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An important parameter for derivation of water quality, 
satellite water leaving reflectance, ρw (Eq. 2), is derived from 
the processing of the measured Lt to obtain the water-leaving 
radiance (Lw) in a process called AC [12].

Remote sensing reflectance, Rrs, is the ratio of the water leaving 
radiance at the water surface (Lw) to the downwelling irradiance 
(Ed). Rrs is a function of the inherent optical properties (IOPs; 
namely, backscattering and absorption). The IOPs are functions 
determined of the concentration and composition of water 
quality parameters such as Chl-a, SPM, and colored dissolved 
organic matter (CDOM) [13]. These water quality parameters 
are what is retrieved by “inverting”, that is applying algorithms 
to Rrs or ρw to obtain water quality parameters. To make Rrs as 
independent as possible from sun zenith and satellite viewing 
angles, a “normalization” procedure is often performed (see the 
Normalization during reflectance derivation section and [12]).

For readers new to the fields of aquatic optics and aquatic 
remote sensing, we suggest Mobley’s book as an introduction 
(https://ioccg.org/wp-content/uploads/2022/01/mobley- 
oceanicopticsbook.pdf). In addition, the International Ocean 
Colour Coordinating Group report series (https://ioccg.org/
what-we-do/ioccg-publications/ioccg-reports/) contains a wealth 
of information and definitions of the terminology that you will 
find along the document.

Our goal in this work is to present recipes for nonspecial-
ists to derive water quality data using publicly available data 
and open-source tools. We emphasize that the only way to 

assess the quality of data obtained and their associated uncer-
tainties is through validation with in situ data. Similar vali-
dation has to be conducted for operational products from 
low-spatial-resolution satellites in inland waters and coastal 
areas as assumptions true to the open ocean may not be valid 
nearshore (e.g., covariation of dissolved organics and Chl-a, 
a simplified marine atmosphere for AC). Note that even in 
open ocean environments, water quality products may be biased 
as they have been developed with limited datasets [14]. While 
we focus on the coastal ocean, our recipes are applicable to 
freshwater lakes and rivers as well, with minor modification 
(e.g., adjusting for elevation in the AC step for Alpine lakes).
Throughout this document, we adopt the term “water color” 
to denote the remotely sensed reflectance, Rrs; however, it is 
also referred to as “ocean color”, “ocean color remote sensing”, 
and “aquatic color” in the literature.

High-resolution remote sensing of aquatic environments is 
a very active area of research, and novel approaches and ana-
lytical tools are added often. We encourage readers to stay 
abreast of innovations that may be pertinent for their specific 
needs. We note that since 2020, provisional products using 
Sentinel-2 have been generated by the European Space Agency 
(ESA) for coastal Europe and a few other locations at 100-m 
resolution (https://resources.marine.copernicus.eu/products) 
and that provisional data using Landsat-8 and Landsat-9 are 
available from US Geological Survey (USGS) upon request 
(see the Provisional aquatic reflectance from USGS: Coastal to 
Gulf Stream Rrs and Chl-a section).

Materials and Methods

The main ingredient for deriving water color data is the level 
1C data, which is georeferenced and calibrated data at the TOA. 
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Table 1. Notation of symbols and acronyms.

Symbol Description Unit

Lt
Total radiance at the TOA W·m−2·sr−1·nm−1

LR
TOA radiance due to molecular scattering in the atmosphere W·m−2·sr−1·nm−1

La
TOA radiance due to scattering by aerosols only W·m−2·sr−1·nm−1

LaR
TOA radiance due to aerosol-molecule scattering W·m−2·sr−1·nm−1

LTOA
g

TOA radiance due to sun glint W·m−2·sr−1·nm−1

LTOA
sky

TOA radiance due to surface-reflected background sky W·m−2·sr−1·nm−1

LTOA
wc

TOA radiance due to whitecaps and foam W·m−2·sr−1·nm−1

Lw
TOA radiance emanating from within the water W·m−2·sr−1·nm−1

ρw Water-leaving reflectance, ρw = Rrs·π —

Ed
Downwelling irradiance W·m−2·sr−1·nm−1

θv
Viewing direction Degree

θs
Solar zenith angle Degree

ϕ  

0+, 0−

Azimuthal angle measured relative to the Sun’s azimuthal direction  

above, and below water surface

Degree

—

λ Wavelength (i.e., satellite band) nm

Rrs
Remote sensing reflectance (water color) sr−1

δRrs(λ) Rrs(λ) uncertainty sr−1
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While surface reflectance data (level 2) are provided for the 
Landsat and Sentinel-2 visible bands, their quality may not be 
sufficient to derive most water quality products [15], as the AC 
applied has not been designed for a dark target such as water. 
Surface temperature data are also available at level 2 and have 
become recently available in collection 2 for the Landsat satel-
lite series (although a linear calibration equation is necessary 
to convert to temperature; see Eq. 3) and are of sufficient quality 
to be directly useful (e.g., [16]). We will therefore separate the 
recipes (Fig. 1) for water temperature from those derived from 
water color (i.e., SPM, turbidity, and Chl-a). The latter param-
eters necessitate an AC step to derive level 2 (water surface) 
data from level 1 TOA data.

The decision of which data products to use will depend on 
the specific application. Each satellite sensor (and hence derived 
products) has different spatial, spectral, and temporal resolu-
tions as well as radiometric sensitivity. Along with the revisit 
period of the satellite, the spatial resolution (i.e., the pixel size) 
of a satellite image is one of the essential aspects of remote 
sensing, as it determines the level of detail captured. Although 
it is intuitive to assume that a higher spatial resolution is always 
desirable, in reality, the choice of level of detail depends both 
on the application needs and on computational capacity avail-
able. Figure 2 exemplifies the visual impact of different spatial 
resolutions on surface coastal water features.

Because of their small footprint compared to traditional ocean 
observing satellites, high-resolution satellite sensors (pixel 
size < 100 m) usually have a long revisit period (see Table S1) in 

comparison to near daily coverage by their low-spatial-resolution 
counterparts (e.g., Moderate Resolution Imaging Spectro-
radiometer (MODIS)-aqua or Sentinel 3-OLCI). Temporal reso-
lution increases as one approaches the poles due to the convergence 
of longitudes and as one combines data from several satellites 
operating on different schedules. Overpass times for specific sat-
ellites are available using, for example, a tool provided by NASA 
(https://oceandata.sci.gsfc.nasa.gov/overpass_pred/).

Landsat and Sentinel-2 missions have different spectral and 
radiometric resolutions, i.e., bandwidths, center wavelengths, sig-
nal-to-noise ratio, and number of bands. Landsat-5 and Landsat-7 
particularly have relatively low signal-to-noise ratio and spectral 
resolutions, which makes it challenging to retrieve water quality 
products with high fidelity. USGS provides a summary of Landsat 
known issues (https://www.usgs.gov/landsat- missions/landsat- 
known-issues). These limitations, however, are not meant to dis-
courage the reader from carrying out analysis using either 
Landsat-5 or Landsat-7 but to raise awareness and provide proper 
interpretation of results. Landsat-8, Landsat-9, Sentinel-2A, and 
Sentinel-2B, on the other hand, have higher spectral and radiomet-
ric resolutions. Tables S2 and S3 summarize their characteristics.

