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ON SOME GENERATING SET OF THOMPSON’S GROUP F
GILI GOLAN POLAK AND MARK SAPIR

ABSTRACT. We prove that Thompson’s group F' has a generating set with two elements
such that every two powers of them generate a finite index subgroup of F.

1. INTRODUCTION

Recall that Thompson’s group F' is the group of all piecewise linear homeomorphisms
of the interval [0,1] where all breakpoints are dyadic fractions and all slopes are integer
powers of 2.

Thompson’s group F has many interesting properties. It is infinite and finitely presented,
it does not have any free subgroups and it does not satisfy any law [1]. In 1984, Brown
and Geogheghan [3] proved that Thompson’s group F' is of type F' Py, making Thompson’s
group F' the first example of a torsion-free infinite-dimensional F'P,, group.

One of the most interesting and counter-intuitive results about Thompson’s group F' is
that in a certain natural probabilistic model on the set of all finitely generated subgroups
of F, every finitely generated nontrivial subgroup appears with positive probability [5]. In
9], the first author proved that in the natural probabilistic models studied in [5], a random
pair of elements of F' generates F' with positive probability. In fact, one can prove that
for every finite index subgroup H of F', a random pair of elements of F' generates H with
positive probability. This result shows that in some sense it is “easy” to generate F', or
more generally, finite index subgroups of F. Several other results in the literature can be
interpreted in a similar way. In [11], the first author proved that every element of F' whose
image in the abelianization Z? is part of a generating pair of Z? is part of a generating pair
of F' (and that a similar statement holds for all finitely generated subgroups of F').

Another result that demonstrates the abundance of generating pairs of F'is Brin’s result
2] that the free group of rank 2 is a limit of 2-markings of Thompson’s group F' in the
space of all 2-marked groups. Lodha’s new (and much shorter) proof [13] of Brin’s theorem
demonstrates even better the abundance of generating pairs of F.

In [6], Gelander, Juschenko and the first author proved that Thompson’s group F' is
invariably generated. Recall that a subset S of a group G invariably generates G it G =
(s99)|s € S) for every choice of g(s) € G,s € S. A group G is said to be invariably
generated if such S exists, or equivalently if S = G invariably generates GG. Note that all
virtually solvable groups are invariably generated, but Thompson’s group F' was one of the
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first examples of a non-virtually solvable group that is invariably generated. Note also that
in [6] it is proved that Thompson’s group F' is invariably generated by a set of 3 elements.
Using [10, Theorem 1.3], the proof from [6] implies that in fact, Thompson’s group F' is
invariably generated by a set of 2 elements (see also Lemma 14 below).

In this paper, we prove a somewhat similar result.

Theorem 1. Thompson group F has a 2-generating set {x,y} such that for everym,n € N,
the set {x™,y"} generates a finite index subgroup of F.

We will show that the generating set {x,y} constructed in the proof of Theorem 1 below
also invariably generates F'. Note also that since the abelianization of Thompson’s group
F is 72, we couldn’t request the elements 2™ and y" from the theorem to generate the
entire group F'.

Theorem 1 does not hold for any non-elementary hyperbolic group. Indeed, if GG is non-
elementary hyperbolic, then there exists n € N such that G/G" is infinite, where G" is
the normal subgroup generated by all n'* powers of elements in G [12]. More generally,
Theorem 1 does not hold for any group G which has an infinite periodic quotient (such as
large groups (see [15]) and Golod Shafarevich-groups (see [16])).

Theorem 1 does hold for the Tarski monsters constructed by Ol’shanskii [14]. Recall that
Tarski monsters are infinite finitely generated simple groups where every proper subgroup
is infinite cyclic'. Let T be the Tarski monster constructed in [14], then 2 elements of T
generate it if and only if they do not commute. Since powers of non-commuting elements in
T do not commute (see [14, Theorem 28.3]), any generating pair of 7" satisfies the assertion
in Theorem 1 (in fact, for every pair of generators of 7', any pair of powers of the generators
generates the entire group 7"). It is easy to see that there are virtually-abelian groups (such
as Z* and Z1 Z,) for which Theorem 1 holds. But to our knowledge, Thompson’s group F
is the first example of a finitely presented non virtually-abelian group which satisfies the
assertion in Theorem 1.

