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Global existence of classical solutions to a regularized brine inclusion model

Yuan Chen and Keith Promislow

Abstract. The freezing of salt water leads to phase separation into ice and brine inclusions. The ejection of salt from the ice
phase is akin to chemotaxis. We consider a regularization of a free energy for brine inclusions and address its gradient flow
on a periodic domain in R%(d = 2, 3). Uniqueness and global existence of classical solutions from initial data in an energy
space are established for positive time.
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1. Introduction

The freezing of salt water requires the ejection of salt from the growing ice domain. This ejection is a
natural form of chemotaxis. The brine inclusion model introduced in [5] incorporates the salt ejection by
taking the entropy of the salt volume fraction to be relative to the liquid water volume fraction. This
is a natural approach; however, the singularity implicit in the relative entropy formulation complicates
rigorous analysis of the model. We present a regularization of the model, show that it fits within a broad
system of Keller Segal equations, and establish that it is locally well-posed and supports global solutions.
The regularized brine inclusion model addresses a phase function ¢ which distinguishes between liquid
and frozen water and a salt density N. The flow for u = (N, ¢) takes the form

N
O = D¢ — 0 W(d,N) + ——,
p+o
Vo (1.1)
N =AN -V (g(N)| —— —VoyW(¢p,N ,
: (90 (552 - vowwio.m))
on a periodic domain 2 C R%(d = 2, 3) subject to initial condition:
#(0,x) = ¢o(x), N(0,z) = Ny(z), for allz € Q. (1.2)

Here o > 0 is a positive regularizing constant, g(IN) > 0 for N > 0 is a mobility function depending on
N, and W is a smooth potential. For spatially constant salt concentration N the function W is a double
well potential in ¢. The flow conserves the mass of N, viz.

/Ndx:No. (1.3)
Q
Indeed, the flow arises as a gradient of the natural energy

Bio,N] = [ (§I762 + W(6.8) + J(V) ~ N1u(o +0) ), (14
Q
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where f = f(N) is a function of N satisfying

f"(N) =1/g(N). (1.5)
Particularly, if g(N) = N, then f(N) = N1n N is the classical entropy of the salt.

1.1. Model motivation

The flow (1.1) arises as a regularization of the isothermal version of the brine inclusion model introduced
in [5]. Particularly, N > 0 denotes the salinity of the liquid water and ¢ > 0 denotes the phase of the
water with ¢ = 0 corresponding to ice and ¢ = 1 to liquid water. Following the GENERIC framework of
[9], the prior work develops a thermodynamically consistent flow for the entropy S which is the negative
of the energy E from (1.4). It considers the case 0 = 0 and the choices

J(N):=NInN;  W($;N):=Wo(e) +&(N)Wi(9), (1.6)

For fixed N, the potential W is a double well in ¢ with possibly unequal local minima at ¢ = 0 and
¢ = 1. The dominate phase potential Wy is the classical double well Wy(¢) := ¢?(1 — ¢)2. The term W;
breaks the equal-depth structure of W. It satisfies W7 < 0, with compact support in (%, %) and a single
minima Wy(1) = —1 at ¢ = 1, The cryoscopic prefactor £ = £(N) incorporates the impact of salt on
the freezing point of water, lowering the value of W (1, N) with increasing salt concentration. The salt
ejection is modeled by the N1n(¢) term which incorporates the dependence of the salt entropy on the
presence of liquid water. This is the origin of the chemotactic behavior in the system, as freezing removes
liquid water molecules from the hydration sphere of a salt ion, the ion’s entropy decreases.

Under time evolution, the entropy increases while the total salt content remains fixed. This motivates
the gradient flow of (N, ¢):

oE
%7
HN =V <g(N)V

Oy = — inQ x (0,00),

- (1.7)

— |, in€ x (0, 00).
Here, %’ g—]% are the L? variational derivatives of the energy &, (1.4), with respect to ¢ and N, respectively.
Moreover, for the generic choice of mobility function g(N) = N the flow reduces to

b = Aj — 9,W (6, N) + %;

HN=AN—-V- <NZ¢ — NVoyW(¢, N)) .

(1.8)
The flow (1.1) is a generalization of (1.8) subject to the regularization of the salt ejection mechanism
at ¢ = 0. The regularizing parameter 0 < o < 1 keeps the salt entropy N In(¢ + o) finite if N > 0 in
the pure ice phase. The value 0 = 0 corresponds to the unregularized model and is not considered in the
analysis presented here. Macroscopic models of sea ice resolve effective transport properties based upon
local averages of the ice/liquid phase, [11]. Degenerate diffusion of salt plays a crucial role in these models,
as it allows the incorporation of a brine volume fraction threshold below which the salt phase is immobile.
The model presented here resolves the brine microstructure explicitly and restricts salt diffusion in the ice
by excluding the salt from the ice phase. When the brine regions become disconnected, the macroscopic
salt flux is naturally extinguished, see [5] for details.
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1.2. Main results and connection to Keller—Segel models

The system (1.1) can be compared to the general Keller—Segel model, see [3,4], who introduced the general
framework:

1.9
N =V - (Dx(N,6)VN = X(N,))NV$) + H(N, 6). )
In this system, IV denotes a cell density and ¢ models the density of a chemo-attractant. The system
(1.1) lies within the framework of (1.9) subject to the choices Dy =1, H = 0 and

N 5 1
K——ang—‘rm, DN—1+N8NVV, X = m—aN(z)W
There is a substantial literature work on the existence and nonexistence of solutions to the Keller—Segel
model for a range of functional forms of the diffusivities Dy, Dy, x and potentials H, K. The survey
paper [1] provides an excellent review of results on these models. Despite the breadth of the established
work it does not accommodate the form (1.1). Specifically, the most relevant local existence result (see
Lemma 3.1 in [1]) requires that the quantity K — ¢ be positive. This assumption affords a maximum
principle which is not available to (1.1). Similarly relevant global existence results require a bound on the
growth of K with respect to N of the form |K(N,¢)| < C|N + 1|? for some constant C' and 8 € [0, 1].
This growth requirement is used to establish bounds on ¢ and close essential nonlinear estimates. These
estimates do not seem to hold for the regularized brine inclusion model.