Recipe for water color products (SPM and Chl-a)
Obtaining level 1C data
The source of level 1C data depends on the satellite sensor of 
choice: Landsat-5, Landsat-7, Landsat-8, and Landsat-9 (for all 
sensors mentioned in Table S1) data are available from USGS 
(https://earthexplorer.usgs.gov), while Sentinel-2A and Sentinel-2B 

Fig. 1. Schematic of the recipe elements to obtain satellite-derived water quality products.
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data are available from ESA (https://scihub.copernicus.eu/) web 
platforms. Historical data from Sentinel-2A and Sentinel-2B 
(e.g., on Copernicus, older than 12 months) may not be avail-
able for direct download, requiring an order beforehand. ESA 
also distributes their products through several platforms via the 
Data and Information Access Services (https://www.copernicus.
eu/en/access-data/dias), each offering different spatial and tem-
poral resolutions. While satellite data can be obtained for a 
given scene at the web portals above, we developed a single 
Python-based tool [getOC (https://github.com/OceanOptics/
getOC)] to batch download NASA and ESA satellite data (for 
both low- and high-resolution sensors) and simplify data acqui-
sition. Detailed instructions can be found in the GitHub link 
above. This tool automatically queries different data platforms 
and downloads all available images for the selected dates and 
locations. It uses 2 different data platforms, each maintained 
either by NASA or by ESA, hence requiring a registration to 
EarthData (https://urs.earthdata.nasa.gov/users/new) for NASA 
satellites and CreoDIAS (https://portal.creodias.eu/register.
php) for ESA satellites. Support for USGS EarthExplorer to 
download Landsat scenes will be implemented soon.

AC for water color data
Once the level 1C data are acquired, AC procedures are necessary. 
ACs remove the effects of atmospheric gases and aerosols from 
the satellite scene (which often contributes >90% of the signal 
at the TOA) as well as accounts for whitecaps and glint (for 
reviews, see [12,17,18] for NASA’s AC approach). There are 
many AC schemes available in the public domain (e.g., Table 2). 
These AC schemes are based on a range of methods and provide 
a choice of options to derive Rrs or ρw [19], from which water 
quality parameters (i.e., products) are derived. Some of these 
software have a graphical user interface (GUI) and tools to 
merge images in time and space (e.g., SeaDAS, SNAP, and 
ACOLITE), while others do not (e.g., POLYMER). These tools 
also differ in their capacity to derive water quality products 

(e.g., ACOLITE), although this step could be applied inde-
pendently. Here, we introduce 5 software environments that 
implement an AC (multiple options exist in some software 
environments; Table 2): ACOLITE, OCSMART, POLYMER, 
SeaDAS, and SNAP, as well as examples using each of them. 
For further information about comparative performance of 
different ACs, refer to [19–22]. Note that (a) the majority of 
the AC software (i.e., OCSMART, POLYMER, and SNAP) does 
not perform AC on Landsat-5 and Landsat-7, which can rep-
resent an obstacle for long time series; and (b) because of the 
large atmospheric contribution to the measured TOA radiance, 
different AC schemes, as well as different algorithms to derive 
products from above water reflectance, will likely result in char-
acteristically different estimates of water quality products [23]. 
Therefore, quality assurance (QA) and quality control (QC) 
steps must be applied to Rrs and the derived products (see 
below) to ensure that the AC was successful.

•  ACOLITE: Developed at the Royal Belgium Institute of 
Natural Sciences, ACOLITE has a detailed user manual 
and forum, both of which provide instruction and full 
support, especially useful for new users. The software is 
available in GUI and command line (CLI) modes and 
is available as Python source code (GitHub or https://
odnature.naturalsciences.be/remsem/software-and-data/
acolite). ACOLITE batch processing is only available in 
CLI mode, for which steps are described and setup is 
available (https://odnature.naturalsciences.be/remsem/
acolite-forum/viewtopic.php?t=29). It provides 2 AC 
schemes: dark spectrum fitting (hereafter DSF) [24] and 
exponential extrapolation (hereafter Exp) [25,26]. The 
Exp scheme uses Rayleigh-corrected reflectance to esti-
mate aerosol reflectance in 2 short wave infrared (SWIR) 
bands (i.e., infrared by default) and extrapolates to the 
near-infrared (NIR) visible bands. However, a possible 
flaw in SWIR exponential extrapolation when considering 
adjacency effects and sun glint may lead to overestimation 

Fig. 2. Comparison of different spatial resolutions simulated from a Landsat-8 scene for a pixel size of 30 m (original Landsat-8 scene) (A), 300 m (B) and 1,000 m (C). (A) and 

(B) have each a zoomed subset depicting differences in pixel size when one deals with smaller areas, while (C) shows clear differences already in large areas. Landsat-8 scene 

was re-sampled using SNAP software. Note that small inland features such as reservoirs or lakes are also affected by the spatial resolution of the satellite sensor.
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of ρw for which case the Exp becomes inadequate. The 
DSF scheme uses multiple dark targets to avoid overes-
timation by the Exp approach in ACOLITE.

•  OCSMART: Ocean Color—Simultaneous Marine and 
Aerosol Retrieval Tool (OCSMART) is a multisensor data 
analysis platform designed to retrieve aerosol and water 
color products from satellite remote sensing images. 
OCSMART uses multilayer neural networks trained 
using an extensive set of radiative transfer simulations 
based on a coupled atmosphere–ocean radiative transfer 
model to perform the AC and subsequent retrieval of 
ocean IOPs [27]. The software (http://www.rtatmocn.
com/oc-smart/) runs on UNIX and Windows.

•  POLYMER: Developed by F. Steinmetz, P.-Y. Deschamps, 
and D. Ramon [28] and maintained and distributed by 
HYGEOS (https://forum.hygeos.com/viewforum.php?f=5), 
POLYMER comes with a detailed README file and 
a forum. The software is available via the CLI only. 
POLYMER models the spectral reflectance of the atmos-
phere, sun glint, and water using a polynomial fit on all 
visible bands. This separation of the contribution from 
different sources allows a relatively accurate recovery of 
water reflectance even where other AC schemes based 
only on NIR bands fail due to high glint contamination.

•  SeaDAS: Developed and maintained by NASA, SeaDAS is 
a software package for processing, displaying, analyzing, 
and quality-controlling remote sensing data (download at 
https://seadas.gsfc.nasa.gov). The software runs on the 
UNIX and Windows OS but can be used in a Windows 
OS with additional steps (https://seadas.gsfc.nasa.
gov/client_server/). SeaDAS currently provides several 
AC schemes via its l2gen processor (see Table S1) 
that are applied on a pixel-by-pixel basis. The Earthdata 
forum provides excellent support for debugging with 
SeaDAS (https://forum.earthdata.nasa.gov/viewforum.
php?f=7&sid=7b8a85eb704352689d10b1e972f22870).