2. THOMPSON’S GROUP F

2.1. F as a group of homeomorphisms. Recall that Thompson group F' is the group
of all piecewise linear homeomorphisms of the interval [0, 1] with finitely many breakpoints
where all breakpoints are dyadic fractions and all slopes are integer powers of 2. The group
F' is generated by two functions zy and z; defined as follows [4].

t ifo<t<ti

2t fo<t<i -

. . 4 2t — 1 ifl<e<?
w(t)=St+1 ifl<i<l  oa(t) = S 3
4 4 2 t++ if2<E<s
tylogfl<e<i 8 8 4
S t+1 ifd<t<t

IThere is another type of Tarski monsters, where every proper subgroup is cyclic of order p for some
fixed prime p, but for them Theorem 1 clearly does not hold.
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The composition in F' is from left to right.

Every element of F'is completely determined by how it acts on the set Z[%] Every number
in (0,1) can be described as .s where s is an infinite word in {0, 1}. For each element g € F'
there exists a finite collection of pairs of (finite) words (u;,v;) in the alphabet {0, 1} such
that every infinite word in {0, 1} starts with exactly one of the u;’s and such that the action
of g on a number .s is the following: if s starts with u;, we replace u; by v;. For example,
xg and x; are the following functions:

Oa if t = .0«
10« if t = .100«
110 if t = 101«
Alla  ift = 1la

Oa  if t = .00
zo(t) = ¢ 10a  if t = .0la  ay(t) =
dla  ift = .1«

where « is any infinite binary word.
The group F has the following finite presentation [4].

_ -1 _xo] _ -1 x% _
F= <$07$1 \ [$0$1 , L ] = 17[%%1 y Tq ] - 1>,

where a® denotes b~ 'ab. Sometimes, it is more convenient to consider an infinite presenta-
tion of F. Fori > 1, let ;11 = z,'z12(. In these generators, the group F' has the following
presentation [4]

(z;0 > 0] 2] = x4, for every j < i).

2.2. Elements of F as pairs of binary trees. Often, it is more convenient to describe
elements of F' using pairs of finite binary trees (see [4] for a detailed exposition). The
considered binary trees are rooted full binary trees; that is, each vertex is either a leaf or
has two outgoing edges: a left edge and a right edge. A branch in a binary tree is a simple
path from the root to a leaf. If every left edge in the tree is labeled “0” and every right
edge is labeled “1”7, then a branch in 7" has a natural binary label. We rarely distinguish
between a branch and its label.

Let (T, T_) be a pair of finite binary trees with the same number of leaves. The pair
(T, T-) is called a tree-diagram. Let uq,...,u, be the (labels of) branches in T, listed
from left to right. Let vy,...,v, be the (labels of) branches in T_, listed from left to
right. For each i = 1,...,n, we say that the tree-diagram (7', ,T_) has the pair of branches
u; — v;. We also say that the tree-diagram (7',,7_) consists of all the pairs of branches
Uy — U1, ...,U, — v,. The tree-diagram (7'.,T_) represents the function g € F which
takes binary fraction .u;a to .v;« for every ¢ and every infinite binary word «. We also say
that the element ¢ takes the branch wu; to the branch v;. For a finite binary word u, we
denote by [u] the dyadic interval [.u, .u1Y]. If u — v is a pair of branches of (T, T_), then
g maps the interval [u] linearly onto [v].

A caret is a binary tree composed of a root with two children. If (Tp,7_) is a tree-
diagram and one attaches a caret to the " leaf of T, and the i'® leaf of T_ then the
resulting tree diagram is equivalent to (T'y,T_) and represents the same function in F.
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The opposite operation is that of reducing common carets. A tree diagram (7. ,7_) is
called reduced if it has no common carets; i.e, if there is no ¢ for which the ¢ and 7 + 1
leaves of both Ty and T_ have a common father. Every tree-diagram is equivalent to a
unique reduced tree-diagram. Thus elements of F' can be represented uniquely by reduced
tree-diagrams [4]. The reduced tree-diagrams of the generators xy and x; of F' are depicted

in Figure 1.
(B)

FIGURE 1. (A) The reduced tree-diagram of xy. (B) The reduced tree-
diagram of z;. In both figures, T is on the left and T_ is on the right.

