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ABSTRACT: The planktonic copepod Calanus finmar-
chicusis a fundamental prey resource for the critically
endangered North Atlantic right whale Eubalaena
glacialis. Incorporation of prey information into E.
glacialis decision support tools could improve man-
agement. Zooplankton time series are usually ana-
lyzed with respect to abundance, but predators such
as E. glacialis forage based on whether prey aggre-
gations exceed energetic thresholds. In order to better
understand the distribution and dynamics of the high-
abundance end of C. finmarchicus on the northeastern
US continental shelf, where E. glacialis feed, we mod-
eled the environmental conditions associated with C.
finmarchicus densities that exceed nominal feeding
thresholds. Threshold values were chosen based on a
review of E. glacialis feeding behavior throughout the
domain. Following model selection procedures, we
used a random forest model with bathymetry, bottom
temperature, bottom salinity, day of year, sea surface
temperature, sea surface temperature gradient, ba-
thymetric slope, time-integrated chlorophyll, current
velocity gradient, and wind covariates. Model per-
formance was highest with thresholds that matched
reported E. glacialis feeding thresholds equivalent to
10000 copepods m~2, The high-density aggregations
of C. finmarchicus had some different covariate re-
sponses compared to previous statistical abundance
models, such as a warmer temperature range at both
the surface and at depth, as well as a much higher
degree of spatial variability. The output data layers of
the model are designed to link with E. glacialis
models used in US governmental decision support
tools. Including this type of foraging information in
decision support tools is a step forward in managing
this critically endangered species.
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A novel modeling approach looking at prey densities
through the lens of right whale feeding has potential to aid
conservation.

Photos: C. finmarchicus, Cameron R. S. Thompson; Right
whale, NOAA/NEFSC/Christin Khan (MMPA Permit
#17355)

1. INTRODUCTION

Calanus finmarchicus, a species of planktonic cope-
pod, is foundational in the subarctic Northwest Atlan-
tic ecosystem (Pershing & Stamieszkin 2020). It serves
as a fundamental prey resource for a wide range of
species in higher trophic levels, including the critically
endangered North Atlantic right whale Eubalaena
glacialis (listed as ‘Critically Endangered’ on the
TUCN Red List) (Cooke 2020). Management strategies
to conserve E. glacialis rely on models that forecast
habitat use, especially foraging areas (Meyer-Gutbrod
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et al. 2021). E. glacialis are observed in areas with
dense C. finmarchicus aggregations (Wishner et al.
1988, 1995, Murison & Gaskin 1989, Mayo & Marx
1990, Kenney & Wishner 1995, Baumgartner & Mate
2003, Baumgartner et al. 2003, Jiang et al. 2007) and
they appear to select these areas based on whether
abundances are above a critical feeding threshold
(Mayo & Marx 1990, Kenney & Wishner 1995). While
considerable research has been devoted to under-
standing the abundance and distribution patterns of
C. finmarchicus (e.g. Wishner et al. 1988, Kann &
Wishner 1995, Meise & O'Reilly 1996, Lynch et al.
1998, Pershing et al. 2009a, Ji 2011, Reygondeau &
Beaugrand 2011, Record et al. 2013, 2018, Chust et al.
2014, Melle et al. 2014, Runge et al. 2015, Ji et al.
2017, Sorochan et al. 2019), far fewer studies have fo-
cused on the distribution of foraging habitat with prey
densities above a feeding threshold (e.g. Pendleton et
al. 2012, Plourde et al. 2019).

The need for predictive skill is evident in ongoing
management challenges in both the USA and Canada
(Record et al. 2019, Meyer-Gutbrod et al. 2021). For
example, sea surface and bottom temperatures in the
Gulf of Maine have been warming rapidly, particu-
larly between 2005 and 2015 (Pershing et al. 2015,
Record et al. 2019, Friedland et al. 2020, Gong¢alves
Neto et al. 2021). While species distribution models
have estimated a gradual northeastward shift of 8.1
km per decade in the distribution of C. finmarchicus
(Chust et al. 2014), abrupt shifts occurring within the
past decade outpace these projections, and distribu-
tions have large regional variation (Ji et al. 2022).
Changes in the Gulf Stream drove an abrupt shift to
warmer temperatures in the deep waters entering the
Gulf of Maine beginning in 2008 (Goncalves Neto et
al. 2021), which caused a decline in C. finmarchicus
abundance in the eastern Gulf of Maine by 2010
(Record et al. 2019). E. glacialis responded by shifting
from the eastern Gulf of Maine to the Gulf of St.
Lawrence to forage in summer, resulting in unfore-
seen mortality due to entanglements and ship strikes.
The resulting shifts in right whale foraging and, con-
sequently, population growth have put the viability of
the species in question (Kraus et al. 2016, Davis et al.
2017). Improved prediction could help management
be more adaptive to such abrupt shifts in foraging
habitat (Davies & Brillant 2019). Examples of more
adaptive management could include directing future
survey effort and aiding in longer term planning.