The classical Keller-Segel system corresponds to the choices Dy = 1, K = —¢p+N,Dy =x =1,H = 0.
This form of (1.9) can be viewed as a gradient flow of the energy functional

FKS[¢,N]/<;|V¢|2+¢2+NlnNN¢> da. (1.10)
Q

A key step to establish the global existence in the classical Keller—Segel system is to control the sign-
indeterminate terms in the energy via the Moser-Trudinger inequality, [10]. This approach requires a
particular structure in the nonlinearity that (1.1) does not possess. To surmount these difficulties, we
impose assumptions on the form of f and the potential W to insure that the system is well-posed.
Particularly we require

(Hy): f is a smooth function of N and satisfies
(a) f” is bounded away from zero and |f"”| is uniformly bounded on [1, c0).
(b) f(N)=NInN for N > 0 sufficiently small.

(Hy ): W is a smooth function of ¢, N and satisfies
(a) There exists C' > 0 such that for all N € [0, c0),

W(¢,N) = =C¢* = C5 |95W (9, N)| < Cle[""" + C(N + 1), (1.11)
for k =1,2,3.
(b) The potential W = W (¢, N) is a linear function of N and satisfies the bounds
|8¢NW‘ + |8¢¢NW| <C. (1.12)

(c) For N > 0 finite, there exists ag, Fy > 0 such that 9,W (¢, N) < ap¢ for ¢ € (0, fo).
A motivating example of f satisfying (Hy) is given by
NInN, 0<N<1/2
f(N):{N27 N >1,
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with a smooth connection for N € [1/2,1]. It is useful to observe that the assumptions (Hy), imply that
g(N) :=1/f"(N) satisfies

lg(N)| + 19’ (N)] < C. (1.13)

Under these assumptions, we have a maximum principle for ¢ and the regularized energy bounds
the L2-norm of the salt density. We adopt the semigroup estimates and establish the global existence of
solutions which are smooth for ¢t > 0.

Theorem 1.1. Let o > 0 be a given positive constant. Consider the flow (1.1)~(1.2) on a periodic domain
in RY(d = 2,3). Under the assumptions (Hy) and (Hy ), if initial data ug = (No, ¢o) has finite energy,
i.e., E(No,do) < oo, then there exists a global-in-time solution uw = (N, ¢) which is smooth after the
wnatial time and recovers the initial data in the sense that

lim_([l¢(t) = bollwra(e) + [N (t) — NollL2(a)) = 0.

t—0t

Moreover, the phase variable ¢ is uniformly bounded after an initial transient.

To prove the theorem, we first construct a local smooth solution via contraction mapping principle
for sufficiently smooth initial data. An approximation method is then applied to extend the existence
result to initial data in the energy space. The maximum principle cannot be used to establish an upper
bound on N, instead we use semigroup and energy estimates to establish uniform bounds on || N||z1(q)
and [|[V@l|15(n). These allow the local solutions to be extended globally. These estimates and standard
embedding theorems allow the phase variable to be uniformly bounded in time. Finally, a bootstrap
argument shows that the solutions are smooth away from ¢ = 0.

A maximum principle ensures the positivity ¢ > 0. For the regularized model the term 1/(¢ + o) is
easy to bound — this fact plays an essential role in the proof. The regularization of ¢ at 0 is traditional
in chemotaxis systems such as [4] and [13]. More recent work has addressed chemotaxis with singular
sensitivity of the form x (N, ¢) = xo/¢. In [7], Lankeit established a global existence of classical solutions
in dimension two. In higher dimension, Winkler, Fujie and Lankeit [2,8,13] proved the global existence
under different assumptions on the size of y¢ depending on dimension. In each of these cases the proof
hinges on uniform estimates of energy in the form of [ N?¢_" on any finite time interval. These depend

Q
heavily on their K term depends linearly on N — ¢. This approach does not apply to the regularized
brine inclusion model, and we restrict our attention to the case o > 0.

The assumptions (Hy ) constrain the dependence of W upon N. We present the proof for the case W
independent of V. The general case follows from a slight modification of the arguments. The remainder
of the article is organized as follows. In Sect. 2, we introduce basic energy estimates and lower bounds
on the energy. In Sect. 3, we apply the contraction mapping principle to establish the existence of local
smooth positive solutions. In Sect. 4, we establish a uniform estimate of ¢ and N away from ¢ = 0, which
assures a uniform life span of local solutions. Finally, the global existence with initial data in the energy
space is established by a classical approximation method.

2. Basic estimates

For on a bounded domain €2 ¢ R% R? with periodic boundary conditions, there exist constants C; and
Cs for which the embedding estimates hold

19llz2() < Cill9llLe) < Cal| Vol L2(q)-

These estimates will be used without comment in the sequel. From the gradient structure of the flow, we
have the following basic energy identity regarding positive solutions. Particularly, this implies that the
energy E = E(N, ¢) introduced in (1.4) is dissipated by the flow.
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Lemma 2.1. Suppose (N, @) is a positive classical solution to the system (1.1)~(1.2) on the periodic domain
Q, then the following energy identity holds:

dE VN Vo
dt+9/<g(N) m*w

Proof. The lemma is a direct result of the gradient structure of the flow (1.7). Taking the L?-inner product

oE N
of the first equation in (1.1) with 7 = - (Aqb —W'(p) + ¢+> immediately yields
o

2
, N

2) dz = 0. (2.1)

2 dx. (2.2)

0E N
O —dr=— [ |A¢p—W

oG do /M O+ 57+
Q Q

. 2 . .. OE p . .
Taking the L*-inner product of the second equation in (1.1) with SN f'(N) —In(¢ + o), integrating
by parts, and using the fact f”(N) = 1/g(N) implies
2

OE VN V¢
N _—dz=—- N)|—= dzx. 2.
fa o= - [on |75+ | 2
Q Q
The lemma follows by combining (2.2) and (2.3), with the identity
dE OE OE
Q Q

U

The energy E(N, ¢) admits a uniform lower bound, which controls the L?-norm of N and W12(Q)-
norm of ¢.

