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Abstract. The freezing of salt water leads to phase separation into ice and brine inclusions. The ejection of salt from the ice
phase is akin to chemotaxis. We consider a regularization of a free energy for brine inclusions and address its gradient flow
on a periodic domain in R

d(d = 2, 3). Uniqueness and global existence of classical solutions from initial data in an energy
space are established for positive time.
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1. Introduction

The freezing of salt water requires the ejection of salt from the growing ice domain. This ejection is a
natural form of chemotaxis. The brine inclusion model introduced in [5] incorporates the salt ejection by
taking the entropy of the salt volume fraction to be relative to the liquid water volume fraction. This
is a natural approach; however, the singularity implicit in the relative entropy formulation complicates
rigorous analysis of the model. We present a regularization of the model, show that it fits within a broad
system of Keller Segal equations, and establish that it is locally well-posed and supports global solutions.
The regularized brine inclusion model addresses a phase function φ which distinguishes between liquid
and frozen water and a salt density N . The flow for u = (N,φ) takes the form

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂tφ = Δφ − ∂φW (φ,N) +
N

φ + σ
,

∂tN = ΔN − ∇ ·
(

g(N)

( ∇φ

φ + σ
− ∇∂NW (φ,N)

))

,

(1.1)

on a periodic domain Ω ⊂ R
d(d = 2, 3) subject to initial condition:

φ(0, x) = φ0(x), N(0, x) = N0(x), for allx ∈ Ω. (1.2)

Here σ > 0 is a positive regularizing constant, g(N) > 0 for N > 0 is a mobility function depending on
N , and W is a smooth potential. For spatially constant salt concentration N the function W is a double
well potential in φ. The flow conserves the mass of N , viz.

∫

Ω

N dx = N0. (1.3)

Indeed, the flow arises as a gradient of the natural energy

E[φ,N ] =

∫

Ω

(

1

2
|∇φ|2 + W (φ,N) + f(N) − N ln(φ + σ)

)

dx, (1.4)

0123456789().: V,-vol  

http://crossmark.crossref.org/dialog/?doi=10.1007/s00033-023-02019-4&domain=pdf


  126 Page 2 of 21 Y. Chen and K. Promislow ZAMP

where f = f(N) is a function of N satisfying

f ′′(N) = 1/g(N). (1.5)

Particularly, if g(N) = N , then f(N) = N lnN is the classical entropy of the salt.

1.1. Model motivation

The flow (1.1) arises as a regularization of the isothermal version of the brine inclusion model introduced
in [5]. Particularly, N ≥ 0 denotes the salinity of the liquid water and φ ≥ 0 denotes the phase of the
water with φ = 0 corresponding to ice and φ = 1 to liquid water. Following the GENERIC framework of
[9], the prior work develops a thermodynamically consistent flow for the entropy S which is the negative
of the energy E from (1.4). It considers the case σ = 0 and the choices

f(N) := N lnN ; W (φ;N) := W0(φ) + ξ(N)W1(φ), (1.6)

For fixed N , the potential W is a double well in φ with possibly unequal local minima at φ = 0 and
φ = 1. The dominate phase potential W0 is the classical double well W0(φ) := φ2(1 − φ)2. The term W1

breaks the equal-depth structure of W0. It satisfies W1 ≤ 0, with compact support in (1
2 , 3

2 ) and a single
minima W1(1) = −1 at φ = 1, The cryoscopic prefactor ξ = ξ(N) incorporates the impact of salt on
the freezing point of water, lowering the value of W (1, N) with increasing salt concentration. The salt
ejection is modeled by the N ln(φ) term which incorporates the dependence of the salt entropy on the
presence of liquid water. This is the origin of the chemotactic behavior in the system, as freezing removes
liquid water molecules from the hydration sphere of a salt ion, the ion’s entropy decreases.

Under time evolution, the entropy increases while the total salt content remains fixed. This motivates
the gradient flow of (N,φ):

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂tφ = −δE

δφ
, in Ω × (0,∞),

∂tN = ∇ ·
(

g(N)∇ δE

δN

)

, in Ω × (0,∞).

(1.7)

Here, δE
δφ , δE

δN are the L2 variational derivatives of the energy E , (1.4), with respect to φ and N , respectively.

Moreover, for the generic choice of mobility function g(N) = N the flow reduces to

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂tφ = Δφ − ∂φW (φ,N) +
N

φ
;

∂tN = ΔN − ∇ ·
(

N
∇φ

φ
− N∇∂NW (φ,N)

)

.

(1.8)

The flow (1.1) is a generalization of (1.8) subject to the regularization of the salt ejection mechanism
at φ = 0. The regularizing parameter 0 < σ � 1 keeps the salt entropy N ln(φ + σ) finite if N > 0 in
the pure ice phase. The value σ = 0 corresponds to the unregularized model and is not considered in the
analysis presented here. Macroscopic models of sea ice resolve effective transport properties based upon
local averages of the ice/liquid phase, [11]. Degenerate diffusion of salt plays a crucial role in these models,
as it allows the incorporation of a brine volume fraction threshold below which the salt phase is immobile.
The model presented here resolves the brine microstructure explicitly and restricts salt diffusion in the ice
by excluding the salt from the ice phase. When the brine regions become disconnected, the macroscopic
salt flux is naturally extinguished, see [5] for details.
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1.2. Main results and connection to Keller–Segel models

The system (1.1) can be compared to the general Keller–Segel model, see [3,4], who introduced the general
framework:

⎧

⎨

⎩

∂tφ = Dφ(N,φ)Δφ + K(N,φ),

∂tN = ∇ ·
(

DN (N,φ)∇N − χ(N,φ)N∇φ
)

+ H(N,φ).
(1.9)

In this system, N denotes a cell density and φ models the density of a chemo-attractant. The system
(1.1) lies within the framework of (1.9) subject to the choices Dφ = 1,H = 0 and

K = −∂φW +
N

φ + σ
, DN = 1 + N∂2

NW, χ =
1

φ + σ
− ∂NφW.

There is a substantial literature work on the existence and nonexistence of solutions to the Keller–Segel
model for a range of functional forms of the diffusivities DN , Dφ, χ and potentials H,K. The survey
paper [1] provides an excellent review of results on these models. Despite the breadth of the established
work it does not accommodate the form (1.1). Specifically, the most relevant local existence result (see
Lemma 3.1 in [1]) requires that the quantity K − φ be positive. This assumption affords a maximum
principle which is not available to (1.1). Similarly relevant global existence results require a bound on the
growth of K with respect to N of the form |K(N,φ)| ≤ C|N + 1|β for some constant C and β ∈ [0, 1].
This growth requirement is used to establish bounds on φ and close essential nonlinear estimates. These
estimates do not seem to hold for the regularized brine inclusion model.

The classical Keller–Segel system corresponds to the choices Dφ ≡ 1,K = −φ+N,DN = χ ≡ 1,H ≡ 0.
This form of (1.9) can be viewed as a gradient flow of the energy functional

FKS [φ,N ] =

∫

Ω

(

1

2
|∇φ|2 + φ2 + N lnN − Nφ

)

dx. (1.10)

A key step to establish the global existence in the classical Keller–Segel system is to control the sign-
indeterminate terms in the energy via the Moser–Trudinger inequality, [10]. This approach requires a
particular structure in the nonlinearity that (1.1) does not possess. To surmount these difficulties, we
impose assumptions on the form of f and the potential W to insure that the system is well-posed.
Particularly we require

(Hf ): f is a smooth function of N and satisfies
(a) f ′′ is bounded away from zero and |f ′′′| is uniformly bounded on [1,∞).
(b) f(N) = N lnN for N > 0 sufficiently small.

(HW ): W is a smooth function of φ,N and satisfies
(a) There exists C > 0 such that for all N ∈ [0,∞),

W (φ,N) ≥ −Cφ2 − C; |∂k
φW (φ,N)| ≤ C|φ|4−k + C(N + 1), (1.11)

for k = 1, 2, 3.
(b) The potential W = W (φ,N) is a linear function of N and satisfies the bounds

|∂φNW | + |∂φφNW | ≤ C. (1.12)

(c) For N > 0 finite, there exists α0, β0 > 0 such that ∂φW (φ,N) ≤ α0φ for φ ∈ (0, β0).