The accuracy of E. glacialis habitat-use models can be
improved by the inclusion of a prey field (e.g. Pendleton
etal. 2012), highlighting the importance of developing a
suitable prey field for use as input to these models. A

coupled biophysical model of the C. finmarchicus life
cycle and abundance in the western Gulf of Maine suf-
ficiently simulated this species’ phenology for use in a
whale forecast (Pershing et al. 2009a,b). While previous
modeling efforts have focused on C. finmarchicus
abundance, they have not yet characterized the envi-
ronmental conditions associated with the formation of
high-density aggregations that influence E. glacialis
foraging behavior. A focus on abundance tends to
smooth out the extreme values that would describe
high-density prey patches, as most skill metrics are op-
timized across the full abundance distribution. Gener-
ally, models are on spatial scales that are very coarse
(e.g. Reygondeau & Beaugrand 2011) or use smoothed
approaches, such as generalized additive models
(Grieve et al. 2017), that are useful for looking at broad
dynamics, but are not suitable for the extreme high val-
ues in the C. finmarchicus distribution that form E.
glacialis feeding habitat. Essentially, it is the right-hand
tail of the prey abundance distribution that matters for
this type of foraging strategy, whereas most modeling
approaches focus on the middle of the distribution.

Dense aggregations of C. finmarchicusin the North-
west Atlantic form by complex interactions among
local production, predation, and external supply
(Ji et al. 2022), individual behaviors, and physical
oceanographic concentrating mechanisms (Wishner
et al. 1988, Epstein & Beardsley 2001, Davies et al.
2014; reviewed by Sorochan et al. 2021). For most of
the year, the primary prey resource for E. glacialis is
C. finmarchicus. Additionally, the type of aggrega-
tion that E. glacialis may target also depends on the
size composition of individual C. finmarchicus. In the
Great South Channel, E. glacialis likely target aggre-
gations of later stage C. finmarchicus, as opposed to
targeting aggregations based on density alone (Ken-
ney & Wishner 1995). These aggregations can last for
several days and cover several square kilometers
(Wishner et al. 1988).

Here we analyze C. finmarchicus distribution
through the lens of E. glacialis foraging behavior on
the northeastern US continental shelf using the con-
cept of a feeding threshold: the prey aggregation
density above which foraging becomes energetically
advantageous for E. glacialis. Local high-density cope-
pod aggregations are often described as ‘patches’ or
‘swarms,’ although there is no clear agreement on
the level of abundance density that delineates one of
these designations. Similarly, the magnitude of a
feeding threshold for E. glacialis is not precisely
known, and likely depends on internal factors, such
as energetic needs and satiation level that vary with
demographic stage (e.g. Miller et al. 2011, Fortune et
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al. 2013), as well as external factors, such as prey
species, developmental stage, energy density, verti-
cal distribution, interannual and individual variabil-
ity in lipid content at different developmental stages
(for C. finmarchicus, in particular), and the prey
potentially available elsewhere. We therefore took
an approach where we constrained the problem with
upper and lower bounds on the minimum abundance
of individual C. finmarchicus required to constitute a
high-density patch. We described patches using a
hypothetical right whale feeding density threshold, <.
Then, we analyzed the sensitivity of the C. fin-
marchicus model output to 4 potential values of t be-
tween those bounds obtained from the literature (see
Table 2). To avoid confusion around terms such as
‘patchiness,” we referred to these high-density ag-
gregations as ‘t-patches.’

We empirically estimated the presence of C. fin-
marchicus t-patches in excess of potential E. glaci-
alis feeding thresholds. Based on an extensive liter-
ature review of field studies of feeding E. glacialis, we
examined multiple feeding thresholds in order to clas-
sify the abundances of C. finmarchicus as patch or no-
patch. We also identified the advantages and tested
the limitations of statistical modeling approaches,
specifically those of random forest models. The result-
ing modeled prey fields were designed for use as
input to the North Atlantic right whale density surface
model developed for use by the US Navy's Atlantic
Fleet Training and Testing (AFTT) Phase IV Environ-
mental Impact Statement and the National Oceanic
and Atmospheric Administration's (NOAA's) Atlantic
Large Whale Take Reduction Team (i.e. the Duke
right whale density surface model version 9: hereafter
‘right whale density model’) (Roberts et al. 2016,
2020) to examine potential management strategies,
such as targeted closures and reduction of vertical
lines. Beyond the utility of the prey fields, this study
presents a novel approach to modelling and thinking
about copepod data through the lens of predation.

