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Satellites have provided high-resolution (<100 m) water color (i.e., remote sensing reflectance) and
thermal emission imagery of aquatic environments since the early 1980s; however, global operational
water quality products based on these data are not readily available (e.g., temperature, chlorophyll-a,
turbidity, and suspended particle matter). Currently, because of the postprocessing required, only users
with expressive experience can exploit these data, limiting their utility. Here, we provide paths (recipes)
for the nonspecialist to access and derive water quality products, along with examples of applications,
from sensors on board Landsat-5, Landsat-7, Landsat-8, Landsat-9, Sentinel-2A, and Sentinel-2B. We
emphasize that the only assured metric for success in product derivation and the assigning of uncertainties
to them is via validation with in situ data. We hope that this contribution will motivate nonspecialists to
use publicly available high-resolution satellite data to study new processes and monitor a variety of novel
environments that have received little attention to date.
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Introduction

In the past 30 years, a series of papers have shown the utility of
high-spatial-resolution remote sensing to study coastal and
inland water using sensors on board the Landsat series of sat-
ellites, in particular, looking at the distribution of suspended
particulate matter (SPM) and chlorophyll-a (Chl-a) [1-6].
Deriving such data is not trivial as the top-of-the-atmosphere
(TOA) signal in the visible bands is overwhelmed by the impact
of the atmosphere, and, thus, all these studies had to perform
an atmospheric correction (AC) step. However, such data, as
well as those from the recently launched Sentinel-2 satellites,
are extremely useful for water quality monitoring by providing
unparalleled spatial scale (on the order of 10 s of meters) of
utility to aquaculturists [7,8], recreational users, and water quality
managers [9-11].
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At present, however, such data are still not widely distrib-
uted (in contrast to data from lower resolution satellites,
further offshore) and require specialized training for their
derivation. In addition, since the Landsat series of satellite
has been collecting consistent color and thermal data
since the mid-80s (Landsat-5, Landsat-7, Landsat-8, and
Landsat-9)—these data could be exploited to study, for exam-
ple, the impact of land use, decadal oscillations, and climate
change on long time series using water quality in rivers, lakes,
and coastal locations spanning a period of almost 40 years.
Satellite water color sensors measure the radiance (L,) at the
TOA. This radiance results from the additive contributions
(Eq. 1) of radiance emanating from within the water, radi-
ance interacting with the water surface, and radiance that
is (multiply) scattered by atmospheric gases and aerosols
(Table 1) [12].
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Table1. Notation of symbols and acronyms.

Symbol Description Unit

Ly Total radiance at the TOA W-m~2sr~:nm™
Ly TOA radiance due to molecular scattering in the atmosphere W-m~2-srtnm!
L, TOA radiance due to scattering by aerosols only W-m~2-srtnm!
Lg TOA radiance due to aerosol-molecule scattering W-m=2-srtnm
LToA TOA radiance due to sun glint W-m=Zsrnm™
LIE;\ TOA radiance due to surface-reflected background sky W-m=2srtnm™
LTOA TOA radiance due to whitecaps and foam W-m~2-srtnm!
L, TOA radiance emanating from within the water W-m=2-srtnm™
Pu Water-leaving reflectance, p, =R ¢'7 -

o Downwelling irradiance W-m=%srtnm™!
0, Viewing direction Degree

0, Solar zenith angle Degree

é Azimuthal angle measured relative to the Sun’s azimuthal direction Degree
0*,0” above, and below water surface —

y) Wavelength (i.e., satellite band) nm

R, Remote sensing reflectance (water color) srt
Spis(A) R,(2) uncertainty sr!

= TOA | 7TOA | yTOA , 7TOA
Ly=Lp+[L, +Lgl +L +Lsky +L ML ()
An important parameter for derivation of water quality,
satellite water leaving reflectance, p,, (Eq. 2), is derived from
the processing of the measured L, to obtain the water-leaving
radiance (L,,) in a process called AC [12].

L,(6,,¢,0%)

0 , =
ulln§) = E4(6,,0%)

=7R,(0,,9,.07) (2

Remote sensing reflectance, R,, is the ratio of the water leaving
radiance at the water surface (L,,) to the downwelling irradiance
(Ep. R, is a function of the inherent optical properties (IOPs;
namely, backscattering and absorption). The IOPs are functions
determined of the concentration and composition of water
quality parameters such as Chl-a, SPM, and colored dissolved
organic matter (CDOM) [13]. These water quality parameters
are what is retrieved by “inverting’, that is applying algorithms
to R,, or p,, to obtain water quality parameters. To make R, as
independent as possible from sun zenith and satellite viewing
angles, a “normalization” procedure is often performed (see the
Normalization during reflectance derivation section and [12]).

For readers new to the fields of aquatic optics and aquatic
remote sensing, we suggest Mobley’s book as an introduction
(https://ioccg.org/wp-content/uploads/2022/01/mobley-
oceanicopticsbook.pdf). In addition, the International Ocean
Colour Coordinating Group report series (https://ioccg.org/
what-we-do/ioccg-publications/ioccg-reports/) contains a wealth
of information and definitions of the terminology that you will
find along the document.

Our goal in this work is to present recipes for nonspecial-
ists to derive water quality data using publicly available data
and open-source tools. We emphasize that the only way to
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assess the quality of data obtained and their associated uncer-
tainties is through validation with in situ data. Similar vali-
dation has to be conducted for operational products from
low-spatial-resolution satellites in inland waters and coastal
areas as assumptions true to the open ocean may not be valid
nearshore (e.g., covariation of dissolved organics and Chl-a,
a simplified marine atmosphere for AC). Note that even in
open ocean environments, water quality products may be biased
as they have been developed with limited datasets [14]. While
we focus on the coastal ocean, our recipes are applicable to
freshwater lakes and rivers as well, with minor modification
(e.g., adjusting for elevation in the AC step for Alpine lakes).
Throughout this document, we adopt the term “water color”
to denote the remotely sensed reflectance, R,; however, it is
also referred to as “ocean color”, “ocean color remote sensing’,
and “aquatic color” in the literature.

High-resolution remote sensing of aquatic environments is
a very active area of research, and novel approaches and ana-
lytical tools are added often. We encourage readers to stay
abreast of innovations that may be pertinent for their specific
needs. We note that since 2020, provisional products using
Sentinel-2 have been generated by the European Space Agency
(ESA) for coastal Europe and a few other locations at 100-m
resolution (https://resources.marine.copernicus.eu/products)
and that provisional data using Landsat-8 and Landsat-9 are
available from US Geological Survey (USGS) upon request
(see the Provisional aquatic reflectance from USGS: Coastal to
Gulf Stream R, and Chl-a section).

Materials and Methods

The main ingredient for deriving water color data is the level
1C data, which is georeferenced and calibrated data at the TOA.
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While surface reflectance data (level 2) are provided for the
Landsat and Sentinel-2 visible bands, their quality may not be
sufficient to derive most water quality products [15], as the AC
applied has not been designed for a dark target such as water.
Surface temperature data are also available at level 2 and have
become recently available in collection 2 for the Landsat satel-
lite series (although a linear calibration equation is necessary
to convert to temperature; see Eq. 3) and are of sufficient quality
to be directly useful (e.g., [16]). We will therefore separate the
recipes (Fig. 1) for water temperature from those derived from
water color (i.e., SPM, turbidity, and Chl-a). The latter param-
eters necessitate an AC step to derive level 2 (water surface)
data from level 1 TOA data.

