
ON SOME GENERATING SET OF THOMPSON’S GROUP F

GILI GOLAN POLAK AND MARK SAPIR

Abstract. We prove that Thompson’s group F has a generating set with two elements
such that every two powers of them generate a finite index subgroup of F .

1. Introduction

Recall that Thompson’s group F is the group of all piecewise linear homeomorphisms
of the interval [0, 1] where all breakpoints are dyadic fractions and all slopes are integer
powers of 2.

Thompson’s group F has many interesting properties. It is infinite and finitely presented,
it does not have any free subgroups and it does not satisfy any law [1]. In 1984, Brown
and Geogheghan [3] proved that Thompson’s group F is of type FP∞, making Thompson’s
group F the first example of a torsion-free infinite-dimensional FP∞ group.
One of the most interesting and counter-intuitive results about Thompson’s group F is

that in a certain natural probabilistic model on the set of all finitely generated subgroups
of F, every finitely generated nontrivial subgroup appears with positive probability [5]. In
[9], the first author proved that in the natural probabilistic models studied in [5], a random
pair of elements of F generates F with positive probability. In fact, one can prove that
for every finite index subgroup H of F , a random pair of elements of F generates H with
positive probability. This result shows that in some sense it is “easy” to generate F , or
more generally, finite index subgroups of F . Several other results in the literature can be
interpreted in a similar way. In [11], the first author proved that every element of F whose
image in the abelianization Z

2 is part of a generating pair of Z2 is part of a generating pair
of F (and that a similar statement holds for all finitely generated subgroups of F ).

Another result that demonstrates the abundance of generating pairs of F is Brin’s result
[2] that the free group of rank 2 is a limit of 2-markings of Thompson’s group F in the
space of all 2-marked groups. Lodha’s new (and much shorter) proof [13] of Brin’s theorem
demonstrates even better the abundance of generating pairs of F .
In [6], Gelander, Juschenko and the first author proved that Thompson’s group F is

invariably generated. Recall that a subset S of a group G invariably generates G if G =
〈sg(s)|s ∈ S〉 for every choice of g(s) ∈ G, s ∈ S. A group G is said to be invariably
generated if such S exists, or equivalently if S = G invariably generates G. Note that all
virtually solvable groups are invariably generated, but Thompson’s group F was one of the
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first examples of a non-virtually solvable group that is invariably generated. Note also that
in [6] it is proved that Thompson’s group F is invariably generated by a set of 3 elements.
Using [10, Theorem 1.3], the proof from [6] implies that in fact, Thompson’s group F is
invariably generated by a set of 2 elements (see also Lemma 14 below).

In this paper, we prove a somewhat similar result.

Theorem 1. Thompson group F has a 2-generating set {x, y} such that for every m,n ∈ N,
the set {xm, yn} generates a finite index subgroup of F .

We will show that the generating set {x, y} constructed in the proof of Theorem 1 below
also invariably generates F . Note also that since the abelianization of Thompson’s group
F is Z

2, we couldn’t request the elements xm and yn from the theorem to generate the
entire group F .

Theorem 1 does not hold for any non-elementary hyperbolic group. Indeed, if G is non-
elementary hyperbolic, then there exists n ∈ N such that G/Gn is infinite, where Gn is
the normal subgroup generated by all nth powers of elements in G [12]. More generally,
Theorem 1 does not hold for any group G which has an infinite periodic quotient (such as
large groups (see [15]) and Golod Shafarevich-groups (see [16])).

Theorem 1 does hold for the Tarski monsters constructed by Ol’shanskii [14]. Recall that
Tarski monsters are infinite finitely generated simple groups where every proper subgroup
is infinite cyclic1. Let T be the Tarski monster constructed in [14], then 2 elements of T
generate it if and only if they do not commute. Since powers of non-commuting elements in
T do not commute (see [14, Theorem 28.3]), any generating pair of T satisfies the assertion
in Theorem 1 (in fact, for every pair of generators of T , any pair of powers of the generators
generates the entire group T ). It is easy to see that there are virtually-abelian groups (such
as Z2 and Z ≀Z2) for which Theorem 1 holds. But to our knowledge, Thompson’s group F
is the first example of a finitely presented non virtually-abelian group which satisfies the
assertion in Theorem 1.