Lemma 2.2. There exist positive constants C1,Cy depending on 2 and o such that the energy enjoys the
following lower bound:

E(N,9) 2 C1 (IN 2y + [613120)) = Co. (2:5)

Proof. From the form of £ and assumptions (Hy) we have

1
BV.0) 2 5190l + CIN ey + [ W(@)do— [ Ninfo+ ol da. (26)
Q Q

By the assumption (Hy ), on W, we have
/W((b) dx > —C/¢2 dx — C. (2.7)
Q Q

Standard embedding estimates reduce (2.6) to the form

1
B(N,0) = 199lx(@ + CIN @ — [ Nl -+ olde - C. (28)
Q

It remains to bound the sign-indeterminant integral on the right-hand side. For any positive constant
e > 0, there exists a constant C for which the relation: (In(x + 0))? < 222 4+ C(e) holds for all x > 0.
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Applying the Cauchy—Schwartz inequality and this pointwise identity yields

c
/Nln</>+a dm<5/N2dac—|— /1n2|¢+a|dm

c. (2.9)

<5/N2dm+5/¢2dx+—

The lemma follows by combining these two inequalities with embedding estimates and choosing € small
enough. O

3. Local well-posedness
In this section, we apply the contraction mapping principle to establish the local well-posedness of (1.1)—
(1.2). To achieve this, we introduce an iteration space:
Xp =L (0,T; L*(Q) x WH3(Q)),
with the norm on u = (ug,us) given by

[ullxr = S (luallzace) + luzllwrs() - 3.1)

s

The associated space of initial data is
Xo = L*(Q) x WH5(Q). (3.2)

From the flow (1.1)—(1.2), given v = (N, ¢) € X7 and initial data ug = (Ny, ¢g) € Xo, we introduce the
iteration map F(u) = (Fy, F»)(u) defined by variation of parameters

Fi(u)(t) :== e Ny — /e(t DAY . <¢(+)v¢)

Fo(u)(t) = ¢y — / (1902 (W’<¢> - NO) ds,
0

for t € [0,T]. Here e*® is the heat semigroup subject to periodic boundary conditions. We recall the
classic LP? — L7 estimates on the heat semigroup. Their proof can be found in many places, including [12].

Lemma 3.1. Let Q C R? be a bounded smooth domain. For u € LI(Q) and 1 < ¢ < p < oo, there exist
positive constants A\,C > 0 depending on € only such that

_1_d(1_1 —
64 - ullzn@) < € (14757 265)) el agey

A F R (3.4)
IVe2ul ey < € (146737 EG70)) e fu) o).
Moreover, if u is mass-free, i.e., /u =0, then
Q
e ullzagey < € (14+¢73G72)) e ul s (3.5)

In general for any u € L1(QY), the inequality above holds with A = 0.
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To prove that F' is a contraction mapping on X, we first show that it is closed in a ball of X for
suitable initial data and 7" small enough. The result requires an extra a priori lower bound condition on
¢ to avoid the singularity at ¢ = —o. This condition will be recovered in Lemma 3.5 via a maximum
principle. The result is contained in the following lemma.

Lemma 3.2. Let R > 0,T € (0,1] be a given constant and Bag be a ball in the functional space X1 with
radius 2R and center at the origin. Suppose u = (N, ¢) lies in the ball Bog C X1 and satisfies ¢ > —o /2,
and has initial data uy with ||e®ug||x, < R for allt € [0,T], then F(u) also lies in Bag provided that T
is small enough in terms of R,o, and the domain Q.

Proof. We first bound Fy in L*(€2). From the definition of F} in (3.3), we have

t
N
I1F1] Ly < [le"* Nollpaq) +/ elt=94y. (9()v¢> (s) ds. (3.6)
) ¢ + o LA(Q)
Note that for s,¢ € [0,T] satisfying s < ¢ < T < 1.
14 (t—s) Y2 < 2%t —5)7 /2 (3.7)
Applying the first inequality in Lemma 3.1 with p = ¢ = 4 and using the inequality above implies
t
1 N
IFulzeon®) < e Nollosy + € [ 0= )7 L8 wg] (). (38)
) p+o L4(Q)

Using the bound ¢ > —¢/2 and |g(N)| < C, and applying Young’s inequality yields
t
[F1]| L2y (t) < ||6tANO||L4(Q) + C/(t - 5)7% VOl () (s) ds. (3.9)
0

Here and below, C' is a constant possibly depending on ¢ and €2, and its value may change from line to
line. Taking the supremum of the time-dependent function ||[V¢| 14(0)(s) and integrating the remaining
s-polynomial function with respect to time yields

1
1P| s () < (1€ NollLa() + CT= V| Lo t0.17:.8(02))

N 1 (3.10)
< "= Nollzao) + CT2 ||ul| x-
To bound Fy in W13 (Q) we first estimate Fy in L?(Q). By the definition of F; in (3.3), we have
t t N
F < tA /H (t—s)Awl ‘ d / (t—s)A Y ds. 3.11
[1F2l[ 150y < lle™dollLs o) + J € (¢) iy BT J e ] s, (3.11)

Applying the last inequality in Lemma 3.1 and using the assumption ¢ > —o /2 yields

t t
1Pl sy < llet®doll sy + C / (t— ) 2G5 [W(¢)l| o(q (5) ds + C / (t— )" 2G| N| paqy ds.
0 0

(3.12)
From the assumption of W in (Hy), it holds that |[W’'(¢)| < C¢® + 1 and hence
W (@)llz2() (5) < Clldll76(0)(s) + C. (3.13)
From the Gargliardo-Nirenberg inequality and u = (N, ¢) € X1 we have
d 30—d

6l () < VG132 0y (Il .7y (8) < lullxrs Vs € (0,7, (3.14)
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Combining the previous two estimates with (3.12) yields the L® bound

t

t
__3d _d
[ Fa s < lle"®dollLs @) +/(t* §)7 20 (1l + 1) d3+0/(t* 5)7 30 ||N||La(q) ds,
0

) (3.15)

20—3d

< Hemsbo“m(m +CT =

: 40—d
(lulPep +1) + CT ™ [Ju]| -

Finally, we bound VF, in L°(Q2). We follow the argument for F, but apply the second inequality in
Lemma 3.1 to obtain

t t
IV Fallusca < IV oo + C / (t— 8)" 52 W' ()| 2y ds + C / (t— 5)~ 325 | V|| agey ds
0 0

Taking the supremum for s € [0, 7] of the bounds (3.13)—(3.14) affords the estimate
10—3d 20—d
IVEs o) < IV ollsi) + CT 5 |lul%, + CT 5 ||ul|x;.- (3.16)

Without loss of generality, we assume 7' < 1. Combining the estimates (3.10), (3.15) and (3.16) and
taking the supremum of the left-hand side of the resulting inequality, the definition of X yields

10—3d
2

1P, < lle®uollx, +CT = (Jullk, + llullx, +1) (3.17)

By the assumption, [|e‘®ug||x, < R and u = (N, ¢) € Bar. We conclude that F(u) € Bag for T small
enough depending on 2,0 and R. 0

We establish that the map F : X7 — Xr as defined by (3.3) is a contraction. Particularly, we establish
the following lemma.