The decision of which data products to use will depend on
the specific application. Each satellite sensor (and hence derived
products) has different spatial, spectral, and temporal resolu-
tions as well as radiometric sensitivity. Along with the revisit
period of the satellite, the spatial resolution (i.e., the pixel size)
of a satellite image is one of the essential aspects of remote
sensing, as it determines the level of detail captured. Although
itis intuitive to assume that a higher spatial resolution is always
desirable, in reality, the choice of level of detail depends both
on the application needs and on computational capacity avail-
able. Figure 2 exemplifies the visual impact of different spatial
resolutions on surface coastal water features.

Because of their small footprint compared to traditional ocean
observing satellites, high-resolution satellite sensors (pixel
size < 100 m) usually have a long revisit period (see Table S1) in

Atmospheric correction + masking

comparison to near daily coverage by their low-spatial-resolution
counterparts (e.g., Moderate Resolution Imaging Spectro-
radiometer (MODIS)-aqua or Sentinel 3-OLCI). Temporal reso-
lution increases as one approaches the poles due to the convergence
of longitudes and as one combines data from several satellites
operating on different schedules. Overpass times for specific sat-
ellites are available using, for example, a tool provided by NASA
(https://oceandata.sci.gsfc.nasa.gov/overpass_pred/).

Landsat and Sentinel-2 missions have different spectral and
radiometric resolutions, i.e., bandwidths, center wavelengths, sig-
nal-to-noise ratio, and number of bands. Landsat-5 and Landsat-7
particularly have relatively low signal-to-noise ratio and spectral
resolutions, which makes it challenging to retrieve water quality
products with high fidelity. USGS provides a summary of Landsat
known issues (https://www.usgs.gov/landsat-missions/landsat-
known-issues). These limitations, however, are not meant to dis-
courage the reader from carrying out analysis using either
Landsat-5 or Landsat-7 but to raise awareness and provide proper
interpretation of results. Landsat-8, Landsat-9, Sentinel-2A, and
Sentinel-2B, on the other hand, have higher spectral and radiomet-
ric resolutions. Tables S2 and S3 summarize their characteristics.

Recipe for water color products (SPM and Chl-a)
Obtaining level 1C data

The source of level 1C data depends on the satellite sensor of
choice: Landsat-5, Landsat-7, Landsat-8, and Landsat-9 (for all
sensors mentioned in Table S1) data are available from USGS
(https://earthexplorer.usgs.gov), while Sentinel-2A and Sentinel-2B
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Fig.1. Schematic of the recipe elements to obtain satellite-derived water quality products.
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Fig. 2. Comparison of different spatial resolutions simulated from a Landsat-8 scene for a pixel size of 30 m (original Landsat-8 scene) (A), 300 m (B) and 1,000 m (C). (A) and
(B) have each a zoomed subset depicting differences in pixel size when one deals with smaller areas, while (C) shows clear differences already in large areas. Landsat-8 scene

was re-sampled using SNAP software. Note that small inland features such as reservoirs or lakes are also affected by the spatial resolution of the satellite sensor.

data are available from ESA (https://scihub.copernicus.eu/) web
platforms. Historical data from Sentinel-2A and Sentinel-2B
(e.g., on Copernicus, older than 12 months) may not be avail-
able for direct download, requiring an order beforehand. ESA
also distributes their products through several platforms via the
Data and Information Access Services (https://www.copernicus.
eu/en/access-data/dias), each offering different spatial and tem-
poral resolutions. While satellite data can be obtained for a
given scene at the web portals above, we developed a single
Python-based tool [getOC (https://github.com/OceanOptics/
getOC)] to batch download NASA and ESA satellite data (for
both low- and high-resolution sensors) and simplify data acqui-
sition. Detailed instructions can be found in the GitHub link
above. This tool automatically queries different data platforms
and downloads all available images for the selected dates and
locations. It uses 2 different data platforms, each maintained
either by NASA or by ESA, hence requiring a registration to
EarthData (https://urs.earthdata.nasa.gov/users/new) for NASA
satellites and CreoDIAS (https://portal.creodias.eu/register.
php) for ESA satellites. Support for USGS EarthExplorer to
download Landsat scenes will be implemented soon.

AC for water color data

Once the level 1C data are acquired, AC procedures are necessary.
ACs remove the effects of atmospheric gases and aerosols from
the satellite scene (which often contributes >90% of the signal
at the TOA) as well as accounts for whitecaps and glint (for
reviews, see [12,17,18] for NASA’s AC approach). There are
many AC schemes available in the public domain (e.g., Table 2).
These AC schemes are based on a range of methods and provide
a choice of options to derive R, or p,, [19], from which water
quality parameters (i.e., products) are derived. Some of these
software have a graphical user interface (GUI) and tools to
merge images in time and space (e.g., SeaDAS, SNAP, and
ACOLITE), while others do not (e.g., POLYMER). These tools
also differ in their capacity to derive water quality products
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(e.g., ACOLITE), although this step could be applied inde-
pendently. Here, we introduce 5 software environments that
implement an AC (multiple options exist in some software
environments; Table 2): ACOLITE, OCSMART, POLYMER,
SeaDAS, and SNAP, as well as examples using each of them.
For further information about comparative performance of
different ACs, refer to [19-22]. Note that (a) the majority of
the AC software (i.e., OCSMART, POLYMER, and SNAP) does
not perform AC on Landsat-5 and Landsat-7, which can rep-
resent an obstacle for long time series; and (b) because of the
large atmospheric contribution to the measured TOA radiance,
different AC schemes, as well as different algorithms to derive
products from above water reflectance, will likely result in char-
acteristically different estimates of water quality products [23].
Therefore, quality assurance (QA) and quality control (QC)
steps must be applied to R, and the derived products (see
below) to ensure that the AC was successful.

o ACOLITE: Developed at the Royal Belgium Institute of
Natural Sciences, ACOLITE has a detailed user manual
and forum, both of which provide instruction and full
support, especially useful for new users. The software is
available in GUI and command line (CLI) modes and
is available as Python source code (GitHub or https://
odnature.naturalsciences.be/remsem/software-and-data/
acolite). ACOLITE batch processing is only available in
CLI mode, for which steps are described and setup is
available (https://odnature.naturalsciences.be/remsem/
acolite-forum/viewtopic.php?t=29). It provides 2 AC
schemes: dark spectrum fitting (hereafter DSF) [24] and
exponential extrapolation (hereafter Exp) [25,26]. The
Exp scheme uses Rayleigh-corrected reflectance to esti-
mate aerosol reflectance in 2 short wave infrared (SWIR)
bands (i.e., infrared by default) and extrapolates to the
near-infrared (NIR) visible bands. However, a possible
flaw in SWIR exponential extrapolation when considering
adjacency effects and sun glint may lead to overestimation
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Table 2. AC schemes by software.