2. Thompson’s group F

2.1. F as a group of homeomorphisms. Recall that Thompson group F is the group
of all piecewise linear homeomorphisms of the interval [0, 1] with finitely many breakpoints
where all breakpoints are dyadic fractions and all slopes are integer powers of 2. The group
F is generated by two functions x0 and x1 defined as follows [4].

x0(t) =











2t if 0 ≤ t ≤ 1
4

t+ 1
4

if 1
4
≤ t ≤ 1

2
t
2
+ 1

2
if 1

2
≤ t ≤ 1

x1(t) =



















t if 0 ≤ t ≤ 1
2

2t− 1
2

if 1
2
≤ t ≤ 5

8

t+ 1
8

if 5
8
≤ t ≤ 3

4
t
2
+ 1

2
if 3

4
≤ t ≤ 1

1There is another type of Tarski monsters, where every proper subgroup is cyclic of order p for some
fixed prime p, but for them Theorem 1 clearly does not hold.



ON SOME GENERATING SET OF THOMPSON’S GROUP F 3

The composition in F is from left to right.
Every element of F is completely determined by how it acts on the set Z[1

2
]. Every number

in (0, 1) can be described as .s where s is an infinite word in {0, 1}. For each element g ∈ F
there exists a finite collection of pairs of (finite) words (ui, vi) in the alphabet {0, 1} such
that every infinite word in {0, 1} starts with exactly one of the ui’s and such that the action
of g on a number .s is the following: if s starts with ui, we replace ui by vi. For example,
x0 and x1 are the following functions:

x0(t) =











.0α if t = .00α

.10α if t = .01α

.11α if t = .1α

x1(t) =



















.0α if t = .0α

.10α if t = .100α

.110α if t = .101α

.111α if t = .11α

where α is any infinite binary word.
The group F has the following finite presentation [4].

F = 〈x0, x1 | [x0x
−1
1 , xx0

1 ] = 1, [x0x
−1
1 , x

x2

0

1 ] = 1〉,

where ab denotes b−1ab. Sometimes, it is more convenient to consider an infinite presenta-
tion of F . For i ≥ 1, let xi+1 = x−i

0 x1x
i
0. In these generators, the group F has the following

presentation [4]

〈xi, i ≥ 0 | x
xj

i = xi+1 for every j < i〉.

2.2. Elements of F as pairs of binary trees. Often, it is more convenient to describe
elements of F using pairs of finite binary trees (see [4] for a detailed exposition). The
considered binary trees are rooted full binary trees; that is, each vertex is either a leaf or
has two outgoing edges: a left edge and a right edge. A branch in a binary tree is a simple
path from the root to a leaf. If every left edge in the tree is labeled “0” and every right
edge is labeled “1”, then a branch in T has a natural binary label. We rarely distinguish
between a branch and its label.

Let (T+, T−) be a pair of finite binary trees with the same number of leaves. The pair
(T+, T−) is called a tree-diagram. Let u1, . . . , un be the (labels of) branches in T+, listed
from left to right. Let v1, . . . , vn be the (labels of) branches in T−, listed from left to
right. For each i = 1, . . . , n, we say that the tree-diagram (T+, T−) has the pair of branches
ui → vi. We also say that the tree-diagram (T+, T−) consists of all the pairs of branches
u1 → v1, . . . , un → vn. The tree-diagram (T+, T−) represents the function g ∈ F which
takes binary fraction .uiα to .viα for every i and every infinite binary word α. We also say
that the element g takes the branch ui to the branch vi. For a finite binary word u, we
denote by [u] the dyadic interval [.u, .u1N]. If u → v is a pair of branches of (T+, T−), then
g maps the interval [u] linearly onto [v].