2. MATERIALS AND METHODS
2.1. Study area

The study area was the northeastern US continen-
tal shelf from the Mid-Atlantic Bight to the eastern
Gulf of Maine (Fig. 1). The study area included 2 crit-
ical habitat regions for Eubalaena glacialis: Cape
Cod Bay (Mayo et al. 2004) and the Great South
Channel (CETAP 1982, Kenney & Wishner 1995). We
also chose to include Jordan Basin, Massachusetts

»
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Fig. 1. Study area with critical habitat polygons for Cape
Cod Bay and the Great South Channel, and potential habi-
tats: Jordan Basin, Massachusetts Bay, and Wilkinson Basin.
The Massachusetts Bay polygon is superimposed onto the
Cape Cod Bay polygon due to geographic overlap. black
points indicate the National Oceanic and Atmospheric Ad-
ministration (NOAA) Fisheries Ecosystem Monitoring Pro-
gram (MARMAP/EcoMon) survey stations from 2000 to 2017.
Due to the randomly stratified sampling design, every station
was likely only sampled once

Bay, and Wilkinson Basin, which are all important
Calanus finmarchicus sampling locations (Fig. 1)
(Pendleton et al. 2009). While we highlighted these
specific regions for visualization and comparison, the
model encompassed the domain used in the right
whale density model.

2.2. Data sources

C. finmarchicus data were obtained from the
NOAA Fisheries Ecosystem Monitoring Program
(MARMAP/EcoMon) survey (https://www.st.nmfs.
noaa.gov/copepod/time-series/us-50101/). Briefly,
samples were collected using a 333 pm mesh bongo
net towed obliquely from the surface to 200 m depth,
or the bottom in shallower regions (Kane 2007,
Richardson et al. 2010). The mesh size is approxi-
mately equivalent to the estimated filtering efficiency
of E. glacialis baleen (Mayo et al. 2001) and reflects
the size groups with prosome lengths >1.5 mm that
would likely be captured by whales (Lehoux et al.

1 45°N
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2020). We used both the total C. finmarchicus abun-
dance (denoted ‘unstaged’ here) captured by the net
(predominantly stages C2 through adult), as well as
the late stage abundance (C4 through adult). Abun-
dance data were converted to absence or presence of
a t-patch (denoted by zero and one, respectively)
based on whether or not the abundance measured in
a sample was below or above the nominal feeding
threshold, t. Presences/absences of t-patches were
then examined for association with a set of environ-
mental covariates, including sea surface temperature,
bottom water temperature, sea surface salinity, bot-
tom water salinity, wind, bathymetry, bathymetric
slope, time-integrated surface chlorophyll, sea sur-
face temperature gradient, current speed in the uand
v direction, and day of year (DoY). Monthly environ-
mental covariates were the same as those used in the
right whale density model (Table 1) (Roberts et al.
2016, 2020). These monthly covariates reflect interan-
nual variability across the time period of this
modeling exercise, from 2000 to 2017. The derived
covariates (i.e. time-integrated surface chlorophyll,
current velocity gradient, sea surface temperature
gradient) were produced from these fields using R
(version 4.0.3; R Core Team 2021).

2.3. Modeling framework
We developed a C. finmarchicus t-patch formation

threshold approach to parameterize the model. This
approach was derived from optimal foraging theory

(Stephens & Krebs 1986), where foragers make deci-
sions about whether to stay and feed in a patch or
search for a better patch based on metrics such as
prey density. For E. glacialis foraging, this amounts to
exploring different thresholds (t) of copepod prey
concentration. Copepods are sampled in a wide vari-
ety of ways, including nets (of various mesh sizes), op-
tics, acoustics, surface measurements versus water
column measurements, and at a range of spatial and
temporal resolutions. The most widespread copepod
measurements in our region are the water column net
tows comprising the EcoMon dataset, reported as in-
dividuals (ind.) m~2. Thus, as we estimated upper and
lower reasonable and extreme bounds for t, we con-
verted to units of ind. m~?—i.e. what would be sam-
pled by a vertical tow. The challenge is that whales
feed on high-density layers within a vertical tow.
Suppose a vertical tow measured an ind. m™2 density
of C. finmarchicus, C,: determining whether this is
above or below a threshold, T, depends on the propor-
tion, p, of the profile that is concentrated into a dense
layer, and the layer thickness, z. The prey resource
availableis then C; = pC,/z, where the subscripts refer
to density m™ and m?, respectively. If we suppose a
layer thickness of z=20 m, for example, (cf. Baumgart-
ner & Mate 2003), and p = 0.7, then a threshold of Tt =
40000ind. m™? as reported in Record et al. (2019), cor-
responds to a feeding layer of 1400 ind. m~3, similar to
the values reported by others using these units
(Table 2) (Murison & Gaskin 1989, Mayo & Marx 1990,
Woodley & Gaskin 1996, Michaud & Taggart 2007).
Physical and biological processes can concentrate

Table 1. Monthly mean environmental covariates used in the t-patch model were obtained from the North Atlantic right whale

density surface model developed for use by the US Navy's Atlantic Fleet Training and Testing (AFTT) Phase IV Environmental

Impact Statement and the National Oceanic and Atmospheric Administration's (NOAA's) Atlantic Large Whale Take Reduc-

tion Team (i.e. the Duke right whale density surface model version 9) (Roberts et al. 2016, 2020). The covariates used are listed
below, along with product and corresponding website