A motivating example of f satisfying (Hf ) is given by

f(N) =

{

N lnN, 0 ≤ N < 1/2;

N2, N ≥ 1,
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with a smooth connection for N ∈ [1/2, 1]. It is useful to observe that the assumptions (Hf ), imply that
g(N) := 1/f ′′(N) satisfies

|g(N)| + |g′(N)| ≤ C. (1.13)

Under these assumptions, we have a maximum principle for φ and the regularized energy bounds
the L2-norm of the salt density. We adopt the semigroup estimates and establish the global existence of
solutions which are smooth for t > 0.

Theorem 1.1. Let σ > 0 be a given positive constant. Consider the flow (1.1)–(1.2) on a periodic domain
in R

d(d = 2, 3). Under the assumptions (Hf ) and (HW ), if initial data u0 = (N0, φ0) has finite energy,
i.e., E(N0, φ0) < ∞, then there exists a global-in-time solution u = (N,φ) which is smooth after the
initial time and recovers the initial data in the sense that

lim
t→0+

(

‖φ(t) − φ0‖W 1,2(Ω) + ‖N(t) − N0‖L2(Ω)

)

= 0.

Moreover, the phase variable φ is uniformly bounded after an initial transient.

To prove the theorem, we first construct a local smooth solution via contraction mapping principle
for sufficiently smooth initial data. An approximation method is then applied to extend the existence
result to initial data in the energy space. The maximum principle cannot be used to establish an upper
bound on N , instead we use semigroup and energy estimates to establish uniform bounds on ‖N‖L4(Ω)

and ‖∇φ‖L5(Ω). These allow the local solutions to be extended globally. These estimates and standard
embedding theorems allow the phase variable to be uniformly bounded in time. Finally, a bootstrap
argument shows that the solutions are smooth away from t = 0.

A maximum principle ensures the positivity φ > 0. For the regularized model the term 1/(φ + σ) is
easy to bound – this fact plays an essential role in the proof. The regularization of φ at 0 is traditional
in chemotaxis systems such as [4] and [13]. More recent work has addressed chemotaxis with singular
sensitivity of the form χ(N,φ) = χ0/φ. In [7], Lankeit established a global existence of classical solutions
in dimension two. In higher dimension, Winkler, Fujie and Lankeit [2,8,13] proved the global existence
under different assumptions on the size of χ0 depending on dimension. In each of these cases the proof
hinges on uniform estimates of energy in the form of

∫

Ω

Np
σφ−r

σ on any finite time interval. These depend

heavily on their K term depends linearly on N − φ. This approach does not apply to the regularized
brine inclusion model, and we restrict our attention to the case σ > 0.

The assumptions (HW ) constrain the dependence of W upon N . We present the proof for the case W
independent of N . The general case follows from a slight modification of the arguments. The remainder
of the article is organized as follows. In Sect. 2, we introduce basic energy estimates and lower bounds
on the energy. In Sect. 3, we apply the contraction mapping principle to establish the existence of local
smooth positive solutions. In Sect. 4, we establish a uniform estimate of φ and N away from t = 0, which
assures a uniform life span of local solutions. Finally, the global existence with initial data in the energy
space is established by a classical approximation method.

2. Basic estimates

For on a bounded domain Ω ⊂ R
2, R3 with periodic boundary conditions, there exist constants C1 and

C2 for which the embedding estimates hold

‖φ‖L2(Ω) ≤ C1‖φ‖L6(Ω) ≤ C2‖∇φ‖L2(Ω).

These estimates will be used without comment in the sequel. From the gradient structure of the flow, we
have the following basic energy identity regarding positive solutions. Particularly, this implies that the
energy E = E(N,φ) introduced in (1.4) is dissipated by the flow.
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Lemma 2.1. Suppose (N,φ) is a positive classical solution to the system (1.1)–(1.2) on the periodic domain
Ω, then the following energy identity holds:

dE

dt
+

∫

Ω

(

g(N)

∣

∣

∣

∣

∇N

g(N)
− ∇φ

φ + σ

∣

∣

∣

∣

2

+

∣

∣

∣

∣

Δφ − W ′(φ) +
N

φ + σ

∣

∣

∣

∣

2
)

dx = 0. (2.1)

Proof. The lemma is a direct result of the gradient structure of the flow (1.7). Taking the L2-inner product

of the first equation in (1.1) with
δE

δφ
= −

(

Δφ − W ′(φ) +
N

φ + σ

)

immediately yields

∫

Ω

∂tφ
δE

δφ
dx = −

∫

Ω

∣

∣

∣

∣

Δφ − W ′(φ) +
N

φ + σ

∣

∣

∣

∣

2

dx. (2.2)

Taking the L2-inner product of the second equation in (1.1) with
δE

δN
= f ′(N) − ln(φ + σ), integrating

by parts, and using the fact f ′′(N) = 1/g(N) implies

∫

Ω

∂tN
δE

δN
dx = −

∫

Ω

g(N)

∣

∣

∣

∣

∇N

g(N)
+

∇φ

φ + σ

∣

∣

∣

∣

2

dx. (2.3)

The lemma follows by combining (2.2) and (2.3), with the identity

dE

dt
=

∫

Ω

∂tφ
δE

δφ
dx +

∫

Ω

∂tN
δE

δN
dx. (2.4)

�

The energy E(N,φ) admits a uniform lower bound, which controls the L2-norm of N and W 1,2(Ω)-
norm of φ.

Lemma 2.2. There exist positive constants C1, C2 depending on Ω and σ such that the energy enjoys the
following lower bound:

E(N,φ) ≥ C1

(

‖N‖2
L2(Ω) + ‖φ‖2

W 1,2(Ω)

)

− C2. (2.5)

Proof. From the form of E and assumptions (Hf ) we have

E(N,φ) ≥ 1

2
‖∇φ‖2

L2(Ω) + C‖N‖2
L2(Ω) +

∫

Ω

W (φ) dx −
∫

Ω

N ln |φ + σ| dx. (2.6)

By the assumption (HW )b on W , we have
∫

Ω

W (φ) dx ≥ −C

∫

Ω

φ2 dx − C. (2.7)

Standard embedding estimates reduce (2.6) to the form

E(N,φ) ≥ 1

4
‖∇φ‖2

L2(Ω) + C‖N‖2
L2(Ω) −

∫

Ω

N ln |φ + σ| dx − C. (2.8)

It remains to bound the sign-indeterminant integral on the right-hand side. For any positive constant
ε > 0, there exists a constant C for which the relation: (ln(x + σ))2 ≤ ε2x2 + C(ε) holds for all x > 0.
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Applying the Cauchy–Schwartz inequality and this pointwise identity yields
∫

Ω

N ln(φ + σ) dx ≤ ε

∫

Ω

N2 dx +
C

ε

∫

Ω

ln2 |φ + σ| dx

≤ ε

∫

Ω

N2 dx + ε

∫

Ω

φ2 dx +
Cσ

ε
.

(2.9)

The lemma follows by combining these two inequalities with embedding estimates and choosing ε small
enough. �

3. Local well-posedness

In this section, we apply the contraction mapping principle to establish the local well-posedness of (1.1)–
(1.2). To achieve this, we introduce an iteration space:

XT := L∞
(

0, T ;L4(Ω) × W 1,5(Ω)
)

,

with the norm on u = (u1, u2) given by

‖u‖XT
:= sup

t∈[0,T ]

(

‖u1‖L4(Ω) + ‖u2‖W 1,5(Ω)

)

. (3.1)

The associated space of initial data is

X0 := L4(Ω) × W 1,5(Ω). (3.2)

From the flow (1.1)–(1.2), given u = (N,φ) ∈ XT and initial data u0 = (N0, φ0) ∈ X0, we introduce the
iteration map F (u) = (F1, F2)(u) defined by variation of parameters

F1(u)(t) := etΔN0 −
t

∫

0

e(t−s)Δ∇ ·
(

g(N)

φ + σ
∇φ

)

ds,

F2(u)(t) := etΔφ0 −
t

∫

0

e(t−s)Δ

(

W ′(φ) − N

φ + σ

)

ds,

(3.3)

for t ∈ [0, T ]. Here etΔ is the heat semigroup subject to periodic boundary conditions. We recall the
classic Lp −Lq estimates on the heat semigroup. Their proof can be found in many places, including [12].