A caret is a binary tree composed of a root with two children. If (T+, T−) is a tree-
diagram and one attaches a caret to the ith leaf of T+ and the ith leaf of T− then the
resulting tree diagram is equivalent to (T+, T−) and represents the same function in F .
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The opposite operation is that of reducing common carets. A tree diagram (T+, T−) is
called reduced if it has no common carets; i.e, if there is no i for which the i and i+ 1
leaves of both T+ and T− have a common father. Every tree-diagram is equivalent to a
unique reduced tree-diagram. Thus elements of F can be represented uniquely by reduced
tree-diagrams [4]. The reduced tree-diagrams of the generators x0 and x1 of F are depicted
in Figure 1.

(a)
(b)

Figure 1. (A) The reduced tree-diagram of x0. (B) The reduced tree-
diagram of x1. In both figures, T+ is on the left and T− is on the right.

When we say that a function f ∈ F has a pair of branches ui → vi, the meaning is
that some tree-diagram representing f has this pair of branches. In other words, this is
equivalent to saying that f maps the dyadic interval [ui] linearly onto [vi]. Clearly, if u → v
is a pair of branches of f , then for any finite binary word w, uw → vw is also a pair of
branches of f . Similarly, if f has the pair of branches u → v and g has the pair of branches
v → w then fg has the pair of branches u → w.

2.3. The derived subgroup of F . The derived subgroup of F is an infinite simple group
[4]. It can be characterized as the subgroup of F of all functions f with slope 1 both at
0+ and at 1− (see [4]). That is, a function f ∈ F belongs to [F, F ] if and only if the
reduced tree-diagram of f has pairs of branches of the form 0m → 0m and 1n → 1n for
some m,n ∈ N.

Since [F, F ] is infinite and simple, every finite index subgroup of F contains the derived
subgroup of F . Hence, there is a one-to-one correspondence between finite index subgroups
of F and finite index subgroups of the abelianization F/[F, F ].

Recall that the abelianization of F is isomorphic to Z
2 and that the standard abelian-

ization map πab : F → Z
2 maps an element f ∈ F to (log2(f

′(0+)), log2(f
′(1−))). Hence, a

subgroup H of F has finite index in F if and only if H contains the derived subgroup of F
and πab(H) has finite index in Z

2.

2.4. Generating sets of F. Let H be a subgroup of F . A function f ∈ F is said to
be a piecewise-H function if there is a finite subdivision of the interval [0, 1] such that on
each interval in the subdivision, f coincides with some function in H. Note that since
all breakpoints of elements in F are dyadic fractions, a function f ∈ F is a piecewise-H
function if and only if there is a dyadic subdivision of the interval [0, 1] into finitely many



ON SOME GENERATING SET OF THOMPSON’S GROUP F 5

pieces such that on each dyadic interval in the subdivision, f coincides with some function
in H.

Following [7, 8], we define the closure of a subgroup H of F , denoted Cl(H), to be the
subgroup of F of all piecewise-H functions. A subgroup H of F is closed if H = Cl(H).
In [8] (see also [10]), the first author proved that the generation problem in F is decidable.
That is, there is an algorithm that decides given a finite subset X of F whether it generates
the whole F .

Theorem 2. [10, Theorem 1.3] Let H be a subgroup of F . Then H = F if and only if the
following conditions hold.

(1) Cl(H) contains the derived subgroup of F .
(2) H[F, F ] = F .

More generally, we have a criterion for when a subgroup H of F contains the derived
subgroup of F .

Theorem 3. [8, Theorem 7.10] Let H be a subgroup of F . Then H contains the derived
subgroup [F, F ] if and only if the following conditions hold.

(1) Cl(H) contains the derived subgroup [F, F ].
(2) There is an element h ∈ H and a dyadic fraction α ∈ (0, 1) such that h fixes α,

h′(α−) = 1 and h′(α+) = 2.

Below we apply Theorem 3 to prove that a given subset of F generates a finite index
subgroup of F (by proving that it contains the derived subgroup of F and considering its
image in the abelianization of F ). The following two lemmas will be useful in proving that
Condition (1) of Theorem 3 holds for a subgroup H of F .

Lemma 4. Let H be a subgroup of F . Assume that for every pair of finite binary words u
and v which both contain both digits “0” and “1” there is an element h ∈ H with the pair
of branches u → v. Then Cl(H) contains the derived subgroup of F .