AC Option Software Satellite Run time® Difficulty level®
DSF Dark spectrum ACOLITE L5,L7 L8, L9, S2A, S2B 10 min23s I
Exp Exponential ACOLITE L5,L7 L8, L9, S2A, S2B 4 min48s Il
OCSMART Machine learning OCSMART L8, L9° S2A, S2B 5min 555 (60 m) I
POLYMER Function of glint, aerosol POLYMER L8, S2A, S2B 23min34s 1%
12gen 2 SeaDAS L5,L7 L8, L9, S2A, S2B 2h33min %
C2RCC C2RCC-Nets SNAP L8, S2A, S2B 18 min54 s Il
Cc2X C2X-Nets SNAP L8, S2A, S2B 18 min13s Il

Run time is based on processing a Sentinel-2 scene (20-m resolution) in middle of Gulf of Maine from 2021.06.18 on high-performance computer with

a Linux OS (refer to Fig. 5D for a visual of the scene).

®Difficulty level are represented from | (easiest) to V (hardest) determined on the basis of the effort needed to apply them by the same user (B.J.) based

on batch processing Sentinel-2 scene with Linux OS.

“According to contact with the software developer, OCSMART, and POLYMER plan to support Landsat-9. C2RCC is not yet fully adapted for Landsat-9
(https://forum.step.esa.int/t/problems-encountered-in-processing-landsat8-9-images-with-c2rcc/36806).

of p,, for which case the Exp becomes inadequate. The
DSF scheme uses multiple dark targets to avoid overes-
timation by the Exp approach in ACOLITE.

o OCSMART: Ocean Color—Simultaneous Marine and
Aerosol Retrieval Tool (OCSMART) is a multisensor data
analysis platform designed to retrieve aerosol and water
color products from satellite remote sensing images.
OCSMART uses multilayer neural networks trained
using an extensive set of radiative transfer simulations
based on a coupled atmosphere-ocean radiative transfer
model to perform the AC and subsequent retrieval of
ocean IOPs [27]. The software (http://www.rtatmocn.
com/oc-smart/) runs on UNIX and Windows.

o POLYMER: Developed by E Steinmetz, P.-Y. Deschamps,
and D. Ramon [28] and maintained and distributed by
HYGEOS (https://forum.hygeos.com/viewforum.php?f=5),
POLYMER comes with a detailed README file and
a forum. The software is available via the CLI only.
POLYMER models the spectral reflectance of the atmos-
phere, sun glint, and water using a polynomial fit on all
visible bands. This separation of the contribution from
different sources allows a relatively accurate recovery of
water reflectance even where other AC schemes based
only on NIR bands fail due to high glint contamination.

+ SeaDAS: Developed and maintained by NASA, SeaDAS is
a software package for processing, displaying, analyzing,
and quality-controlling remote sensing data (download at
https://seadas.gsfc.nasa..gov). The- software- runs on the
UNIX and Windows OS but can be used in a Windows
OS with additional steps (https://seadas.gsfc.nasa.
gov/client_server/). SeaDAS currently provides several
AC schemes via its 12gen processor (see Table S1)
that are applied on a pixel-by-pixel basis. The Earthdata
forum provides excellent support for debugging with
SeaDAS (https://forum.earthdata.nasa.gov/viewforum.
php?f=7&sid=7b8a85eb704352689d10b1e972{22870).
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o SNAP: Developed and maintained by ESA, the Sentinel
Application Platform (SNAP) is a software package for
processing, displaying, analyzing, and quality-controlling
remote sensing data (download at https://step.esa.int/
main/download/snap-download/). The software runs on
the UNIX and Windows OS. Embedded in SNAP is the
Case 2 Regional CoastColour (C2RCC) model that per-
forms an AC intended for coastal waters using a neural
network algorithm ([29]).

To carry out any AC, we require ancillary data in addition
to level 1C data (e.g., surface pressure, winds, ozone concen-
tration, etc.). ACOLITE, OCSMART, POLYMER, and SeaDAS
automatically download the latest version of ancillary data
available for each scene from Earthdata (https://urs.earthdata.
nasa.gov). In POLYMER, the user may instead choose the
European Centre for Medium-Range Weather Forecasts Reanalysis
dataset for the ancillary data. SNAP, however, requires that the
user downloads the ancillary data, which can be found at the
water color data repository (https://oceandata.sci.gsfc.nasa.
gov/directaccess/Ancillary/). It is important to note that ancil-
lary data are not available in real time, and there may be several
weeks between the time of acquisition and when the scene
analyzed. If near real-time products are needed, an educated
guess at the value of the ancillary data (e.g., based on a local
climatology) may be used but may bias the derived output.

Normalization during reflectance derivation

While R, is intended to be a product of the IOPs of the water
(i.e., absorption and scattering), R, is an apparent optical property
because it is affected by other factors such as the geometry of
sun and satellite. To minimize the impact of viewing geometry,
we apply the normalization schemes. These convert the meas-
ured R, to a normalized reflectance with the sun at zenith and
account for the satellite viewing angle and some atmospheric
effect [12,30,31]. A very detailed account of this normalization
is provided in Section 3 of book [12]. It is important to realize
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that not all AC schemes introduced above (e.g., ACOLITE)
compute a normalized reflectance and hence may result in a
different value for a water quality parameter when using algo-
rithms, which assume that the reflectance is normalized. For
Landsat data, POLYMER computes normalized reflectance,
requiring the angle band files created using the USGS’s L8 Angle
tool (https://www.usgs.gov/landsat-missions/solar-illumination-
and-sensor-viewing-angle-coefficient-files).

Georeferencing and data grids

While it may be expected that remote sensing data are available
in even grids of latitudes and longitudes, this is not the case. A
variety of reasons stemming from satellite orbits and distances
between longitude lines changing with latitude explain this non-
regularity. Therefore, it is critical to map the data onto a grid for
analysis and plotting and to test that this transformation is done
correctly. The assignment of geographic coordinates for each
data point is addressed at level 1C. To ensure that level 2 data
are mapped correctly to a grid, specific functions are available
in geographical information system (GIS) software and in
computing environments such as Python and MATLAB (e.g.,
the MATLAB function “geotiffinfo.m” can be used to extract
the latitude and longitude coordinate of each point; see codes
in the Supplementary Materials). A good test to determine
whether your program correctly maps the data is to add the
location of moorings with validation data into your scene and
confirm that the buoy location is where you expect it (e.g.,
when compared to Global Positioning System coordinates or
Google Earth).

Masking and QC

Masks

Almost every remote sensing scene contains areas where R,
cannot be accurately retrieved because of clouds, cloud shad-
ows, glint, land, vegetation shadow, ice, or shallow areas where
bottom reflectance affects the water leaving radiance. Masking
these pixels is crucial to avoid biased or unrealistic data.
Examples of existing coastal waters masking criteria for the
software tools we mentioned above, especially those focusing
on clouds, are in Table 3. However, there are invariably cases
when existing masks do not cover what users may conclude are
erroneous or biased results. In such cases, users could and
should devise their own criterion (e.g., reflectance threshold
above or below a specific value, areas where reflectance does
not pass a QA/QC criterion) and document these customized
criteria when sharing results with others.

Table 3. Masking schemes for clouds and shadows.