(a)

When we say that a function f € F has a pair of branches u; — v;, the meaning is
that some tree-diagram representing f has this pair of branches. In other words, this is
equivalent to saying that f maps the dyadic interval [u;] linearly onto [v;]. Clearly, if u — v
is a pair of branches of f, then for any finite binary word w, uw — vw is also a pair of
branches of f. Similarly, if f has the pair of branches © — v and ¢ has the pair of branches
v — w then fg has the pair of branches u — w.

2.3. The derived subgroup of F'. The derived subgroup of F'is an infinite simple group
[4]. Tt can be characterized as the subgroup of F of all functions f with slope 1 both at
0" and at 17 (see [4]). That is, a function f € F belongs to [F, F] if and only if the
reduced tree-diagram of f has pairs of branches of the form 0™ — 0™ and 1™ — 1" for
some m,n € N.

Since [F, F] is infinite and simple, every finite index subgroup of F' contains the derived
subgroup of F'. Hence, there is a one-to-one correspondence between finite index subgroups
of F' and finite index subgroups of the abelianization F/[F, F.

Recall that the abelianization of F is isomorphic to Z? and that the standard abelian-
ization map 7a: F' — Z* maps an element f € F to (log,(f'(0%)),log,(f'(17))). Hence, a
subgroup H of F' has finite index in F' if and only if H contains the derived subgroup of F
and 7, (H) has finite index in Z2.

2.4. Generating sets of F. Let H be a subgroup of F. A function f € F is said to
be a piecewise-H function if there is a finite subdivision of the interval [0, 1] such that on
each interval in the subdivision, f coincides with some function in H. Note that since
all breakpoints of elements in F' are dyadic fractions, a function f € F'is a piecewise-H
function if and only if there is a dyadic subdivision of the interval [0, 1] into finitely many
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pieces such that on each dyadic interval in the subdivision, f coincides with some function
in H.

Following [7, 8], we define the closure of a subgroup H of F', denoted CI(H), to be the
subgroup of F' of all piecewise-H functions. A subgroup H of F'is closed if H = CI(H).
In [8] (see also [10]), the first author proved that the generation problem in F is decidable.
That is, there is an algorithm that decides given a finite subset X of F’ whether it generates
the whole F'.

Theorem 2. [10, Theorem 1.3] Let H be a subgroup of F. Then H = F if and only if the
following conditions hold.

(1) CI(H) contains the derived subgroup of F'.
(2) HIF,F]|=F.

More generally, we have a criterion for when a subgroup H of F' contains the derived
subgroup of F'.

Theorem 3. [8, Theorem 7.10] Let H be a subgroup of F. Then H contains the derived
subgroup [F, F] if and only if the following conditions hold.

(1) CI(H) contains the derived subgroup [F, F.
(2) There is an element h € H and a dyadic fraction o € (0,1) such that h fizes «,
K(a™)=1 and h(at) =2.

Below we apply Theorem 3 to prove that a given subset of I’ generates a finite index
subgroup of F' (by proving that it contains the derived subgroup of F' and considering its
image in the abelianization of F'). The following two lemmas will be useful in proving that
Condition (1) of Theorem 3 holds for a subgroup H of F.

Lemma 4. Let H be a subgroup of F'. Assume that for every pair of finite binary words u
and v which both contain both digits “0” and “1” there is an element h € H with the pair
of branches u — v. Then C1(H) contains the derived subgroup of F.

Proof. Let f € [F, F]. Then the reduced tree-diagram of f consists of the pairs of branches

o™ —om
fiQu, —wfori=1,...k
m — 1"
where k,m,n € N and where for each ¢ = 1,...,k, the binary words u; and v; contain

both digits “0” and “1”. By assumption, for each ¢ = 1, ...,k there is an element h; € H
with the pair of branches u; — v;. Then h; coincides with f on the interval [u;]. we
note also that f coincides with the identity function 1 € H on [0™] and on [1"]. Since
[0™], [us], ..., [ug], [1"] is a subdivision of the interval [0, 1] and on each of these intervals f
coincides with a function in H, f is a piecewise-H function and as such f € CI(H). O