Proof. Let f ∈ [F, F ]. Then the reduced tree-diagram of f consists of the pairs of branches

f :











0m → 0m

ui → vi for i = 1, . . . , k

1n → 1n

where k,m, n ∈ N and where for each i = 1, . . . , k, the binary words ui and vi contain
both digits “0” and “1”. By assumption, for each i = 1, . . . , k there is an element hi ∈ H
with the pair of branches ui → vi. Then hi coincides with f on the interval [ui]. we
note also that f coincides with the identity function 1 ∈ H on [0m] and on [1n]. Since
[0m], [u1], . . . , [uk], [1

n] is a subdivision of the interval [0, 1] and on each of these intervals f
coincides with a function in H, f is a piecewise-H function and as such f ∈ Cl(H). �

Given a subgroup H ≤ F we associate with H an equivalence relation on the set of
finite binary words as follows. Let u and v be finite binary words. We write u∼Hv if
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there is an element h ∈ H with the pair of branches u → v. Note that ∼H is indeed an
equivalence relation on the set of finite binary words. (Indeed, for every finite binary word
u the identity function has the pair of branches u → u; if h ∈ H has the pair of branches
u → v then h−1 has the pair of branches v → u and if h, g ∈ H have the pairs of branches
u → v and v → w, respectively, then hg has the pair of branches u → w). We note also
that if u∼Hv then for any finite binary word w we have uw∼Hvw. Indeed, if h ∈ H has the
pair of branches u → v then for each w (some non-reduced tree-diagram of) h has the pair
of branches uw → vw. By Lemma 4, to prove that Cl(H) contains the derived subgroup
of F , it suffices to prove that all finite binary words which contain both digits “0” and “1”
are ∼H-equivalent.

Lemma 5. Let H be a subgroup of F such that the following assertions hold.

(1) For every r ∈ N, we have 1r0 ∼H 10.
(2) For every s ∈ N, we have 0s1 ∼H 01.
(3) 01 ∼H 10 ∼H 010 ∼H 011.

Then Cl(H) contains the derived subgroup of F .

Proof. First, note that since 10 ∼H 01, we have 100 ∼H 010 and 101 ∼H 011. Then (3)
implies that

(4) 100 ∼H 010 ∼H 01 ∼H 011 ∼H 101.

Now, let u be a finite binary word which contains both digits “0” and “1”. It suffices to
prove that u ∼H 01 (indeed, in that case, all finite binary words which contain both digits
“0” and “1” are ∼H-equivalent). If u is of length 2, this is true, since 10 ∼H 01. If u is
of length ≥ 3, then it must have a prefix of the form 1r0 (for some r ≥ 2), 0s1 (for some
s ≥ 2), 010, 011, 100 or 101. In all of these cases, u is ∼H-equivalent to a shorter word
(since it has a prefix that is ∼H-equivalent to a shorter word by (1)-(4) above). Hence, we
are done by induction. �

3. Proof of Theorem 1

For the rest of this section, let x = x0 and y = x2
0x1 (the element x appears in Figure

1a and the element y appears in Figure 2). Since {x0, x1} is a generating set of F , the set
{x, y} is a generating set of F . We will prove that for every m,n ∈ N the set {xm, yn}
generates a finite index subgroup of F and that {x, y} invariably generates F .

We begin with the following lemma.

Lemma 6. Let n ∈ N. Then the reduced tree diagrams of xn and yn consist of the following
pairs of branches (that is, we list all the pairs of branches of xn and yn).

xn :











0n+1 → 0

0k1 → 1n+1−k0, for 1 ≤ k ≤ n

1 → 1n+1
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Figure 2. The reduced tree-diagram of y.

yn :



























02n+1 → 0

02k10 → 11+3(n−k)0, for 1 ≤ k ≤ n

02k11 → 12+3(n−k)0, for 1 ≤ k ≤ n

02k−11 → 13(n−k+1)0, for 1 ≤ k ≤ n

1 → 13n+1

Proof. The lemma can be proved by induction. Note that for n = 1 the lemma follows
from Figure 1a and from Figure 2. �

Now, for every n ∈ N, we denote by Hn the subgroup of F generated by {xn, yn}. We
claim that Hn contains the derived subgroup of F . To prove that, we will prove that Hn

satisfies Conditions (1) and (2) from Theorem 3. First, we consider Condition (2).