Lemma 3.1. Let Ω ⊂ R
d be a bounded smooth domain. For u ∈ Lq(Ω) and 1 < q ≤ p < ∞, there exist

positive constants λ,C > 0 depending on Ω only such that

‖etΔ∇ · u‖Lp(Ω) ≤ C
(

1 + t−
1
2 − d

2 ( 1
q − 1

p )
)

e−λt‖u‖Lq(Ω);

‖∇etΔu‖Lp(Ω) ≤ C
(

1 + t−
1
2 − d

2 ( 1
q − 1

p )
)

e−λt‖u‖Lq(Ω).
(3.4)

Moreover, if u is mass-free, i.e.,

∫

Ω

u = 0, then

‖etΔu‖Lp(Ω) ≤ C
(

1 + t−
d
2 ( 1

q − 1
p )

)

e−λt‖u‖Lq(Ω). (3.5)

In general for any u ∈ Lq(Ω), the inequality above holds with λ = 0.
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To prove that F is a contraction mapping on XT , we first show that it is closed in a ball of XT for
suitable initial data and T small enough. The result requires an extra a priori lower bound condition on
φ to avoid the singularity at φ = −σ. This condition will be recovered in Lemma 3.5 via a maximum
principle. The result is contained in the following lemma.

Lemma 3.2. Let R > 0, T ∈ (0, 1] be a given constant and B2R be a ball in the functional space XT with
radius 2R and center at the origin. Suppose u = (N,φ) lies in the ball B2R ⊂ XT and satisfies φ > −σ/2,
and has initial data u0 with ‖etΔu0‖X0

≤ R for all t ∈ [0, T ], then F (u) also lies in B2R provided that T
is small enough in terms of R, σ, and the domain Ω.

Proof. We first bound F1 in L4(Ω). From the definition of F1 in (3.3), we have

‖F1‖L4(Ω) ≤ ‖etΔN0‖L4(Ω) +

t
∫

0

∥

∥

∥

∥

e(t−s)Δ∇ ·
(

g(N)

φ + σ
∇φ

)

(s)

∥

∥

∥

∥

L4(Ω)

ds. (3.6)

Note that for s, t ∈ [0, T ] satisfying s < t < T ≤ 1.

1 + (t − s)−1/2 ≤ 2(t − s)−1/2. (3.7)

Applying the first inequality in Lemma 3.1 with p = q = 4 and using the inequality above implies

‖F1‖L4(Ω)(t) ≤ ‖etΔN0‖L4(Ω) + C

t
∫

0

(t − s)− 1
2

∥

∥

∥

∥

g(N)

φ + σ
∇φ

∥

∥

∥

∥

L4(Ω)

(s) ds. (3.8)

Using the bound φ > −σ/2 and |g(N)| ≤ C, and applying Young’s inequality yields

‖F1‖L4(Ω)(t) ≤ ‖etΔN0‖L4(Ω) + C

t
∫

0

(t − s)− 1
2 ‖∇φ‖L4(Ω) (s) ds. (3.9)

Here and below, C is a constant possibly depending on σ and Ω, and its value may change from line to
line. Taking the supremum of the time-dependent function ‖∇φ‖L4(Ω)(s) and integrating the remaining
s-polynomial function with respect to time yields

‖F1‖L4(Ω)(t) ≤ ‖etΔN0‖L4(Ω) + CT
1
2 ‖∇φ‖L∞([0,T ];L4(Ω))

≤ ‖etΔN0‖L4(Ω) + CT
1
2 ‖u‖XT

.
(3.10)

To bound F2 in W 1,5(Ω) we first estimate F2 in L5(Ω). By the definition of F2 in (3.3), we have

‖F2‖L5(Ω) ≤ ‖etΔφ0‖L5(Ω) +

t
∫

0

∥

∥

∥
e(t−s)ΔW ′(φ)

∥

∥

∥

L5(Ω)
ds +

t
∫

0

∥

∥

∥

∥

e(t−s)Δ N

φ + σ

∥

∥

∥

∥

L5(Ω)

ds. (3.11)

Applying the last inequality in Lemma 3.1 and using the assumption φ > −σ/2 yields

‖F2‖L5(Ω) ≤ ‖etΔφ0‖L5(Ω) + C

t
∫

0

(t − s)− d
2 ( 1

2 − 1
5 ) ‖W ′(φ)‖L2(Ω) (s) ds + C

t
∫

0

(t − s)− d
2 ( 1

4 − 1
5 )‖N‖L4(Ω) ds.

(3.12)

From the assumption of W in (HW ), it holds that |W ′(φ)| ≤ Cφ3 + 1 and hence

‖W ′(φ)‖L2(Ω)(s) ≤ C‖φ‖3
L6(Ω)(s) + C. (3.13)

From the Gargliardo–Nirenberg inequality and u = (N,φ) ∈ XT we have

‖φ‖L6(Ω)(s) ≤ ‖∇φ‖
d
30

L5(Ω)(s)‖φ‖
30−d
30

L5(Ω)(s) ≤ ‖u‖XT
, ∀s ∈ (0, T ). (3.14)
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Combining the previous two estimates with (3.12) yields the L5 bound

‖F2‖L5(Ω) ≤ ‖etΔφ0‖L5(Ω) +

t
∫

0

(t − s)− 3d
20

(

‖u‖3
XT

+ 1
)

ds + C

t
∫

0

(t − s)− d
40 ‖N‖L4(Ω) ds,

≤ ‖etΔφ0‖L4(Ω) + CT
20−3d

20

(

‖u‖3
XT

+ 1
)

+ CT
40−d
40 ‖u‖XT

.

(3.15)

Finally, we bound ∇F2 in L5(Ω). We follow the argument for F2 but apply the second inequality in
Lemma 3.1 to obtain

‖∇F2‖L5(Ω) ≤ ‖∇etΔφ0‖L5(Ω) + C

t
∫

0

(t − s)− 1
2 − 3d

20 ‖W ′(φ)‖L2(Ω) ds + C

t
∫

0

(t − s)− 1
2 − 40−d

40 ‖N‖L4(Ω) ds

Taking the supremum for s ∈ [0, T ] of the bounds (3.13)–(3.14) affords the estimate

‖∇F2‖L5(Ω) ≤ ‖∇etΔφ0‖L5(Ω) + CT
10−3d

20 ‖u‖3
XT

+ CT
20−d
40 ‖u‖XT

. (3.16)

Without loss of generality, we assume T ≤ 1. Combining the estimates (3.10), (3.15) and (3.16) and
taking the supremum of the left-hand side of the resulting inequality, the definition of XT yields

‖F‖XT
≤ ‖etΔu0‖X0

+ CT
10−3d

20

(

‖u‖3
XT

+ ‖u‖XT
+ 1

)

. (3.17)

By the assumption, ‖etΔu0‖X0
< R and u = (N,φ) ∈ B2R. We conclude that F (u) ∈ B2R for T small

enough depending on Ω, σ and R. �

We establish that the map F : XT → XT as defined by (3.3) is a contraction. Particularly, we establish
the following lemma.

Lemma 3.3. Suppose u1 := (N1, φ1), u2 := (N2, φ2) lie in the ball B2R ⊂ XT and satisfy φ1, φ2 > −σ/2.
Then, there exists T0 depending on σ,R and Ω only such that for all T ∈ [0, T0],

‖F (u1) − F (u2)‖XT
≤ 1

2
‖u1 − u2‖XT

.

Proof. From (3.3), we first estimate

‖F1(u1) − F1(u2)‖L4(Ω) ≤
t

∫

0

∥

∥

∥

∥

e(t−s)Δ∇ ·
(

g(N1)

φ1 + σ
∇φ1 − g(N2)

φ2 + σ
∇φ2

)∥

∥

∥

∥

L4(Ω)

ds. (3.18)

It is natural to introduce the decomposition

g(N1)

φ1 + σ
∇φ1 − g(N2)

φ2 + σ
∇φ2 =

g(N1) − g(N2)

φ1 + σ
∇φ1 +

g(N2)

φ2 + σ
∇(φ1 − φ2)

+

(

1

φ1 + σ
− 1

φ2 + σ

)

g(N2)∇φ2.