Adjacency effect

Atmospheric scattering of light can result in the contamination
of light measured at a specific location by light from nearby
areas. If the adjacent areas are substantially different in their
reflectance (e.g., snow-covered land near a dark coastal ocean),
the darker water pixels may be materially affected. Adjacency
effects can cause issues for distances up to about 40 km from
the coastline [32]. Contamination from adjacency effects
can be diagnosed by looking for and avoiding regions with
expressive spatial gradients in reflectance at relevant wave-
lengths in the direction from the coast toward the water (e.g.,
[21,33,34]). The POLYMER AC can recover relatively good
data quality even when it is affected by adjacency effects;
moreover, the vegetation adjacency correction was added in
version 4.15 [28,35].

Stripping

Image artifacts, particularly stripping, affect image quality and
the quality of water color products estimated from remote sens-
ing data. Stripping is an image artifact in the along or across-
track direction that results from different factors, such as sensor
characteristics, poor calibration, and imaging processing itself.
In aquatic environments, stripping is notably problematic since
the low radiance values from water targets can be of similar
magnitude as the variability imposed by the artifacts. The
medium- to low-resolution sensors commonly used for water
color studies [e.g., Visible Infrared Imaging Radiometer Suite
(VIIRS), and Sea-viewing Wide Field-of-view Sensor (SeaWIES),
and MODIS] have long had stripping issues [36,37]; however,
high-resolution sensors, particularly sensors within the Landsat
program and Sentinel constellation, exhibit similar stripping
issues when applied to water color [15,38,39]. Noise patterns
in Sentinel-2 images have been reported to be highly variable,
which can lead to a misinterpretation of water color since features
observed can be attributed to either image striping patterns
or the variability of ocean optical properties [40]. On the other
hand, previous studies using Sentinel-2 imagery have shown
that stripping did not affect the retrieving of water IOPs, and
authors argue that the error introduced by stripping is not suffi-
ciently high to affect the IOP signal [41]. Destripping methods
have long been applied to remote sensing sensors [42]. MODIS
and VIIRS have been the focus for most of the testing in destripping
methods with expressive improvement in image stripping
issues [36,43,44]. Although stripping filters have been applied
for Landsat and Sentinel-2 program sensors [45,46], when dealing
with water color, fewer studies have shown promising results [40].

AC software Type of artifact Methods Source

ACOLITE Cloud Peurr (1,609) > 0.0215 [19]

OCSMART Cloud 0(865) >0.027;¢ < 2.5 [27]

POLYMER Cloud Pour (865) > 0.2 [19]

Coastal waters: p,,+(1,609) > 0.018;

S Eoke open ocean: pg,+ (865) > 0.027 e

SNAP Cloud IdePix [19]
Thin cloud, shadows WIPE algorithm [69]
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QC of the reflectance spectra

Reflectance spectra, while highly variable between different
environments, are constrained in the spectral shapes that they
exhibit. A tool based on a library of high-quality spectra has
been created to assess the likelihood that a reflectance spectra
is reasonable [47], assigning a quality score that can be used to
filter nonphysical spectra and suggest which AC works best
in a given environment. The tool is available for Sentinel-2 and
Landsat-8 (https://oceanoptics.umb.edu/score_metric/) for which
a score between 0 and 1 is assigned to the targeted spectrum,
with 1 for likely good R, spectra and 0 for likely unusable R,
spectra. Since this scoring system’s publication, an additional
tool has been created called the Quality Water Index Polynomial
(QWIP) [48]. The QWIP is based on the Apparent Visible
Wavelength (AVW) [49], a one-dimensional geophysical metric
of color that is inherently correlated to spectral shape calculated
as a weighted harmonic mean across visible wavelengths.
QWIP is computed on the basis of a polynomial relationship
between the hyperspectral AVW and a Normalized Difference
Index using red and green wavelengths. The QWIP value repre-
sents the difference between a spectrum’s AVW and Normalized
Difference Index and the QWIP polynomial. A QWIP score of
less than —0.2 or greater than 0.2 for a spectrum indicates that
it is likely a bad spectrum [48].

Derivation of water quality products

Once R,, or water leaving reflectance (p,, = 7 x R,,) has been
obtained and quality-controlled, water quality parameters can
be derived. Algorithms to obtain water quality products from
R, are available in the literature or can be empirically derived
by the user based on relationships obtained with their own
dataset. Algorithms are either explicit (i.e., based on an equa-
tion that relates R, at a given band or ratios of bands to a water

Table 4. Types of SPM and turbidity algorithms.

quality product) or implicit (i.e., generated using a neural net-
work or other machine learning technique). Explicit algorithms
can be purely statistical or can incorporate some knowledge of
radiative transfer (referred to as semianalytic). Robust algo-
rithms are most often the ones that a user did not tune to their
own data. On the other hand, it could be that local conditions
are sufficiently different from other environments that only a
locally tuned algorithm provides unbiased products (e.g., local
sediment mineralogy effect on suspended SPM retrieval). For
instance, implicit band ratio-based algorithms can potentially
minimize the sensitivity to effects of particle size and density.

To obtain SPM, algorithms typically use red and NIR wave-
lengths where water typically dominates absorption. Since
water absorption is often dominating in the red and NIR wave-
lengths, R,, is proportional to backscattering by particles
(i.e., particle concentration). The relationship between R, and
backscattering (or SPM, or turbidity) is linear at low concen-
trations, but as concentration increases, particle contribution
to absorption increases changing the sensitivity of R, to SPM,
a process called saturation [50]. Since water absorption is gen-
erally monotonically increasing in the red and NIR, shifting to
longer wavelengths as SPM concentration increases [51] or
using a multiwavelengths algorithm [52] helps to increase the
sensitivity of R, to SPM. Table 4 provides a summary of differ-
ent types of SPM and turbidity algorithms.

Algorithms for extracting biological information from ocean
color (e.g., Chl-a and CDOM) are making large advances but
are still in development. Typical empirical Chl-a algorithms
designed for the open ocean are not likely to work well in many
coastal environment where assumptions of water constituents
covarying in the open ocean may break down in coastal envi-
ronments. Thus, locally tuned algorithms are likely to be more
successful. A summary of different types of Chl-a algorithms

Algorithm type Reference example Satellite sensor
Band ratio [70] L8,L9,S2A, S2B
Explicit Semianalytical single band [57,59])° L5, L7 L8, L9, S2A,S2B
Semianalytical band switch [51,71] L8, L9, S2A, S2B
Semianalytical multiple bands [52] L5,L7 L8, L9, S2A, S2B
Implicit Radiative transfer [721° S2A, S2B
Machine learning [53] L8, L9, S2A, S2B

“The algorithm setup allows for application to high-resolution sensors. We suggest that coefficients be adapted (see the Spectral convolution section).

PAdapted for Sentinel 2/MS| by Arabi etal. [73].

Table5. Types of Chl-a algorithms.

Algorithm type Reference example Satellite sensor
Explicit Band ratio [74] L,L9
Implicit Radiative transfer [72]° S2A. S2B
P Machine learning 53] L8,L9, S2A, S2B

2 [72] Adapted for Sentinel 2/MSI by Arabi etal. [73]
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is provided in Table 5. Algorithms have been developed to
obtain colored dissolved organic material absorption (CDOM)
from Landsat, Sentinel-2A, and Sentinel-2B; however, their
uncertainty is large because of their strong sensitivity to AC,
and we thus elected not to emphasize them here. Interested
readers are referred to [53,54].