Given a subgroup H < F we associate with H an equivalence relation on the set of
finite binary words as follows. Let u and v be finite binary words. We write u~pgv if
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there is an element h € H with the pair of branches u© — v. Note that ~p is indeed an
equivalence relation on the set of finite binary words. (Indeed, for every finite binary word
u the identity function has the pair of branches u — wu; if h € H has the pair of branches
u — v then h~! has the pair of branches v — u and if h, g € H have the pairs of branches
u — v and v — w, respectively, then hg has the pair of branches u — w). We note also
that if u~pgv then for any finite binary word w we have uw~gvw. Indeed, if h € H has the
pair of branches u — v then for each w (some non-reduced tree-diagram of ) h has the pair
of branches uw — vw. By Lemma 4, to prove that Cl(H) contains the derived subgroup
of F, it suffices to prove that all finite binary words which contain both digits “0” and “1”
are ~ p-equivalent.

Lemma 5. Let H be a subgroup of F such that the following assertions hold.

(1) For every r € N, we have 170 ~g 10.
(2) For every s € N, we have 0°1 ~p 01.
(3) 01 ~g 10 ~g 010 ~p O11.

Then CI(H) contains the derived subgroup of F.

Proof. First, note that since 10 ~g 01, we have 100 ~g 010 and 101 ~z 011. Then (3)
implies that

(4) 100 ~z 010 ~p 01 ~p 011 ~p 101.

Now, let u be a finite binary word which contains both digits “0” and “1”7. It suffices to
prove that v ~g 01 (indeed, in that case, all finite binary words which contain both digits
“0” and “1” are ~pg-equivalent). If u is of length 2, this is true, since 10 ~g 01. If u is
of length > 3, then it must have a prefix of the form 170 (for some r > 2), 0°1 (for some
s > 2), 010, 011, 100 or 101. In all of these cases, u is ~g-equivalent to a shorter word
(since it has a prefix that is ~g-equivalent to a shorter word by (1)-(4) above). Hence, we
are done by induction. ([l

3. PROOF OF THEOREM 1

For the rest of this section, let © = xy and y = 22z, (the element = appears in Figure
la and the element y appears in Figure 2). Since {x, 21} is a generating set of F', the set
{z,y} is a generating set of F. We will prove that for every m,n € N the set {2, y"}
generates a finite index subgroup of F' and that {x,y} invariably generates F'.

We begin with the following lemma.

Lemma 6. Letn € N. Then the reduced tree diagrams of ™ and y™ consist of the following
pairs of branches (that is, we list all the pairs of branches of ™ and y").

On+1 -0
2" K0P = 1RO for1 <k <n
1 — 1t
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FIGURE 2. The reduced tree-diagram of .

’02n+1 N 0

0%%10  — 1M30=RQ for1 <k <n
y" {0211 — 128300, for1 <k <n
02611 — 130=kD0 for1 <k <n
\ 1 N 13n+1

Proof. The lemma can be proved by induction. Note that for n = 1 the lemma follows
from Figure la and from Figure 2. U

Now, for every n € N, we denote by H,, the subgroup of F' generated by {z",y"}. We
claim that H, contains the derived subgroup of F'. To prove that, we will prove that H,
satisfies Conditions (1) and (2) from Theorem 3. First, we consider Condition (2).

Lemma 7. Let n € N. Then there is an element h € H,, such that h fixes a dyadic fraction
€ (0,1) and such that h'(a™) =1 and W (a™) = 2.

Proof. From the infinite presentation of F' given above it follows that

n 2 n 2n
y" = (2511)" = 25" 012437 - T1g3(0-1)-

Since 22" = 23" € H,, we have that
h =x1x427 - T143(n-1) € H,,.

Note that for & = 1 the function z; fixes [0, a] pointwise and satisfies z} (o) = 2. For all

i > 1, the function z; fixes [0, 3] pointwise, hence for v = 5 we have h(a) = a, h'(a”) =1

and h/(a™) = 2. O
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To prove that Condition (1) from Theorem 3 holds for H,,, we let K, be the minimal
closed subgroup of F' such that the following hold modulo ~, .

(a) 0F1~g 0FF71, for all k € N
(b) 1%0~g, 15170, for all k € N
(¢) 0Fl~g, 171750, for1<k<n
(d) 0%F10~g, 11300, for 1<k <n
(e) 0%11~vg, 12H30=R), for 1 <k<n

(f) 0%~y 130=kD0  for 1 < k < n.

