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et al. 2021). E. glacialis are observed in areas with 

dense C. finmarchicus aggregations (Wishner et al. 

1988, 1995, Murison & Gaskin 1989, Mayo & Marx 

1990, Kenney & Wishner 1995, Baumgartner & Mate 

2003, Baumgartner et al. 2003, Jiang et al. 2007) and 

they appear to select these areas based on whether 

abundances are above a critical feeding threshold 

(Mayo & Marx 1990, Kenney & Wishner 1995). While 

considerable research has been devoted to under-

standing the abundance and distribution patterns of 

C. finmarchicus (e.g. Wishner et al. 1988, Kann & 

Wishner 1995, Meise & O’Reilly 1996, Lynch et al. 

1998, Pershing et al. 2009a, Ji 2011, Reygondeau & 

Beaugrand 2011, Record et al. 2013, 2018, Chust et al. 

2014, Melle et al. 2014, Runge et al. 2015, Ji et al. 

2017, Sorochan et al. 2019), far fewer studies have fo-

cused on the distribution of foraging habitat with prey 

densities above a feeding threshold (e.g. Pendleton et 

al. 2012, Plourde et al. 2019). 

The need for predictive skill is evident in ongoing 

management challenges in both the USA and Canada 

(Record et al. 2019, Meyer-Gutbrod et al. 2021). For 

example, sea surface and bottom temperatures in the 

Gulf of Maine have been warming rapidly, particu-

larly between 2005 and 2015 (Pershing et al. 2015, 

Record et al. 2019, Friedland et al. 2020, Gonçalves 

Neto et al. 2021). While species distribution models 

have estimated a gradual northeastward shift of 8.1 

km per decade in the distribution of C. finmarchicus 

(Chust et al. 2014), abrupt shifts occurring within the 

past decade outpace these projections, and distribu-

tions have large regional variation (Ji et al. 2022). 

Changes in the Gulf Stream drove an abrupt shift to 

warmer temperatures in the deep waters entering the 

Gulf of Maine beginning in 2008 (Gonçalves Neto et 

al. 2021), which caused a decline in C. finmarchicus 

abundance in the eastern Gulf of Maine by 2010 

(Record et al. 2019). E. glacialis re sponded by shifting 

from the eastern Gulf of Maine to the Gulf of St. 

Lawrence to forage in summer, re sulting in unfore-

seen mortality due to entanglements and ship strikes. 

The resulting shifts in right whale foraging and, con-

sequently, population growth have put the viability of 

the species in question (Kraus et al. 2016, Davis et al. 

2017). Improved prediction could help management 

be more adaptive to such abrupt shifts in foraging 

habitat (Davies & Brillant 2019). Examples of more 

adaptive management could include directing future 

survey effort and aiding in longer term planning. 

The accuracy of E. glacialis habitat-use models can be 

improved by the inclusion of a prey field (e.g. Pendleton 

et al. 2012), highlighting the importance of developing a 

suitable prey field for use as input to these models. A 

coupled biophysical model of the C. finmarchicus life 

cycle and abundance in the western Gulf of Maine suf-

ficiently simulated this species’ pheno logy for use in a 

whale forecast (Pershing et al. 2009a,b). While previous 

modeling efforts have focused on C. finmarchicus 

abundance, they have not yet characterized the envi-

ronmental conditions associated with the formation of 

high-density aggregations that influence E. glacialis 

foraging behavior. A focus on abundance tends to 

smooth out the ex treme values that would describe 

high-density prey patches, as most skill metrics are op-

timized across the full abundance distribution. Gener-

ally, models are on spatial scales that are very coarse 

(e.g. Reygondeau & Beaugrand 2011) or use smoothed 

ap proaches, such as generalized additive models 

(Grieve et al. 2017), that are useful for looking at broad 

dynamics, but are not suitable for the extreme high val-

ues in the C. finmarchicus distribution that form E. 

glacialis feeding habitat. Essentially, it is the right-hand 

tail of the prey abundance distribution that matters for 

this type of foraging strategy, whereas most modeling 

approaches focus on the middle of the distribution. 

Dense aggregations of C. finmarchicus in the North-

west Atlantic form by complex interactions among 

local production, predation, and external supply 

(Ji  et al. 2022), individual behaviors, and physical 

oceanographic concentrating mechanisms (Wishner 

et al. 1988, Epstein & Beardsley 2001, Davies et al. 

2014; reviewed by Sorochan et al. 2021). For most of 

the year, the primary prey resource for E. glacialis is 

C. finmarchicus. Additionally, the type of aggrega-

tion that E. glacialis may target also depends on the 

size composition of individual C. finmarchicus. In the 

Great South Channel, E. glacialis likely target aggre-

gations of later stage C. finmarchicus, as opposed to 

targeting aggregations based on density alone (Ken-

ney & Wishner 1995). These aggregations can last for 

several days and cover several square kilometers 

(Wishner et al. 1988). 