Lemma 3.3. Suppose uy := (N1, ¢1),us := (Na, ¢2) lie in the ball Bop C X1 and satisfy ¢1,¢2 > —0 /2.
Then, there exists Ty depending on o, R and  only such that for oll T € [0, Tp],

1
[ F(ur) — F(ug)|x, < §||u1 — ua||xyp-

Proof. From (3.3), we first estimate

t

N N:
| Fi(u1) — Fi(uz)| L) S/ =92y . (g( ) Ve — 9(N2) V(bg) ds. (3.18)

) ¢1+0 ¢2+o LA(Q)
It is natural to introduce the decomposition
g(N1) g(N2) g(N1) — g(N2) g(N2)
Vg — W) gy 9N —gNa) gy | ) G

b to ¢1 oot o ®2 b to ¢1 P (1 — #2) 519

1 1
(5~ g ) sV

Recalling that (Hy) ensures g = 1/f” and ¢’ are uniformly bounded, and ¢1, ¢2 > —0/2, we have
9(N>

IO 61— 20290 < 4Ny — N [V6| + €IV — 00)| + CIV 61 — .
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Here and below, the positive constant C' may depend on o, R, and domain ) and may change from line
to line. Applying the LP — L9 estimates from Lemma 3.1, we derive

t
1F1 (u1) — Fi(u2) || 2oy < /ww*"%%%MM N2 )Vl 2000 (5) ds
0
+c/a—@%*ﬂrﬂm¢ 0)Vonlloen(s)ds  (3.20)

+c/a—®*%f%7mvw1 60) | 2oy (5) ds.

Applying Young’s inequality and using u = (N, ¢) € Bog C X yields
(N1 = N2)Vr|l 2000y < [IN1 = Na|l 1) Vo1l s @) < Cl[N1 — Nal|pay;

3.21
(61— 62) Vel 32y < Il = dallus(en [V eell oy < Cllés — bl 21
For u € X7, we have the Lipschitz estimate,
N1 — Na|lpaco) + |61 — d2lls ) + IV(01 — ¢2) s ) < llur — uz|x,-
Therefore, for t < 1 the difference of Fy at ui(k = 1,2) can be bounded by
t
_54d
I3 (1) = i)l < Cllur —uallr [ (¢ = 5) 5 ds
(3.22)

0
5—d
< CT 1 ||U,1 — UQHXT.

Now we bound the difference Fy(ui) — Fa(ug) in WH5(Q). Particularly, from the definition of F» and
Lemma 3.1 we have

[P (u1) — Fa(u2)|| s @) < C/ t— )" 2GS W (61) — W (62) ]| prse g ds

) (3.23)
N N
—I—C’/(t— s)_% 15 ! 2 ds.
) ¢1+o ¢2 +o L20/9(Q)
Applying (Hw )4 to W’ (¢) bounding ¢1, ¢ € LS(Q) c W15(Q), we have
W (1) = W (2)ll L15/s ) < Clidr — @25 @)W (¢1 + o) || s (3.24)
< COllpr — b2l s @) .
Moreover, from Young’s inequality and the assumption ¢5, > —o /2 we derive
P < CIINy = Nallgscay + Ol — d)Nal
_ . _
pr+0 dato L20/9(Q) ' e ' )
(3.25)

< C|[N1 = Nallpao) + Clli(é1 — ¢2) |25 @)l Nall L2
< C||N1 = Nallpao) + Cll(¢1 — ¢2)ll 25 (0)-
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Here, we used Ny € L*(Q) is uniformly bounded since u € Bag C X7. Combining estimates (3.24)—(3.25)
with (3.23), we obtain

_d
[ Fo(ur) — Fo(u2)||psy < CT s sup (|[N1 — Nallpao) + 1(61 — ¢2)[ 25 0))
s€[0.T] (3.26)
< OT 6 ||uy — g x,

Finally, we bound V(F(u;) — F(u2)) in L5(Q2). From (3.3) and Lemma 3.1, we derive

1 1

t
[V (F2(u1) — Fa(u2))|[1s(0) < C/(t —5) 727207 W (1) — W (2)] 12 ds
0

(3.27)
t
40 [(-sintthon | S ds.
5 ¢1+0 ¢2+0 L20/9(Q)

The second term can be bounded from (3.25). To bound the first term, we note that

W (¢1) = W (d2)llL2 < W (ud1 4 (1 = p)p2)ll pr0/30) ll¢1 — P2l L5 (@) (3.28)
Using the assumptions on W in (Hy) we have

W (g1 + (1 = p)2)ll Lr0ss ) < Cllél 720/ + ClidalZ20/5 () + C- (3.29)

The right-hand side is uniformly bounded for u; € Bar C X7 from the embedding L%(Q) C Wh3(Q).
Combining these with (3.25) with (3.27) yields

10

—3d
IV(F2(wr) = Fa(u2))|1s0) < CT 20 |lug — ual|x,.- (3.30)
Taking the supremum of the estimates (3.22), (3.26) and (3.30), for ¢t € (0,T) yields
10—3d
1F(ur) — F(ug)|xr < CT "2 [luy — ua|x,-

The lemma follows provided for T' € [0, Tp] if Tp is small enough depending on o, R, and the domain €.
O

We are in position to establish the existence of a fixed point to the mapping F' in the iteration space
Xr.

Proposition 3.4. Suppose ug = (No, ¢po) lies in the functional space Xo = L*(2) x WH5(Q) and ¢ > 0 in
Q. Then, there exists T > 0 depending only on the reqularizing parameter o, the initial data in Xo and
domain ), such that F' possesses a fized point u € Xrp.

Proof. Since ug = (Ny, ¢p) lies in the functional space Xg := L*(Q) x WH?(Q) and ¢y > 0 in Q, there
exists R > 0 such that

et pollx, <R, VT €0,1].

With this R, it remains to show that there exists a uniform constant T > 0 such that Fa(u) > —o /2 for
any v € X7 and any T € (0,Tp]. This verifies the lower bound requirement of Lemmas 3.2-3.3, and the
contraction mapping principle and the proposition follow.

From the maximum principle for the heat equation on a periodic domain, we know e*®¢y > 0 for
¢o > 0. Instead of obtaining a lower bound of Fy directly, it suffices to estimate the difference between
e'B ¢y and Fy in L>(9). We claim there exists Ty depending on o, {2 and the radius R such that

| Fo(u) — e ol| oo () < 0/2, t € [0, Tp). (3.31)

If so, then since e/®¢y > 0 we may deduce from the triangle inequality that Fy(u) is bigger than —a /2.
The proposition follows.
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To prove the claim (3.31), it is sufficient to estimate the difference in W15(Q2) due to the following
Gagliardo—Nirenberg inequality:
4 1—4
1 liec@) < IV Sl F Iy + 11l o) (3.32)
Recalling that F»(0) = et® ¢y, we write
FQ(U) — etA¢0 S FQ(U) - FQ(O)
It follows directly from estimates (3.26) and (3.30) that
10—3d
IV (F2(u) = o)l o) + [ Fa(u) = e ollrs@) < CT = |lullx, VYt €[0,T). (3.33)
The claim (3.31) follows and the proof is complete. O

Lemma 3.5. (Maximum principle) Suppose initial data ¢o, Ny are strictly positive, (¢, N) is a classical
solution of the flow (1.1)=(1.2) on Q x [0,T] and satisfies ¢ > —o /2 a priori, then ¢, N preserve the
positivity on Q x (0,T), that is,

o(t,x) > 0,N(t,z) > 0, Y(t,z) € Q x (0,T].