Lemma 7. Let n ∈ N. Then there is an element h ∈ Hn such that h fixes a dyadic fraction
α ∈ (0, 1) and such that h′(α−) = 1 and h′(α+) = 2.

Proof. From the infinite presentation of F given above it follows that

yn = (x2
0x1)

n = x2n
0 x1x4x7 · · · x1+3(n−1).

Since x2n = x2n
0 ∈ Hn we have that

h = x1x4x7 · · · x1+3(n−1) ∈ Hn.

Note that for α = 1
2
the function x1 fixes [0, α] pointwise and satisfies x′

1(α
+) = 2. For all

i > 1, the function xi fixes [0,
3
4
] pointwise, hence for α = 1

2
we have h(α) = α, h′(α−) = 1

and h′(α+) = 2. �
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To prove that Condition (1) from Theorem 3 holds for Hn, we let Kn be the minimal
closed subgroup of F such that the following hold modulo ∼Kn

.

(a) 0k1∼Kn
0k+n1, for all k ∈ N

(b) 1k0∼Kn
1k+n0, for all k ∈ N

(c) 0k1∼Kn
1n+1−k0, for 1 ≤ k ≤ n

(d) 02k10∼Kn
11+3(n−k)0, for 1 ≤ k ≤ n

(e) 02k11∼Kn
12+3(n−k)0, for 1 ≤ k ≤ n

(f) 02k−11∼Kn
13(n−k+1)0, for 1 ≤ k ≤ n.

Note that the intersection of closed subgroups of F is a closed subgroup (see [8]) and
that modulo ∼F relations (a)− (f) hold. Hence, Kn is well defined.

Lemma 8. Let n ∈ N. Then Kn ⊆ Cl(Hn).

Proof. It suffices to prove that equivalences (a)− (f) hold when Kn is replaced by Hn. In-
deed, in that case, the equivalences must also hold modulo ∼Cl(Hn) and then the minimality
of Kn implies that it is a subgroup of Cl(Hn).
Let us consider the relation ∼Hn

. Equivalences (d), (e), (f) are true modulo ∼Hn
since

yn ∈ Hn. Similarly, (c) holds modulo ∼Hn
since xn ∈ Hn. The branch 0n+1 → 0 of xn

implies that for all k ∈ N, 0k∼Hn
0k+n. In particular, for all k ∈ N, we have 0k1∼Hn

0k+n1,
so (a) also holds modulo ∼Hn

. Finally, the branch 1 → 1n+1 of xn implies that for all
k ∈ N, 1k∼Hn

1k+n. Hence, for all k ∈ N, we have 1k0∼Hn
1k+n0, so (b) also holds modulo

∼Hn
. �

By Lemma 8, to prove that [F, F ] is contained in the closure of Hn for every n ∈ N,
it suffices to prove that [F, F ] ⊆ Kn for every n ∈ N. To do so, we will make use of the
following lemma.

Lemma 9. Let n ∈ N. If 2|n then Kn
2
⊆ Kn. If 3|n then Kn

3
⊆ Kn.

Proof. Assume that 2|n. The proof for the case 3|n is similar. Kn
2
is the minimal closed

subgroup such that

(a′) 0k1 ∼Kn
2

0k+
n
2 1, for all k ∈ N

(b′) 1k0 ∼Kn
2

1k+
n
2 0, for all k ∈ N

(c′) 0k1 ∼Kn
2

1
n
2
+1−k0, for 1 ≤ k ≤

n

2

(d′) 02k10 ∼Kn
2

11+3(n
2
−k)0, for 1 ≤ k ≤

n

2

(e′) 02k11 ∼Kn
2

12+3(n
2
−k)0, for 1 ≤ k ≤

n

2

(f ′) 02k−11 ∼Kn
2

13(
n
2
−k+1)0, for 1 ≤ k ≤

n

2
.
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It suffices to prove that (a′) − (f ′) hold with Kn
2
replaced by Kn. We would make use of

equivalences (a)− (f) above holding modulo ∼Kn
.