Here we analyze C. finmarchicus distribution 

through the lens of E. glacialis foraging behavior on 

the northeastern US continental shelf using the con-

cept of a feeding threshold: the prey aggregation 

density above which foraging becomes energetically 

advantageous for E. glacialis. Local high-density cope -

pod aggregations are often described as ‘patches’ or 

‘swarms,’ although there is no clear agreement on 

the level of abundance density that delineates one of 

these designations. Similarly, the magnitude of a 

feeding threshold for E. glacialis is not precisely 

known, and likely depends on internal factors, such 

as energetic needs and satiation level that vary with 

demographic stage (e.g. Miller et al. 2011, Fortune et 
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al. 2013), as well as external factors, such as prey 

species, developmental stage, energy density, verti-

cal distribution, interannual and individual variabil-

ity in lipid content at different developmental stages 

(for C. finmarchicus, in particular), and the prey 

potentially available elsewhere. We therefore took 

an approach where we constrained the problem with 

upper and lower bounds on the minimum abundance 

of individual C. finmarchicus required to constitute a 

high-density patch. We described patches using a 

hypothetical right whale feeding density threshold, τ. 

Then, we analyzed the sensitivity of the C. fin-

marchicus model output to 4 potential values of τ be -

tween those bounds obtained from the literature (see 

Table 2). To avoid confusion around terms such as 

‘patchiness,’ we referred to these high-density ag -

gre gations as ‘τ-patches.’ 

We empirically estimated the presence of C. fin-

marchicus τ-patches in excess of potential E. glaci -

alis feeding thresholds. Based on an extensive liter-

ature review of field studies of feeding E. glacialis, we 

examined multiple feeding thresholds in order to clas-

sify the abundances of C. finmarchicus as patch or no-

patch. We also identified the advantages and tested 

the limitations of statistical modeling ap proaches, 

specifically those of random forest models. The result-

ing modeled prey fields were designed for use as 

input to the North Atlantic right whale density surface 

model developed for use by the US Navy’s Atlantic 

Fleet Training and Testing (AFTT) Phase IV Environ-

mental Impact Statement and the National Oceanic 

and Atmospheric Administration’s (NOAA’s) Atlantic 

Large Whale Take Reduction Team (i.e. the Duke 

right whale density surface model version 9: hereafter 

‘right whale density model’) (Roberts et al.  2016, 

2020) to examine potential management strategies, 

such as targeted closures and reduction of vertical 

lines. Beyond the utility of the prey fields, this study 

presents a novel approach to modelling and thinking 

about copepod data through the lens of predation. 

2.  MATERIALS AND METHODS 

2.1.  Study area 

The study area was the northeastern US continen-

tal shelf from the Mid-Atlantic Bight to the eastern 

Gulf of Maine (Fig. 1). The study area included 2 crit-

ical habitat regions for Eubalaena glacialis : Cape 

Cod Bay (Mayo et al. 2004) and the Great South 

Channel (CETAP 1982, Kenney & Wishner 1995). We 

also chose to include Jordan Basin, Massachusetts 

Bay, and Wilkinson Basin, which are all important 

Calanus finmarchicus sampling locations (Fig. 1) 

(Pendleton et al. 2009). While we highlighted these 

specific regions for visualization and comparison, the 

model encompassed the domain used in the right 

whale density model. 

2.2.  Data sources 

C. finmarchicus data were obtained from the 

NOAA Fisheries Ecosystem Monitoring Program 

(MARMAP/EcoMon) survey (https://www.st.nmfs.

noaa.gov/copepod/time-series/us-50101/). Briefly, 

samples were collected using a 333 µm mesh bongo 

net towed obliquely from the surface to 200 m depth, 

or the bottom in shallower regions (Kane 2007, 

Richardson et al. 2010). The mesh size is approxi-

mately equivalent to the estimated filtering efficiency 

of E. glacialis baleen (Mayo et al. 2001) and reflects 

the size groups with prosome lengths >1.5 mm that 

would likely be captured by whales (Lehoux et al. 
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Fig. 1. Study area with critical habitat polygons for Cape 

Cod Bay and the Great South Channel, and potential habi-

tats: Jordan Basin, Massachusetts Bay, and Wilkinson Basin. 

The Massachusetts Bay polygon is superimposed onto the 

Cape Cod Bay polygon due to geographic overlap. black 

points indicate the National Oceanic and Atmospheric Ad-

ministration (NOAA) Fisheries Ecosystem Monitoring Pro-

gram (MARMAP/EcoMon) survey stations from 2000 to 2017. 

