elasticity formulation, i.e., using 𝜎 = 𝑌 𝜀 where
𝜀 is the infinitesimal strain, which underestimates nonlinear tensile
strains. Furthermore, it is based on a few layers of black phosphorus
in experimental settings. Accounting for experimental variability, in
the present work, we have chosen a strain ball of radius 𝑅 = 0.1

which is equivalent to 10% strain norm. Our DFT simulations of black
phosphorus did not exhibit fracture behaviors under uniaxial strain and
uniaxial stress states in the strain range of [−10%, 10%].

4.5. Elastic constants of black phosphorus

The converged elastic constants of black phosphorus, with a global
root mean square error tolerance 𝜖 = 5 × 10−4 J/m2, are presented in
Table 8. Table A.1 in the Appendix shows the curve fitting results for
different numbers of points per ray to assess convergence. It is to be
noted that the DFT simulations were all performed with a 40 points per
ray discretization, i.e., 𝑁 = 40, but then some points were suppressed
when performing convergence studies on the number of points per
ray. This is due to the fact that the closer the points in strain space,
the quicker the DFT convergence because deformation is performed in
smaller increments.

Figs. 11 and 12 show the strain energy curves for black phosphorus
subjected to different strain states. Graphically, it can be seen that the
model predictions match well with the DFT calculations.

Table 8
The converged elastic constants of black phosphorus.

Constant Value (N/m)

𝑄11 23.89
𝑄22 101.95
𝑄12 16.99
𝑄66 22.37
𝑄111 −177.09
𝑄222 −1039.50
𝑄112 −152.04
𝑄122 −32.49
𝑄266 −75.05
𝑄166 −175.66
𝑄1111 1537.03
𝑄2222 9256.02
𝑄6666 −687.48
𝑄1112 1332.64
𝑄1222 −253.71
𝑄1122 383.97
𝑄2266 262.38
𝑄1166 2458.17
𝑄1266 950.56
𝑄11111 −7882.14
𝑄22222 −102580.02
𝑄11112 −4038.05
𝑄12222 2125.45
𝑄11122 −4021.55
𝑄11222 1108.82
𝑄22266 −3318.22
𝑄26666 14830.50
𝑄11166 −24868.42
𝑄16666 −2816.63
𝑄11266 −14721.49
𝑄12266 −3337.54

Fig. 11. Strain energy density 𝑊 for the uniaxial simulations of black phosphorus.

To assess the convergence of the elastic constants with respect to
the number of points per ray, we compare the Frobenius norms of
matrices corresponding to the same order of the elastic constants for
different numbers of points per ray. Since some small values of the
elastic constants may have less effect on the strain energy density, we
compare the norms of the matrices corresponding to elastic constants
of different orders. The Frobenius norm (e.g., see Golub and Van Loan
(1996)) is defined for a general multidimensional matrix by

∣∣ 𝑴 ∣∣𝐹=

√√√√√
𝑁𝑖1∑
𝑖1=1

𝑁𝑖2∑
𝑖2=1

…

𝑁𝑖𝑚∑
𝑖𝑚=1

𝑀2
𝑖1𝑖2…𝑖𝑚

, (41)

where the matrix 𝑴 has 𝑚 dimensions and 𝑁𝑖𝑗
are the number of

elements of 𝑴 in the 𝑖𝑡ℎ
𝑗
dimension.

Table 9 shows convergence of the elastic constants. The Frobenius
norms of the difference between the matrices of the elastic constants
for different numbers of points per ray and the corresponding matrix
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Fig. 12. Strain energy density 𝑊 for the biaxial simulations of black phosphorus.

Table 9
Convergence of the Frobenius norms of different orders of the elastic constant matrices
for black phosphorus.

Constants
order

Frobenius norm
(N/m) for 40
points per ray

Difference (%)
between 5 and
40 points per
ray

Difference (%)
between 10 and
40 points per
ray

Difference (%)
between 20 and
40 points per
ray

SOEC 109.74 0.028 0.018 0.0068
TOEC 1 137.50 0.083 0.021 0.0069
FOEC 12 011.09 0.71 0.40 0.15
FfOEC 158 532.80 1.26 0.51 0.20

for 40 points per ray decreases as the number of points increases. Since
analytically the elastic constants are,

𝜕2𝑊

𝜕𝐸𝑖𝜕𝐸𝑗

|||||𝑬=𝟎

= 𝑄𝑘𝑎𝛿𝑘𝑖𝛿𝑎𝑗 = 𝑄𝑖𝑗 ,
𝜕3𝑊

𝜕𝐸𝑖𝜕𝐸𝑗𝜕𝐸𝑘

|||||𝑬=𝟎

= 𝑄𝑖𝑗𝑘,… , (42)

the convergence is faster for the lower order constants because higher
order constants are more sensitive to minor differences in strain energy.
The sensitivity of higher order constants follows from the fact that dif-
ferentiation of numerical results will amplify the noise/error. Table 10
shows the convergence of the global root mean square error (RMS) of
the strain energies.