For every k = 1, . . . , n
2
we have by (a) and (d) that

(1) 02k10 ∼Kn
02k+n10 = 02(k+

n
2
)10 ∼Kn

11+3(n−k−n
2
)0 = 11+3(n

2
−k)0.

Hence (d′) holds for Kn. Similarly, by (a) and (e), for every k = 1, . . . , n
2
we have

(2) 02k11 ∼Kn
02k+n11 = 02(k+

n
2
)11 ∼Kn

12+3(n−k−n
2
)0 = 12+3(n

2
−k)0.

Hence, (e′) holds modulo ∼Kn
. Similarly, by (a) and (f), for every k = 1, . . . , n

2
we have

(3) 02k−11 ∼Kn
02k+n−11 = 02(k+

n
2
)−11 ∼Kn

13(
n
2
−k+1)0,

so (f ′) also holds with Kn
2
replaced by Kn.

To finish, it suffices to prove that equivalences (a′), (b′) and (c′) hold modulo ∼Kn
. Since

(b) holds modulo ∼Kn
, to prove (b′), it suffices to prove that for all k ∈ {1, . . . , n

2
} we have

1k0 ∼Kn
1k+

n
2 0. So let k ∈ {1, . . . , n

2
} and let i ∈ {1, 2, 3} be such that i ≡ k (mod 3). Let

r = n
2
− k−i

3
and note that r ∈ {1, . . . , n

2
}. We will assume that i = 3, the proof for i = 1, 2

is similar. Note that if i = 3 then k = 3(n
2
− r + 1). Then, by (3), (f) and (b), we have

(4)
1k0 = 13(

n
2
−r+1)0 ∼Kn

02r−11 ∼Kn
13(n−r+1)0

∼Kn
13+3n−3r−n0 = 13+2n−3r0 = 13(

n
2
−r+1)+n

2 0 = 1k+
n
2 0.

Thus (b′) holds for Kn. To prove that (a′) holds for Kn we note that for all k = 1, . . . , n
2
,

by applying (c) followed by (b′) for ∼Kn
followed by (c) again, we have

(5) 0k1 ∼Kn
1n+1−k0 ∼Kn

1n+1−k−n
2 0 = 1n+1−(k+n

2
)0 ∼Kn

0k+
n
2 1.

Since (a) holds for Kn, (5) implies that (a′) holds for Kn as well.
Finally, (5) shows that for all k ∈ {1, . . . n

2
} we have

(6) 0k1 ∼Kn
1n+1−(k+n

2
)0 = 1

n
2
+1−k0.

Hence, (c′) also holds for Kn. �

Proposition 10. Let n ∈ N. Then Kn contains the derived subgroup of F .

Proof. We prove the proposition by induction on n. If n is divisible by 2 or 3, then by
Lemma 9, we are done by induction. Hence, we can assume that n is not divisible by 2 nor
by 3. By Lemma 5, to prove that the closed subgroup Kn contains the derived subgroup
of F , it suffices to prove that Conditions (1)-(3) of Lemma 5 hold for Kn.

By (a) and (c) we have

(7) 02n10 ∼Kn
0n10 ∼Kn

1n+1−n00 = 100.

On the other hand, by (d) we have

(8) 02n10 ∼Kn
11+3(n−n)0 = 10.
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Hence,

(9) 100 ∼Kn
10.

Similarly, by (a) and (c) we have

(10) 02n11 ∼Kn
0n11 ∼Kn

10n−n+11 = 101.

By (e) we have

(11) 02n11 ∼Kn
12+3(n−n)0 = 110.

Hence,

(12) 110 ∼Kn
101.

Now, we make the observation that if Condition (1) of Lemma 5 holds for Kn, then
Conditions (2) and (3) of Lemma 5 also hold for Kn. Indeed, assume that for all r ∈ N we
have 1r0 ∼Kn

10. Then in particular, 110 ∼Kn
10. Then, it follows from (12) and (9) that

for all r ∈ N,

(13) 1r0 ∼Kn
101 ∼Kn

100 ∼Kn
10.