Note that the intersection of closed subgroups of F' is a closed subgroup (see [8]) and
that modulo ~p relations (a) — (f) hold. Hence, K, is well defined.

Lemma 8. Let n € N. Then K,, C Cl(H,).

Proof. Tt suffices to prove that equivalences (a) — (f) hold when K, is replaced by H,,. In-
deed, in that case, the equivalences must also hold modulo ~cy(g,) and then the minimality
of K, implies that it is a subgroup of C1(H,,).

Let us consider the relation ~py . Equivalences (d), (e), (f) are true modulo ~p, since
y" € H,. Similarly, (¢) holds modulo ~, since 2" € H,. The branch 0"*! — 0 of a"
implies that for all £ € N, 0¥~y 0¥, In particular, for all k € N, we have 0¥1~y 071,
so (a) also holds modulo ~g . Finally, the branch 1 — 1"*! of 2 implies that for all

k € N, ¥~y 1¥". Hence, for all k € N, we have 1*0~p 1¥"0, so (b) also holds modulo
~H,- 0

By Lemma 8, to prove that [F, F] is contained in the closure of H,, for every n € N,
it suffices to prove that [F, F| C K, for every n € N. To do so, we will make use of the
following lemma.

Lemma 9. Letn € N. If2|n then Kn C K,,. If 3|n then Kz C K.

Proof. Assume that 2|n. The proof for the case 3|n is similar. K 2 is the minimal closed
subgroup such that

(a') 0"1~g, 0kF21, for all k € N
(b) 170 ~k, 15430, for all k € N
() 0% e, 15F17H0, for 1 <k < g
(d) 0710 ~vpe, 1773600, for 1 <k < g
(¢/) 0%11 ~ge, 127G, for 1 < k< g
() 0%, PETF0, for 1 <k < g
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It suffices to prove that (a’) — (f) hold with K= replaced by K,. We would make use of
equivalences (a) — (f) above holding modulo ~, .
For every k = 1,...,% we have by (a) and (d) that

(1) 02k10 ~K. 02k+n10 _ 02(k+%)10 ~K, 11+3(n7k7%)0 — 11+3(%7k)0.
Hence (d’) holds for K. Similarly, by (a) and (e), for every k =1,..., § we have
2611 ~ope 02Kt = 02211 ~vpe 12P3(—k=3)( = 1243(5F)
(2) 0“"11 ~g 0O 11=0 11 ~g, 1 0=1 0.
Hence, (€’) holds modulo ~, . Similarly, by (a) and (f), for every & = 1,..., % we have

(3) 02k’711 ~K, 02]{?4*71711 — OZ(kJr%)*ll ~K, 13(%*]64’1)0’

so (f') also holds with K= replaced by K.
To finish, it suffices to prove that equivalences (a'), (b') and (¢’) hold modulo ~, . Since
(b) holds modulo ~f,, to prove ('), it suffices to prove that for all k € {1,..., %5} we have

150 ~g, 1¥720. Solet k € {1,...,2} and let i € {1,2,3} be such that i = k (mod 3). Let

r=7%— % and note that » € {1,...,%}. We will assume that i = 3, the proof for i = 1,2

is similar. Note that if 7 = 3 then k = 3(§ — r +1). Then, by (3),(f) and (b), we have

1k0 _ 13(%—T+1)0 ~g 02r—11 ~K 13(n—r+1)0

(4) ~K, 13+3n73r7n0 — 13+2n73r0 — 13(%7r+1)+%0 _ 1k+%0

Thus (b') holds for K,,. To prove that (a’) holds for K, we note that for all k =1,..., %,
by applying (c¢) followed by (V') for ~g, followed by (c) again, we have

(5) Okl ~K, 11’L+1—k0 ~K. 1n+1—k—75‘0 — 17L+1—(k+%)0 ~K, Ok %1

Since (a) holds for K, (5) implies that (a’) holds for K, as well.
Finally, (5) shows that for all k € {1,... 5} we have

(6) Okl ~K, 1n+17(k+%)0 — 1%+1*/€O'
Hence, (¢’) also holds for K. O
Proposition 10. Let n € N. Then K, contains the derived subgroup of F.

Proof. We prove the proposition by induction on n. If n is divisible by 2 or 3, then by
Lemma 9, we are done by induction. Hence, we can assume that n is not divisible by 2 nor
by 3. By Lemma 5, to prove that the closed subgroup K, contains the derived subgroup
of F, it suffices to prove that Conditions (1)-(3) of Lemma 5 hold for K.