Due to the randomly stratified sampling design, every station  

was likely only sampled once
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2020). We used both the total C. fin mar chicus abun-

dance (denoted ‘unstaged’ here) captured by the net 

(predominantly stages C2 through adult), as well as 

the late stage abundance (C4 through adult). Abun-

dance data were converted to absence or presence of 

a τ-patch (denoted by zero and one, respectively) 

based on whether or not the abundance measured in 

a sample was below or above the nominal feeding 

threshold, τ. Presences/absences of τ-patches were 

then examined for association with a set of environ-

mental covariates, including sea surface temperature, 

bottom water temperature, sea surface salinity, bot-

tom water salinity, wind, bathymetry, bathymetric 

slope, time-integrated surface chlorophyll, sea sur-

face temperature gradient, current speed in the u and 

v direction, and day of year (DoY). Monthly environ-

mental covariates were the same as those used in the 

right whale density model (Table 1) (Roberts et al. 

2016, 2020). These monthly covariates reflect interan-

nual variability across the time period of this 

modeling exercise, from 2000 to 2017. The derived 

covariates (i.e. time-integrated surface chlor ophyll, 

current velocity gradient, sea surface temperature 

gradient) were produced from these fields using R 

(version 4.0.3; R Core Team 2021). 

2.3.  Modeling framework 

We developed a C. finmarchicus τ-patch formation 

threshold approach to parameterize the model. This 

approach was derived from optimal foraging theory 

(Stephens & Krebs 1986), where foragers make deci-

sions about whether to stay and feed in a patch or 

search for a better patch based on metrics such as 

prey density. For E. glacialis foraging, this amounts to 

exploring different thresholds (τ) of copepod prey 

concentration. Copepods are sampled in a wide vari-

ety of ways, including nets (of various mesh sizes), op-

tics, acoustics, surface measurements versus water 

column measurements, and at a range of spatial and 

temporal resolutions. The most widespread copepod 

measurements in our region are the water column net 

tows comprising the EcoMon dataset, reported as in-

dividuals (ind.) m−2. Thus, as we estimated upper and 

lower reasonable and extreme bounds for τ, we con-

verted to units of ind. m−2— i.e. what would be sam-

pled by a vertical tow. The challenge is that whales 

feed on high-density layers within a vertical tow. 

 Suppose a vertical tow measured an ind. m−2 density 

of C. finmarchicus, C2: determining whether this is 

above or below a threshold, τ, depends on the propor-

tion, p, of the profile that is concentrated into a dense 

layer, and the layer thickness, z. The prey resource 

available is then C3 = pC2/z, where the subscripts refer 

to density m−3 and m−2, respectively. If we suppose a 

layer thickness of z = 20 m, for example, (cf. Baumgart-

ner & Mate 2003), and p = 0.7, then a threshold of τ = 

40 000 ind. m−2, as reported in Record et al. (2019), cor-

responds to a feeding layer of 1400 ind. m−3, similar to 

the values reported by others using these units 

(Table 2) (Murison & Gaskin 1989, Mayo & Marx 1990, 

Woodley & Gaskin 1996, Michaud & Taggart 2007). 

Physical and biological processes can concentrate 
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Covariate(s)                           Product                                                                       More information 
 
Wind                                      Cross-Calibrated Multi-Platform (CCMP) Wind    www.remss.com/measurements/ccmp/ 
                                               Vector Analysis Product Version 2 

Chlorophyll-a                        Copernicus-GlobColour processor                          https://resources.marine.copernicus.eu/ 
                                                                                                                                   ?option=com_csw&task=results?option= 
                                                                                                                                   com_csw&view=details&product_id= 
                                                                                                                                   OCEANCOLOUR_GLO_CHL_L4_REP_ 
                                                                                                                                   OBSERVATIONS_009_082 

Sea surface temperature,    GOFS 3.1 Hybrid Coordinate Ocean Model           https://www.hycom.org/dataserver/gofs- 
 Bottom temperature,           (HYCOM) + Navy Coupled Ocean Data               3pt1/analysis 
 Sea surface salinity,           Assimilation (NCODA) Global 1/12° Analysis 
 Bottom salinity,                   (GLBv0.08) 
 Current velocity (u & v) 

Bathymetry, Slope                SRTM30_PLUS bathymetry                                      https://topex.ucsd.edu/WWW_html/srtm30 
                                                                                                                                   _plus.html

Table 1. Monthly mean environmental covariates used in the τ-patch model were obtained from the North Atlantic right whale 

density surface model developed for use by the US Navy’s Atlantic Fleet Training and Testing (AFTT) Phase IV Environmental 

Impact Statement and the National Oceanic and Atmospheric Administration’s (NOAA’s) Atlantic Large Whale Take Reduc-

tion Team (i.e. the Duke right whale density surface model version 9) (Roberts et al. 2016, 2020). The covariates used are listed  

below, along with product and corresponding website



Ross et al.: Estimating right whale prey using thresholds

copepods into layers at least as thin as z = 5 m (Mayo 

& Marx 1990). To test the full sensitivity of the model 

to these assumptions, we set p = 1 and z = 1 m and 

20 m. In practice, z is likely >1 m and p < 1, but testing 

the more extreme values (i.e. z = 1 m) gives a fuller 

understanding of the model behavior. We used these 

unlikely, extreme values only to compute the lower 

bound of the potential τ estimates suggested in the lit-

erature (i.e. τ = 1000 ind. m−2) (Mayo & Marx 1990). 