Spectral convolution

In instances of converting from hyperspectral resolution to
specific multispectral bands (e.g., to compare reflectance com-
puted with in situ hyperspectral sensors to that obtained from
a satellite), convolution of the hyperspectral data and the spec-
tral response function (SRF) of the multispectral band of inter-
est will need to be undertaken. Spectral convolution is possible
for a range of satellite parameters or derived water quality
products including IOPs (e.g., [55]). Note that SRF should be
applied to radiances rather than to reflectance when computing
lower resolution R,, [56]. SRF are available online for Sentinel-2
(https://sentinels.copernicus.eu/web/sentinel/user-guides/
sentinel-2-msi/document-library/-/asset_publisher/
Wk0TKajilSaR/content/sentinel-2a-spectral-responses) and
for Landsat (https://landsat.usgs.gov/spectral-characteristics-
viewer). Spectral convolution is often necessary when combining
time series from sensors with different spectral characteristics,
to validate instruments (e.g., compare in situ R, with airborne
R, [57] or space-borne R, [58]) and to apply retrieval algorithms
calibrated to specific sensors. However, spectral convolution is
commonly a forgotten step in the process of deriving water
quality products, potentially introducing biases [55,56].

In the case of applying algorithms for water quality prod-
ucts, a few bio-optical algorithms apply a spectral convo-
lution within the calculation [52], while other widely applied
semianalytical algorithms such as the work of Nechad et al.
[59] for turbidity or Nechad et al. [57] for SPM provide hyper-
spectral coefficients calculated for narrow bandwidth sensors
(typically <10 nm) that need to be transformed to match spectral
characteristics of broader band sensors (such as the ones
onboard Landsat-5 to Landsat-9 or Sentinel-2). For these satellite
sensors, Vanhellemont [24] provides turbidity coefficients calcu-
lated from [59,60] and Tavora et al. [66] provides SPM coeffi-
cients calculated from the original coeflicients available in [57].

Assigning uncertainties to derived products

Traditionally, uncertainty estimates are obtained from an analysis
comparing in situ measured data to data derived from water

Table 6. Overview of case studies.

color and temperature. A variety of statistical metrics are com-
puted to assess how well the product compares to in situ data.
The most commonly applied statistical methods include a sim-
ple linear regression with significance level of at least 5% (i.e.,
a<0.05). A linear regression typically retrieves at least 2 values:
the linear correlation coefficient (r) and its associated p-value.
The r value will define the strength of the linear relationship
between in situ and estimated/modeled data, while the value
represents the probability that the linear correlation occurred
by chance. Note that often the logarithm of an ocean product
is compared to the logarithm of the product derived from R,,
as both are typically log-normally distributed [61]. The linear
correlation coefficient, however, is not enough to assess the
uncertainties, as it is strongly dependent on the dynamic range
of the data and is not useful in obtaining an uncertainty (either
absolute or relative). Therefore, parameters such as root mean
square error, mean absolute percentage error, bias, and others
are often calculated (e.g., Table 1 in [62]). Note that, most often,
both the product from remote sensing and the validation data
have significant uncertainties. In such cases, it is best to use
type-II regressions, which are regressions that account for
uncertainties in both independent and dependent variables
[63]. A useful package that estimates point by point uncertain-
ties when regressing 2 variables is available from MBARI (https://
www.mbari.org/introduction-to-model-i-and-model-ii-linear-
regressions/). Doing so ensures that points with larger uncer-
tainties are weighted less in the regression than those with less
uncertainty. While the goodness of fit will be lower for the line
obtained in a weighed regression compared to a regression that
does not take uncertainties into account, the weighed regression
obtained is more robust and very likely more accurate.
More complete assessments of uncertainties may include
uncertainties from both in situ data and remote-sensing-derived
products. For in situ methods, uncertainties can be derived
from equipment calibration in the case of turbidimeters and
weight triplicates in the case of gravimetric methods. For
remote-sensing-derived products, uncertainties may include
AC, intrinsic assumptions in the algorithm of choice to derive
SPM and the range of R (1) values within a sampling box (for
a comprehensive treatment, see [64]). Uncertainties may also
come from the inherent mismatch between methods of data
acquisition regardless of equipment calibration, algorithm
accuracy, or AC. The in situ data used are of several types: either
at fixed point (e.g., moorings, or water samples) or from moving
platforms (e.g., ships) collecting samples at variable water

Satellite-derived product Site Satellite name and sensor Case study section

SST Coast of Maine, USA L8/TIRS Maine Coast SST

SPM Svalbard, NOR L8/0LI Tempelfjorden, Svalbard SPM
Turbidity Long-term turbidity estimates from

Patos Lagoon, BRA

Chl-a Coast of Maine, USA

R.(2) and Chl-a
Gulf Stream, USA

L5/TM, L7/ETM+, L8/0LI, L9/0OLI
S2A,S2B /MSI

L8/0LI, L9/0LI

Patos Lagoon Estuary, Brazil
Coastal Maine Chl-a

Provisional aquatic reflectance from
USGS: Coastal to Gulf Stream
476 R, and Chl-a
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depths and promoting local turbulence (i.e., affecting shallow
waters to a higher degree while effect may be minimal over
deeper waters). In general, water samples collected at depth
ranging between 0 and 1 m are considered as surface samples.
Satellite sensors, on the other hand, capture data integrated in
space (i.e., within the pixel size) and averaged for a window of
pixels (typically ranging between 3 and 7 pixels [64]). In addi-
tion satellite scenes capture information over different depths
for each band, with that depth being dependent on water clarity.
This inherent difference between the spatial scale of the in situ
samples used as reference for validation and the satellite scales

A Climatology of SST from GEE
30 T T T

implies an inherent uncertainty; that is, we expect that differ-
ences could be large for any given match-up and hence the need
to obtain as many match-ups as possible (so as to discern if
bias exist). Finally, uncertainties tend to be proportional to
the magnitude of the measurement at moderate to large values
(due to the nature of the algorithm’s uncertainties), while at low
values, absolute uncertainties tend to dominate (e.g., due to
instrument resolution).