•  SNAP: Developed and maintained by ESA, the Sentinel 
Application Platform (SNAP) is a software package for 
processing, displaying, analyzing, and quality-controlling 
remote sensing data (download at https://step.esa.int/
main/download/snap-download/). The software runs on 
the UNIX and Windows OS. Embedded in SNAP is the 
Case 2 Regional CoastColour (C2RCC) model that per-
forms an AC intended for coastal waters using a neural 
network algorithm ([29]).

To carry out any AC, we require ancillary data in addition 
to level 1C data (e.g., surface pressure, winds, ozone concen-
tration, etc.). ACOLITE, OCSMART, POLYMER, and SeaDAS 
automatically download the latest version of ancillary data 
available for each scene from Earthdata (https://urs.earthdata.
nasa.gov). In POLYMER, the user may instead choose the 
European Centre for Medium-Range Weather Forecasts Reanalysis 
dataset for the ancillary data. SNAP, however, requires that the 
user downloads the ancillary data, which can be found at the 
water color data repository (https://oceandata.sci.gsfc.nasa.
gov/directaccess/Ancillary/). It is important to note that ancil-
lary data are not available in real time, and there may be several 
weeks between the time of acquisition and when the scene 
analyzed. If near real-time products are needed, an educated 
guess at the value of the ancillary data (e.g., based on a local 
climatology) may be used but may bias the derived output.

Normalization during reflectance derivation
While Rrs is intended to be a product of the IOPs of the water 
(i.e., absorption and scattering), Rrs is an apparent optical property 
because it is affected by other factors such as the geometry of 
sun and satellite. To minimize the impact of viewing geometry, 
we apply the normalization schemes. These convert the meas-
ured Rrs to a normalized reflectance with the sun at zenith and 
account for the satellite viewing angle and some atmospheric 
effect [12,30,31]. A very detailed account of this normalization 
is provided in Section 3 of book [12]. It is important to realize 

Table 2. AC schemes by software.

AC Option Software Satellite Run timea Difficulty levelb

DSF Dark spectrum ACOLITE L5, L7, L8, L9, S2A, S2B 10 min 23 s II

Exp Exponential ACOLITE L5, L7, L8, L9, S2A, S2B 4 min 48 s II

OCSMART Machine learning OCSMART L8, L9c, S2A, S2B 5 min 55 s (60 m) I

POLYMER Function of glint, aerosol POLYMER L8, S2A, S2B 23 min 34 s IV

l2gen 2 SeaDAS L5, L7, L8, L9, S2A, S2B 2 h 33 min V

C2RCC C2RCC-Nets SNAP L8, S2A, S2B 18 min 54 s III

C2X C2X-Nets SNAP L8, S2A, S2B 18 min 13 s III

a Run time is based on processing a Sentinel-2 scene (20-m resolution) in middle of Gulf of Maine from 2021.06.18 on high-performance computer with  

a Linux OS (refer to Fig. 5D for a visual of the scene).

bDifficulty level are represented from I (easiest) to V (hardest) determined on the basis of the effort needed to apply them by the same user (B.J.) based  

           on batch processing Sentinel-2 scene with Linux OS.

cAccording to contact with the software developer, OCSMART, and POLYMER plan to support Landsat-9. C2RCC is not yet fully adapted for Landsat-9 

(https://forum.step.esa.int/t/problems-encountered-in-processing-landsat8-9-images-with-c2rcc/36806). D
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that not all AC schemes introduced above (e.g., ACOLITE) 
compute a normalized reflectance and hence may result in a 
different value for a water quality parameter when using algo-
rithms, which assume that the reflectance is normalized. For 
Landsat data, POLYMER computes normalized reflectance, 
requiring the angle band files created using the USGS’s L8 Angle 
tool (https://www.usgs.gov/landsat-missions/solar-illumination- 
and-sensor-viewing-angle-coefficient-files).

Georeferencing and data grids
While it may be expected that remote sensing data are available 
in even grids of latitudes and longitudes, this is not the case. A 
variety of reasons stemming from satellite orbits and distances 
between longitude lines changing with latitude explain this non-
regularity. Therefore, it is critical to map the data onto a grid for 
analysis and plotting and to test that this transformation is done 
correctly. The assignment of geographic coordinates for each 
data point is addressed at level 1C. To ensure that level 2 data 
are mapped correctly to a grid, specific functions are available 
in geographical information system (GIS) software and in 
computing environments such as Python and MATLAB (e.g., 
the MATLAB function “geotiffinfo.m” can be used to extract 
the latitude and longitude coordinate of each point; see codes 
in the Supplementary Materials). A good test to determine 
whether your program correctly maps the data is to add the 
location of moorings with validation data into your scene and 
confirm that the buoy location is where you expect it (e.g., 
when compared to Global Positioning System coordinates or 
Google Earth).

Masking and QC
Masks
Almost every remote sensing scene contains areas where Rrs 
cannot be accurately retrieved because of clouds, cloud shad-
ows, glint, land, vegetation shadow, ice, or shallow areas where 
bottom reflectance affects the water leaving radiance. Masking 
these pixels is crucial to avoid biased or unrealistic data. 
Examples of existing coastal waters masking criteria for the 
software tools we mentioned above, especially those focusing 
on clouds, are in Table 3. However, there are invariably cases 
when existing masks do not cover what users may conclude are 
erroneous or biased results. In such cases, users could and 
should devise their own criterion (e.g., reflectance threshold 
above or below a specific value, areas where reflectance does 
not pass a QA/QC criterion) and document these customized 
criteria when sharing results with others.

Adjacency effect
Atmospheric scattering of light can result in the contamination 
of light measured at a specific location by light from nearby 
areas. If the adjacent areas are substantially different in their 
reflectance (e.g., snow-covered land near a dark coastal ocean), 
the darker water pixels may be materially affected. Adjacency 
effects can cause issues for distances up to about 40 km from 
the coastline [32]. Contamination from adjacency effects 
can be diagnosed by looking for and avoiding regions with 
expressive spatial gradients in reflectance at relevant wave-
lengths in the direction from the coast toward the water (e.g., 
[21,33,34]). The POLYMER AC can recover relatively good 
data quality even when it is affected by adjacency effects; 
moreover, the vegetation adjacency correction was added in 
version 4.15 [28,35].