4.6. Effect of the order of the constitutive polynomial

In this section, the order of the constitutive polynomial required
to compute accurate strain energies for black phosphorus is assessed.
The order of the constitutive polynomial is defined as the order of the
highest power of the strains in the constitutive polynomial, i.e., 𝑁𝑝

in Eq. (12), e.g.,

Second order (𝑁𝑝 = 2) ∶ 𝑊 =
1

2!
𝑄𝑖𝑗𝐸𝑖𝐸𝑗 ,

Third order (𝑁𝑝 = 3) ∶ 𝑊 =
1

2!
𝑄𝑖𝑗𝐸𝑖𝐸𝑗 +

1

3!
𝑄𝑖𝑗𝑘𝐸𝑖𝐸𝑗𝐸𝑘,

Fourth order (𝑁𝑝 = 4) ∶ 𝑊 =
1

2!
𝑄𝑖𝑗𝐸𝑖𝐸𝑗 +

1

3!
𝑄𝑖𝑗𝑘𝐸𝑖𝐸𝑗𝐸𝑘

+
1

4!
𝑄𝑖𝑗𝑘𝑙𝐸𝑖𝐸𝑗𝐸𝑘𝐸𝑙 ,

Fifth order (𝑁𝑝 = 5) ∶ 𝑊 =
1

2!
𝑄𝑖𝑗𝐸𝑖𝐸𝑗 +

1

3!
𝑄𝑖𝑗𝑘𝐸𝑖𝐸𝑗𝐸𝑘

+
1

4!
𝑄𝑖𝑗𝑘𝑙𝐸𝑖𝐸𝑗𝐸𝑘𝐸𝑙

+
1

5!
𝑄𝑖𝑗𝑘𝑙𝑚𝐸𝑖𝐸𝑗𝐸𝑘𝐸𝑙𝐸𝑚.

(43)

Table A.2 in the Appendix shows the elastic constants for varying
polynomial orders ranging from second to fifth. Figs. 13 show the
effects of different orders of the constitutive polynomial on the uniaxial
strain energy curves for black phosphorus. Table 11 shows the global

Table 10
Convergence of the global root mean square error in the curve fit to determine the
elastic constants of black phosphorus with respect to the number of points per ray.

Points per ray 5 points 10 points 20 points 40 points

Global RMS error (J/m2) 6 × 10−4 5.3 × 10−4 4.93 × 10−4 4.73 × 10−4

Table 11
Convergence of the global root mean square error in the curve fit to determine the
elastic constants of black phosphorus with the order of the constitutive polynomial used.

Order of the
polynomial used

Second
(𝑁𝑝 = 2)

Third
(𝑁𝑝 = 3)

Fourth
(𝑁𝑝 = 4)

Fifth
(𝑁𝑝 = 5)

Global RMS
error (J/m2)

0.0334 0.0027 6.8 × 10−4 4.73 × 10−4

Table 12
Additional rays to verify that the number of rays used for the curve fitting to determine
the elastic constants of black phosphorus is sufficient.

𝜃(◦) ±90 {0, 180} ± {30, 210} ± {15, 45, 75, 195, 225, 255}

𝜙(◦) 45 45 {30, 60} 90

Number of rays 2 2 8 12

root mean square errors for different polynomial orders. It can be seen
in Table 11 that with increasing order of the polynomial, the curve
fitting is more accurate, i.e., the global root mean square error de-
creases. It is found that a fifth order polynomial expansion is sufficient
to accurately determine the strain energies of black phosphorus for
strain state norms less than or equal to 10%.

4.7. Verification studies

In order to verify that a sufficient number of rays are used for
the curve fitting process, the strain energy density of five strain states
on each of the rays shown in Table 12 is determined using DFT and
compared to the corresponding model prediction. It is to be noted
that the rays shown in Table 12 were not used to curve fit for the
elastic constants of black phosphorus. The global root mean square
error obtained from the comparison is 4.6×10−4 J/m2, which shows that
the constitutive model with the determined elastic constants predicts
accurately strain energies for other strains within 𝜮.