Proof. We first address N. Since Ny is strictly positive on the compact domain Q = €2, from the smooth-
ness and a continuity argument there exists ¢y > 0 such that N(¢,z) > 0 for all (¢t,z) € [0,t0] x .
We only need to show that N(¢,z) is strictly positive for any (¢,x) € [to,T] x €. This suffices to show
N(t,-) > w(t) = ee K on [ty, T] for some positive constants K > 0 and small € > 0. The constant ¢ is
chosen to be small enough so that N(tg,-) > & > w(tg) = ce K% on Q. If on the contrary N(t,-) > w(t)
does not hold true on , then there exists t1 € (tg, 7] which is the first time that N(¢1,z1) = w(t;) for
some x1 € . Moreover, x; € ) is the minimum point of N in Q at time ¢;. Particularly at (¢1,21), we
have

—eKe ™ = duw(ty) > 9N (t1, 1), N(ty,x1) = w(ty) = ee” ",

3.34
VN(tl,.Tl) :O, AN(tl,Zﬁl) Z 0. ( )
From the flow (1.1) for N and the facts above, we deduce that
—eKe KM > 9,N(t),2,) = <AN — ¢ (N)VN - Vo _ g(N)V - ( Ve >> (t1,21)
p+o p+o (3.35)
Vo '
> _g(N)V- [ —~2
= —g(N)V (¢+a> (t1,21)
Since g(N) = N for N < 1, we have g(N)(t1,7;) = w(t;) = e~ 5% and the inequality becomes
Vo
K<V -|—— . .
_V ((i)-l—O’) (tl,xl) (3 36)

Since ¢ is C%(Q) for t > 0 and hence bounded on any compact domain of  x [tg, T], we can choose K
large enough depending on the values of ¢ and its derivatives at (¢1,21) so that a contradiction arises in
the inequality above. This implies that N(t,2) cannot attain w(t) = ce~%* at any time t € [to, T], and
hence N(t) > w(t) > 0 for ¢ € [ty,T] which implies N > 0 on [0,7].

Similarly, we show the positivity of ¢. Since ¢ is strictly positive on a compact domain €2, by a
continuity argument there exists some ¢y > 0 such that for all that ¢t € [0,to] it holds ¢(t,-) > 0 on
Q. It remains to show that ¢(¢,-)(€ C) is strictly positive for ¢ € [tg,T] on €. This is sufficient to
demonstrate that ¢(t,-) > v(t) = e X! on [tg,T] for some K > 0 and for ¢ > 0 small enough that
b(tg,-) > € > ce K% on Q. Suppose to the contrary that ¢(t,j > v(t) does not hold on €, then there
exists a first time ¢; € (to, T] such that ¢(t1,21) = v(t1) at a minimizing point x; € . Particularly at
(t1,x1), we have

¢(t1,$1) = U(tl) = EeiKtl, 7€K€7Ktl = ﬁtv(tl) Z 8tq$(t1,x1), Aqf)(tl,(l?l) Z 0. (337)
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Hence, we derive

—eKe KN > 0,6t 1) = <A</> W)+ ¢]+VJ> (t1,21)
N

dp+o’

(3.38)
> —W'(¢) +

Since N is positive and ¢(t1, 1) = ee K% > 0, we have
—eKe KU > 9,0(t,21) > —W'(¢). (3.39)

From the assumption (Hy ) o) W’(¢) < apg at ¢ = v(t;) = ee %" > 0 for € small enough, a contradiction
arises if we choose K > ag and hence ¢(t,x) > ce” Kt > 0 for all (¢,z) € [0,7] x Q. The lemma follows.
O

The following two lemmas are required to establish the regularity of local solutions away from the
initial time.
Lemma 3.6. LetT > 0,q > r > 1 be some given positive constants, and A be the positive operator —A+1.
Suppose f = (f1, f2) € L>=(0,T; LY(NQ)),vo € L"(2) and v solves the initial value problem
O — Av = f, v(0, ) = vo(x) (3.40)
on a bounded periodic domain, then for any 7 > 0 and t € [r,T] there exists a positive constant C

depending on T and T such that

A% (-, )| ro) £ C+C SE(l)pT] 1£C5 ) e, (3.41)
se|0,

d(1 1
for any o € [O, 1+ 3 (p — q)) In particular, the estimate holds if « = 0 and p € [q,00); or if a = %

and (p,q) satisfies

(a). p € [q,ooziforq >d;
(b). pe [q, d_qq) forq < d.

Proof. Applying variation of parameters to the heat semigroup e** yields
t

o(t, ) = ePug + / =92 ds. (3.42)
0
Applying the LP — L? estimates we deduce that

t
4% zm(@) < 4% 2l + [ 1A% 00 ds
0

. (3.43)
< CHUOHL*(Q) —a—d(Ll_1y
S 2oL + C sup Hf”Lq(Q) (t—S) 2Yq " p/ (s.
tz(r p)+a s€[0,T] 5
The last integral is bounded for T bounded if o < 1 4 % (% — %), the Lemma follows. O

Lemma 3.7. Let T > 0, and r,q > 1 be positive constants, and A be the positive operator —A+1. Suppose
f=(f,f2) € L=(0,T;L1Q)),vo € L"(Q) and v solves the initial value problem of the heat equation
with a divergence form inhomogeneity

ov—Av=V-F, v(0,2) = vy (x) (3.44)
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on a bounded periodic domain. Then for any 7 > 0 and t € [r,T| there exists a positive constant C
depending on 7 and T such that

[A%( t)|[r < C+C sup [|f(7)]La(e), (3.45)
s€[0,T)

1 d/1 1
for any (p, @) that satisfy 1 < ¢ <p <oo, 1 <r<pand«a € [O, 3 + 3 ( — )> In particular, this
q

inequality holds for any p € [q,00) if ¢ > d and a = 0.