Stripping
Image artifacts, particularly stripping, affect image quality and 
the quality of water color products estimated from remote sens-
ing data. Stripping is an image artifact in the along or across-
track direction that results from different factors, such as sensor 
characteristics, poor calibration, and imaging processing itself. 
In aquatic environments, stripping is notably problematic since 
the low radiance values from water targets can be of similar 
magnitude as the variability imposed by the artifacts. The 
medium- to low-resolution sensors commonly used for water 
color studies [e.g., Visible Infrared Imaging Radiometer Suite 
(VIIRS), and Sea-viewing Wide Field-of-view Sensor (SeaWIFS), 
and MODIS] have long had stripping issues [36,37]; however, 
high-resolution sensors, particularly sensors within the Landsat 
program and Sentinel constellation, exhibit similar stripping 
issues when applied to water color [15,38,39]. Noise patterns 
in Sentinel-2 images have been reported to be highly variable, 
which can lead to a misinterpretation of water color since features 
observed can be attributed to either image striping patterns 
or the variability of ocean optical properties [40]. On the other 
hand, previous studies using Sentinel-2 imagery have shown 
that stripping did not affect the retrieving of water IOPs, and 
authors argue that the error introduced by stripping is not suffi-
ciently high to affect the IOP signal [41]. Destripping methods 
have long been applied to remote sensing sensors [42]. MODIS 
and VIIRS have been the focus for most of the testing in destripping 
methods with expressive improvement in image stripping 
issues [36,43,44]. Although stripping filters have been applied 
for Landsat and Sentinel-2 program sensors [45,46], when dealing 
with water color, fewer studies have shown promising results [40].

Table 3. Masking schemes for clouds and shadows.

AC software Type of artifact Methods Source

ACOLITE Cloud ρsurf (1,609) > 0.0215 [19]

  OCSMART Cloud ρrc(865) > 0.027; ε < 2.5 [27]

  POLYMER Cloud ρsurf (865) > 0.2 [19]

  SeaDAS Cloud
Coastal waters: ρsurf (1,609) > 0.018;  

open ocean: ρsurf (865) > 0.027
[19]

  SNAP Cloud IdePix [19]

Thin cloud, shadows WiPE algorithm [69]
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QC of the reflectance spectra
Reflectance spectra, while highly variable between different 
environments, are constrained in the spectral shapes that they 
exhibit. A tool based on a library of high-quality spectra has 
been created to assess the likelihood that a reflectance spectra 
is reasonable [47], assigning a quality score that can be used to 
filter nonphysical spectra and suggest which AC works best 
in a given environment. The tool is available for Sentinel-2 and 
Landsat-8 (https://oceanoptics.umb.edu/score_metric/) for which 
a score between 0 and 1 is assigned to the targeted spectrum, 
with 1 for likely good Rrs spectra and 0 for likely unusable Rrs 
spectra. Since this scoring system’s publication, an additional 
tool has been created called the Quality Water Index Polynomial 
(QWIP) [48]. The QWIP is based on the Apparent Visible 
Wavelength (AVW) [49], a one-dimensional geophysical metric 
of color that is inherently correlated to spectral shape calculated 
as a weighted harmonic mean across visible wavelengths. 
QWIP is computed on the basis of a polynomial relationship 
between the hyperspectral AVW and a Normalized Difference 
Index using red and green wavelengths. The QWIP value repre-
sents the difference between a spectrum’s AVW and Normalized 
Difference Index and the QWIP polynomial. A QWIP score of 
less than −0.2 or greater than 0.2 for a spectrum indicates that 
it is likely a bad spectrum [48].

Derivation of water quality products
Once Rrs or water leaving reflectance (ρw = π × Rrs) has been 
obtained and quality-controlled, water quality parameters can 
be derived. Algorithms to obtain water quality products from 
Rrs are available in the literature or can be empirically derived 
by the user based on relationships obtained with their own 
dataset. Algorithms are either explicit (i.e., based on an equa-
tion that relates Rrs at a given band or ratios of bands to a water 

quality product) or implicit (i.e., generated using a neural net-
work or other machine learning technique). Explicit algorithms 
can be purely statistical or can incorporate some knowledge of 
radiative transfer (referred to as semianalytic). Robust algo-
rithms are most often the ones that a user did not tune to their 
own data. On the other hand, it could be that local conditions 
are sufficiently different from other environments that only a 
locally tuned algorithm provides unbiased products (e.g., local 
sediment mineralogy effect on suspended SPM retrieval). For 
instance, implicit band ratio-based algorithms can potentially 
minimize the sensitivity to effects of particle size and density.

To obtain SPM, algorithms typically use red and NIR wave-
lengths where water typically dominates absorption. Since 
water absorption is often dominating in the red and NIR wave-
lengths, Rrs is proportional to backscattering by particles 
(i.e., particle concentration). The relationship between Rrs and 
backscattering (or SPM, or turbidity) is linear at low concen-
trations, but as concentration increases, particle contribution 
to absorption increases changing the sensitivity of Rrs to SPM, 
a process called saturation [50]. Since water absorption is gen-
erally monotonically increasing in the red and NIR, shifting to 
longer wavelengths as SPM concentration increases [51] or 
using a multiwavelengths algorithm [52] helps to increase the 
sensitivity of Rrs to SPM. Table 4 provides a summary of differ-
ent types of SPM and turbidity algorithms.

Algorithms for extracting biological information from ocean 
color (e.g., Chl-a and CDOM) are making large advances but 
are still in development. Typical empirical Chl-a algorithms 
designed for the open ocean are not likely to work well in many 
coastal environment where assumptions of water constituents 
covarying in the open ocean may break down in coastal envi-
ronments. Thus, locally tuned algorithms are likely to be more 
successful. A summary of different types of Chl-a algorithms 

Table 4. Types of SPM and turbidity algorithms.

Algorithm type Reference example Satellite sensor

Explicit

Band ratio [70] L8, L9, S2A, S2B

Semianalytical single band [57,59]a L5, L7, L8, L9, S2A, S2B

Semianalytical band switch [51,71] L8, L9, S2A, S2B

Semianalytical multiple bands [52] L5, L7, L8, L9, S2A, S2B

Implicit
Radiative transfer [72]b S2A, S2B

Machine learning [53] L8, L9, S2A, S2B

aThe algorithm setup allows for application to high-resolution sensors. We suggest that coefficients be adapted (see the Spectral convolution section).

bAdapted for Sentinel 2/MSI by Arabi et al. [73].

Table 5. Types of Chl-a algorithms.

Algorithm type Reference example Satellite sensor

Explicit Band ratio [74] L8, L9

Implicit
Radiative transfer [72]a S2A, S2B

Machine learning [53] L8, L9, S2A, S2B

a [72] Adapted for Sentinel 2/MSI by Arabi et al. [73]
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is provided in Table 5. Algorithms have been developed to 
obtain colored dissolved organic material absorption (CDOM) 
from Landsat, Sentinel-2A, and Sentinel-2B; however, their 
uncertainty is large because of their strong sensitivity to AC, 
and we thus elected not to emphasize them here. Interested 
readers are referred to [53,54].

Spectral convolution
In instances of converting from hyperspectral resolution to 
specific multispectral bands (e.g., to compare reflectance com-
puted with in situ hyperspectral sensors to that obtained from 
a satellite), convolution of the hyperspectral data and the spec-
tral response function (SRF) of the multispectral band of inter-
est will need to be undertaken. Spectral convolution is possible 
for a range of satellite parameters or derived water quality 
products including IOPs (e.g., [55]). Note that SRF should be 
applied to radiances rather than to reflectance when computing 
lower resolution Rrs [56]. SRF are available online for Sentinel-2 
(https://sentinels.copernicus.eu/web/sentinel/user-guides/
sentinel-2-msi/document-library/-/asset_publisher/
Wk0TKajiISaR/content/sentinel-2a-spectral-responses) and 
for Landsat (https://landsat.usgs.gov/spectral-characteristics- 
viewer). Spectral convolution is often necessary when combining 
time series from sensors with different spectral characteristics, 
to validate instruments (e.g., compare in situ Rrs with airborne 
Rrs [57] or space-borne Rrs [58]) and to apply retrieval algorithms 
calibrated to specific sensors. However, spectral convolution is 
commonly a forgotten step in the process of deriving water 
quality products, potentially introducing biases [55,56].