In addition, (a) and (c) from the definition of Kn show that for every s ∈ N there is some
r ∈ N such that 0s1 ∼Kn

1r0. Then it follows from (13) that for all s ∈ N, 0s1 ∼Kn
10.

In particular, 01 ∼Kn
10. Hence, 0s1 ∼Kn

01 for all s ∈ N, so Kn satisfies Condition (2)
of Lemma 5. In addition, since 01 ∼Kn

10, we have 010 ∼Kn
100 ∼Kn

10 and 011 ∼Kn

101 ∼Kn
10. Hence,

(14) 010 ∼Kn
011 ∼Kn

10 ∼Kn
01.

Therefore, Kn satisfies Condition (3) of Lemma 5 as well.
Hence, it suffices to prove that Condition (1) of Lemma 5 holds for Kn, i.e., that for

every r ∈ N we have 1r0 ∼Kn
10.

Since n is co-prime to 2 and 3 there are b, c ∈ {1, . . . , n} such that 2b ≡ 1 (mod n) and
3c ≡ 1 (mod n). Below, whenever an integer modulo n appears as an exponent of the digit
“0” or “1” we assume that the chosen representative is in {1, . . . , n}. Recall that by (a)
and (b) for Kn, for all k ∈ N we have that 0k1 ∼Kn

0k(mod n)1 and 1k0 ∼Kn
1k(mod n)0. We

use this fact below, sometimes with no explicit reference.
We will need the following lemma.

Lemma 11. Let q ∈ N be such that 1q0 ∼Kn
10. Then 10 ∼Kn

1q−c(mod n)0.

Proof. Let p ∈ N and let s ∈ {1, . . . , n} be such that s ≡ 1− bp (mod n). Then p ≡ 2− 2s
(mod n). Since s ∈ {1, . . . , n}, by (f) followed by (b) we have

(15) 02s−11 ∼Kn
13(n+1−s)0 ∼Kn

13−3s(mod n)0 = 13−3(1−bp)(mod n)0 = 13bp(mod n)0.

On the other hand, by (a), (c) and (b)

(16) 02s−11 ∼Kn
02s−1(mod n)1 ∼Kn

11+n−(2s−1)(mod n)0 ∼Kn
12−2s(mod n)0 = 1p(mod n)0.
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Hence,

(17) 1p(mod n)0 ∼Kn
13bp(mod n)0.

Since (17) holds for every p ∈ N and (3b)(2c) ≡ 1 (mod n), we have that for all p ∈ N,

(18) 1p(mod n)0 = 13b(2cp)(mod n)0 ∼Kn
12cp(mod n)0.

Now, let t ∈ {1, . . . , n} be such that t ≡ b(1 − q) (mod n) and note that q ≡ 1 − 2t
(mod n). Then by (b), (c), (d) and the fact that 3b − 1 ≡ b (mod n) (indeed, 2b ≡ 1
(mod n)), we have

(19)
1q00 ∼Kn

1n+1−2t(mod n)00 ∼Kn
02t(mod n)10 ∼Kn

11+3(n−t)(mod n)0

= 11−3t(mod n)0 = 11−3b(1−q)(mod n)0 = 13bq−3b+1(mod n)0 = 13bq−b(mod n)0.

Now, since by assumption 1q0 ∼Kn
10 and by (9) we have 10 ∼Kn

100, it follows that
1q00 ∼Kn

100 ∼Kn
10. Then from equivalence (19) it follows that

(20) 10 ∼Kn
13bq−b(mod n)0.

Then (20) and (18) imply that

(21) 10 ∼Kn
13bq−b(mod n)0 ∼Kn

12c(3bq−b)(mod n)0 ∼Kn
1q−c(mod n)0

as required. �

Now we can finish proving the proposition. By lemma 11 applied to q = 1, we get that
10 ∼Kn

11−c(mod n)0. Another application of the lemma, now for q ∈ N such that q ≡ 1− c
(mod n) shows that 10 ∼Kn

11−2c(mod n)0. Continuing inductively, we get that for all ℓ ∈ N,
we have

(22) 10 ∼Kn
11−ℓc(mod n)0.