(3.19)

Recalling that (Hf ) ensures g = 1/f ′′ and g′ are uniformly bounded, and φ1, φ2 > −σ/2, we have

∣

∣

∣

∣

g(N1)

φ1 + σ
∇φ1 − g(N2)

φ2 + σ
∇φ2

∣

∣

∣

∣

≤ C|N1 − N2||∇φ1| + C|∇(φ1 − φ2)| + C|∇φ2||φ1 − φ2|.
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Here and below, the positive constant C may depend on σ, R, and domain Ω and may change from line
to line. Applying the Lp − Lq estimates from Lemma 3.1, we derive

‖F1(u1) − F1(u2)‖L4(Ω) ≤C

t
∫

0

(t − s)− 1
2 − d

2 ( 9
20 − 1

4 )‖(N1 − N2)∇φ1‖L20/9(Ω)(s) ds

+ C

t
∫

0

(t − s)− 1
2 − d

2 ( 2
5 − 1

4 )‖(φ1 − φ2)∇φ2‖L5/2(Ω)(s) ds

+ C

t
∫

0

(t − s)− 1
2 − d

2 ( 1
5 − 1

4 )‖∇(φ1 − φ2)‖L5(Ω)(s) ds.

(3.20)

Applying Young’s inequality and using u = (N,φ) ∈ B2R ⊂ XT yields

‖(N1 − N2)∇φ1‖L20/9(Ω) ≤ ‖N1 − N2‖L4(Ω)‖∇φ1‖L5(Ω) ≤ C‖N1 − N2‖L4(Ω);

‖(φ1 − φ2)∇φ2‖L5/2(Ω) ≤ ‖φ1 − φ2‖L5(Ω)‖∇φ2‖L5(Ω) ≤ C‖φ1 − φ2‖L5(Ω).
(3.21)

For u ∈ XT , we have the Lipschitz estimate,

‖N1 − N2‖L4(Ω) + ‖φ1 − φ2‖L5(Ω) + ‖∇(φ1 − φ2)‖L5(Ω) ≤ ‖u1 − u2‖XT
.

Therefore, for t ≤ 1 the difference of F1 at uk(k = 1, 2) can be bounded by

‖F1(u1) − F1(u2)‖L4(Ω) ≤ C‖u1 − u2‖XT

t
∫

0

(t − s)− 5+d
10 ds

≤ CT
5−d
10 ‖u1 − u2‖XT

.

(3.22)

Now we bound the difference F2(u1) − F2(u2) in W 1,5(Ω). Particularly, from the definition of F2 and
Lemma 3.1 we have

‖F2(u1) − F2(u2)‖L5(Ω) ≤ C

t
∫

0

(t − s)− d
2 ( 8

15 − 1
5 ) ‖W ′(φ1) − W ′(φ2)‖L15/8(Ω) ds

+C

t
∫

0

(t − s)− d
2 ( 9

20 − 1
5 )

∥

∥

∥

∥

N1

φ1 + σ
− N2

φ2 + σ

∥

∥

∥

∥

L20/9(Ω)

ds.

(3.23)

Applying (HW )(a) to W ′(φ) bounding φ1, φ2 ∈ L6(Ω) ⊂ W 1,5(Ω), we have

‖W ′(φ1) − W ′(φ2)‖L15/8(Ω) ≤ C‖φ1 − φ2‖L5(Ω)‖W ′′(φ1 + μφ2)‖L3

≤ C‖φ1 − φ2‖L5(Ω).
(3.24)

Moreover, from Young’s inequality and the assumption φk > −σ/2 we derive
∥

∥

∥

∥

N1

φ1 + σ
− N2

φ2 + σ

∥

∥

∥

∥

L20/9(Ω)

≤ C‖N1 − N2‖L4(Ω) + C‖(φ1 − φ2)N2‖L20/9(Ω)

≤ C‖N1 − N2‖L4(Ω) + C‖(φ1 − φ2)‖L5(Ω)‖N2‖L4(Ω)

≤ C‖N1 − N2‖L4(Ω) + C‖(φ1 − φ2)‖L5(Ω).

(3.25)



  126 Page 10 of 21 Y. Chen and K. Promislow ZAMP

Here, we used N2 ∈ L4(Ω) is uniformly bounded since u ∈ B2R ⊂ XT . Combining estimates (3.24)–(3.25)
with (3.23), we obtain

‖F2(u1) − F2(u2)‖L5(Ω) ≤ CT 1− d
6 sup

s∈[0,T ]

(

‖N1 − N2‖L4(Ω) + ‖(φ1 − φ2)‖L5(Ω)

)

≤ CT 1− d
6 ‖u1 − u2‖XT

.

(3.26)

Finally, we bound ∇(F (u1) − F (u2)) in L5(Ω). From (3.3) and Lemma 3.1, we derive

‖∇(F2(u1) − F2(u2))‖L5(Ω) ≤ C

t
∫

0

(t − s)− 1
2 − d

2 ( 1
2 − 1

5 ) ‖W ′(φ1) − W ′(φ2)‖L2(Ω) ds

+C

t
∫

0

(t − s)− 1
2 − d

2 ( 9
20 − 1

5 )

∥

∥

∥

∥

N1

φ1 + σ
− N2

φ2 + σ

∥

∥

∥

∥

L20/9(Ω)

ds.

(3.27)

The second term can be bounded from (3.25). To bound the first term, we note that

‖W ′(φ1) − W ′(φ2)‖L2 ≤ ‖W ′′(μφ1 + (1 − μ)φ2)‖L10/3(Ω)‖φ1 − φ2‖L5(Ω) (3.28)

Using the assumptions on W in (HW ) we have

‖W ′′(μφ1 + (1 − μ)φ2)‖L10/3(Ω) ≤ C‖φ1‖2
L20/3(Ω) + C‖φ2‖2

L20/3(Ω) + C. (3.29)

The right-hand side is uniformly bounded for uk ∈ B2R ⊂ XT from the embedding L
20
3 (Ω) ⊂ W 1,3(Ω).

Combining these with (3.25) with (3.27) yields

‖∇(F2(u1) − F2(u2))‖L5(Ω) ≤ CT
10−3d

20 ‖u1 − u2‖XT
. (3.30)

Taking the supremum of the estimates (3.22), (3.26) and (3.30), for t ∈ (0, T ) yields

‖F (u1) − F (u2)‖XT
≤ CT

10−3d
20 ‖u1 − u2‖XT

.

The lemma follows provided for T ∈ [0, T0] if T0 is small enough depending on σ,R, and the domain Ω.
�

We are in position to establish the existence of a fixed point to the mapping F in the iteration space
XT .

Proposition 3.4. Suppose u0 = (N0, φ0) lies in the functional space X0 = L4(Ω)×W 1,5(Ω) and φ0 > 0 in
Ω. Then, there exists T > 0 depending only on the regularizing parameter σ, the initial data in X0 and
domain Ω, such that F possesses a fixed point u ∈ XT .

Proof. Since u0 = (N0, φ0) lies in the functional space X0 := L4(Ω) × W 1,5(Ω) and φ0 > 0 in Ω, there
exists R > 0 such that

‖etΔφ0‖XT
≤ R, ∀T ∈ [0, 1].

With this R, it remains to show that there exists a uniform constant T0 > 0 such that F2(u) > −σ/2 for
any u ∈ XT and any T ∈ (0, T0]. This verifies the lower bound requirement of Lemmas 3.2–3.3, and the
contraction mapping principle and the proposition follow.

From the maximum principle for the heat equation on a periodic domain, we know etΔφ0 > 0 for
φ0 > 0. Instead of obtaining a lower bound of F2 directly, it suffices to estimate the difference between
etΔφ0 and F2 in L∞(Ω). We claim there exists T0 depending on σ, Ω and the radius R such that

‖F2(u) − etΔφ0‖L∞(Ω) ≤ σ/2, t ∈ [0, T0]. (3.31)

If so, then since etΔφ0 > 0 we may deduce from the triangle inequality that F2(u) is bigger than −σ/2.
The proposition follows.
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To prove the claim (3.31), it is sufficient to estimate the difference in W 1,5(Ω) due to the following
Gagliardo–Nirenberg inequality:

‖f‖L∞(Ω) ≤ C‖∇f‖
d
5

L5(Ω)‖f‖1− d
5

L5(Ω) + ‖f‖L5(Ω). (3.32)

Recalling that F2(0) = etΔφ0, we write

F2(u) − etΔφ0 = F2(u) − F2(0).