We then used these assumptions along with the litera-

ture review in Table 2 to select 2 inter mediate values 

between the extreme lower bound calculation and the 

threshold density from Record et al. (2019), which re-

sulted in 4 potential density threshold estimates of τ = 

1000, 4000, 10 000, and 40 000 ind. m−2 (Fig. 2). 

Models were trained on the EcoMon dataset. Ran-

dom forest models were built using the biomod2 

package in R using 10 cross-validation folds with ran-

dom 70% to 30% training to testing data splits 

(Thuiller et al. 2009, R Core Team 2021). Random 

forests are highly accurate predictive models (Li & 

Wang, 2013) that can be configured for either classifi-
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Source                                          C. finmarchicus                    Notes                               Location           Lower bound  Upper bound  
                                                             density                                                                                                   (z = 1 m)          (z = 20 m) 
 
Baumgartner & Mate (2003)  Minimum 3600 m−3             Based on linear                 Bay of Fundy,          3600 m−2        72 000 m−2 
                                                                                           regression model                 Scotian Shelf                    

Baumgartner et al. (2017)       14900 ± 14 400 m−3    Maximum late-stage            Cape Cod Bay,        14 900 m−2      29 8000 m−2 
                                                                                        abundance in upper       Great South Channel,  
                                                                                       15 m of water column         Stellwagen Bank, 
                                                                                                                                         Bay of Fundy, 
                                                                                                                                       Roseway Basin,  
                                                                                                                                        Jeffreys Ledge 

Beardsley et al. (1996)                    8.7 × 103 to             First number is the        Great South Channel    8700 m−2       820 000 m−2 
                                                        4.1 × 104 m−3       mean for the MOCNESS 
                                                                                   approach. Second number 
                                                                                     is the mean for acoustic  
                                                                                                  approach                                                                  

Fortune et al. (2013)                   6618 ± 3481 m−3                                                         Bay of Fundy           6618 m−2       132 360 m−2 

Fortune et al. (2013)                14 778 ± 18 594 m−3                                                     Cape Cod Bay         14 778 m−2      295 960 m−2 

Kenney et al. (1986)               3 × 105 to 1 × 106 m−3   Minimum to feed on      Great South Channel  300 000 m−2   20 000 000 m−2 
                                                                                        routinely for survival                          

Mayo & Marx (1990)                    6.54 × 103 m−3                Density in regions              Cape Cod Bay          1000 m−2        20 000 m−2 
                                                           observed                 with right whale  
                                                  1000 m−3 suggested             presence 
                                                        in discussion 

Michaud & Taggart (2007)               900 m−3           Minimum to define right          Bay of Fundy            900 m−2         18 000 m−2 
                                                                                      whale habitat based on  
                                                                                             energy density                               

Murison & Gaskin (1989)           832 to 1070 m−3         Minimum to define              Bay of Fundy            832 m−2         21 400 m−2 
                                                                                         right whale habitat.  
                                                                                       First estimate is 1983; 
                                                                                     second estimate is 1984                        

Record et al. (2019)                         40 000 m−2     Minimum threshold for high        Eastern Gulf          35 000 m−2       45 000 m−2 
                                                                                      right whale occupancy                of Maine                        

Wishner et al. (1988)                       41 600 m−3           Maximum abundance     Great South Channel   41 600 m−2      832 000 m−2 
                                                                                   from MOCNESS tow near  
                                                                                        feeding right whales                          

Wishner et al. (1995)                        9749 m−3         Near feeding right whales       Northern Great         9749 m−2       194 980 m−2 
                                                                                                                                        South Channel                  

Woodley & Gaskin (1996)                1139 m−3          Depth-averaged density           Bay of Fundy           1139 m−2        22 780 m−2 

Table 2. Literature review for Eubalaena glacialis–Calanus finmarchicus aggregation thresholds. The table includes the liter-

ature source, corresponding C. finmarchicus density with respect to E. glacialis feeding, and any relevant notes about how the 

density was obtained. The abundance densities were converted to upper and lower bounds (p = 1.0 and z = 1 m and 20 m, 

respectively) of ind. m−2 measurements based on methods described in Section 2.3; where p represents the proportion of the  

profile that is concentrated into a dense layer and z represents the layer thickness
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cation (i.e. this study) or regression problems. The 

model consists of a series of decision trees and boot-

straps data to avoid convergence issues associated 

with similar techniques (e.g. classification and re -

gression trees) (Breiman 2001, Evans et al. 2011). 