By (a) and (¢) we have

(7) 0210 ~g, 0"10 ~g, 1"717"00 = 100.
On the other hand, by (d) we have
(8) 02710 ~g, 113010 = 10.
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Hence,
9) 100 ~g,, 10.
Similarly, by (a) and (¢) we have
(10) 0211 ~g, 0"11 ~g, 10" "1 = 101.
By (e) we have
(11) 02711 ~g, 124300 = 110.
Hence,
(12) 110 ~g,, 101.

Now, we make the observation that if Condition (1) of Lemma 5 holds for K,, then
Conditions (2) and (3) of Lemma 5 also hold for K,,. Indeed, assume that for all r € N we
have 170 ~g, 10. Then in particular, 110 ~, 10. Then, it follows from (12) and (9) that
for all r € N,

(13) 170 ~, 101 ~, 100 ~g, 10.

In addition, (a) and (¢) from the definition of K, show that for every s € N there is some
r € N such that 0°1 ~g, 170. Then it follows from (13) that for all s € N, 0°1 ~, 10.
In particular, 01 ~g, 10. Hence, 0°1 ~g, 01 for all s € N, so K, satisfies Condition (2)
of Lemma 5. In addition, since 01 ~g, 10, we have 010 ~g, 100 ~g, 10 and 011 ~g,
101 ~, 10. Hence,

(14) 010 ~, 011 ~g, 10 ~g, O1.

Therefore, K, satisfies Condition (3) of Lemma 5 as well.

Hence, it suffices to prove that Condition (1) of Lemma 5 holds for K,, i.e., that for
every r € N we have 170 ~g, 10.

Since n is co-prime to 2 and 3 there are b,c € {1,...,n} such that 2b =1 (mod n) and
3¢ =1 (mod n). Below, whenever an integer modulo n appears as an exponent of the digit
“0” or “1” we assume that the chosen representative is in {1,...,n}. Recall that by (a)
and (b) for K,, for all K € N we have that 01 ~g, 0Fmod M1 and 1%0 ~p, 1F0d 7)) We
use this fact below, sometimes with no explicit reference.

We will need the following lemma.

Lemma 11. Let ¢ € N be such that 190 ~g, 10. Then 10 ~g, 197c(med n)q,

Proof. Let p € Nand let s € {1,...,n} be such that s =1—bp (mod n). Then p =2 —2s
(mod n). Since s € {1,...,n}, by (f) followed by (b) we have

(15) 025711 ~K 13(n+175)0 ~K 1373s(m0d n)O — 1373(17bp)(m0d n)O _ 13bp(m0d n)O

On the other hand, by (a), (¢) and (b)

(16) 025—11 ~K, 025—1(mod n)l ~K, 11+n—(28—1)(m0d n)O ~K, 12—28(m0d n)O _ lp(mod n)O
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Hence,

(17) 1P(m0d n)o ~EK 13bp(mod n)O

Since (17) holds for every p € N and (3b)(2¢) =1 (mod n), we have that for all p € N,
(18) 1p(mod n)O — 13b(20p)(mod n)o ~K 120p(mod n)O.

Now, let t € {1,...,n} be such that t = b(1 — q) (mod n) and note that ¢ = 1 — 2¢
(mod n). Then by (b),(c),(d) and the fact that 3b — 1 = b (mod n) (indeed, 20 = 1
(mod n)), we have

1900 ~K, 1n+1—2t(m0d n)OO ~K 02t(mod n)lo ~K, 11+3(n—t)(mod n)O
( ) _ 11—3t(m0d n)o — 11—3b(1—q)(mod n)o — 13bq—3b+1(mod n)O _ 13bq—b(mod n)o

Now, since by assumption 190 ~g, 10 and by (9) we have 10 ~g, 100, it follows that
1900 ~k, 100 ~g, 10. Then from equivalence (19) it follows that

(20) 10 ~K, 13bq—b(mod n)o

Then (20) and (18) imply that

(21) 10 ~x 13bq—b(m0d n)O ~ K 120(3bq—b)(mod n)o ~g 1q—c(mod n)o

as required. O

Now we can finish proving the proposition. By lemma 11 applied to ¢ = 1, we get that
10 ~g, 1t=cmod M) Apother application of the lemma, now for ¢ € N such that ¢ =1 —¢
(mod n) shows that 10 ~g, 1'72¢(mod n)( Continuing inductively, we get that for all £ € N,
we have