Now, for each r ∈ N, let ℓ ∈ N be such that ℓ ≡ 3(1 − r) (mod n). Then r ≡ 1 − cℓ
(mod n) and by (20) we have

(23) 1r0 ∼Kn
11−ℓc(mod n)0 ∼Kn

10,

as required. Hence, the proposition holds. �

Corollary 12. For every n ∈ N, the subgroup Hn contains the derived subgroup of F .

Proof. Let n ∈ N. Proposition 10 and Lemma 8 imply that the derived subgroup of F is
contained in Cl(Hn). Hence, Condition (1) of Theorem 3 holds for Hn. Lemma 7 shows
that Condition (2) of Theorem 3 also holds for Hn. Hence, by Theorem 3, Hn contains the
derived subgroup of F . �

The following lemma completes the proof of Theorem 1.

Lemma 13. Let m,n ∈ N. Then G = 〈xm, yn〉 is a subgroup of F of index mn.
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Proof. Note that xmn, ymn ∈ G. Hence, Hmn is a subgroup of G. Hence, by Corollary
12, the derived subgroup [F, F ] ≤ G. Recall the map πab : F → Z

2 from Section 2.3. By
Lemma 6, xm has the pairs of branches 0m+1 → 0 and 1 → 1m+1. Hence, πab(x

m) =
(m,−m). Similarly, πab(y

n) = (2n,−3n). Hence, πab(G) = 〈(m,−m), (2n,−3n)〉. Since
〈(m,−m), (2n,−3n)〉 is a subgroup of Z2 of index | − 3mn+ 2mn| = mn, the subgroup G
is a subgroup of F of index mn, as required. �

We finish with the following lemma.

Lemma 14. The set {x, y} invariably generates F .

Proof. It suffices to prove that for any g ∈ F , the set {x, yg} is a generating set of F . Let
g ∈ F and let m,n ∈ Z be such that πab(g) = (m,n). Since {πab(x), πab(y)} generates Z2,
there exist i, j ∈ Z such that iπab(x) + jπab(y) = −(m,n). Let h = yjgxi and note that

h ∈ [F, F ]. Now, {x, yg} generates F if and only if so does {xxi

, ygx
i

} = {x, yy
−jh} = {x, yh}.

Let H be the subgroup of F generated by X = {x, yh}. Then H[F, F ] = F (indeed,
the image of X in the abelianization of F coincides with the image of the generating set
{x, y}). Hence, by Theorem 2, to prove that H = F it suffices to prove that Cl(H) contains
the derived subgroup of F . For that, we will make use of Lemma 5. Since x = x0 ∈ H has
the pairs of branches 00 → 0, 01 → 10 and 1 → 11, we have that for all k ∈ N, 0k ∼H 0,
1k ∼H 1 and 10 ∼H 01. In particular, for every k ∈ N, we have 0k1 ∼H 01 and 1k0 ∼H 10.
Hence, Conditions (1) and (2) of Lemma 5 hold for H. To prove that Condition (3) from
Lemma 5 holds as well, it suffices to prove that 010 ∼H 011 ∼H 10.
Let us consider the element h. Since h ∈ [F, F ], there exist a, b ∈ N such that h has

the pair of branches 0a → 0a and 1b → 1b. Let n = max{a, b} and consider the element
f = h−1y2nh ∈ H. We claim that f has the pairs of branches

(1) 02n10 → 11+3n0,
(2) 02n11 → 12+3n0.

Indeed, by Lemma 6, the element y2n has the pairs of branches 02n10 → 11+3(2n−n)0 =
11+3n0 and 02n11 → 12+3(2n−n)0 = 12+3n0. Since h fixes the intervals [02n] ⊆ [0a] and
[13n] ⊆ [1b] pointwise, the element f also has the pairs of branches 02n10 → 11+3n0 and
02n11 → 12+3n0, as claimed.

Now, from (1) and the fact that for all k ∈ N, we have 0k ∼H 0 and 1k ∼H 1, we have
that 010 ∼H 10. Similarly, using (2), we get that 011 ∼H 10. Hence, Condition (3) of
Lemma 5 holds for H. Since H satisfies all the conditions of Lemma 5, Cl(H) contains the
derived subgroup of F , as necessary. �
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