The next verification study consists of conducting uniaxial stress
simulations and comparing the DFT stresses with the stresses predicted
by the constitutive model. A uniaxial stress simulation in the 1-direction
is equivalent to applying a strain 𝐸1 to the DFT unit cell while keeping
𝑆2 = 𝑆6 = 0, i.e., allowing the material to contract laterally and to
shear. The Newton–Raphson method (e.g., see Allen-I.I.I. and Isaacson
(1998)), with a tolerance of 10−6, is used to solve the system of
nonlinear equations generated by the model (11) from the boundary
conditions 𝑆2 = 𝑆6 = 0 given an applied strain 𝐸1, i.e., solving for
𝐸2 and 𝐸6. The indicial stress derivative relation, which is used in the
Newton–Raphson algorithm, is

𝜕𝑆𝜏

𝜕𝐸𝛼

= 𝑄𝜏𝛼 +𝑄𝜏𝛼𝑘𝐸𝑘 +
1

2!
𝑄𝜏𝛼𝑗𝑘𝐸𝑗𝐸𝑘 +

1

3!
𝑄𝜏𝛼𝑖𝑗𝑘𝐸𝑖𝐸𝑗𝐸𝑘. (44)

Fig. 14(a) shows the induced 𝐸2 as a function of the applied strain
𝐸1 as predicted by the model and as calculated using DFT, where the
material is subjected to the boundary conditions 𝑆2 = 𝑆6 = 0. As can be
seen, the model predictions match well with the DFT calculations with
a root mean square error of 6.32×10−5. Using a similar process, 𝐸1, for
a uniaxial stress loading in the 2-direction, is evaluated as a function
of 𝐸2 and is shown in Fig. 14(b). The corresponding root mean square
error is 0.0012.

Fig. 15(a) shows the nonlinear stress–strain curves obtained from
DFT and predicted by the constitutive model for a uniaxial stress
simulation in the 1-direction. The stress 𝑆1 is calculated using the
determined 𝐸2 and 𝐸6 and the applied 𝐸1 in Eq. (11). As can be seen,
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Fig. 13. Effect of the order of the constitutive polynomial on the uniaxial strain energy curves of black phosphorus.

Fig. 14. Normal strains induced by uniaxial normal stress loadings of black phosphorus.

the predicted stresses match well with the DFT stresses, with a root
mean square error of 0.006 N/m. Using a similar process, the stress–
strain curves for the uniaxial stress in the 2-direction and shear were
generated and are shown in Fig. 15(b) and Fig. 15(c), respectively.
The root mean square errors obtained are 0.017 N/m for the uniaxial

stress in the 2-direction and 0.071 N/m for the uniaxial shear stress
simulation. Higher root mean square errors are noticed in the stresses
as compared to strain energies, which can be attributed to the fact that
stress, which involves differentiating strain energy, amplifies numerical
errors and inaccuracies. The uniaxial shear stress simulation exhibits
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Fig. 15. Stress–strain curves corresponding to the uniaxial stress loadings of black phosphorus.

Table 13
The linearized mechanical properties of black phosphorus in comparison with Wang
et al. (2015).

Elastic property 𝑌1 (N/m) 𝑌2 (N/m) 𝜈12 𝜈21 𝐺 (N/m)

Current value 21.06 89.87 0.167 0.711 22.37
Value in Wang et al. (2015) 23.0 92.3 0.175 0.703 22.4
Difference (%) 9.2 2.7 4.79 1.11 0.13

a higher root mean square error which follows from the fact that
shear strains, especially nonlinear shear strains, induce longitudinal
strains 𝐸1 and 𝐸2 for an orthorhombic material, therefore the effect of
higher order triaxial elastic constants, e.g., 𝑄1266, is more pronounced
for larger strains. This effect does not happen in the uniaxial normal
stress simulations since for an orthorhombic material, 𝐸1 and 𝐸2 do
not induce 𝐸6. The root mean square error can be further reduced by
adding more triaxial rays, i.e., 𝐸1,2,6 ≠ 0.

Table 13 shows the linearized mechanical properties of black phos-
phorus calculated using Eqs. (18) in comparison with the results pre-
sented in Wang et al. (2015). We note that 𝑌1, 𝑌2 and 𝐺 represent
the slope at the origin in Fig. 15(a), 15(b) and 15(c), respectively.
The Poisson’s ratios 𝜈12 and 𝜈21 represent the slope at the origin in
Figs. 14(a) and 14(b), respectively. These slopes when calculated using
finite differences, compare well with the values presented in Table 13.

The differences shown in Table 13 may be attributed to differences
in the parameters used for the DFT simulations. In addition, in Wang
et al. (2015), the results were obtained solely based on infinitesimal

deformations, whereas in the present work the results are deduced from
a general nonlinear elastic model.