It follows directly from estimates (3.26) and (3.30) that

‖∇(F2(u) − etΔφ0)‖L5(Ω) + ‖F2(u) − etΔφ0‖L5(Ω) ≤ CT
10−3d

20 ‖u‖XT
∀t ∈ [0, T ]. (3.33)

The claim (3.31) follows and the proof is complete. �

Lemma 3.5. (Maximum principle) Suppose initial data φ0, N0 are strictly positive, (φ,N) is a classical
solution of the flow (1.1)–(1.2) on Ω × [0, T ] and satisfies φ > −σ/2 a priori, then φ,N preserve the
positivity on Ω × (0, T ], that is,

φ(t, x) > 0, N(t, x) > 0, ∀(t, x) ∈ Ω × (0, T ].

Proof. We first address N . Since N0 is strictly positive on the compact domain Ω = Ω̄, from the smooth-
ness and a continuity argument there exists t0 > 0 such that N(t, x) > 0 for all (t, x) ∈ [0, t0] × Ω.
We only need to show that N(t, x) is strictly positive for any (t, x) ∈ [t0, T ] × Ω. This suffices to show
N(t, ·) > w(t) = εe−Kt on [t0, T ] for some positive constants K > 0 and small ε > 0. The constant ε is
chosen to be small enough so that N(t0, ·) ≥ ε > w(t0) = εe−Kt0 on Ω. If on the contrary N(t, ·) > w(t)
does not hold true on Ω, then there exists t1 ∈ (t0, T ] which is the first time that N(t1, x1) = w(t1) for
some x1 ∈ Ω. Moreover, x1 ∈ Ω is the minimum point of N in Ω at time t1. Particularly at (t1, x1), we
have

− εKe−Kt1 = ∂tw(t1) ≥ ∂tN(t1, x1), N(t1, x1) = w(t1) = εe−Kt1 ,

∇N(t1, x1) = 0, ΔN(t1, x1) ≥ 0.
(3.34)

From the flow (1.1) for N and the facts above, we deduce that

−εKe−Kt1 ≥ ∂tN(t1, x1) =

(

ΔN − g′(N)∇N · ∇φ

φ + σ
− g(N)∇ ·

( ∇φ

φ + σ

))

(t1, x1)

≥ −g(N)∇ ·
( ∇φ

φ + σ

)

(t1, x1)

(3.35)

Since g(N) = N for N � 1, we have g(N)(t1, x1) = w(t1) = εe−Kt1 and the inequality becomes

K ≤ ∇ ·
( ∇φ

φ + σ

)

(t1, x1). (3.36)

Since φ is C2(Ω) for t > 0 and hence bounded on any compact domain of Ω × [t0, T ], we can choose K
large enough depending on the values of φ and its derivatives at (t1, x1) so that a contradiction arises in
the inequality above. This implies that N(t, x) cannot attain w(t) = εe−Kt at any time t ∈ [t0, T ], and
hence N(t) > w(t) > 0 for t ∈ [t0, T ] which implies N > 0 on [0, T ].

Similarly, we show the positivity of φ. Since φ0 is strictly positive on a compact domain Ω, by a
continuity argument there exists some t0 > 0 such that for all that t ∈ [0, t0] it holds φ(t, ·) > 0 on
Ω. It remains to show that φ(t, ·)(∈ C∞) is strictly positive for t ∈ [t0, T ] on Ω. This is sufficient to
demonstrate that φ(t, ·) ≥ v(t) = εe−Kt on [t0, T ] for some K > 0 and for ε > 0 small enough that

φ(t0, ·) ≥ ε > εe−Kt0 on Ω. Suppose to the contrary that φ(t, )̇ > v(t) does not hold on Ω, then there
exists a first time t1 ∈ (t0, T ] such that φ(t1, x1) = v(t1) at a minimizing point x1 ∈ Ω. Particularly at
(t1, x1), we have

φ(t1, x1) = v(t1) = εe−Kt1 , −εKe−Kt1 = ∂tv(t1) ≥ ∂tφ(t1, x1), Δφ(t1, x1) ≥ 0. (3.37)
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Hence, we derive

−εKe−Kt1 ≥ ∂tφ(t1, x1) =

(

Δφ − W ′(φ) +
N

φ + σ

)

(t1, x1)

≥ −W ′(φ) +
N

φ + σ
.

(3.38)

Since N is positive and φ(t1, x1) = εe−Kt1 > 0, we have

− εKe−Kt1 ≥ ∂tφ(t1, x1) ≥ −W ′(φ). (3.39)

From the assumption (HW )(c) W ′(φ) ≤ α0φ at φ = v(t1) = εe−Kt1 > 0 for ε small enough, a contradiction

arises if we choose K > α0 and hence φ(t, x) ≥ εe−Kt > 0 for all (t, x) ∈ [0, T ] × Ω. The lemma follows.
�

The following two lemmas are required to establish the regularity of local solutions away from the
initial time.

Lemma 3.6. Let T > 0, q ≥ r > 1 be some given positive constants, and A be the positive operator −Δ+1.
Suppose f = (f1, f2) ∈ L∞(0, T ;Lq(Ω)), v0 ∈ Lr(Ω) and v solves the initial value problem

∂tv − Δv = f, v(0, x) = v0(x) (3.40)

on a bounded periodic domain, then for any τ > 0 and t ∈ [τ, T ] there exists a positive constant C
depending on τ and T such that

‖Aαv(·, t)‖Lp(Ω) ≤ C + C sup
s∈[0,T ]

‖f(·, τ)‖Lq(Ω), (3.41)

for any α ∈
[

0, 1 +
d

2

(

1

p
− 1

q

))

. In particular, the estimate holds if α = 0 and p ∈ [q,∞); or if α = 1
2

and (p, q) satisfies

(a). p ∈ [q,∞) for q ≥ d;

(b). p ∈
[

q,
dq

d − q

)

for q < d.

Proof. Applying variation of parameters to the heat semigroup etΔ yields

v(t, x) = etΔv0 +

t
∫

0

e(t−s)Δf ds. (3.42)

Applying the Lp − Lq estimates we deduce that

‖Aαv‖Lp(Ω) ≤ ‖AαetΔv0‖Lp(Ω) +

t
∫

0

‖Aαe(t−s)Δf‖Lp(Ω) ds

≤ C‖v0‖Lr(Ω)

t
d
2 ( 1

r − 1
p )+α

+ C sup
s∈[0,T ]

‖f‖Lq(Ω)

t
∫

0

(t − s)−α− d
2 ( 1

q − 1
p ) ds.

(3.43)

The last integral is bounded for T bounded if α < 1 + d
2

(

1
p − 1

q

)

, the Lemma follows. �

Lemma 3.7. Let T > 0, and r, q > 1 be positive constants, and A be the positive operator −Δ+1. Suppose
f = (f1, f2) ∈ L∞(0, T ;Lq(Ω)), v0 ∈ Lr(Ω) and v solves the initial value problem of the heat equation
with a divergence form inhomogeneity

∂tv − Δv = ∇ · f, v(0, x) = v0(x) (3.44)
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on a bounded periodic domain. Then for any τ > 0 and t ∈ [τ, T ] there exists a positive constant C
depending on τ and T such that

‖Aαv(·, t)‖Lp ≤ C + C sup
s∈[0,T ]

‖f(·, τ)‖Lq(Ω), (3.45)

for any (p, α) that satisfy 1 < q ≤ p < ∞, 1 < r ≤ p and α ∈
[

0,
1

2
+

d

2

(

1

p
− 1

q

))

. In particular, this

inequality holds for any p ∈ [q,∞) if q ≥ d and α = 0.

Proof. Applying variation of parameters to the heat semigroup etΔ, we have

v(t, x) = etΔv0 +

t
∫

0

e(t−s)Δ∇ · f ds. (3.46)

The Lp-Lq estimates imply that

‖Aαv‖Lp(Ω)(t) ≤ ‖AαetΔv0‖Lp(Ω) +

t
∫

0

‖Aαe(t−s)Δ∇ · f‖Lp(Ω) ds

≤ C‖v0‖Lr(Ω)

t
d
2 ( 1

r − 1
p )+α

+ C sup
s∈[0,T ]

‖f‖Lp(Ω)

t
∫

0

(t − s)−α− 1
2 − d

2 ( 1
q − 1

p ) ds.