Covariate(s) Product

More information

Wind

Chlorophyll-a

Sea surface temperature,
Bottom temperature,
Sea surface salinity,
Bottom salinity,
Current velocity (u & v)

(GLBv0.08)

Bathymetry, Slope SRTM30_PLUS bathymetry

Cross-Calibrated Multi-Platform (CCMP) Wind
Vector Analysis Product Version 2

Copernicus-GlobColour processor

GOFS 3.1 Hybrid Coordinate Ocean Model
(HYCOM) + Navy Coupled Ocean Data
Assimilation (NCODA) Global 1/12° Analysis

www.remss.com/measurements/ccmp/

https://resources.marine.copernicus.eu/
?option=com_csw&task=results?option=
com_csw&view=details&product_id=
OCEANCOLOUR_GLO_CHL_14_REP_
OBSERVATIONS_009_082

https://www.hycom.org/dataserver/gofs-
3ptl/analysis

https://topex.ucsd.edu/WWW_html/srtm30
_plus.html
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Table 2. Literature review for Eubalaena glacialis—-Calanus finmarchicus aggregation thresholds. The table includes the liter-

ature source, corresponding C. finmarchicus density with respect to E. glacialis feeding, and any relevant notes about how the

density was obtained. The abundance densities were converted to upper and lower bounds (p = 1.0 and z= 1 m and 20 m,

respectively) of ind. m™? measurements based on methods described in Section 2.3; where p represents the proportion of the
profile that is concentrated into a dense layer and z represents the layer thickness

Kenney et al. (1986) 3x10°to1x 10°m™

Source C. finmarchicus Notes Location Lower bound Upper bound
density (z=1m) (z=20m)
Baumgartner & Mate (2003) Minimum 3600 m™3 Based on linear Bay of Fundy, 3600 m~2 72000 m™2
regression model Scotian Shelf
Baumgartner et al. (2017) 14900 + 14400 m™ Maximum late-stage Cape Cod Bay, 14900 m™2 298000 m™
abundance in upper  Great South Channel,
15 m of water column Stellwagen Bank,
Bay of Fundy,
Roseway Basin,
Jeffreys Ledge
Beardsley et al. (1996) 8.7 x 10° to First number is the Great South Channel 8700m™2 820000 m™
41x10*m=  mean for the MOCNESS
approach. Second number
is the mean for acoustic
approach
Fortune et al. (2013) 6618 + 3481 m™> Bay of Fundy 6618 m2 132360 m™
Fortune et al. (2013) 14778 £ 18594 m™* Cape Cod Bay 14778 m™ 295960 m

Minimum to feed on
routinely for survival

Mayo & Marx (1990) 6.54 x 10°m™ Density in regions Cape Cod Bay 1000 m™2 20000 m™2
observed with right whale
1000 m~ suggested presence
in discussion
Michaud & Taggart (2007) 900 m~ Minimum to define right Bay of Fundy 900 m™2 18000 m~2
whale habitat based on
energy density
Murison & Gaskin (1989) 832to 1070 m™3 Minimum to define Bay of Fundy 832 m™ 21400 m™2
right whale habitat.
First estimate is 1983;
second estimate is 1984
Record et al. (2019) 40000 m™2  Minimum threshold for high ~ Eastern Gulf 35000m™2 45000 m
right whale occupancy of Maine
Wishner et al. (1988) 41600 m™ Maximum abundance Great South Channel 41600m™ 832000 m™
from MOCNESS tow near
feeding right whales
Wishner et al. (1995) 9749 m= Near feeding right whales ~ Northern Great 9749 m=2 194980 m~2
South Channel
Woodley & Gaskin (1996) 1139 m™® Depth-averaged density Bay of Fundy 1139 m™2 22780 m™2

Great South Channel 300000 m™2 20000 000 m

copepods into layers at least as thin as z=5 m (Mayo
& Marx 1990). To test the full sensitivity of the model
to these assumptions, we set p=1and z=1 m and
20 m. In practice, zis likely >1 m and p < 1, but testing
the more extreme values (i.e. z =1 m) gives a fuller
understanding of the model behavior. We used these
unlikely, extreme values only to compute the lower
bound of the potential T estimates suggested in the lit-
erature (i.e. T = 1000 ind. m™2) (Mayo & Marx 1990).
We then used these assumptions along with the litera-
ture review in Table 2 to select 2 intermediate values

between the extreme lower bound calculation and the
threshold density from Record et al. (2019), which re-
sulted in 4 potential density threshold estimates of t =
1000, 4000, 10 000, and 40 000 ind. m~2 (Fig. 2).
Models were trained on the EcoMon dataset. Ran-
dom forest models were built using the biomod2
package in R using 10 cross-validation folds with ran-
dom 70% to 30% training to testing data splits
(Thuiller et al. 2009, R Core Team 2021). Random
forests are highly accurate predictive models (Li &
Wang, 2013) that can be configured for either classifi-
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both with the entire dataset (using
DoY as a covariate; hereafter referred
to as the 'whole-year' method), and as
12 individual monthly climatological