Area under the receiver operating characteristic 

curve (AUC) and the true skill statistic (TSS) were 

computed for the random forests using inbuilt bio-

mod2 functions and were used to evaluate model per-

formance. Both metrics are methods commonly used 

to evaluate species distribution models (Fielding & 

Bell 1997, Allouche et al. 2006, Liu et al. 2011, Ross et 

al. 2021). AUC and TSS both examine a given model’s 

classification performance using the proportion of 

true positives. AUC is computed on a scale from 0 to 1, 

where a value above 0.5 indicates better performance 

than a random model (Fielding & Bell 1997). TSS is 

computed on a scale of -1 to 1, where a value of 0 indi-

cates better performance than a random model (Al-

louche et al. 2006). Interannual trends were computed 

across the model results in the 5 regional polygons 

(Fig. 1). A linear regression was performed for each 

month to assess interdecadal trends in t-patches over 

the study period. Environmental covariates were 

screened to prevent collinearity in the models. For ex-

ample, if 2 covariates were highly correlated (r > 0.8) 

then the covariate known to have a mechanistic link 

with C. finmarchicus ag gregation was retained 

during the model selection process (e.g. Russo et al. 

2015, Bosso et al. 2018). We ran random forest models 

both with the entire dataset (using 

DoY as a covariate; hereafter referred 

to as the ‘whole-year’ method), and as 

12 individual monthly climatological 

models. Running the model with 4 

thresholds, 2 stage delineations, and 

whole-year and monthly methods pro-

duced 16 final random forest models. 

We also ran ensembles of generalized 

additive models, boosted regression 

trees, and random forest models, for a 

total of 48 model configurations 

(Fig. 3). Here, we present the highest 

performing configuration, based on 

AUC, with the most plausible habitat 

maps — the random forest model, using 

the unstaged data sampled with a 

mesh size theoretically equivalent to 

the filtering efficiency of right whale 

baleen (Mayo et al. 2001), and using 

DoY as a covariate (i.e. whole-year 

method). 

3.  RESULTS 

The unstaged EcoMon data comprised a total of 

8729 Calanus finmarchicus abundance observations, 

with a mode around 10 000 ind. m−2. Only a few ob -

servations exceeded τ = 1 000 000 ind. m−2 (n = 3; 

Fig. 2). Just over one-third of the observations ex -

ceeded τ = 10 000 ind. m−2 (n = 3280, 37.6% of the 

total; Fig. 2). Fewer than one-quarter of the observa-

tions exceeded τ = 40 000 ind. m−2 (n = 1276, 14.6% of 

the total; Fig. 2). Feeding threshold values (τ) esti-

mated from the literature spanned the upper portion 

of the distribution with some regional clustering; 

estimates from Cape Cod Bay and the Bay of Fundy 

were lower than in the Great South Channel (Fig. 2). 

The highest estimated upper-bound threshold from 

the literature (20 000 000 m−2, estimated from Kenney 

et al. 1986; Table 2) exceeded the upper bound rep-

resented in the EcoMon dataset. 

Qualitative examination of the presence and ab -

sence of τ-patches in the EcoMon data showed a clear 

spatial pattern and seasonality, as well as significant 

data gaps (Fig. 4). For example, for a threshold of τ = 

10 000 ind. m−2, the presence of τ-patches ap peared 

qualitatively to reach a minimum in February, fol-

lowed by an increase in the Gulf of Maine and along 

the continental slope through the spring and summer, 

with the exception of coastal areas. There was a con-

traction into the deeper basins of the Gulf of Maine in 
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Fig. 2. Abundance of Calanus finmarchicus (log10 ind. m−2) from 2000 to 2017 

for the unstaged National Oceanic and Atmospheric Administration (NOAA) 

Fisheries Ecosystem Monitoring Program (MARMAP/EcoMon) dataset. Gray 

vertical lines indicate the 4 different τ-patch formation thresholds used in this 

study (τ = 1000, 4000, 10 000, and 40 000 ind. m−2, respectively). Horizontal bars 

show Eubalaena glacialis feeding thresholds surveyed in the literature review 

(see Table 2). The ‘Gulf of Maine’ locations include various sites reported in  

Baumgartner et al. (2017) and Record et al. (2019) (see Table 2)
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late summer and fall and a decline in the winter. 

There was also high τ-patch occurrence along the 

continental shelf break. The data gap in July and 

 December, as well as in the Gulf of Maine for March 

and September, highlighted the need for models. 

Modeled τ-patch distribution and dynamics matched 

the seasonal and spatial patterns in the presence/

absence of τ-patches in the raw data, which were 

described in the previous paragraph (Fig. 5). Of the 

various model configurations tested, the unstaged 
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Fig. 3. Modeling decisions considered in this study. The dark blue boxes and arrows highlight the configuration presented with 

the unstaged dataset, covariates selected based on correlation analysis, the random forest algorithm, and τ = 10 000 ind. m−2

Fig. 4. Monthly presence (yellow points) or absence (purple points) of τ-patches from 2000 to 2017 for a threshold of τ = 10 000 

m−2 using the unstaged National Oceanic and Atmospheric Administration (NOAA) Fisheries Ecosystem Monitoring Program  