Another way to evaluate the success of derived water quality
and water color product is to compare the distribution of
properties in time and/or space [64,65], rather than regress
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Fig. 3. Climatology of SST along the coast of Maine, USA estimated from GEE (A and B) at different cloud coverages. Points with a standard deviation greater than 10 °C were
removed (n = 1). (C) depicts spatial variability of SST from a downloaded L8/TIRS scene from 2022 September 14. (D) represents the relationship between the insitu SST and
SST from GEE, and (E) shows the relationship between insitu SST and Landsat-derived SST (downloaded scenes). (F) is a comparison between SST extracted from Landsat

(GEE-derived) and insitu SST.
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individually matched values. For example, a potential compari-
son could be of the frequency distribution of SPM measured
at a mooring location over a year to all the remotely retrieved
values that the mooring represents. This allows for more data
to be involved in the comparison than those available from strict
match-ups. If the 2 distributions overlap well, confidence is gained
in the inversion. If one is biased compared to the other, it could
indicate that the specific algorithm or AC used creates a biased
product. Before concluding that the fault is in the procedure
generating the products, careful consideration should be made
that no bias in sampling (space/time) could cause the observed
bias (e.g., including too many near-coast points that are typ-
ically associated with larger values in SPM).

o Chl-a: The most reliable way to validate Chl-a is with in situ
water samples filtered onto a filter, frozen before analysis,
and analyzed using high-performance liquid chromatog-
raphy. Unfortunately, collecting and analyzing such sam-
ples is time-consuming and expensive and requires trained
personnel. Less expensive analyses include in vitro fluores-
cence and spectrophotometry. Autonomous methods for
Chl-a are also possible (e.g., in vivo fluorescence or spec-
trophotometry) allowing for high-frequency sampling
but requiring that a proxy relation be derived using higher
accuracy methods.

o SPM and turbidity: Also regularly called total suspended
matter (TSM) or suspended sediment concentration (SSC),
SPM is estimated in situ by either (a) using side- or back-
scattering sensors that often are calibrated to provide
turbidity units [66] or (b) collecting water samples for
which gravimetric analysis has been carried out, allow-
ing conversion to SPM through a proxy relation. The 2
methods can be used in tandem to provide cross cali-
bration for the scattering sensor(s). Best practices on
water sampling and validation of turbidity and SPM are
summarized in [67].

A MODIS R,

0.012 ‘
0.008
0.004

B Surface R

R (443) (sr™")

C Aquatic R |

o Temperature: Also regularly called SST (sea surface tem-
perature), temperature is commonly measured in situ
using conductivity, temperature, and depth instruments
or less commonly simple temperature probes.

For additional details regarding methods to collect these
samples, see the Ocean Best Practices repository (https://www.
oceanbestpractices.org/).

Recipe for temperature

There is currently only one source of high-resolution temper-
ature data, the Landsat satellite series. It can be accessed
either by (a) direct download through the USGS website or
(b) through Google Earth Engine (GEE). Both platforms
provide the most recent collection 2 level 2 data. Unlike the
recipe for color data, level 2 surface temperature provided
from the Landsat series does not require additional AC,
although it should always be validated against in situ data in a
new region.

To directly download the temperature data, we access col-
lection 2 level 2 data from USGS Earth Explorer site (https://
earthexplorer.usgs.gov/). Useful step-by-step streaming videos
are accessible under key words “download Landsat”, for exam-
ple. USGS provides a tool to make bulk downloads of Landsat-8
and Landsat-9 data (https://dds.cr.usgs.gov/bulk). With satellite
data in hand, the user can continue processing through GUI-
based GIS tools (e.g., QGIS and ArcGIS) or coding platforms
(e.g., MATLAB and Python). Instead of downloading and
working with data locally, temperature data can also be accessed
through GEE. GEE hosts a large number of freely available
remote sensing datasets and enables users to analyze large
amounts of remote sensing data without downloading scenes
to their computer [68], which is particularly attractive for long
time-series analyses. The GEE online code editor allows users
to perform similar analyses as in a GIS or MATLAB, visualize,
and download results [68]. For temperature estimates using

D Surface Chl-a E Aquatic Chl-a

(cw.bu) ey

F R_Comparison

= AquaticR, 0.006
— SurfaceR, |

0.004

0.002

(1-15) (0%

- 0.000

400 500 600 700 800
Wavelength (nm)

Fig. 4. Comparison of MODIS-Aqua R, (A), with standard Landsat R, (B), and Landsat-9 Aquatic R, (C) centered at 443 nm. (D) and (E) show Chl-a calculated using the
0C3 algorithm tuned to Landsat wavelengths. (F) shows the mean R, spectra from each method for the patch of the Gulf Stream outlined in the black rectangle [in (C)] and
highlights both the lower blue reflectance from the standard Landsat product and its much higher variation. All imagery is projected in UTM Zone 18N.
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either GEE or a coding platform, the Landsat-8 and Landsat-9
thermal band used is band 10 (10.6 to 11.19 pm) which is pro-
vided as an unsigned integer (band 11 for Landsat-8 suffers
from stray light and is not discussed here). To convert it to
temperature in both GEE and coding platforms, we use the
following equation:

Temperature = Band, * 0.00341802 + 149 — 273.15 (°C)
€)
While a land mask is available from collection one, we have
found that using a threshold on band 7 (shortwave infrared,
2.11 to 2.29 pm) provides a simple delineation of the higher
reflective land (Band, ., > 0.15, where Band, was converted to
engineering units Band, ., = Band, * 0.0000275 — 0.2). The
conversion factors were obtained from USGS documentation
(https://www.usgs.gov/core-science-systems/nli/landsat/land-
sat-collection-2-level-2-science-products). The pixel-by-pixel
uncertainties in the temperature is given in the “..ST QA.TIF”
file as an unsigned integer and should be multiplied by 0.01
(table 6-1 in https://d9-wret.s3.us-west-2.amazonaws.com/assets/
palladium/production/s3fs-public/media/files/LSDS-1619_
Landsat-8-9-C2-L2-ScienceProductGuide-v4.pdf.

Note that the temperature obtained is that of a layer shallower
than 1 mm of the surface water, not representing the full water
column. Hence, it should not be surprising if a bias of around
1 to 2 °C is found during the day relative to a sensor 1 m below
surface in the summer at a highly stratified estuary under calm
conditions.

Case Studies

In this section, we share a few examples where we applied the
recipes described above (see Table 6) to showcase the concepts

and issues described above. These are examples of high-resolution
satellite products derived for a variety of water bodies (Fig. S1)
using different ACs and processing workflows. We share all
the associated codes (see information in the Supplementary
Materials) and data so that users have an opportunity to prac-
tice before working with their own data. We use the term sur-
face reflectance for USGS level 2 atmospherically corrected
reflectance designed for land application. We discourage its use
for the derivation of water quality parameters but include it
here in 2 case studies to contrast it with derived water R, ..

Maine Coast SST

Here, we demonstrate retrieving coastal SST from the Damariscotta
River estuary, a narrow estuary in Maine, USA, where tradi-
tional 1-km by 1-km SST products cannot accurately represent
the region. We showcase the steps for directly downloading
from the USGS in the Recipe for temperature section and pro-
cessing the scene in MATLAB and GEE. To follow along with
the direct download method, the user will need to retrieve a
level 2 SST image from USGS (link in the Masking and QC
section). To use the same region and image as the example code,
we select path 11, row 30 under the search criteria, and download
the product bundle for 14 July 2013. In addition to the scene,
we will need the function getLandsatL2 SST from GitHub
(https://github.com/OceanOptics/getLandsatL2_SST). This
function extracts the SST information and automatically applies
Eq. 3 from the Recipe for temperature section. The example
MATLAB script in the Supplementary Materials contains code
using “getLandsatL2 SST.m” function and will plot a down-
loaded image and extract data for a site of interest. While
directly downloading and working with scenes are needed for
certain analyses, it can be a labor intensive process. For exam-
ple, the user would have to download all available images in

Sentinel 2 - R4()) (sr=1)