Great South Channel
Gulf of Maine
=== Bay of Fundy

=== Cape Cod Bay

models. Running the model with 4
thresholds, 2 stage delineations, and
whole-year and monthly methods pro-

Frequency

—

o

o

o
|

duced 16 final random forest models.
We also ran ensembles of generalized
additive models, boosted regression
trees, and random forest models, for a
total of 48 model configurations
(Fig. 3). Here, we present the highest

1A

Abundance (log,, ind. m)

Fig. 2. Abundance of Calanus finmarchicus (logy, ind. m~2) from 2000 to 2017
for the unstaged National Oceanic and Atmospheric Administration (NOAA)
Fisheries Ecosystem Monitoring Program (MARMAP/EcoMon) dataset. Gray
vertical lines indicate the 4 different t-patch formation thresholds used in this
study (t = 1000, 4000, 10 000, and 40 000 ind. m~?, respectively). Horizontal bars
show Eubalaena glacialis feeding thresholds surveyed in the literature review
(see Table 2). The ‘Gulf of Maine' locations include various sites reported in
Baumgartner et al. (2017) and Record et al. (2019) (see Table 2)

cation (i.e. this study) or regression problems. The
model consists of a series of decision trees and boot-
straps data to avoid convergence issues associated
with similar techniques (e.g. classification and re-
gression trees) (Breiman 2001, Evans et al. 2011).
Area under the receiver operating characteristic
curve (AUC) and the true skill statistic (TSS) were
computed for the random forests using inbuilt bio-
mod2 functions and were used to evaluate model per-
formance. Both metrics are methods commonly used
to evaluate species distribution models (Fielding &
Bell 1997, Allouche et al. 2006, Liu et al. 2011, Ross et
al. 2021). AUC and TSS both examine a given model's
classification performance using the proportion of
true positives. AUC is computed on a scale from O to 1,
where a value above 0.5 indicates better performance
than a random model (Fielding & Bell 1997). TSS is
computed on a scale of -1 to 1, where a value of 0 indi-
cates better performance than a random model (Al-
louche et al. 2006). Interannual trends were computed
across the model results in the 5 regional polygons
(Fig. 1). A linear regression was performed for each
month to assess interdecadal trends in t-patches over
the study period. Environmental covariates were
screened to prevent collinearity in the models. For ex-
ample, if 2 covariates were highly correlated (r > 0.8)
then the covariate known to have a mechanistic link
with C. finmarchicus aggregation was retained
during the model selection process (e.g. Russo et al.
2015, Bosso et al. 2018). We ran random forest models

8 performing configuration, based on
AUC, with the most plausible habitat
maps — the random forest model, using
the unstaged data sampled with a
mesh size theoretically equivalent to
the filtering efficiency of right whale
baleen (Mayo et al. 2001), and using
DoY as a covariate (i.e. whole-year
method).

3. RESULTS

The unstaged EcoMon data comprised a total of
8729 Calanus finmarchicus abundance observations,
with a mode around 10000 ind. m™2. Only a few ob-
servations exceeded T = 1000000 ind. m™2 (n = 3;
Fig. 2). Just over one-third of the observations ex-
ceeded T = 10000 ind. m™ (n = 3280, 37.6% of the
total; Fig. 2). Fewer than one-quarter of the observa-
tions exceeded t =40 000 ind. m~2 (n=1276, 14.6 % of
the total; Fig. 2). Feeding threshold values (t) esti-
mated from the literature spanned the upper portion
of the distribution with some regional clustering;
estimates from Cape Cod Bay and the Bay of Fundy
were lower than in the Great South Channel (Fig. 2).
The highest estimated upper-bound threshold from
the literature (20 000 000 m~?, estimated from Kenney
et al. 1986; Table 2) exceeded the upper bound rep-
resented in the EcoMon dataset.

Qualitative examination of the presence and ab-
sence of t-patches in the EcoMon data showed a clear
spatial pattern and seasonality, as well as significant
data gaps (Fig. 4). For example, for a threshold of T =
10000 ind. m~?, the presence of t-patches appeared
qualitatively to reach a minimum in February, fol-
lowed by an increase in the Gulf of Maine and along
the continental slope through the spring and summer,
with the exception of coastal areas. There was a con-
traction into the deeper basins of the Gulf of Maine in
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Data decisions \ ( Covariate decisions
Dataset

Data types Subsetting

Unstaged

dataset

m / or or
Subset of

K / covariates

-/

or
+ + +
or or

/ Model decisions \ Ecological decisions
St

atistical algorithm Data types Thresholds

=l &3

or
Full-year
K models

Fig. 3. Modeling decisions considered in this study. The dark blue boxes and arrows highlight the configuration presented with
the unstaged dataset, covariates selected based on correlation analysis, the random forest algorithm, and T = 10 000 ind. m~2

September p October

November December

Fig. 4. Monthly presence (yellow points) or absence (purple point:

s) of t-patches from 2000 to 2017 for a threshold of T =10 000

m~2 using the unstaged National Oceanic and Atmospheric Administration (NOAA) Fisheries Ecosystem Monitoring Program
(MARMAP/EcoMon)

late summer and fall and a decline in the winter.
There was also high t-patch occurrence along the
continental shelf break. The data gap in July and
December, as well as in the Gulf of Maine for March
and September, highlighted the need for models.