(3.47)

The last integral is bounded for T bounded if α < 1
2 + d

2

(

1
p − 1

q

)

, the Lemma follows. �

Theorem 3.8. (Local existence) Given initial data u0 = (N0, φ0) ∈ X0 satisfying φ0, N0 > 0, then there
exists a constant T > 0 such that on the domain Ω × [0, T ] there exists a unique positive solution u =
(N,φ) ∈ XT to the flow (1.1). Moreover, the solution is smooth away from initial time. That is, for any
τ > 0 there exists a positive constant C depending on τ, T, k,Ω, σ such that

‖u‖Ck(Ω×[τ,T ]) ≤ C(τ, T, k,Ω, σ). (3.48)

Proof. The existence of solution u = (N,φ) in XT is a direct result of Proposition 3.4. It remains to show
the smoothness of u = (N,φ) on Ω × (0, T ] for which the positivity of N,φ follows from the Maximum
Principle as established in Lemma 3.5.

Since u = (N,φ) lies in XT , we have N ∈ L∞(0, T ;L4(Ω)) and φ ∈ L∞(0, T ;W 1,5(Ω)). For d = 2, 3,
Morrey’s inequality implies φ(t) ∈ Cα(Ω) for some α > 0. Therefore, from assumption (HW ) we have
W ′(φ) ∈ Cα(Ω). Taking the φ equation from (1.1), we apply Lemma 3.6 (b) with α = 1/2, q = 4 and
initial time at t = τ . This yields that for any τ ′ > τ , p ∈ [4,∞) and all t ∈ [τ ′, T ]

‖∇φ(t)‖Lp(Ω) ≤ C‖A1/2φ(t)‖Lp(Ω)

≤ Cτ ′ + Cτ ′ sup
s∈[0,T ]

∥

∥

∥

∥

−W ′(φ) +
N

φ + σ

∥

∥

∥

∥

L4(Ω)

.
(3.49)

We emphasize this holds for any p ∈ [4,∞) or any p < ∞ since Ω is bounded and hence ∇φ ∈
L∞(τ ′, T ;Lp(Ω)) for any τ ′ > τ and p < ∞.

We turn to the flow of N in (1.1). Since N ∈ L∞(0, T ;L4(Ω)) and ∇φ ∈ L∞(τ ′, T ;Lp(Ω)) for any
p < ∞, from Young’s inequality we have for any q < 4

N

φ + σ
∇φ ∈ L∞(τ ′, T ;Lq(Ω)). (3.50)
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On the other hand, taking the flow of N in (1.1) we apply Lemma 3.7 with p ≥ q, q < 4 and derive

‖AαN‖Lp(Ω)(t) ≤ Cτ ′ + Cτ ′ sup
s∈[τ ′,T ]

∥

∥

∥

∥

N

φ + σ
∇φ

∥

∥

∥

∥

Lq(Ω)

(3.51)

for all t ∈ [τ ′, T ], α ∈
[

0, 1
2 + d

2

(

1
p − 1

q

))

. We claim this inequality implies that N(·, t) ∈ Cβ(Ω) for

some β > 0 and any t ∈ [τ ′, T ]. In fact, from the definition of the operator A the inequality above

implies that N ∈ W 2α,p(Ω) for α < 1
2 + d

2

(

1
p − 1

q

)

. In particular, these conditions are satisfied for

α = 5
12 , p = 4, q = 7

2 . Hence, 2αp = 10
3 > d and by Morrey’s inequality N(·, t) ∈ Cβ(Ω) for some β > 0

and t ∈ [τ ′, T ]. Since φ(·, t) ∈ Cβ(Ω) for some β > 0 and all t ∈ [0, T ], we have N(·, t), φ(·, t) ∈ Cβ(Ω) for
any t ∈ [τ ′, T ]. Furthermore this implies that N

φ+σ (·, t) belongs to Cβ(Ω) for any t ∈ [τ ′, T ]. Applying the

parabolic Schauder estimates [6] to the φ equation, then a standard bootstrap argument establishes the
Ck-smoothness of the solution away from initial time. The proof is complete. �

4. Global existence

We complete Theorem 1.1 by establishing the global existence of solutions to (1.1) for initial data u0 =
(N0, φ0) in energy space, that is, N0 ∈ L2(Ω), φ0 ∈ W 1,2(Ω).

Proof of Theorem 1.1. For simplicity, we consider W to be independent of N . The general case, with
W subject to assumption (HW ), follows by trivial modification of the proof. The construction is based
upon extension of the local solutions constructed later in this section. First in view of Proposition 4.2,
there exists a local solution u = (N,φ) which is smooth away from initial time, and both components
are positive. The existence time of this solution depends on the energy space norm of the initial data
(N0, φ0) ∈ L2(Ω) × W 1,2(Ω). A uniform bound on (N,φ) will allow the local solution to be extended
globally in time. But this uniform bound is a direct result of the basic energy inequality in Lemma 2.1
and energy lower bound in 2.2. Indeed, we have the uniform a priori estimate:

‖φ‖W 1,2(Ω)(t) + ‖φ‖L6(Ω)(t) + ‖N‖L2(Ω)(t) ≤ C, ∀t > 0.

Thus, the local solution can be extended inductively from [0, T ] to any [nT, (n + 1)T ] for any natural
number n. This establishes the global existence and regularity. It remains to bound φ uniformly on
[τ,∞) × Ω for any τ > 0, this directly follows from the continuous embedding L∞(Ω) ⊂ W 1,5(Ω) and
uniform bounds of φ(t) in W 1,5(Ω) for t ≥ τ afforded by Lemma 4.3. �

The main ingredient in the proof above is the local existence for initial data in energy space. This is
established in Proposition 4.2. In preparation, we gather some needed estimates. For u(t) = (N,φ)(t), we
introduce

B(t) = B[u](t) := sup
s∈[0,T ]

(

s
d
8 ‖N‖L4(Ω)(s) + s

3d
20 ‖∇φ‖L5(Ω)(s) + ‖φ‖L5(Ω)(s)

)

. (4.1)

Given initial data in energy space, we show that B(t) is bounded locally in time. The proof employs the
following useful integral formula which results from a change of variable:

t
∫

0

s−α(t − s)−β ds = t1−(α+β)

1
∫

0

s−α(1 − s)−β ds. (4.2)

Crucially the integral on the right-hand side is bounded for α, β ∈ (0, 1) and

t
∫

0

s−α(t − s)−β ds ≤ Ct1−(α+β). (4.3)
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Lemma 4.1. There exists a positive constant t0 > 0 depending on Ω, σ and initial data u0 ∈ L2(Ω) ×
W 1,2(Ω) such that for all t ∈ (0, t0)

B(t) ≤ C
(

‖N0‖L2(Ω) + ‖φ0‖W 1,2(Ω) + 1
)

.

Here, C is a positive constant depending on Ω and σ only.

Proof. From the identity (3.3) with F1 = N and g(N) � 1, we derive

‖N‖L4(Ω)(t) ≤ ‖et0ΔN0‖L4(Ω) + C

t
∫

0

(t − s)− 1
2 ‖∇φ‖L4(Ω)(s) ds. (4.4)

The first term is estimated from the third inequality of Lemma 3.1 with p = 4, q = 2. From the definition

of A(t) in (4.1) and embedding L4(Ω) ⊂ L5(Ω), we see that ‖∇φ‖L4(Ω)(s) ≤ ‖∇φ‖L5(Ω)(s) ≤ s− 3d
20 A(t),

and hence for t ≤ 1

‖N‖L4(Ω)(t) ≤ t−
d
8 ‖N0‖L2(Ω) + CB(t)

t
∫

0

(t − s)− 1
2 s− 3d

20 ds. (4.5)

Applying the integral estimate (4.3) implies

‖N‖L4(Ω)(t) ≤ Ct−
d
8 ‖N0‖L2(Ω) + Ct

10−3d
20 B(t). (4.6)

Similarly from the second identity in (3.3) with F2 = φ, we estimate

‖φ‖L5(t) ≤ C‖φ0‖L5(Ω) + C

t
∫

0

(t − s)− d
2 ( 1

2 − 1
5 )

(

‖W ′(φ)‖L2(Ω) + ‖N‖L2(Ω)

)

(s) ds (4.7)

From the basic energy estimate in Lemma 2.1 and the energy lower bound in Lemma 2.2, we find that
(N,φ) is uniformly bounded in L2(Ω)×W 1,2(Ω). From the embedding L6(Ω) ⊂ W 1,2(Ω), we deduce that
‖W ′(φ)‖ ≤ C‖φ‖L6 +C is bounded uniformly in time. A second application of the integral estimate (4.3)
yields

‖φ‖L5(Ω)(t) ≤ C‖φ0‖L5(Ω) + Ct1− 3d
20 . (4.8)

The second identity in (3.3) with F2 = φ, the second Lp − Lq inequality in Lemma 3.1, and the a priori
estimate φ > 0 collectively yield

‖∇φ‖L5(Ω)(t) ≤ Ct−
3d
20 ‖∇φ0‖L2(Ω) + C

t
∫

0

(t − s)− 1
2 − d

2 ( 1
2 − 1

5 )
(

‖W ′(φ)‖L2(Ω) + ‖N‖L2(Ω)

)

(s) ds.