(MARMAP/EcoMon)
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Fig. 5. Projections of Calanus finmarchicus τ-patches using thresholds of (a) τ = 10 000 ind. m−2 and (b) τ = 40 000 ind. m−2 

for the unstaged National Oceanic and Atmospheric Administration (NOAA) Fisheries Ecosystem Monitoring Program  

(MARMAP/EcoMon) dataset
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data with a threshold of τ = 10 000 ind. m−2 using the 

whole-year method performed the best based on 

both metrics (Table 3), so most of the results shown 

will focus on that configuration. The threshold of τ = 

40 000 ind. m−2 also performed well and is included 

in e.g. Fig. 5b. In both models, there is a seasonal 

minimum in February, an increase through the 

spring and summer, and a contraction into the deep 

basins in the fall (Fig. 5). In contrast to models of C. 

finmarchicus abundance, the spatial distributions 

have a high degree of variability that follows bathy-

metric and oceanographic features; this is often re -

ferred to as prey ‘patchiness’. This variability is par-

ticularly pronounced for the τ = 40 000 ind. m−2 model 

(Fig. 5b). EcoMon data do not extend off the conti-

nental shelf, so it is difficult to validate the model 

extrapolation into this habitat. However, the moder-

ate values off the shelf in some months are probably 

unrealistic, as this is generally not C. finmarchicus 

habitat. 

The gaps in the EcoMon data make it difficult to 

determine trends in τ-patches over time (Fig. 6a). 

Modeled τ-patch fields allowed us to interpolate these 

data gaps, giving one way to estimate whether feed-

ing habitats are becoming better or worse over time. 

We computed trends for each month at each of the 5 

E. glacialis habitats outlined in Fig. 1 (i.e. Cape Cod 

Bay, Massachusetts Bay, the Great South Channel, 

Jordan Basin, and Wilkinson Basin). Trends were sig-

nificant in certain months using the τ = 10 000 ind. m−2 

threshold model in the deep basins of the Gulf of 

Maine (i.e. Jordan Basin and Wilkinson Basin; Fig. 6b). 

In May, the trends were positive, indicating an in -

crease from 2000 to 2017 in Jordan Basin (r = 0.704, 

p = 0.00111) and Wilkinson Basin (r = 0.772, p < 0.001). 

In August, the trends were negative in Jordan Basin 

(r = −0.648, p = 0.00364) and Wilkinson Basin (r = 
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Model version                             AUC                      TSS 

 

1000 ind. m−2 unstaged     0.915 ± 0.00141  0.6737 ± 0.00304 

4000 ind. m−2 unstaged     0.919 ± 0.00126  0.6887 ± 0.00353 

10 000 ind. m−2 unstaged  0.925 ± 0.00187   0.705 ± 0.00414 

40 000 ind. m−2 unstaged  0.907 ± 0.00171   0.682 ± 0.00355 

Table 3. Model performance for 4 versions of the random 

forest model evaluated using area under the receiver oper-

ating characteristic curve (AUC) and the true skill statistic 

(TSS). AUC is computed on a 0 to 1 scale (±SE). TSS is com-

puted on a −1 to 1 scale (±SE). With both metrics, a higher  

score indicates better model performance

Fig. 6. (a) Plots of the proportion of abundances that exceeded a threshold value of τ = 10 000 ind. m−2 for the unstaged 

 National Oceanic and Atmospheric Administration (NOAA) Fisheries Ecosystem Monitoring Program (MARMAP/EcoMon) 

data. (b) Plots of the prediction of patch formation from the random forest model for a threshold value of τ = 10 000 ind. m−2 on  

a 0 to 1 scale. A star under the x-axis label indicates trends for that month were significant in a given region
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−0.657, p = 0.00303). In October, the trend was nega-

tive in Jordan Basin (r = −0.733, p = 0.000543). Trends 

were similar for the τ = 40000 ind. m−2 in the deep 

basins in May and August, as well. Positive trends 

were found in May and negative trends were found 

in August in the deep basins. In October, the trend 

was negative in Wilkinson Basin (r = −0.607, p = 

0.00754). No significant trends were found in Cape 

Cod Bay, Massachusetts Bay, or the Great South 

Channel. 

Modeled τ-patch likelihoods matched measured 

frequencies well, with some notable differences 

depending on the value of τ. Comparing models and 

data requires some data binning so that both values 

fall along a continuous scale from 0 to 1. For compar-

ison, we binned both by month and year, resulting in 

scatter plots with 216 points (Fig. 7). There were cor-

relations for every selected value of τ. Modeled val-

ues tended to overestimate for low probabilities of a 

τ-patch and match the one-to-one line better for high 

probabilities. The strongest correlation was for τ = 

10 000 ind. m−2. 