Modeled t-patch distribution and dynamics matched
the seasonal and spatial patterns in the presence/
absence of t-patches in the raw data, which were
described in the previous paragraph (Fig. 5). Of the
various model configurations tested, the unstaged



8 Mar Ecol Prog Ser 703: 1-16, 2023

Prediction
1.00

0.75
0.50

0.25

0.00

September November December
b
?;y
derp

derp
ﬁy
September October November December

Fig. 5. Projections of Calanus finmarchicus t-patches using thresholds of (a) T = 10000 ind. m~2 and (b) t = 40 000 ind. m~2
for the unstaged National Oceanic and Atmospheric Administration (NOAA) Fisheries Ecosystem Monitoring Program
(MARMAP/EcoMon) dataset
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Table 3. Model performance for 4 versions of the random

forest model evaluated using area under the receiver oper-

ating characteristic curve (AUC) and the true skill statistic

(TSS). AUC is computed on a 0 to 1 scale (+SE). TSS is com-

puted on a -1 to 1 scale (+SE). With both metrics, a higher
score indicates better model performance

Model version AUC TSS

1000 ind. m~2 unstaged  0.915 + 0.00141 0.6737 + 0.00304
4000 ind. m~2 unstaged  0.919 + 0.00126 0.6887 + 0.00353
10000 ind. m™2 unstaged 0.925 + 0.00187  0.705 + 0.00414
40000 ind. m~2 unstaged 0.907 + 0.00171  0.682 + 0.00355

data with a threshold of T = 10 000 ind. m~2 using the
whole-year method performed the best based on
both metrics (Table 3), so most of the results shown
will focus on that configuration. The threshold of T =
40000 ind. m~2 also performed well and is included
in e.g. Fig. 5b. In both models, there is a seasonal
minimum in February, an increase through the
spring and summer, and a contraction into the deep
basins in the fall (Fig. 5). In contrast to models of C.
finmarchicus abundance, the spatial distributions
have a high degree of variability that follows bathy-
metric and oceanographic features; this is often re-

Cape Cod Bay Great South Channel

Massachusetts Bay

ferred to as prey ‘patchiness’. This variability is par-
ticularly pronounced for the T = 40 000 ind. m~2 model
(Fig. 5b). EcoMon data do not extend off the conti-
nental shelf, so it is difficult to validate the model
extrapolation into this habitat. However, the moder-
ate values off the shelf in some months are probably
unrealistic, as this is generally not C. finmarchicus
habitat.

The gaps in the EcoMon data make it difficult to
determine trends in t-patches over time (Fig. 6a).
Modeled t-patch fields allowed us to interpolate these
data gaps, giving one way to estimate whether feed-
ing habitats are becoming better or worse over time.
We computed trends for each month at each of the 5
E. glacialis habitats outlined in Fig. 1 (i.e. Cape Cod
Bay, Massachusetts Bay, the Great South Channel,
Jordan Basin, and Wilkinson Basin). Trends were sig-
nificant in certain months using the T = 10 000 ind. m~2
threshold model in the deep basins of the Gulf of
Maine (i.e. Jordan Basin and Wilkinson Basin; Fig. 6b).
In May, the trends were positive, indicating an in-
crease from 2000 to 2017 in Jordan Basin (r = 0.704,
p =0.00111) and Wilkinson Basin (r= 0.772, p < 0.001).
In August, the trends were negative in Jordan Basin
(r = -0.648, p = 0.00364) and Wilkinson Basin (r =
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—-0.657, p = 0.00303). In October, the trend was nega-
tive in Jordan Basin (r=-0.733, p = 0.000543). Trends
were similar for the T = 40000 ind. m™2 in the deep
basins in May and August, as well. Positive trends
were found in May and negative trends were found
in August in the deep basins. In October, the trend
was negative in Wilkinson Basin (r = -0.607, p =
0.00754). No significant trends were found in Cape
Cod Bay, Massachusetts Bay, or the Great South
Channel.