In the case of applying algorithms for water quality prod-
ucts, a few bio-optical algorithms apply a spectral convo-
lution within the calculation [52], while other widely applied 
semianalytical algorithms such as the work of Nechad et al. 
[59] for turbidity or Nechad et al. [57] for SPM provide hyper-
spectral coefficients calculated for narrow bandwidth sensors 
(typically <10 nm) that need to be transformed to match spectral 
characteristics of broader band sensors (such as the ones 
onboard Landsat-5 to Landsat-9 or Sentinel-2). For these satellite 
sensors, Vanhellemont [24] provides turbidity coefficients calcu-
lated from [59,60] and Tavora et al. [66] provides SPM coeffi-
cients calculated from the original coefficients available in [57].

Assigning uncertainties to derived products
Traditionally, uncertainty estimates are obtained from an analysis 
comparing in situ measured data to data derived from water 

color and temperature. A variety of statistical metrics are com-
puted to assess how well the product compares to in situ data. 
The most commonly applied statistical methods include a sim-
ple linear regression with significance level of at least 5% (i.e., 
α ≤ 0.05). A linear regression typically retrieves at least 2 values: 
the linear correlation coefficient (r) and its associated p-value. 
The r value will define the strength of the linear relationship 
between in situ and estimated/modeled data, while the value 
represents the probability that the linear correlation occurred 
by chance. Note that often the logarithm of an ocean product 
is compared to the logarithm of the product derived from Rrs, 
as both are typically log-normally distributed [61]. The linear 
correlation coefficient, however, is not enough to assess the 
uncertainties, as it is strongly dependent on the dynamic range 
of the data and is not useful in obtaining an uncertainty (either 
absolute or relative). Therefore, parameters such as root mean 
square error, mean absolute percentage error, bias, and others 
are often calculated (e.g., Table 1 in [62]). Note that, most often, 
both the product from remote sensing and the validation data 
have significant uncertainties. In such cases, it is best to use 
type-II regressions, which are regressions that account for 
uncertainties in both independent and dependent variables 
[63]. A useful package that estimates point by point uncertain-
ties when regressing 2 variables is available from MBARI (https://
www.mbari.org/introduction-to-model-i-and-model-ii- linear-
regressions/). Doing so ensures that points with larger uncer-
tainties are weighted less in the regression than those with less 
uncertainty. While the goodness of fit will be lower for the line 
obtained in a weighed regression compared to a regression that 
does not take uncertainties into account, the weighed regression 
obtained is more robust and very likely more accurate.

More complete assessments of uncertainties may include 
uncertainties from both in situ data and remote-sensing-derived 
products. For in situ methods, uncertainties can be derived 
from equipment calibration in the case of turbidimeters and 
weight triplicates in the case of gravimetric methods. For 
remote-sensing-derived products, uncertainties may include 
AC, intrinsic assumptions in the algorithm of choice to derive 
SPM and the range of Rrs(λ) values within a sampling box (for 
a comprehensive treatment, see [64]). Uncertainties may also 
come from the inherent mismatch between methods of data 
acquisition regardless of equipment calibration, algorithm 
accuracy, or AC. The in situ data used are of several types: either 
at fixed point (e.g., moorings, or water samples) or from moving 
platforms (e.g., ships) collecting samples at variable water 

  Table 6. Overview of case studies.

Satellite-derived product Site Satellite name and sensor Case study section

SST Coast of Maine, USA L8/TIRS Maine Coast SST

  SPM Svalbard, NOR L8/OLI Tempelfjorden, Svalbard SPM

  Turbidity
Patos Lagoon, BRA L5/TM, L7/ETM+, L8/OLI, L9/OLI

Long-term turbidity estimates from 

Patos Lagoon Estuary, Brazil

  Chl-a Coast of Maine, USA S2A, S2B /MSI Coastal Maine Chl-a

  Rrs(λ) and Chl-a

Gulf Stream, USA L8/OLI, L9/OLI

Provisional aquatic reflectance from 

USGS: Coastal to Gulf Stream 

476 Rrs and Chl-a
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depths and promoting local turbulence (i.e., affecting shallow 
waters to a higher degree while effect may be minimal over 
deeper waters). In general, water samples collected at depth 
ranging between 0 and 1 m are considered as surface samples. 
Satellite sensors, on the other hand, capture data integrated in 
space (i.e., within the pixel size) and averaged for a window of 
pixels (typically ranging between 3 and 7 pixels [64]). In addi-
tion satellite scenes capture information over different depths 
for each band, with that depth being dependent on water clarity. 
This inherent difference between the spatial scale of the in situ 
samples used as reference for validation and the satellite scales 

implies an inherent uncertainty; that is, we expect that differ-
ences could be large for any given match-up and hence the need 
to obtain as many match-ups as possible (so as to discern if 
bias exist). Finally, uncertainties tend to be proportional to 
the magnitude of the measurement at moderate to large values 
(due to the nature of the algorithm’s uncertainties), while at low 
values, absolute uncertainties tend to dominate (e.g., due to 
instrument resolution).

Another way to evaluate the success of derived water quality 
and water color product is to compare the distribution of 
properties in time and/or space [64,65], rather than regress 

Fig. 3. Climatology of SST along the coast of Maine, USA estimated from GEE (A and B) at different cloud coverages. Points with a standard deviation greater than 10 °C were 

removed (n = 1). (C) depicts spatial variability of SST from a downloaded L8/TIRS scene from 2022 September 14. (D) represents the relationship between the in situ SST and 

SST from GEE, and (E) shows the relationship between in situ SST and Landsat-derived SST (downloaded scenes). (F) is a comparison between SST extracted from Landsat 

(GEE-derived) and in situ SST.
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individually matched values. For example, a potential compari-
son could be of the frequency distribution of SPM measured 
at a mooring location over a year to all the remotely retrieved 
values that the mooring represents. This allows for more data 
to be involved in the comparison than those available from strict 
match-ups. If the 2 distributions overlap well, confidence is gained 
in the inversion. If one is biased compared to the other, it could 
indicate that the specific algorithm or AC used creates a biased 
product. Before concluding that the fault is in the procedure 
generating the products, careful consideration should be made 
that no bias in sampling (space/time) could cause the observed 
bias (e.g., including too many near-coast points that are typ-
ically associated with larger values in SPM).