5. Conclusion

Murnaghan’s polynomial based constitutive model has been effec-
tively used in the literature to model the nonlinear elastic response
of 2D materials of hexagonal symmetry using a fifth order expansion.
However, an increasing number of elastic constants need to be de-
termined for 2D materials of lower symmetry and higher polynomial
orders. In this paper, a general methodology to determine the elastic
constants is presented for 2D materials of arbitrary symmetries and
constitutive polynomials of any order. The methodology is based on
ray sampling of the strain energy density in a bounded region of
strain space and curve fitting to obtain the plane stress reduced elastic
constants. The proposed methodology is not based on any assumption
about the energy calculation approach. While DFT is employed in the
current work, any energy calculation method can be used with the
methodology. The ray based methodology is presented algorithmically
and is verified by comparing the results for graphene with those
available in the literature. Subsequently, the methodology is used to
determine the elastic constants of black phosphorus up to fifth order.
Convergence and error analyses are used to assess the validity of the
determined elastic constants. The effect of the order of the constitutive
polynomial on the elastic constants of black phosphorus is assessed.
Additionally, the linearized mechanical properties of black phosphorus
are evaluated and compared with the literature.
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Table A.1
The elastic constants of black phosphorus for different numbers of curve fitting points
per ray.

Constant (N/m) 5 points 10 points 20 points 40 points

𝑄11 23.89 23.89 23.89 23.89
𝑄22 101.92 101.93 101.94 101.95
𝑄12 16.99 16.99 16.99 16.99
𝑄66 22.37 22.37 22.37 22.37
𝑄111 −176.88 −176.94 −177.03 −177.09
𝑄222 −1039.34 −1039.44 −1039.48 −1039.50
𝑄112 −151.90 −151.97 −152.02 −152.04
𝑄122 −32.54 −32.49 −32.49 −32.49
𝑄266 −75.55 −75.13 −75.06 −75.05
𝑄166 −175.65 −175.66 −175.66 −175.66
𝑄1111 1542.70 1 540.56 1 538.39 1537.03
𝑄2222 9325.53 9 297.49 9 271.80 9256.02
𝑄6666 −686.80 −687.06 −687.33 −687.48
𝑄1112 1322.62 1 327.02 1 330.55 1332.64
𝑄1222 −255.10 −254.89 −254.20 −253.71
𝑄1122 380.34 383.34 383.91 383.97
𝑄2266 253.08 259.33 261.49 262.38
𝑄1166 2469.69 2 464.05 2 460.30 2458.17
𝑄1266 957.83 954.16 951.85 950.56
𝑄11111 −8584.52 −8354.59 −8073.94 −7882.14
𝑄22222 −103538.04 −103060.32 −102754.93 −102580.02
𝑄11112 −3990.24 −4007.83 −4027.34 −4038.05
𝑄12222 2073.61 2 060.47 2 095.88 2125.45
𝑄11122 −4006.68 −4049.81 −4037.72 −4021.55
𝑄11222 936.71 1020.59 1076.16 1108.82
𝑄22266 −3034.13 −3290.65 −3323.76 −3318.22
𝑄26666 15254.91 14827.25 14800.32 14830.50
𝑄11166 −24972.92 −24926.65 −24890.63 −24868.42
𝑄16666 −2984.39 −2898.47 −2847.20 −2816.63
𝑄11266 −14618.57 −14700.99 −14718.45 −14721.49
𝑄12266 −3349.05 −3348.50 −3342.35 −3337.54

Table A.2
The elastic constants of black phosphorus for different constitutive polynomial orders.

Constant (N/m) 𝑁𝑝 = 2 𝑁𝑝 = 3 𝑁𝑝 = 4 𝑁𝑝 = 5

𝑄11 23.75 24.82 23.92 23.89
𝑄22 101.05 107.47 102.23 101.95
𝑄12 16.77 17.65 17.03 16.99
𝑄66 21.95 21.95 22.37 22.37
𝑄111 – −176.57 −180.15 −177.09
𝑄222 – −1058.55 −1079.30 −1039.50
𝑄112 – −150.26 −148.07 −152.04
𝑄122 – −35.28 −33.18 −32.49
𝑄266 – −73.34 −65.42 −75.05
𝑄166 – −175.82 −188.71 −175.66
𝑄1111 – – 1 489.24 1537.03
𝑄2222 – – 8 633.84 9256.02
𝑄6666 – – −687.52 −687.48
𝑄1112 – – 1 268.63 1332.64
𝑄1222 – – −251.24 −253.71
𝑄1122 – – 342.78 383.97
𝑄2266 – – 231.47 262.38
𝑄1166 – – 2 379.85 2458.17
𝑄1266 – – 862.52 950.56
𝑄11111 – – – −7882.14
𝑄22222 – – – −102580.02
𝑄11112 – – – −4038.05
𝑄12222 – – – 2 125.45
𝑄11122 – – – −4021.55
𝑄11222 – – – 1 108.82
𝑄22266 – – – −3318.22
𝑄26666 – – – 14 830.50
𝑄11166 – – – −24868.42
𝑄16666 – – – −2816.63
𝑄11266 – – – −14721.49
𝑄12266 – – – −3337.54
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