Proof. Applying variation of parameters to the heat semigroup e, we have
t
v(t, z) = ePug + /e(tfs)AV - fds. (3.46)
0
The LP-L? estimates imply that

t
1A% (e (8) < A% vl Loy + / A9 £l ey ds
0

. (3.47)
Cllvollzr (@ —q—l_d@_1
STL()JFC sup Hf||Lv(Q)/(t*5) 27273 ds
tz(r p)-{-a s€[0,T] 0
The last integral is bounded for T" bounded if a < % + g (% - %), the Lemma follows. O

Theorem 3.8. (Local existence) Given initial data ug = (No, ¢o) € Xo satisfying ¢o, No > 0, then there
exists a constant T > 0 such that on the domain Q x [0,T] there exists a unique positive solution u =
(N, ¢) € X1 to the flow (1.1). Moreover, the solution is smooth away from initial time. That is, for any
7 > 0 there exists a positive constant C depending on 7,1, k,2, o such that

Hu”Ck(QX[T,T]) S C(T7 T7kaQ7U)- (348)

Proof. The existence of solution u = (N, ¢) in X is a direct result of Proposition 3.4. It remains to show
the smoothness of u = (N, ¢) on Q x (0,7 for which the positivity of N, ¢ follows from the Maximum
Principle as established in Lemma 3.5.

Since u = (N, ¢) lies in X7, we have N € L°(0,T; L*(Q)) and ¢ € L>(0,T; W*(Q)). For d = 2,3,
Morrey’s inequality implies ¢(t) € C%(Q) for some a > 0. Therefore, from assumption (Hy ) we have
W'(¢) € C*(Q2). Taking the ¢ equation from (1.1), we apply Lemma 3.6 (b) with a = 1/2,¢ = 4 and
initial time at ¢t = 7. This yields that for any 7/ > 7, p € [4,00) and all ¢t € [7/,T]

IVo(®)llLr() < CIAY2G(1)] o0

< CT’ + CT’ sup
s€[0,T]

N
p+o

W) + (3.49)

LY(Q)

We emphasize this holds for any p € [4,00) or any p < oo since 2 is bounded and hence V¢ €
L>(7',T; LP()) for any 7/ > 7 and p < oc.

We turn to the flow of N in (1.1). Since N € L°(0,T; L*(Q)) and V¢ € L (7', T; LP(Q2)) for any
p < 00, from Young’s inequality we have for any ¢ < 4

N o0 / .
Gavecelk (7', T; LI(Q)). (3.50)
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On the other hand, taking the flow of N in (1.1) we apply Lemma 3.7 with p > ¢,¢ < 4 and derive

[A*N| e (o) (t) < Cr 4+ Crr sup Vo

se€lr,T]

(3.51)

¢+o La()

for all t € [7,T], a € [0, % + g (% — %)) We claim this inequality implies that N(-,t) € C%(Q) for

some § > 0 and any ¢t € [7/,T]. In fact, from the definition of the operator A the inequality above

implies that N € W2r(Q) for a < & + ¢ (]% - %) In particular, these conditions are satisfied for

a = %,p =4,q = % Hence, 2ap = % > d and by Morrey’s inequality N(-,t) € C?(Q) for some 8 > 0
and t € [7/,T). Since ¢(-,t) € C?(Q) for some 3 > 0 and all t € [0,7T], we have N(-,t), ¢(-,t) € CP(Q) for
any t € [/, T)]. Furthermore this implies that ¢TNU(’ t) belongs to C?(Q) for any t € [/, T]. Applying the
parabolic Schauder estimates [6] to the ¢ equation, then a standard bootstrap argument establishes the
C*-smoothness of the solution away from initial time. The proof is complete. O

4. Global existence

We complete Theorem 1.1 by establishing the global existence of solutions to (1.1) for initial data uy =
(No, ¢o) in energy space, that is, Ng € L?(Q), ¢ € WH2(Q).

Proof of Theorem 1.1. For simplicity, we consider W to be independent of N. The general case, with
W subject to assumption (Hy ), follows by trivial modification of the proof. The construction is based
upon extension of the local solutions constructed later in this section. First in view of Proposition 4.2,
there exists a local solution u = (N, ¢) which is smooth away from initial time, and both components
are positive. The existence time of this solution depends on the energy space norm of the initial data
(No, ¢0) € L*(2) x WH2(Q). A uniform bound on (N, ¢) will allow the local solution to be extended
globally in time. But this uniform bound is a direct result of the basic energy inequality in Lemma 2.1
and energy lower bound in 2.2. Indeed, we have the uniform a priori estimate:

[@llwr2)(t) + l9llLe)(t) + IN|[L2) () < C,  VE>0.
Thus, the local solution can be extended inductively from [0,7] to any [nT, (n + 1)7T] for any natural
number n. This establishes the global existence and regularity. It remains to bound ¢ uniformly on
[7,00) x Q for any 7 > 0, this directly follows from the continuous embedding L>=°(Q)) ¢ W15(Q) and
uniform bounds of ¢(¢) in W15(Q) for ¢ > 7 afforded by Lemma 4.3. O

The main ingredient in the proof above is the local existence for initial data in energy space. This is
established in Proposition 4.2. In preparation, we gather some needed estimates. For u(t) = (N, ¢)(¢), we
introduce

4 3d
B(O) = B{u)0) = s (sF IVl + 52 190l0)(5) + 1011700, (4)) - (4.1)
se|0,
Given initial data in energy space, we show that B(¢) is bounded locally in time. The proof employs the
following useful integral formula which results from a change of variable:
t 1

/s_o‘(t —5) P ds =t~ (e+0) /s_a(l —5) P ds. (4.2)
0 0
Crucially the integral on the right-hand side is bounded for «, 8 € (0, 1) and
¢
/s_a(t — ) Pds < i etH), (4.3)
0
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Lemma 4.1. There erxists a positive constant to > 0 depending on Q,0 and initial data ug € L*(Q) x
WL2(Q) such that for all t € (0,t0)

B(t) < C (IINollz2 ) + lldollwr2) + 1) -

Here, C is a positive constant depending on  and o only.