•  Chl-a: The most reliable way to validate Chl-a is with in situ 
water samples filtered onto a filter, frozen before analysis, 
and analyzed using high-performance liquid chromatog-
raphy. Unfortunately, collecting and analyzing such sam-
ples is time-consuming and expensive and requires trained 
personnel. Less expensive analyses include in vitro fluores-
cence and spectrophotometry. Autonomous methods for 
Chl-a are also possible (e.g., in vivo fluorescence or spec-
trophotometry) allowing for high-frequency sampling 
but requiring that a proxy relation be derived using higher 
accuracy methods.

•  SPM and turbidity: Also regularly called total suspended 
matter (TSM) or suspended sediment concentration (SSC), 
SPM is estimated in situ by either (a) using side- or back- 
scattering sensors that often are calibrated to provide 
turbidity units [66] or (b) collecting water samples for 
which gravimetric analysis has been carried out, allow-
ing conversion to SPM through a proxy relation. The 2 
methods can be used in tandem to provide cross cali-
bration for the scattering sensor(s). Best practices on 
water sampling and validation of turbidity and SPM are 
summarized in [67].

•  Temperature: Also regularly called SST (sea surface tem-
perature), temperature is commonly measured in  situ 
using conductivity, temperature, and depth instruments 
or less commonly simple temperature probes.

For additional details regarding methods to collect these 
samples, see the Ocean Best Practices repository (https://www.
oceanbestpractices.org/).

Recipe for temperature
There is currently only one source of high-resolution temper-
ature data, the Landsat satellite series. It can be accessed 
either by (a) direct download through the USGS website or 
(b) through Google Earth Engine (GEE). Both platforms 
provide the most recent collection 2 level 2 data. Unlike the 
recipe for color data, level 2 surface temperature provided 
from the Landsat series does not require additional AC, 
although it should always be validated against in situ data in a 
new region.

To directly download the temperature data, we access col-
lection 2 level 2 data from USGS Earth Explorer site (https://
earthexplorer.usgs.gov/). Useful step-by-step streaming videos 
are accessible under key words “download Landsat”, for exam-
ple. USGS provides a tool to make bulk downloads of Landsat-8 
and Landsat-9 data (https://dds.cr.usgs.gov/bulk). With satellite 
data in hand, the user can continue processing through GUI-
based GIS tools (e.g., QGIS and ArcGIS) or coding platforms 
(e.g., MATLAB and Python). Instead of downloading and 
working with data locally, temperature data can also be accessed 
through GEE. GEE hosts a large number of freely available 
remote sensing datasets and enables users to analyze large 
amounts of remote sensing data without downloading scenes 
to their computer [68], which is particularly attractive for long 
time-series analyses. The GEE online code editor allows users 
to perform similar analyses as in a GIS or MATLAB, visualize, 
and download results [68]. For temperature estimates using 

Fig. 4. Comparison of MODIS-Aqua Rrs (A), with standard Landsat Rrs (B), and Landsat-9 Aquatic Rrs (C) centered at 443 nm. (D) and (E) show Chl-a calculated using the 

OC3 algorithm tuned to Landsat wavelengths. (F) shows the mean Rrs spectra from each method for the patch of the Gulf Stream outlined in the black rectangle [in (C)] and 

highlights both the lower blue reflectance from the standard Landsat product and its much higher variation. All imagery is projected in UTM Zone 18N.
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either GEE or a coding platform, the Landsat-8 and Landsat-9 
thermal band used is band 10 (10.6 to 11.19 μm) which is pro-
vided as an unsigned integer (band 11 for Landsat-8 suffers 
from stray light and is not discussed here). To convert it to 
temperature in both GEE and coding platforms, we use the 
following equation:

While a land mask is available from collection one, we have 
found that using a threshold on band 7 (shortwave infrared, 
2.11 to 2.29 μm) provides a simple delineation of the higher 
reflective land (Band7,cal > 0.15, where Band7 was converted to 
engineering units Band7,cal = Band7 ∗ 0.0000275 − 0.2). The 
conversion factors were obtained from USGS documentation 
(https://www.usgs.gov/core-science-systems/nli/landsat/land-
sat-collection-2-level-2-science-products). The pixel-by-pixel 
uncertainties in the temperature is given in the “...ST QA.TIF” 
file as an unsigned integer and should be multiplied by 0.01 
(table 6-1 in https://d9-wret.s3.us-west-2.amazonaws.com/assets/
palladium/production/s3fs-public/media/files/LSDS-1619_
Landsat-8-9-C2-L2-ScienceProductGuide-v4.pdf.

Note that the temperature obtained is that of a layer shallower 
than 1 mm of the surface water, not representing the full water 
column. Hence, it should not be surprising if a bias of around 
1 to 2 °C is found during the day relative to a sensor 1 m below 
surface in the summer at a highly stratified estuary under calm 
conditions.

Case Studies

In this section, we share a few examples where we applied the 
recipes described above (see Table 6) to showcase the concepts 

and issues described above. These are examples of high-resolution 
satellite products derived for a variety of water bodies (Fig. S1) 
using different ACs and processing workflows. We share all 
the associated codes (see information in the Supplementary 
Materials) and data so that users have an opportunity to prac-
tice before working with their own data. We use the term sur-
face reflectance for USGS level 2 atmospherically corrected 
reflectance designed for land application. We discourage its use 
for the derivation of water quality parameters but include it 
here in 2 case studies to contrast it with derived water Rrs.

Maine Coast SST
Here, we demonstrate retrieving coastal SST from the Damariscotta 
River estuary, a narrow estuary in Maine, USA, where tradi-
tional 1-km by 1-km SST products cannot accurately represent 
the region. We showcase the steps for directly downloading 
from the USGS in the Recipe for temperature section and pro-
cessing the scene in MATLAB and GEE. To follow along with 
the direct download method, the user will need to retrieve a 
level 2 SST image from USGS (link in the Masking and QC 
section). To use the same region and image as the example code, 
we select path 11, row 30 under the search criteria, and download 
the product bundle for 14 July 2013. In addition to the scene, 
we will need the function getLandsatL2 SST from GitHub 
(https://github.com/OceanOptics/getLandsatL2_SST). This 
function extracts the SST information and automatically applies 
Eq. 3 from the Recipe for temperature section. The example 
MATLAB script in the Supplementary Materials contains code 
using “getLandsatL2 SST.m” function and will plot a down-
loaded image and extract data for a site of interest. While 
directly downloading and working with scenes are needed for 
certain analyses, it can be a labor intensive process. For exam-
ple, the user would have to download all available images in 

(3)
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Atmospheric correction

Fig. 5. Rrs(λ) for a Sentinel-2 (20-m resolution; of 2018 May 18) scene at the Upper Damariscotta River, USA. The same satellite scene was processed using ACOLITE’s AC on 

4 different regions of interest (roi; 100-by-100-, 300-by-300-, 600-by-600- and 1,200-by-1,200 pixels), as well as C2RCC, SeaDAS, OCSMART, and POLYMER ACs. Note that 

we do not expect negative Rrs values (by definition it is ≥0) and, at low turbidity as observed in this location, we expect near zero values of reflectance in the NIR wavelengths. 