Atmospheric correction

v SeaDAS  © ACOLITE (roi = 100)
e POLYMER ©> ACOLITE (roi = 300)
< C2RCC = ACOLITE (roi = 600)

..» OCSMART & ACOLITE (roi = 1,200)

450 500 550

600 650 700 750

Wavelength (nm)

Fig.5.R (1) for a Sentinel-2 (20-m resolution; of 2018 May 18) scene at the Upper Damariscotta River, USA. The same satellite scene was processed using ACOLITE's AC on
4 different regions of interest (roi; 100-by-100-, 300-by-300-, 600-by-600- and 1,200-by-1,200 pixels), as well as C2RCC, SeaDAS, OCSMART, and POLYMER ACs. Note that
we do not expect negative R, values (by definition it is >0) and, at low turbidity as observed in this location, we expect near zero values of reflectance in the NIR wavelengths.
C2RCC, POLYMER, and OCSMART are consistent with expectations for this image. White-filled symbols represent spectral profiles failing the QWIP algorithm test (i.e., ACOLITE
and SeaDAS). QWIP scores are 6.10 (SeaDAS), 0.15 (POLYMER), 0.18 (C2RCC), 0.16 (OCSMART), 0.22 (ACOLITE roi = 100), 0.31 (ACOLITE roi = 300), 0.33(ACOLITE roi = 600),
and 0.34 (ACOLITE roi = 1,200).
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their region and loop through each image to generate a clima-
tology as in Fig. 3A and B.

Our GEE example (see Fig. 3) explores the Landsat series
available within the “Landsat Collections” GEE dataset.
Although Landsat collection 2 contains level 1 data from
Landsat-1 to Landsat-9, it also contains science products for
sensors within Landsat-4 to Landsat-9. The biggest advantage
of using GEE is the possibility of compiling a time series of
different Landsat collection 2 products rapidly and without
downloading the data locally. The example GEE script in the
Supplementary Materials contains code to compile collection
2 Landsat SST products for Landsat-5, Landsat-7, Landsat-8,
and Landsat-9 thermal infrared sensors (TIRSs). The script masks
both land and cloud cover based on the Normalized Difference
Water Index and Landsat’s QA_PIXEL and QA_RADSAT bands
(https://www.usgs.gov/landsat-missions/landsat-collection-2-
quality-assessment-bands), respectively. It also merges all 3
sensors, applying 3 different resampling schemes (i.e., one pixel,
3% 3,and 5 X 5 window box). It generates a time series for one
specific path and row, here specifically for the Damariscotta
River estuary, including all images available for that area with
a limiting cloud percentage of 90%.

Provisional aquatic reflectance from USGS: Coastal

to Gulf Stream R, and Chl-a

If Landsat-8 and Landsat-9 are appropriate for your study area
and research goal, there is a relatively simple option to obtain
high-quality satellite imagery suitable for water color analysis.
The USGS provides, upon request, a provisional “aquatic reflec-
tance” product generated from the Level 1 Landsat-8 and
Landsat-9 data. These data are available globally from March
2013 onward, and requests simply require submitting the scene
ID (e.g., LCO9 L1TP 014035 20211109 20220119 02 T1) to the
USGS processing interface (https://espa.cr.usgs.gov/). These
scenes can be ordered individually or in bulk.

The USGS combines the initial Landsat level 1 data along
with auxiliary atmospheric data (atmospheric pressure, water
vapor, aerosol, wind, etc.) to atmospherically correct the data
(using 12gen in SeaDAS as outlined in [6]). These water leaving
radiances are normalized by the downwelling irradiance to
retrieve R,.. In a final step, the retrieved R,, is multiplied by #
to obtain the aquatic reflectance p,. While the product is still
provisional and as of this publication has yet to be validated
globally and across all water types, it has been assessed and found
to be a high-quality source of water color data with a stable AC.
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Fig. 6. Analysis of Chl-a in Damariscotta River Estuary from Sentinel-2A and Sentinel-2B. (A) depicts the match-up analysis between the daily insitu and Sentinel-2-derived
Chl-a. Vertical bars represent the standard deviation of 7-by-7 pixels within each sampling box. (B) depicts the data distribution. (C) represents the time series from both insitu
and Sentinel-2. (D) represents the high-resolution spatial distribution of Chl-a on 2021 June 18 (black dot represents the location of insitu data at the University of Maine’s
Darling Marine Center dock). MAPE, mean absolute percentage error; RMSE, root mean square error.
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Fig.7. Analysis of SPM in Tempelfjorden, Svalbard, Norway from the Landsat-8 sensor.
(A) shows the match-up between insitu and satellite-derived SPM within the day of
satellite overpass. SPM was derived from the use of 3 satellite bands: 655, 865, and
1,609 nm [52]. Vertical bars represent the derived uncertainties in SPM. The black
dot in the plot represents one match-up available between insitu SPM and the SPM
derived from USGS level 2. (B) represents the spatial distribution of SPM from level 2
R, acquired after ACOLITE processing. (C) depicts the uncertainties in SPM retrievals
of (B). (D) represents SPM from the R from the standard USGS algorithm. The light
gray area is data masked from USGS QA file, and panel shows uncertainties for the
SPM depicted in (D).

Except for lingering across track issues, this product fares well
in both cross-calibration with other sensors and in situ validation
with AERONET-OC [15]. More information about the product
is available here (https://www.usgs.gov/landsat-missions/
landsat-collection-2-provisional-aquatic-reflectance-science-
product).

As an example, we present data for a complex region stretching
from the extremely turbid and productive Pamlico—Albemarle
estuary, North Carolina, USA into the oligotrophic Gulf Stream
off Cape Hatteras, North Carolina and compare the aquatic
reflectance product with the standard level 2 surface reflectance
from Landsat-9 and the standard level 2 ocean color R, from
MODIS-aqua (Fig. 4). The Landsat aquatic reflectance and
surface reflectance products are divided by z to convert to R,
for comparison with MODIS. The improved AC compared to
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the standard product is especially noticeable in the blue Gulf
Stream waters. Much finer spatial detail is observable in the
Chl-a product of the aquatic R, product compared to the standard
R, as evidenced by the fine-scale eddy along the Gulf Stream
front and the outflow from the inlet. The increase in spatial
resolution over MODIS is especially striking around the inlets
and capes of the coastline. As noted in validation studies [15],
the blue reflectance computed for Landsat is higher than
MODIS, and across-track discontinuities are apparent in both
the aquatic and surface Landsat products and derived Chl-a. All
code to process the Landsat aquatic reflectance product and
example data to produce the imagery in Fig. 4 is available.

Coastal Maine Chl-a

For this case study on the coast of Maine (Sentinel-2; swath: 43
to 44 °N, 69.65 to 69.45 °W), we present 2 sets of results: a
comparison of AC schemes (Fig. 5) and a time series of
Sentinel-2A and Sentinel-2B (from 2016 to 2022), level 1C TOA
scenes processed to level 2 using AC from POLYMER (Fig. 6).