(22) 10 ~K. 11—£c(mod n)O'

Now, for each r € N, let £ € N be such that £ = 3(1 —r) (mod n). Then r =1 — ¢/
(mod n) and by (20) we have

(23) 1T0 NKn 11—€c(m0d n)o NK" 107
as required. Hence, the proposition holds. 0
Corollary 12. For every n € N, the subgroup H,, contains the derived subgroup of F'.

Proof. Let n € N. Proposition 10 and Lemma 8 imply that the derived subgroup of F'is
contained in Cl(H,). Hence, Condition (1) of Theorem 3 holds for H,,. Lemma 7 shows
that Condition (2) of Theorem 3 also holds for H,,. Hence, by Theorem 3, H,, contains the
derived subgroup of F. O

The following lemma completes the proof of Theorem 1.

Lemma 13. Let m,n € N. Then G = (™, y") is a subgroup of F of index mn.



12 GILI GOLAN POLAK AND MARK SAPIR

Proof. Note that ™", y™ € (. Hence, H,,, is a subgroup of G. Hence, by Corollary
12, the derived subgroup [F, F] < G. Recall the map 7y: F — Z? from Section 2.3. By
Lemma 6, ™ has the pairs of branches 0™ — 0 and 1 — 1™*'. Hence, my(z™) =
(m, —m). Similarly, m,(y") = (2n, —3n). Hence, m,(G) = ((m, —m), (2n, —3n)). Since
{(m,—m), (2n,—3n)) is a subgroup of Z? of index | — 3mn + 2mn| = mn, the subgroup G
is a subgroup of F' of index mn, as required. [l

We finish with the following lemma.
Lemma 14. The set {z,y} invariably generates F'.

Proof. 1t suffices to prove that for any g € F', the set {z,y9} is a generating set of F. Let
g € F and let m,n € Z be such that 7,(g) = (m,n). Since {muw(z), 7u(y)} generates Z2,
there exist ¢,j € Z such that img(z) + j7w(y) = —(m,n). Let h = y/gz’ and note that
h € [F, F]. Now, {z,y9} generates F if and only if so does {*", y9*' } = {x,y¥ "} = {x,y"}.

Let H be the subgroup of F' generated by X = {x,9y"}. Then H[F, F] = F (indeed,
the image of X in the abelianization of F' coincides with the image of the generating set
{z,y}). Hence, by Theorem 2, to prove that H = F' it suffices to prove that CI(H) contains
the derived subgroup of F'. For that, we will make use of Lemma 5. Since x = x¢y € H has
the pairs of branches 00 — 0, 01 — 10 and 1 — 11, we have that for all £ € N, 0% ~p 0,
1* ~5 1 and 10 ~g 01. In particular, for every k € N, we have 01 ~5 01 and 1¥0 ~y 10.
Hence, Conditions (1) and (2) of Lemma 5 hold for H. To prove that Condition (3) from
Lemma 5 holds as well, it suffices to prove that 010 ~g 011 ~g 10.

Let us consider the element h. Since h € [F, F], there exist a,b € N such that h has
the pair of branches 0* — 0% and 1° — 1°. Let n = max{a,b} and consider the element
f=h"1y?"h € H. We claim that f has the pairs of branches

(1) 0210 — 11300,
(2) 02r11 — 12+3n0,

Indeed, by Lemma 6, the element y>* has the pairs of branches 02710 — 1132n—n)( =
11370 and 0211 — 12#3@n=n)(Q = 124370, Since h fixes the intervals [02"] C [0%] and
[137] C [1°] pointwise, the element f also has the pairs of branches 0?10 — 11370 and
0?11 — 127370, as claimed.

Now, from (1) and the fact that for all ¥ € N, we have 0¥ ~y 0 and 1* ~5 1, we have
that 010 ~g 10. Similarly, using (2), we get that 011 ~p 10. Hence, Condition (3) of
Lemma 5 holds for H. Since H satisfies all the conditions of Lemma 5, C1(H) contains the
derived subgroup of F', as necessary. 0]
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