C2RCC, POLYMER, and OCSMART are consistent with expectations for this image. White-filled symbols represent spectral profiles failing the QWIP algorithm test (i.e., ACOLITE 

and SeaDAS). QWIP scores are 6.10 (SeaDAS), 0.15 (POLYMER), 0.18 (C2RCC), 0.16 (OCSMART), 0.22 (ACOLITE roi = 100), 0.31 (ACOLITE roi = 300), 0.33(ACOLITE roi = 600), 

and 0.34 (ACOLITE roi = 1,200).
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their region and loop through each image to generate a clima-
tology as in Fig. 3A and B.

Our GEE example (see Fig. 3) explores the Landsat series 
available within the “Landsat Collections” GEE dataset. 
Although Landsat collection 2 contains level 1 data from 
Landsat-1 to Landsat-9, it also contains science products for 
sensors within Landsat-4 to Landsat-9. The biggest advantage 
of using GEE is the possibility of compiling a time series of 
different Landsat collection 2 products rapidly and without 
downloading the data locally. The example GEE script in the 
Supplementary Materials contains code to compile collection 
2 Landsat SST products for Landsat-5, Landsat-7, Landsat-8, 
and Landsat-9 thermal infrared sensors (TIRSs). The script masks 
both land and cloud cover based on the Normalized Difference 
Water Index and Landsat’s QA_PIXEL and QA_RADSAT bands 
(https://www.usgs.gov/landsat-missions/landsat-collection- 2-
quality-assessment-bands), respectively. It also merges all 3 
sensors, applying 3 different resampling schemes (i.e., one pixel, 
3 × 3, and 5 × 5 window box). It generates a time series for one 
specific path and row, here specifically for the Damariscotta 
River estuary, including all images available for that area with 
a limiting cloud percentage of 90%.

Provisional aquatic reflectance from USGS: Coastal 
to Gulf Stream Rrs and Chl-a
If Landsat-8 and Landsat-9 are appropriate for your study area 
and research goal, there is a relatively simple option to obtain 
high-quality satellite imagery suitable for water color analysis. 
The USGS provides, upon request, a provisional “aquatic reflec-
tance” product generated from the Level 1 Landsat-8 and 
Landsat-9 data. These data are available globally from March 
2013 onward, and requests simply require submitting the scene 
ID (e.g., LC09 L1TP 014035 20211109 20220119 02 T1) to the 
USGS processing interface (https://espa.cr.usgs.gov/). These 
scenes can be ordered individually or in bulk.

The USGS combines the initial Landsat level 1 data along 
with auxiliary atmospheric data (atmospheric pressure, water 
vapor, aerosol, wind, etc.) to atmospherically correct the data 
(using l2gen in SeaDAS as outlined in [6]). These water leaving 
radiances are normalized by the downwelling irradiance to 
retrieve Rrs. In a final step, the retrieved Rrs is multiplied by π 
to obtain the aquatic reflectance ρw. While the product is still 
provisional and as of this publication has yet to be validated 
globally and across all water types, it has been assessed and found 
to be a high-quality source of water color data with a stable AC. 

Fig. 6. Analysis of Chl-a in Damariscotta River Estuary from Sentinel-2A and Sentinel-2B. (A) depicts the match-up analysis between the daily in situ and Sentinel-2-derived 

Chl-a. Vertical bars represent the standard deviation of 7-by-7 pixels within each sampling box. (B) depicts the data distribution. (C) represents the time series from both in situ 

and Sentinel-2. (D) represents the high-resolution spatial distribution of Chl-a on 2021 June 18 (black dot represents the location of in situ data at the University of Maine’s 

Darling Marine Center dock). MAPE, mean absolute percentage error; RMSE, root mean square error.
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Except for lingering across track issues, this product fares well 
in both cross-calibration with other sensors and in situ validation 
with AERONET-OC [15]. More information about the product 
is available here (https://www.usgs.gov/landsat- missions/
landsat-collection-2-provisional- aquatic-reflectance-science-
product).

As an example, we present data for a complex region stretching 
from the extremely turbid and productive Pamlico–Albemarle 
estuary, North Carolina, USA into the oligotrophic Gulf Stream 
off Cape Hatteras, North Carolina and compare the aquatic 
reflectance product with the standard level 2 surface reflectance 
from Landsat-9 and the standard level 2 ocean color Rrs from 
MODIS-aqua (Fig. 4). The Landsat aquatic reflectance and 
surface reflectance products are divided by π to convert to Rrs 
for comparison with MODIS. The improved AC compared to 

the standard product is especially noticeable in the blue Gulf 
Stream waters. Much finer spatial detail is observable in the 
Chl-a product of the aquatic Rrs product compared to the standard 
Rrs as evidenced by the fine-scale eddy along the Gulf Stream 
front and the outflow from the inlet. The increase in spatial 
resolution over MODIS is especially striking around the inlets 
and capes of the coastline. As noted in validation studies [15], 
the blue reflectance computed for Landsat is higher than 
MODIS, and across-track discontinuities are apparent in both 
the aquatic and surface Landsat products and derived Chl-a. All 
code to process the Landsat aquatic reflectance product and 
example data to produce the imagery in Fig. 4 is available.

Coastal Maine Chl-a
For this case study on the coast of Maine (Sentinel-2; swath: 43 
to 44 °N, 69.65 to 69.45 °W), we present 2 sets of results: a 
comparison of AC schemes (Fig. 5) and a time series of 
Sentinel-2A and Sentinel-2B (from 2016 to 2022), level 1C TOA 
scenes processed to level 2 using AC from POLYMER (Fig. 6).

We first compare reflectances obtained with 5 different AC 
software: SeaDAS (l2gen: aer opt -2), POLYMER (default), 
C2RCC (C2RCC-Nets), OCSMART (default), and ACOLITE 
[dark spectrum fitting added to 4 different regions of interest 
(roi; i.e., 100-by-100, 300-by-300, 600-by-600, and 1,200-by-
1,200 pixels used to specify the dark spectrum)]. From these 
level 2 scenes, we extracted the median Rrs spectra for a 7-by-7-
pixel area centered at an in situ sampling site [i.e., upper 
Damariscotta River Estuary (http://maine.loboviz.com/loboviz/)] 
and applied the QWIP algorithm for QC (Fig. 5) [48]. Note 
that all AC-corrected spectra with |QWIP| ≤ 0.2 have similar 
red reflectance and hence will be in close agreement with 
respect to the SPM value.

Last, we statistically assessed Chl-a retrievals and observa-
tions that the AC scheme provided in POLYMER and the OCx 
algorithm for Chl-a matched observations best for this region 
(Fig. 6), consistent with [16].