We first compare reflectances obtained with 5 different AC
software: SeaDAS (I12gen: aer opt -2), POLYMER (default),
C2RCC (C2RCC-Nets), OCSMART (default), and ACOLITE
[dark spectrum fitting added to 4 different regions of interest
(roi; i.e., 100-by-100, 300-by-300, 600-by-600, and 1,200-by-
1,200 pixels used to specify the dark spectrum)]. From these
level 2 scenes, we extracted the median R, spectra for a 7-by-7-
pixel area centered at an in situ sampling site [i.e., upper
Damariscotta River Estuary (http://maine.loboviz.com/loboviz/)]
and applied the QWIP algorithm for QC (Fig. 5) [48]. Note
that all AC-corrected spectra with |QWIP| < 0.2 have similar
red reflectance and hence will be in close agreement with
respect to the SPM value.

Last, we statistically assessed Chl-a retrievals and observa-
tions that the AC scheme provided in POLYMER and the OCx
algorithm for Chl-a matched observations best for this region
(Fig. 6), consistent with [16].

Tempelfjorden, Svalbard SPM
For this case study, we use a series of in situ and remote sensing
measurements collected during a 2015 campaign in a narrow
glaciated fjord in Svalbard, Norway (Tempelfjorden) [58]. Here,
we focus on the in situ surface SPM samples collected on the
same day of the Landsat-8 overpass (14 August 2015). On this
day, 11 in situ SPM samples were collected from a rigid inflatable
boat both inside and outside the subglacial discharge plume
(Fig. 7). Surface SPM water samples were collected in 1 liter of
volumes and filtered using a Suction Buchner system with 45 mm,
47-pm cellulose filters. These SPM concentrations ranged from
42t0 347 g¢-m ™, providing a range of values to compare against
2 sources of satellite derived products. (a) Surface reflectance
data from Landsat-8 R, collection 2 level 2 (recommended for
land), using the standard USGS algorithm, were downloaded,
and (b) alevel 2 output (' L2R"file) derived from the ACOLITE
dark spectrum scheme was used. Because USGS level 2
collection 2 bands are made available in an unsigned integer
data format, a conversion to water reflectance is necessary
http://www.pancroma.com/downloads/Using the USGS Landsat 8
Product.htm. Once transformed to R,, level 2 data, we applied
the multiwavelength algorithm [52] that provides both SPM
values and associated uncertainties.

We depict the relationship between SPM from both sources
of R, and from the in situ observations in Fig. 7. Although we
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use only 11 in situ data points, it is enough to demonstrate how
to (a) convert of unsigned integers from standard USGS products to
R,,, (b) compare of R, from multiple sources of level 2 scenes,
and (b) illustrate the richness of information from spatial
distribution of uncertainties. Last, we find the USGS Level 2
data to be masked over much of the scene, unlike that of
ACOLITE.

Long-term turbidity estimates from Patos Lagoon

Estuary, Brazil

For this case study, we collected cloud-free level 1 scenes from
Landsat-5, Landsat-7, Landsat-8, and Landsat-9 sensors between
1984 and 2022 in the Patos Lagoon Estuary, Brazil (swath: 31.7
to 32.4 °S, 51.8 to 52.3 °W). The Landsat imagery covered the
following time periods: 1984-2011 (Landsat-5), 1999-2003
(Landsat-7),2013-2022 (Landsat-8), and 2021-2022 (Landsat-9).
AC was carried out using the ACOLITE processor with default
AC (i.e., dark spectrum) and ancillary data.
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Z 80
3 8
2 60
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kel
2 40r
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Next, to simplify the exercise, we use ACOLITE to derive
turbidity with the [59] generic algorithm (in the NIR band to
avoid R, saturation) available within the processor.

Level 2 satellite scenes (i.e., *.L2W files) are examined with
MATLAB scripts (*.m; see the Supplementary Materials—Case
3.3) to generate a long time series of turbidity. Files are named
by the order of steps (e.g., stepO1..., step02...) to make process-
ing more intuitive. The step01* script finds match-ups between
in situ sampled turbidity and satellite overpasses (at a given
5-by-5-pixel area), a maximum of 30-min time interval between
the satellite overpass and in situ data, and latitude and longitude
specified from the same in situ data (https://simcosta.furg.br/),
based on the recommendations of the International Ocean
Colour Coordinating Group [64] (Fig. 8A).

Match-up analysis is for the period between 2016 and 2021,
when systematic in situ data sampling was available. With this
match-up dataset, a regional calibration is applied to satellite-
derived turbidity using a power-law regression. To obtain
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Fig.8. Analysis of turbidity in Patos Lagoon Estuary, Brazil from Landsat-5, Landsat-7, Landsat-8, and Landsat-9 sensors. Two buoy stations were used to provide a comparison
example between satellite-derived and insitu turbidity. (A) shows regionally calibrated match-ups between satellite derived and insitu turbidity for Buoys RS1and RS4 within
30-min maximum interval and a 3-by-3-pixel window. Vertical bars represent the standard deviation of pixels within each sampling box. (B) represents the data distribution
of insitu and satellite-derived turbidity sampled at station Buoy RS4. (C) to (F) depict one example of calibrated satellite-derived turbidity for each sensor. Location of insitu

stations is depicted in (F).
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locally calibrated turbidity, we applied a type II regression,
along with a computation of Kendall’s Tau correlation coefhi-
cient, root mean square deviation, and median absolute devi-
ation. Because of lack of match-up data available for the time
covered by Landsat-5 and Landsat-7, an additional approach,
the turbidity distribution, for comparison between in situ
measured and satellite data is available in the step02* script
(Fig. 8B). Those steps are necessary to guarantee that satellite-
derived turbidity is within an acceptable uncertainty compared
to in situ measured turbidity data.

The step03* script plots a map of the turbidity satellite scene
for each Landsat sensor using the “m_map” package (https://
www.eoas.ubc.ca/~rich/map.html) (Fig. 8C to F).

Final Remarks

To date, the use of high-resolution water color and SST data
has been mostly in the hands of expert users. In this paper, we
attempt to push toward the democratization of these data so
that a broader audience can use them. Our goal was to provide
sufficient information so that users without specialized knowl-
edge of remote sensing data and/or AC, particularly newcom-
ers, can determine which steps are necessary for them to
process water color products from the rich archive of high
resolution open-access remote sensing data. We have found
that this information was somewhat lacking and hope to thus
save time for newcomers to this field. We emphasize that to
establish confidence in the data retrieved and quantify uncer-
tainty, in situ data are necessary. In essence, satellites are used
to interpolate in time and space between in situ data, and
this interpolation becomes tenuous without appropriate in situ
data. While we mentioned several tools to QA/QC of the R,
spectra, they are not sufficient to establish the quality of derived
parameters. This is because changes in the nature of the under-
lying parameters (e.g., sediment mineralogy and phytoplankton
species composition) can change their mass specific optical
properties and, hence, their impact on the light leaving a water
body. Last, we hope that the case studies presented here are
useful and that new and old practitioners alike get in the habit
of sharing their code and data together with their investiga-
tions, to the benefit of the whole community.

We have provided recipes here for the derivation of water
quality products that we hope will be widely used. However,
we urge national and international organizations to distribute
such products to the public. Since substantial public funds have
been used to fund these satellite missions, it is only reasonable
to expect that such products be widely and freely available and
not just the radiance from which they are derived.
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