Following the derivation of (4.8), we may use the uniform bounded on ‖W ′(φ)‖L2(Ω) and ‖N‖L2(Ω), and
the integral estimate (4.3) to obtain

‖∇φ‖L5(Ω)(t) ≤ Ct−
3d
20 ‖∇φ0‖L2(Ω) + Ct

1
2 − 3d

20 . (4.9)

Combining the estimates (4.6),(4.8) and (4.9) with the definition of A in (4.1) yields for t ≤ 1

B(t) ≤ C
(

‖N0‖L2(Ω) + ‖φ0‖L5(Ω) + ‖∇φ0‖L2(Ω)

)

+ Ct
10−3d

20 (B(t) + 1) . (4.10)

The lemma follows from the embedding L5(Ω) ⊂ W 1,2(Ω) for t ∈ (0, t0) provided with t0 is small enough.
�

In the following proposition, we apply an approximation argument to establish local existence to
solutions with initial data in the energy space only. This is based on the local existence of solutions
established in Theorem 3.8 subject to initial data in smoother space X0.
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Proposition 4.2. Let Ω be a periodic domain. Suppose u0 = (N0, φ0) is positive and has finite energy, i.e.,
E(N0, φ0) < ∞, φ0 > 0, N0 > 0. Then, there exists T > 0, depending on initial energy, such that on the
domain Ω × (0, T ) the flow (1.1) has a solution u = (N,φ) satisfying the initial data in the sense of

lim
t→0+

(

‖φ(t) − φ0‖W 1,2(Ω) + ‖N(t) − N0‖L2(Ω)

)

= 0.

Moreover, the solution is smooth on Ω × (0, T ).

Proof. For (N0, φ0) ∈ L2(Ω)×W 1,2(Ω) by Lemma 2.2, there exists an approximating sequence {(Nk,0, φk,0),
k = 1, 2 · · · } ⊂ X0 (for instance see (3.2)) such that

lim
k→∞

‖Nk,0 − N0‖L2(Ω) = 0, lim
k→∞

‖φk,0 − φ0‖W 1,2(Ω) = 0 (4.11)

For each initial data (Nk,0, φk,0) ∈ X0 = L4(Ω) × W 1,5(Ω), by Theorem 3.8 there exists a Tk > 0 and a
function uk = (Nk, φk) which solves the flow (1.1) on Ω × (0, Tk). Significantly, the value Tk depends on
σ, Ω and the choice of the initial data in X0. To iteratively extend these solutions we seek a lower bound
on Tk in terms of norm of uk(t) in X0.

The norm convergence in (4.11) to (N0, φ0) ∈ L2(Ω) × W 1,2(Ω) implies the sequence {(Nk,0, φk,0)}k

is uniformly bounded in L2(Ω) × W 1,2(Ω). Combined with the energy identity of Lemma 2.1 and energy
lower bound in Lemma 2.2, we deduce the existence of a positive constant C independent of k such that

‖Nk‖L2(Ω)(t) + ‖φk‖W 1,2(Ω)(t) ≤ C, ∀t ∈ [0, Tk). (4.12)

Moreover, since (Nk, φk) is a classical solution to the flow (1.1) on Ω × (0, Tk), Lemmas 4.3 and 4.4
apply, yielding a uniform bound on (Nk, φk)(t) ∈ X0 on any compact subset of (0, Tk). That is, for each
τk ∈ (0, Tk) there exists a constant Cτk

such that

‖Nk‖L4(Ω)(t) + ‖∇φk‖L5(Ω)(t) ≤ Cτk
, ∀t ∈ [τk, Tk). (4.13)

From Theorem 3.8 we deduce the existence of a uniform lower bound, denoted by T > 0, of {Tk}.
To deduce the convergence we apply Arzelá–Ascoli theorem. There exists u = (N,φ) such that as k

tends to infinity uk = (Nk, φk) and its derivatives converge uniformly to u and corresponding derivatives
on any compact set of Ω × (0, T ). Moreover, the limit u = (N,φ) solves the flow (1.1) and is smooth on
Ω × (0, T ).

It remains to verify the initial condition. From Fatou’s lemma, we have

lim
t→0+

(

‖N(t) − N0‖L2(Ω) + ‖φ(t) − φ0‖W 1,2(Ω)

)

≤ lim
t→0+

lim inf
k→∞

(

‖Nk(t) − Nk,0‖L2(Ω) + ‖φk(t) − φk,0‖W 1,2(Ω)

)

.
(4.14)

The heat kernel has the property that etΔϕ → ϕ in Lp(Ω) as t → 0+ if ϕ ∈ Lp(Ω). In light of the uniform
bound (4.12), the following convergence is uniform in k:

lim
t→0+

(

‖etΔNk,0 − Nk,0‖L2(Ω) + ‖etΔφk,0 − φk,0‖W 1,2(Ω)

)

= 0. (4.15)

Combining (4.14) and (4.15), the triangle inequality implies that

lim
t→0+

(

‖N(t) − N0‖L2(Ω) + ‖φ(t) − φ0‖W 1,2(Ω)

)

≤ lim
t→0+

lim inf
k→∞

(

‖Nk(t) − etΔNk,0‖L2(Ω) + ‖φk(t) − etΔφk,0‖W 1,2(Ω)

)

.
(4.16)

From Lemma 4.1, we may deduce that the right-hand side of this inequality is zero. To this end, it is
helpful to introduce Bk(t) := B[uk], where B is from (4.1), and uk = (Nk, φk). The uniform bound from
(4.12) and Lemma 4.1 imply for T small enough

Bk(t) ≤ C, ∀t ∈ [0, T ). (4.17)
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Here and below, C denotes a constant independent of k. Variation of parameters applied to the heat
semigroup yields expression

Nk(t) = etΔNk,0 −
t

∫

0

e(t−s)Δ∇ ·
(

g(Nk)

φk + σ
∇φk

)

ds. (4.18)

By Lemma 3.1 with p = q = 2, since |g(N)| ≤ 1, we bound the difference as

‖Nk(t) − etΔNk,0‖L2(Ω) ≤
t

∫

0

∥

∥

∥

∥

e(t−s)Δ∇ ·
(

g(Nk)

φk + σ
∇φk

)∥

∥

∥

∥

L2(Ω)

ds

≤ C

t
∫

0

(t − s)− 1
2 ‖g(Nk)∇φk‖L2(Ω) ds

≤ C

t
∫

0

(t − s)− 1
2 ‖∇φk‖L5(Ω) ds.

(4.19)

Applying (4.17) and definition of Bk(t) we have

‖Nk(t) − etΔNk,0‖L2(Ω) ≤ CBk(t)

t
∫

0

(t − s)− 1
2 s− d

8 ds,

≤ C

t
∫

0

(t − s)− 1
2 s− d

8 ds.

(4.20)

The integral estimate (4.3) with α = 1
2 , β = d

8 yields

‖Nk(t) − etΔNk,0‖L2(Ω)(t) ≤ Ct
4−d
8 . (4.21)

To estimate φk we return to the variation of parameters expression

φk = etΔφk,0 −
t

∫

0

e(t−s)Δ

(

W ′(φk) − Nk

φk + σ

)

ds. (4.22)

To bound the difference φk − etΔφk,0 in W 1,2(Ω) we apply Lemma 3.1, and use the estimates on W ′(φ)
and uniform bound on ‖Nk‖L2(Ω) from (4.12). These estimates yield the bound

‖φk − etΔφk,0‖L2(Ω) ≤
t

∫

0

∥

∥

∥

∥

W ′(φk) − Nk

φk + σ

∥

∥

∥

∥

L2(Ω)

ds

≤ C

t
∫

0

(1 + ‖φk‖L6(Ω) + ‖Nk‖L2(Ω)) ds.