Proof. From the identity (3.3) with F; = N and g(N) < 1, we derive

1N za)(t) < 1€ Noll s + C/(t —5) 72| Vol s(0) (5) ds. (4.4)

The first term is estimated from the third inequality of Lemma 3.1 with p = 4, ¢ = 2. From the definition
of A(t) in (4.1) and embedding L*(2) C L5(), we see that | Vo] 1(q)(s) < [|Vollzs@y(s) < s~ 20A(),
and hence for ¢t <1

t
HN||L4(Q)( ) <t 8 HN0||L2 () +CB / t— S 58 20 ds. (45)
0

Applying the integral estimate (4.3) implies
IN | iy () < Ct || Noll g2y + Ct* = B(2). (4.6)
Similarly from the second identity in (3.3) with Fy = ¢, we estimate

d

s () < Cligoll sy + C / (t—s)"2G73) (W (0) |2y + IN |20 (5) ds (4.7)
0

From the basic energy estimate in Lemma 2.1 and the energy lower bound in Lemma 2.2, we find that
(N, ¢) is uniformly bounded in L?(Q2) x W12(Q). From the embedding L°(Q) C W2(Q), we deduce that
[IW'(#)]] < C||p]lLs +C is bounded uniformly in time. A second application of the integral estimate (4.3)
yields

19l 25 () (£) < ClidollLs ) + Ct 2. (4.8)

The second identity in (3.3) with F» = ¢, the second LP — Lq inequality in Lemma 3.1, and the a priori
estimate ¢ > 0 collectively yield

t
IVl L5 (t) < Of%HV(ﬁoHL?(Q) + O/ (t—s) 272275 (||W (DlL2@) + INlL2(0)) (s) ds.
0

Following the derivation of (4.8), we may use the uniform bounded on |[W’(¢)||12(q) and || N||z2(q), and
the integral estimate (4.3) to obtain

3d

1Y@l (o) (£) < O3 [[Voo|l 20y + Ct2 5. (4.9)
Combining the estimates (4.6),(4.8) and (4.9) with the definition of A in (4.1) yields for ¢t <1
—3d
B(t) < C (INollz2@ + I9ollzay + Vol ace) + Ct 5 (B(t) +1). (4.10)
The lemma follows from the embedding L°(Q) C W12(Q) for t € (0,) provided with ¢, is small enough.
U

In the following proposition, we apply an approximation argument to establish local existence to
solutions with initial data in the energy space only. This is based on the local existence of solutions
established in Theorem 3.8 subject to initial data in smoother space Xj.
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Proposition 4.2. Let Q be a periodic domain. Suppose ug = (No, ¢o) is positive and has finite energy, i.e.,
E(No, ¢0) < 00,9 > 0,Ng > 0. Then, there exists T > 0, depending on initial energy, such that on the
domain Q x (0,T) the flow (1.1) has a solution u = (N, ¢) satisfying the initial data in the sense of

Jim ([lo(t) = dollwrz(a) + IN() = Noll () = 0.
Moreover, the solution is smooth on Q@ x (0,T).

Proof. For (N, ¢o) € L?(2)xW12(Q2) by Lemma 2.2, there exists an approximating sequence {(Ny. 0, ¢x.0),
k=1,2---} C Xy (for instance see (3.2)) such that

lim HNk,O — N0||L2(Q) = O7 lim H(bk,O — ¢0||W1=2(Q) =0 (4.11)
k— o0 k—o0

For each initial data (Ny. o, ¢r0) € Xo = L*(2) x WH5(Q), by Theorem 3.8 there exists a Tj, > 0 and a
function uy, = (N, ¢x) which solves the flow (1.1) on Q x (0,T}). Significantly, the value T} depends on
0,2 and the choice of the initial data in X. To iteratively extend these solutions we seek a lower bound
on T, in terms of norm of ug(t) in Xp.

The norm convergence in (4.11) to (No, ¢g) € L?(2) x WH2(Q) implies the sequence {(Ny .0, dx.0) }x
is uniformly bounded in L?(Q) x W12(Q). Combined with the energy identity of Lemma 2.1 and energy
lower bound in Lemma 2.2, we deduce the existence of a positive constant C' independent of k£ such that

INE[[L2@) () + [[dkllwr2 @) () <C, ¥t € [0, Th). (4.12)

Moreover, since (N, ¢x) is a classical solution to the flow (1.1) on © x (0,7}), Lemmas 4.3 and 4.4
apply, yielding a uniform bound on (Ny, ¢x)(t) € X on any compact subset of (0,7%). That is, for each
T € (0,T};) there exists a constant C,, such that

| Vel L2y (1) + IV orll Loy (t) < Crys vt € [k, Tk). (4.13)

From Theorem 3.8 we deduce the existence of a uniform lower bound, denoted by T > 0, of {T}}.

To deduce the convergence we apply Arzeld—Ascoli theorem. There exists u = (N, ¢) such that as k
tends to infinity ux = (Ng, ¢x) and its derivatives converge uniformly to u and corresponding derivatives
on any compact set of Q x (0,7"). Moreover, the limit u = (N, ¢) solves the flow (1.1) and is smooth on
Qx (0,T).

It remains to verify the initial condition. From Fatou’s lemma, we have

Jlim, (IN(t) = Nollz2(e) + l6(t) = ¢ollwr2(e))

< hm hmlnf (HNk(t) — Nk70||L2(Q) —+ H(bk(t) — st,O”leQ(Q)) .

T t—0t k—oo
The heat kernel has the property that e/®p — ¢ in LP(Q) as t — 07 if ¢ € LP(Q). In light of the uniform

bound (4.12), the following convergence is uniform in k:

75liI(I)l_'_ (”etANk)o - Nk)0||L2(Q) + ||€tA¢k70 - (bk)OHWl,Z(Q)) =0. (415)

(4.14)

Combining (4.14) and (4.15), the triangle inequality implies that
lim (||N(t) = Nollzz(o) + 16(t) = ¢ollw2(0))

t—0

o (4.16)
< lim liminf (INk(t) = e Nioll2@) + 19k (1) — €2 drollwrz@)) -

From Lemma 4.1, we may deduce that the right-hand side of this inequality is zero. To this end, it is
helpful to introduce Bg(t) := Blug|, where B is from (4.1), and uy = (Ng, ¢x). The uniform bound from
(4.12) and Lemma 4.1 imply for 7" small enough

Bk (t) < C, vt e [0,T). (4.17)
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Here and below, C' denotes a constant independent of k. Variation of parameters applied to the heat
semigroup yields expression

Ni(t) = "Ny o — je(t—S>Av- ( 9(Ne )v¢ ) (4.18)
0

or+ o

By Lemma 3.1 with p = ¢ = 2, since |g(N)| < 1, we bound the difference as

N
[Nk (t) — e Niollz2() < [ [[e92V - <g( k) V¢k) ds
¢k +o L2(Q)
/ (t — )75 ||g(Nk) Vébr || 2 (o ds (4.19)
/ tfs 2”v¢k||L5(Q) ds.
0
Applying (4.17) and definition of By (t) we have
t
||N;€(t) — etANk70||L2(Q) S CBk(t) /(t — S)_%S_% dS,
0
. (4.20)
< C’/(t - s)_%s_% ds.
0
The integral estimate (4.3) with o = %, 6= g yields
—d
INk(E) — € Ny ol L2 () () < Ct s (4.21)
To estimate ¢ we return to the variation of parameters expression
t
bn = P o — /e(t_s)A (W’(qbk) _ N ) ds. (4.22)
’ or+o

0

To bound the difference ¢r — ey o in W12(Q) we apply Lemma 3.1, and use the estimates on W’ ()
and uniform bound on || Ny| 2 (o) from (4.12). These estimates yield the bound

Ny,
or+o

ds

t
[ — e brollr2(q) < / HW/(¢
) 12(@)

(4.23)

<O [ (14 [orlls) + Nkl z2 (o)) ds

o .