Modeled <t-patch likelihoods matched measured
frequencies well, with some notable differences
depending on the value of t. Comparing models and
data requires some data binning so that both values
fall along a continuous scale from 0 to 1. For compar-
ison, we binned both by month and year, resulting in
scatter plots with 216 points (Fig. 7). There were cor-
relations for every selected value of t. Modeled val-
ues tended to overestimate for low probabilities of a
t-patch and match the one-to-one line better for high
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Fig. 7. Measured probability of a high-density t-patch ver-
sus the modeled probability of a t-patch for (a) T = 1000 ind.
m~2 (r? = 0.49), (b) T = 4000 ind. m~? (r? = 0.58), (c) T = 10 000
ind. m~? (r? = 0.63), and (d) T = 40 000 ind. m~2 (1? = 0.49) for
the unstaged National Oceanic and Atmospheric Adminis-
tration (NOAA) Fisheries Ecosystem Monitoring Program
(MARMAP/EcoMon) dataset at a significance level of p <
0.001. Points were averaged spatially, with one data point
per month per year (n = 216). The black line shows the
theoretical one-to-one line

probabilities. The strongest correlation was for t =
10000 ind. m~2.

Monthly model runs allowed us to tease apart the
covariate contributions to the model and model per-
formance by time of year. Covariate contributions
varied seasonally, but bathymetry was consistently
the strongest contributor (Fig. 8). From late summer
through winter, bottom oceanography had a large
contribution. The combined effects of deep-water
properties (i.e. bottom temperature and salinity) was
a strong contributor in the late summer and fall, con-
sistently stronger than sea surface temperature dur-
ing this period. In winter months, bottom salinity
was the second strongest contributor (behind bathy-
metry). By contrast, the contribution by surface pro-
cesses (sea surface temperature, surface temperature
gradient, wind, time-integrated surface chlorophyll,
and current velocity gradient) peaked in March and
April. Time-integrated surface chlorophyll was the
second strongest predictor (behind bathymetry) in
these months. The seasonal shift between contribu-
tions by surface versus bottom covariates aligned
with the seasonal life history strategy of C. finmarchi-
cus, with deep-water diapause in late summer
through winter, and emergence and reproduction
following from the spring phytoplankton bloom. The
monthly models were unable to run in July and
December due to data gaps as a result of under-
sampling. Model performance varied seasonally, as
well, with AUC generally exceeding a value of 0.8
throughout the year.

Focusing again on the whole-year T = 10000 ind.
m~2 model, response curves generally showed uni-
modal responses across all covariates (Fig. 9). The
strong seasonality was reflected in the modeled
response to the DoY covariate, which helped to inter-
polate across the data gaps in July and December.
For most covariates, the full scope of the model falls
within the well-sampled range of data, with the
exception of bathymetry. High bathymetry regions
(i.e. deep, off-shelf waters) were undersampled,
leading to model extrapolation that was probably
unrealistically high where the sample representation
dropped off. Model cross-validation runs matched
each other closely, particularly where sampling was
high.

4. DISCUSSION
Management of Eubalaena glacialis could likely be

improved by the incorporation of prey information
into models and decision support tools (Pendleton et
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al. 2012, Brennan et al. 2021, Ross et al. 2021). How-
ever, there is a disconnect between knowledge of
Calanus finmarchicus population dynamics and the
need for finer-scale information on the high-density
copepod aggregations that E. glacialis requires.
Models and analysis do not generally capture the
high-abundance end of the C. finmarchicus distribu-
tion, which does not necessarily track with overall
abundance patterns because of oceanographic and
biological processes operating at different spatial
and temporal scales.

We modeled the spatiotemporal patterns of t-
patches to better understand their dynamics and
develop products for incorporating these dynamics
into decision support tools. This required exploring a
threshold value, T, that defined a prey density high
enough to attract E. glacialis feeding. Empirical criti-
cal feeding thresholds reported in the literature vary
widely (Table 2), which is not surprising because of
the many factors that could influence foraging deci-
sions. A full picture of T would show monthly, inter-

annual, and possibly regional variability. Under-
standing how t varies depending on changing condi-
tions represents an important next step in the predic-
tion of E. glacialis movements.

At a high level, t-patch dynamics, particularly
those at the T = 10000 ind. m~2 and 40000 ind. m™2
levels, followed documented patterns in E. glacialis
movements during the times of year when whales
feed on C. finmarchicus. The absence of late summer
C. finmarchicus abundances exceeding 40 000 m~ in
Jordan Basin after 2010, for example, matched the
timing of the decline of E. glacialis use of the eastern
Gulf of Maine as a foraging ground (Fig. Al in the
Appendix) (Record et al. 2019). One notable feature
of the t-patch model is that there is finer scale spatial
variability than with C. finmarchicus abundance
models, which are generally much smoother in space
(e.g. Pershing et al. 2009a, Reygondeau & Beaugrand
2011, Grieve et al. 2017). This could provide added
information for predicting foraging decisions made
by E. glacialis. Certain features were picked up by
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the t-patch models, such as the higher values along
the edge of the continental shelf; this feature appears
in the EcoMon data but is not captured by smoother
abundance models. This patchy spatial pattern is
more pronounced the further toward the high end of
the distribution T is, especially at T = 40 000 ind. m2,
It is an encouraging indication that modeling <t-
patches could be a helpful approach to understand
the foraging patterns of E. glacialis.