Monthly model runs allowed us to tease apart the 

covariate contributions to the model and model per-

formance by time of year. Covariate contributions 

varied seasonally, but bathymetry was consistently 

the strongest contributor (Fig. 8). From late summer 

through winter, bottom oceanography had a large 

contribution. The combined effects of deep-water 

properties (i.e. bottom temperature and salinity) was 

a strong contributor in the late summer and fall, con-

sistently stronger than sea surface temperature dur-

ing this period. In winter months, bottom salinity 

was the second strongest contributor (behind bathy -

metry). By contrast, the contribution by surface pro-

cesses (sea surface temperature, surface temperature 

gradient, wind, time-integrated surface chlorophyll, 

and current velocity gradient) peaked in March and 

April. Time-integrated surface chlorophyll was the 

second strongest predictor (behind bathymetry) in 

these months. The seasonal shift between contribu-

tions by surface versus bottom covariates aligned 

with the seasonal life history strategy of C. finmarchi-

cus, with deep-water diapause in late summer 

through winter, and emergence and reproduction 

following from the spring phytoplankton bloom. The 

monthly models were unable to run in July and 

December due to data gaps as a result of under -

sampling. Model performance varied seasonally, as 

well, with AUC generally exceeding a value of 0.8 

throughout the year. 

Focusing again on the whole-year τ = 10 000 ind. 

m−2 model, response curves generally showed uni-

modal responses across all covariates (Fig. 9). The 

strong seasonality was reflected in the modeled 

response to the DoY covariate, which helped to inter-

polate across the data gaps in July and December. 

For most covariates, the full scope of the model falls 

within the well-sampled range of data, with the 

exception of bathymetry. High bathymetry regions 

(i.e. deep, off-shelf waters) were undersampled, 

leading to model extrapolation that was probably 

unrealistically high where the sample representation 

dropped off. Model cross-validation runs matched 

each other closely, particularly where sampling was 

high. 

4.  DISCUSSION 

Management of Eubalaena glacialis could likely be 

improved by the incorporation of prey information 

into models and decision support tools (Pendleton et 
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Fig. 7. Measured probability of a high-density τ-patch ver-

sus the modeled probability of a τ-patch for (a) τ = 1000 ind. 

m−2 (r2 = 0.49), (b) τ = 4000 ind. m−2 (r2 = 0.58), (c) τ = 10 000 

ind. m−2 (r2 = 0.63), and (d) τ = 40 000 ind. m−2 (r2 = 0.49) for 

the unstaged National Oceanic and Atmospheric Adminis-

tration (NOAA) Fisheries Ecosystem Monitoring Program 

(MARMAP/EcoMon) dataset at a significance level of p < 

0.001. Points were averaged spatially, with one data point 

per month per year (n = 216). The black line shows the  

theoretical one-to-one line
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al. 2012, Brennan et al. 2021, Ross et al. 2021). How-

ever, there is a disconnect between knowledge of 

Calanus finmarchicus population dynamics and the 

need for finer-scale information on the high-density 

copepod aggregations that E. glacialis requires. 

Models and analysis do not generally capture the 

high-abundance end of the C. finmarchicus distribu-

tion, which does not necessarily track with overall 

abundance patterns because of oceanographic and 

biological processes operating at different spatial 

and temporal scales. 

We modeled the spatiotemporal patterns of τ-

patches to better understand their dynamics and 

develop products for incorporating these dynamics 

into decision support tools. This required exploring a 

threshold value, τ, that defined a prey density high 

enough to attract E. glacialis feeding. Empirical criti-

cal feeding thresholds reported in the literature vary 

widely (Table 2), which is not surprising because of 

the many factors that could influence foraging deci-

sions. A full picture of τ would show monthly, inter-

annual, and possibly regional variability. Under-

standing how τ varies depending on changing condi-

tions represents an important next step in the predic-

tion of E. glacialis movements. 

At a high level, τ-patch dynamics, particularly 

those at the τ = 10 000 ind. m−2 and 40 000 ind. m−2 

levels, followed documented patterns in E. glacialis 

movements during the times of year when whales 

feed on C. finmarchicus. The absence of late summer 

C. finmarchicus abundances exceeding 40 000 m−2 in 

Jordan Basin after 2010, for example, matched the 

timing of the decline of E. glacialis use of the eastern 

Gulf of Maine as a foraging ground (Fig. A1 in the 

Appendix) (Record et al. 2019). One notable feature 

of the τ-patch model is that there is finer scale spatial 

variability than with C. finmarchicus abundance 

models, which are generally much smoother in space 

(e.g. Pershing et al. 2009a, Reygondeau & Beaugrand 

2011, Grieve et al. 2017). This could provide added 

information for predicting foraging decisions made 

by E. glacialis. Certain features were picked up by 
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Fig. 8. Monthly covariate contributions with the corresponding model evaluations shown in the top panel. Shaded regions indi-

cate the minimum and maximum area under the receiver operating characteristic curve (AUC) values of the 10 cross-validation  

runs for a given month
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Fig. 9. Response curves for the model with a threshold of τ = 10 000 ind. m−2 with the unstaged National Oceanic and Atmos-

pheric Administration (NOAA) Fisheries Ecosystem Monitoring Program (MARMAP/EcoMon) data. Each line represents one  

of 10 cross-validation folds
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the τ-patch models, such as the higher values along 

the edge of the continental shelf; this feature appears 

in the EcoMon data but is not captured by smoother 

abundance models. This patchy spatial pattern is 

more pronounced the further toward the high end of 

the distribution τ is, especially at τ = 40 000 ind. m−2. 