Since L5(Q) ¢ W2(Q) for Q € R¥(d = 2,3) and || Ni||z2, |¢]|wr2(q) are uniformly bounded by (4.12)

we have

H(bk - etA¢k’0||L2(Q) < (Ct. (4.24)
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Finally, similar steps lead to the estimate
t

IV (66 = e2010) s < / N L e I )
< Ctz.
Combining estimates (4.21), (4.24)—(4.25) yields
hm (INk(t) = € Niollz2(e) + |9 () — €2 ppllwr2)) =0
uniformly in k. The 1n1t1al condition is satisfied from (4.16) and the Proposition follows. 0

In the following two lemmas, we establish the uniform boundedness of V¢ in L5(Q2) and N in L*(Q)
away from initial time, which has been used to establish a lower bound of existence time interval in the
proof of Proposition 4.2. We mention similar boundedness is also established in the chemotaxis case, see
[10] for instance.

Lemma 4.3. Let (N, ¢) be a classical positive solution to (1.1) on Q x (0,T) for some T > 0. Then the
gradient V¢ is uniformly bounded in L°(Y) away from initial time. More precisely, for any 7 € (0,T)
there exists some finite constant C depending on T such that

IVélrs@@) <Cr,  VEe[r,T).
Particularly, the constant C. is independent of T .

Proof. Applying variation of parameters to the evolution (1.1) for ¢, we have

t
o= ey~ / elt=o)2 (W/(qs) -
0
Let A= —A+1, then for >0

t
N
APp = APett gy — Aﬂ/e“—s)A (W’(¢) ~ 3T U) ds,
0

o U) ds. (4.26)

(4.27)

t
N
_ AB A B (t—s)A 1oy
AP e g /Ae (W(¢) dJJrU) ds,
0

from which we deduce the bound

t t
o=t o= At—s) o= At—s)
14%61: < | Glnll + [ G W @l ds+ [ G5 IV s ds |
0 0

for some C and A > 0. From the global energy identity and embedding estimate, we have uniform bounds
on ¢ € L%(Q), N € L*(Q) for all time. In particular, from (3.13) we have that W’(¢) is bounded in L?()
uniformly in time. These bounds afford the estimate

AP gy < C | +/e s (4.28)

For 8 € [0,1), the right-hand side is uniformly bounded on any compact set of (0,00]. Moreover, by
Gagliardo-Nirenberg inequality we have for 8 > 53 that
3d

[Vélle < ClLAPNE Vol + CIVOlle): o= fgrz—y-
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The extra lower bound assumption on 3 ensures a € (0,1) for spatial dimension d = 2,3. The lemma
follows from the two previous estimates and the uniform bound on V¢ in L*(Q). O

Lemma 4.4. Let (N, ¢) be a classical positive solution to (1.1) on Q2 x (0,T) for some T > 0. Then, N is
uniformly bounded in L*(QY) away from initial time t = 0. More precisely, for any T € (0,T) there exists
some finite constant C; depending on T such that

INC8)|lps@) < Cry  VEE [, T). (4.29)
Particularly, the constant C. is independent of T.

Proof. Let w := N2, then
1d

3
g | v d;v—2/N OyN dx. (4.30)

Q Q
Replacing 0; N by the equation of N yields

1d ; ) Vo
th wdz—Z/NANdx Z/NV (g(N)¢+U)dz.
Q

Q
Integrating by parts and using Vw = 2NV N yields

1
L /NQ\VN\de— /N2 Nl YN da
2dt o+o

Vo (4.31)

st -Vwdz.

- —§/|Vw|2dx—3/g<sz
Q Q

The hypothesis (Hy) implies (1.13) and hence |g(N)| < 1. Since ¢ > 0 and o > 0 we may apply Young’s
inequality to the second term on the right-hand side, yielding

1d

b [wrde <= [ 1Vl e+ IOl (432)
Q Q

where the constant C' depends on o. From Hoélder’s inequality, we have

VWV eliz ) < VWl Li0/(0) [VOITs(0) < I0llzsraoyVSILs - (4.33)
In turn, the Gagliardo—Nirenberg inequality and uniform bound of w = N? € L1(£2) imply

d410

[wl| /30y < C|Vw H’(d“) [|w ||;&d52;+0||w|\%1(m7

< CIvul|F* + (4:34)

< OVl + C,
where to obtain the last inequality we used Young’s inequality and 50 +2) < 1. Inserting the estimate

above into the right-hand side of the previous inequality and applying Young’s inequality, we derive

[wV @720 < ClIVWllL2@)IVElZs @) + ClIVENZs )

1 ) . ) (4.35)
< S IVwllze (o) + ClIVElLs @) + ClVOIILs ()-
Inserting the estimate into the right-hand side of the inequality (4.32) yields
d

Q



126 Page 20 of 21 Y. Chen and K. Promislow ZAMP

Fix 7 > 0, we introduce 7-dependent constant

My = sup [ V6|7 ) < oo,

from which we obtain the bound

d 2 2 6
v dacg—/|Vw| dr +CM; + CM-. (4.37)
Q Q

Using the Gagliardo-Nirenberg inequality, Cauchy’s inequality, and the uniform bound on w = N? €
LY(Q), we obtain
2 ata Tt 2
ey < CIVl 20 Il 520, + Cllwl g, o)
< ||Vw||%2(sz) +C.

We used 2d/(d+2) < 2 to apply Young’s inequality to arrive at the second inequality above. In conclusion,

%/w2dx+/w2dx§m, K,:=CM®+CM, +C (4.39)
Q Q

or equivalently,

< K.e. (4.40)

N———

| . 2
d
7 6/101:
Q

Integrating this relation from 7 to t yields

/wz(x,t) dor < e 7
Q

w?(z,7)dr + K,

(4.41)
< e—t-‘rT

NY(z,7)dx + K.

P O

The lemma follows from the L*(€) bound of N at time ¢ = 7 by choosing 7 > 0 small enough. O
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