Tempelfjorden, Svalbard SPM
For this case study, we use a series of in situ and remote sensing 
measurements collected during a 2015 campaign in a narrow 
glaciated fjord in Svalbard, Norway (Tempelfjorden) [58]. Here, 
we focus on the in situ surface SPM samples collected on the 
same day of the Landsat-8 overpass (14 August 2015). On this 
day, 11 in situ SPM samples were collected from a rigid inflatable 
boat both inside and outside the subglacial discharge plume 
(Fig. 7). Surface SPM water samples were collected in 1 liter of 
volumes and filtered using a Suction Buchner system with 45 mm, 
47-μm cellulose filters. These SPM concentrations ranged from 
42 to 347 g·m−3, providing a range of values to compare against 
2 sources of satellite derived products. (a) Surface reflectance 
data from Landsat-8 Rrs collection 2 level 2 (recommended for 
land), using the standard USGS algorithm, were downloaded, 
and (b) a level 2 output ('∗ L2Rʹ file) derived from the ACOLITE 
dark spectrum scheme was used. Because USGS level 2 
collection 2 bands are made available in an unsigned integer 
data format, a conversion to water reflectance is necessary 
http://www.pancroma.com/downloads/Using the USGS Landsat 8 
Product.htm. Once transformed to Rrs level 2 data, we applied 
the multiwavelength algorithm [52] that provides both SPM 
values and associated uncertainties.

We depict the relationship between SPM from both sources 
of Rrs and from the in situ observations in Fig. 7. Although we 

Fig. 7.  Analysis of SPM in Tempelfjorden, Svalbard, Norway from the Landsat-8 sensor. 

(A) shows the match-up between in situ and satellite-derived SPM within the day of 

satellite overpass. SPM was derived from the use of 3 satellite bands: 655, 865, and 

1,609 nm [52]. Vertical bars represent the derived uncertainties in SPM. The black 

dot in the plot represents one match-up available between in situ SPM and the SPM 

derived from USGS level 2. (B) represents the spatial distribution of SPM from level 2 

Rrs acquired after ACOLITE processing. (C) depicts the uncertainties in SPM retrievals 

of (B). (D) represents SPM from the Rrs from the standard USGS algorithm. The light 

gray area is data masked from USGS QA file, and panel shows uncertainties for the 

SPM depicted in (D).
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use only 11 in situ data points, it is enough to demonstrate how 
to (a) convert of unsigned integers from standard USGS products to 
Rrs, (b) compare of Rrs from multiple sources of level 2 scenes, 
and (b) illustrate the richness of information from spatial 
distribution of uncertainties. Last, we find the USGS Level 2 
data to be masked over much of the scene, unlike that of 
ACOLITE.

Long-term turbidity estimates from Patos Lagoon 
Estuary, Brazil
For this case study, we collected cloud-free level 1 scenes from 
Landsat-5, Landsat-7, Landsat-8, and Landsat-9 sensors between 
1984 and 2022 in the Patos Lagoon Estuary, Brazil (swath: 31.7 
to 32.4 °S, 51.8 to 52.3 °W). The Landsat imagery covered the 
following time periods: 1984–2011 (Landsat-5), 1999–2003 
(Landsat-7), 2013–2022 (Landsat-8), and 2021–2022 (Landsat-9). 
AC was carried out using the ACOLITE processor with default 
AC (i.e., dark spectrum) and ancillary data.

Next, to simplify the exercise, we use ACOLITE to derive 
turbidity with the [59] generic algorithm (in the NIR band to 
avoid Rrs saturation) available within the processor.

Level 2 satellite scenes (i.e., *.L2W files) are examined with 
MATLAB scripts (*.m; see the Supplementary Materials—Case 
3.3) to generate a long time series of turbidity. Files are named 
by the order of steps (e.g., step01..., step02...) to make process-
ing more intuitive. The step01* script finds match-ups between 
in situ sampled turbidity and satellite overpasses (at a given 
5-by-5-pixel area), a maximum of 30-min time interval between 
the satellite overpass and in situ data, and latitude and longitude 
specified from the same in situ data (https://simcosta.furg.br/), 
based on the recommendations of the International Ocean 
Colour Coordinating Group [64] (Fig. 8A).

Match-up analysis is for the period between 2016 and 2021, 
when systematic in situ data sampling was available. With this 
match-up dataset, a regional calibration is applied to satellite- 
derived turbidity using a power-law regression. To obtain 

Fig. 8.  Analysis of turbidity in Patos Lagoon Estuary, Brazil from Landsat-5, Landsat-7, Landsat-8, and Landsat-9 sensors. Two buoy stations were used to provide a comparison 

example between satellite-derived and in situ turbidity. (A) shows regionally calibrated match-ups between satellite derived and in situ turbidity for Buoys RS1 and RS4 within 

30-min maximum interval and a 3-by-3-pixel window. Vertical bars represent the standard deviation of pixels within each sampling box. (B) represents the data distribution 

of in situ and satellite-derived turbidity sampled at station Buoy RS4. (C) to (F) depict one example of calibrated satellite-derived turbidity for each sensor. Location of in situ 

stations is depicted in (F).

D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://sp
j.scien

ce.o
rg

 o
n
 Ju

n
e 2

1
, 2

0
2
3



Tavora et al. 2023 | https://doi.org/10.34133/remotesensing.0049 15

locally calibrated turbidity, we applied a type II regression, 
along with a computation of Kendall’s Tau correlation coeffi-
cient, root mean square deviation, and median absolute devi-
ation. Because of lack of match-up data available for the time 
covered by Landsat-5 and Landsat-7, an additional approach, 
the turbidity distribution, for comparison between in situ 
measured and satellite data is available in the step02* script 
(Fig. 8B). Those steps are necessary to guarantee that satellite- 
derived turbidity is within an acceptable uncertainty compared 
to in situ measured turbidity data.

The step03* script plots a map of the turbidity satellite scene 
for each Landsat sensor using the “m_map” package (https://
www.eoas.ubc.ca/~rich/map.html) (Fig. 8C to F).

Final Remarks

To date, the use of high-resolution water color and SST data 
has been mostly in the hands of expert users. In this paper, we 
attempt to push toward the democratization of these data so 
that a broader audience can use them. Our goal was to provide 
sufficient information so that users without specialized knowl-
edge of remote sensing data and/or AC, particularly newcom-
ers, can determine which steps are necessary for them to 
process water color products from the rich archive of high 
resolution open-access remote sensing data. We have found 
that this information was somewhat lacking and hope to thus 
save time for newcomers to this field. We emphasize that to 
establish confidence in the data retrieved and quantify uncer-
tainty, in situ data are necessary. In essence, satellites are used 
to interpolate in time and space between in situ data, and 
this interpolation becomes tenuous without appropriate in situ 
data. While we mentioned several tools to QA/QC of the Rrs 
spectra, they are not sufficient to establish the quality of derived 
parameters. This is because changes in the nature of the under-
lying parameters (e.g., sediment mineralogy and phytoplankton 
species composition) can change their mass specific optical 
properties and, hence, their impact on the light leaving a water 
body. Last, we hope that the case studies presented here are 
useful and that new and old practitioners alike get in the habit 
of sharing their code and data together with their investiga-
tions, to the benefit of the whole community.

We have provided recipes here for the derivation of water 
quality products that we hope will be widely used. However, 
we urge national and international organizations to distribute 
such products to the public. Since substantial public funds have 
been used to fund these satellite missions, it is only reasonable 
to expect that such products be widely and freely available and 
not just the radiance from which they are derived.
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