There are some notable differences between the -
patches and C. finmarchicus abundance in covariate
associations when comparing with previous statistical
models. For example, the favorable sea surface tem-
perature range of C. finmarchicus statistically esti-
mated by published models has ranged from 4.5-
8.5°C (Reygondeau & Beaugrand 2011) to 6-10°C
(Helaouét & Beaugrand 2007). In contrast, the highest
t-patch probabilities in our model occurred for sea
surface temperatures of 7-15°C (Fig. 9). Similarly,
modeled estimates using bottom temperatures have
found peaks at <2°C (Grieve et al. 2017), whereas t-
patch probabilities peaked at bottom temperatures of
4-8°C (Fig. 9). The tendency for high density patches
to occur at temperatures warmer than the typical
thermal range determined through an abundance
model illustrates an advantage of using the t-patch
modeling framework. Unlike the t-patch framework,
a prey abundance model does not tend to predict
high abundances in regions with higher sea surface
temperatures; these results suggest that t-patches
can occur in these higher temperature regions.

One modeling choice we examined was whether to
use unstaged (i.e. all C. finmarchicus stages) or
staged data (i.e. only stages C4 through adult). We
chose to display the models using unstaged data be-
cause the mesh size of the EcoMon survey net re-
flects the filtering capabilities of E. glacialis baleen
(Mayo et al. 2001). However, focusing on later stages
captures the most energetically advantageous C. fin-
marchicus (Mayo et al. 2001, Baumgartner et al.
2003), due to the variations in caloric content with life
stage. The performance of these 2 model configura-
tions was very close, with the unstaged configuration
performing only slightly better. While the difference
was minimal for the EcoMon dataset, this is a consid-
eration that should be carried forward, depending on
the sampling method of the dataset used to model
T-patches.

The model here does not fully represent the com-
plex mechanisms underlying t-patch formation. Even
mechanistic bio-physical coupled models do not yet
capture the fine-resolution processes at the scales of
right whale feeding such as Langmuir circulation and

tidal fronts, although models are improving (e.g.
Brennan et al. 2019). Nevertheless, the statistical dis-
tribution of in situ samples of copepods does capture
the occurrence of dense aggregations. Random
forests are highly accurate predictive species distri-
bution models (Li & Wang, 2013), and they are able to
accurately predict the probability of C. finmarchicus
t-patches at the scales examined. Linking the empiri-
cal associations of t-patches with ultra-fine-scale
mechanistic models represents an important area of
future work that could improve maps of E. glacialis
prey distribution. Key next steps include coupling to
vertically resolved data and models (Plourde et al.
2019, Brennan et al. 2021) and linking models across
the full international domain of E. glacialis foraging.

The ultimate goal of this work was to provide prey
information that could be used in decision support
tools for E. glacialis management. The next step is to
link these modeled prey fields to the right whale
modeling used to support decision making (Roberts
et al. 2016).

There are some important caveats to note when us-
ing of this model. First, C. finmarchicus is not the only
prey resource for E. glacialis. In the winter months, in
particular, whales are foraging on smaller copepods,
such as Centropages spp. and Pseudocalanus spp.,
and there could be other opportunistic prey, such as
barnacle larvae (Mayo & Marx 1990). In these cases,
dense aggregations also appear to attract whales, so
a similar modeling approach could be used; however,
T values and covariate associations are likely to be
very different. Second, the EcoMon dataset has no
measurements off the northeastern US continental
shelf, so using this model to extrapolate into waters
deeper than 500 m has very high uncertainty. We
chose to show the full projected results for trans-
parency, but we advise cropping this area before in-
corporating these prey fields into other models, as the
projections do not match the expectation for this part
of the domain. Finally, the EcoMon data, while being
the most extensive dataset for the domain, do not
contain information on the vertical distribution of
copepods. We were able to constrain the problem by
establishing a framework and testing a range of as-
sumptions for vertical distribution, but further refine-
ments of this approach will require blending with
vertical distribution data (e.g. Lehoux et al. 2020).

Management of North Atlantic right whales has
become increasingly urgent, and the challenge of
predicting their movements has been a significant
impediment (Davies & Brillant 2019). Much of the
whales’ movements are guided by their prey, and
new approaches to incorporating prey information
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into decision support promise to be helpful. A closer
look at the dynamics of the highest-density aggrega-
tions of prey gives a new lens to an old problem and
could provide another tool for helping to predict right
whale movements.

Data availability. The computed t-patch fields are available
from the corresponding author (C. H. Ross) upon request.
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Fig. A1. Plots of the proportion of abundances that exceeded a threshold value of T = 40 000 ind. m~ for the unstaged National
Oceanic and Atmospheric Administration (NOAA) Fisheries Ecosystem Monitoring Program (MARMAP/EcoMon) data
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