It is an encouraging indication that modeling τ-

patches could be a helpful approach to understand 

the foraging patterns of E. glacialis. 

There are some notable differences between the τ-

patches and C. finmarchicus abundance in covariate 

associations when comparing with previous statistical 

models. For example, the favorable sea surface tem-

perature range of C. finmarchicus statistically esti-

mated by published models has ranged from 4.5−

8.5°C (Reygondeau & Beaugrand 2011) to 6−10°C 

(Helaouët & Beaugrand 2007). In contrast, the highest 

τ-patch probabilities in our model occurred for sea 

surface temperatures of 7−15°C (Fig. 9). Similarly, 

modeled estimates using bottom temperatures have 

found peaks at <2°C (Grieve et al. 2017), whereas τ-

patch probabilities peaked at bottom temperatures of 

4−8°C (Fig. 9). The tendency for high density patches 

to occur at temperatures warmer than the typical 

thermal range determined through an abundance 

model illustrates an advantage of using the τ-patch 

modeling framework. Unlike the τ-patch framework, 

a prey abundance model does not tend to  predict 

high abundances in regions with higher sea surface 

temperatures; these results suggest that τ-patches 

can occur in these higher temperature regions. 

One modeling choice we examined was whether to 

use unstaged (i.e. all C. finmarchicus stages) or 

staged data (i.e. only stages C4 through adult). We 

chose to display the models using unstaged data be -

cause the mesh size of the EcoMon survey net re -

flects the filtering capabilities of E. glacialis baleen 

(Mayo et al. 2001). However, focusing on later stages 

captures the most energetically advantageous C. fin-

marchicus (Mayo et al. 2001, Baumgartner et al. 

2003), due to the variations in caloric content with life 

stage. The performance of these 2 model configura-

tions was very close, with the unstaged configuration 

performing only slightly better. While the difference 

was minimal for the EcoMon dataset, this is a consid-

eration that should be carried forward, depending on 

the sampling method of the dataset used to model 

τ-patches. 

The model here does not fully represent the com-

plex mechanisms underlying τ-patch formation. Even 

mechanistic bio-physical coupled models do not yet 

capture the fine-resolution processes at the scales of 

right whale feeding such as Langmuir circulation and 

tidal fronts, although models are improving (e.g. 

Bren nan et al. 2019). Nevertheless, the statistical dis-

tribution of in situ samples of copepods does capture 

the occurrence of dense aggregations. Random 

forests are highly accurate predictive species distri-

bution models (Li & Wang, 2013), and they are able to 

accurately predict the probability of C. finmarchicus 

τ-patches at the scales examined. Linking the empiri-

cal associations of τ-patches with ultra-fine-scale 

mechanistic models represents an important area of 

future work that could improve maps of E. glacialis 

prey distribution. Key next steps include coupling to 

vertically resolved data and models (Plourde et al. 

2019, Brennan et al. 2021) and linking models across 

the full international domain of E. glacialis foraging. 

The ultimate goal of this work was to provide prey 

information that could be used in decision support 

tools for E. glacialis management. The next step is to 

link these modeled prey fields to the right whale 

modeling used to support decision making (Roberts 

et al. 2016). 

There are some important caveats to note when us-

ing of this model. First, C. finmarchicus is not the only 

prey resource for E. glacialis. In the winter months, in 

particular, whales are foraging on smaller copepods, 

such as Centropages spp. and Pseudocalanus spp., 

and there could be other opportunistic prey, such as 

barnacle larvae (Mayo & Marx 1990). In these cases, 

dense aggregations also appear to at tract whales, so 

a similar modeling approach could be used; however, 

τ values and covariate associations are likely to be 

very different. Second, the EcoMon dataset has no 

measurements off the northeastern US continental 

shelf, so using this model to extrapolate into waters 

deeper than 500 m has very high uncertainty. We 

chose to show the full projected results for trans-

parency, but we advise cropping this area before in-

corporating these prey fields into other models, as the 

projections do not match the expectation for this part 

of the domain. Finally, the EcoMon data, while being 

the most extensive dataset for the domain, do not 

contain information on the vertical distribution of 

copepods. We were able to constrain the problem by 

establishing a framework and testing a range of as-

sumptions for vertical distribution, but further refine-

ments of this approach will require blending with 

vertical distribution data (e.g. Lehoux et al. 2020). 

Management of North Atlantic right whales has 

become increasingly urgent, and the challenge of 

predicting their movements has been a significant 

impediment (Davies & Brillant 2019). Much of the 

whales’ movements are guided by their prey, and 

new approaches to incorporating prey information 
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