(4.23)

Since L6(Ω) ⊂ W 1,2(Ω) for Ω ⊂ R
d(d = 2, 3) and ‖Nk‖L2 , ‖φ‖W 1,2(Ω) are uniformly bounded by (4.12)

we have

‖φk − etΔφk,0‖L2(Ω) ≤ Ct. (4.24)
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Finally, similar steps lead to the estimate

‖∇
(

φk − etΔφk,0

)

‖L2(Ω) ≤
t

∫

0

(t − s)− 1
2

∥

∥

∥

∥

W ′(φk) − Nk

φk + σ

∥

∥

∥

∥

L2(Ω)

ds

≤ Ct
1
2 .

(4.25)

Combining estimates (4.21), (4.24)–(4.25) yields

lim
t→0+

(

‖Nk(t) − etΔNk,0‖L2(Ω) + ‖φk(t) − etΔφk,0‖W 1,2(Ω)

)

= 0

uniformly in k. The initial condition is satisfied from (4.16) and the Proposition follows. �

In the following two lemmas, we establish the uniform boundedness of ∇φ in L5(Ω) and N in L4(Ω)
away from initial time, which has been used to establish a lower bound of existence time interval in the
proof of Proposition 4.2. We mention similar boundedness is also established in the chemotaxis case, see
[10] for instance.

Lemma 4.3. Let (N,φ) be a classical positive solution to (1.1) on Ω × (0, T ) for some T > 0. Then the
gradient ∇φ is uniformly bounded in L5(Ω) away from initial time. More precisely, for any τ ∈ (0, T )
there exists some finite constant Cτ depending on τ such that

‖∇φ‖L5(Ω)(t) ≤ Cτ , ∀t ∈ [τ, T ).

Particularly, the constant Cτ is independent of T .

Proof. Applying variation of parameters to the evolution (1.1) for φ, we have

φ = etΔφ0 −
t

∫

0

e(t−s)Δ

(

W ′(φ) − N

φ + σ

)

ds. (4.26)

Let A = −Δ + 1, then for β > 0

Aβφ = AβetΔφ0 − Aβ

t
∫

0

e(t−s)Δ

(

W ′(φ) − N

φ + σ

)

ds,

= AβetΔφ0 −
t

∫

0

Aβe(t−s)Δ

(

W ′(φ) − N

φ + σ

)

ds,

(4.27)

from which we deduce the bound

‖Aβφ‖L2 ≤ C

⎛

⎝

e−λt

tβ
‖φ0‖L2(Ω) +

t
∫

0

e−λ(t−s)

(t − s)β
‖W ′(φ)‖L2(Ω) ds +

t
∫

0

e−λ(t−s)

(t − s)β
‖N‖L2(Ω) ds

⎞

⎠ ,

for some C and λ > 0. From the global energy identity and embedding estimate, we have uniform bounds
on φ ∈ L6(Ω), N ∈ L2(Ω) for all time. In particular, from (3.13) we have that W ′(φ) is bounded in L2(Ω)
uniformly in time. These bounds afford the estimate

‖Aβφ‖L2(Ω) ≤ C

⎛

⎝

e−λt

tβ
+

t
∫

0

e−λ(t−s)

(t − s)β
ds

⎞

⎠ . (4.28)

For β ∈ [0, 1), the right-hand side is uniformly bounded on any compact set of (0,∞]. Moreover, by
Gagliardo-Nirenberg inequality we have for β > 19

20 that

‖∇φ‖L5(Ω) ≤ C‖Aβφ‖α
L2‖∇φ‖1−α

L2(Ω) + C‖∇φ‖L2(Ω), α =
3d

10(2β − 1)
.
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The extra lower bound assumption on β ensures α ∈ (0, 1) for spatial dimension d = 2, 3. The lemma
follows from the two previous estimates and the uniform bound on ∇φ in L2(Ω). �

Lemma 4.4. Let (N,φ) be a classical positive solution to (1.1) on Ω × (0, T ) for some T > 0. Then, N is
uniformly bounded in L4(Ω) away from initial time t = 0. More precisely, for any τ ∈ (0, T ) there exists
some finite constant Cτ depending on τ such that

‖N(·, t)‖L4(Ω) ≤ Cτ , ∀t ∈ [τ, T ). (4.29)

Particularly, the constant Cτ is independent of T .

Proof. Let w := N2, then

1

2

d

dt

∫

Ω

w2 dx = 2

∫

Ω

N3∂tN dx. (4.30)

Replacing ∂tN by the equation of N yields

1

2

d

dt

∫

Ω

w2 dx = 2

∫

Ω

N3ΔN dx − 2

∫

Ω

N3∇ ·
(

g(N)
∇φ

φ + σ

)

dx.

Integrating by parts and using ∇w = 2N∇N yields

1

2

d

dt

∫

Ω

w2 dx = −6

∫

Ω

N2|∇N |2 dx − 6

∫

Ω

N2g(N)
∇φ

φ + σ
· ∇N dx

= −3

2

∫

Ω

|∇w|2 dx − 3

∫

Ω

g(N)
√

w
∇φ

φ + σ
· ∇w dx.

(4.31)

The hypothesis (Hf ) implies (1.13) and hence |g(N)| ≤ 1. Since φ > 0 and σ > 0 we may apply Young’s
inequality to the second term on the right-hand side, yielding

1

2

d

dt

∫

Ω

w2 dx ≤ −
∫

Ω

|∇w|2 dx + C‖
√

w∇φ‖2
L2(Ω) (4.32)

where the constant C depends on σ. From Hölder’s inequality, we have

‖
√

w∇φ‖2
L2(Ω) ≤ ‖

√
w‖2

L10/3(Ω)‖∇φ‖2
L5(Ω) ≤ ‖w‖L5/3(Ω)‖∇φ‖2

L5(Ω). (4.33)

In turn, the Gagliardo–Nirenberg inequality and uniform bound of w = N2 ∈ L1(Ω) imply

‖w‖L5/3(Ω) ≤ C‖∇w‖
4d

5(d+2)

L2 ‖w‖
d+10

5(d+2)

L1(Ω) + C‖w‖2
L1(Ω),

≤ C‖∇w‖
4d

5(d+2)

L2 + C,

≤ C‖∇w‖L2 + C,

(4.34)

where to obtain the last inequality we used Young’s inequality and 4d
5(d+2) < 1. Inserting the estimate

above into the right-hand side of the previous inequality and applying Young’s inequality, we derive

‖w∇φ‖2
L2(Ω) ≤ C‖∇w‖L2(Ω)‖∇φ‖2

L5(Ω) + C‖∇φ‖2
L5(Ω),

≤ 1

2
‖∇w‖2

L2(Ω) + C‖∇φ‖4
L5(Ω) + C‖∇φ‖2

L5(Ω).
(4.35)

Inserting the estimate into the right-hand side of the inequality (4.32) yields

d

dt

∫

Ω

w2 dx ≤ −
∫

Ω

|∇w|2 dx + C‖∇φ‖4
L5(Ω) + C‖∇φ‖2

L5(Ω). (4.36)
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Fix τ > 0, we introduce τ -dependent constant

Mτ := sup
t≥τ

‖∇φ‖2
L5(Ω) < ∞,

from which we obtain the bound

d

dt

∫

Ω

w2 dx ≤ −
∫

Ω

|∇w|2 dx + CM6
τ + CMτ . (4.37)

Using the Gagliardo–Nirenberg inequality, Cauchy’s inequality, and the uniform bound on w = N2 ∈
L1(Ω), we obtain

‖w‖2
L2(Ω) ≤ C‖∇w‖

2d
d+2

L2(Ω)‖w‖
4

d+2

L1(Ω) + C‖w‖2
L1(Ω),

≤ ‖∇w‖2
L2(Ω) + C.

(4.38)

We used 2d/(d+2) < 2 to apply Young’s inequality to arrive at the second inequality above. In conclusion,

d

dt

∫

Ω

w2 dx +

∫

Ω

w2 dx ≤ Kτ , Kτ := CM6
τ + CMτ + C (4.39)

or equivalently,

d

dt

⎛

⎝et

∫

Ω

w2 dx

⎞

⎠ ≤ Kτet. (4.40)

Integrating this relation from τ to t yields
∫

Ω

w2(x, t) dx ≤ e−t+τ

∫

Ω

w2(x, τ) dx + Kτ

≤ e−t+τ

∫

Ω

N4(x, τ) dx + Kτ .

(4.41)

The lemma follows from the L4(Ω) bound of N at time t = τ by choosing τ > 0 small enough. �
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