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a b s t r a c t

This work introduces the Hookean-Voronoi energy, a minimal model for the packing of soft, deformable

balls. This is motivated by recent studies of quasi-periodic equilibria arising from dense packings of

diblock and star polymers. Restricting to the planar case, we investigate the equilibrium packings

of identical, deformable objects whose shapes are determined by an N-site Voronoi tessellation of a

periodic rectangle. We derive a reduced formulation of the system showing at equilibria each site must

reside at the ‘‘max-center’’ of its associated Voronoi region and construct a family of ordered ‘‘single-

string’’ minimizers whose cardinality is O(N2). We identify sharp conditions under which the system

admits a regular hexagonal tessellation and establish that in all cases the average energy per site is

bounded below by that of a regular hexagon of unit size. However, numerical investigation of gradient

flow of random initial data, reveals that for modest values of N the system preponderantly equilibrates

to quasi-ordered states with low energy and large basins of attraction. For larger N the distribution of

equilibria energies appears to approach a δ-function limit, whose energy is significantly higher than the

ground state hexagon. This limit is possibly shaped by two mechanisms: a proliferation of moderate-

energy disordered equilibria that block access of the gradient flow to lower energy quasi-ordered states

and a rigid threshold on the maximum energy of stable states.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

There has been substantial recent interest in space-filling
packings by soft objects that are spherical when unconstrained.
These arise naturally from phase separation of classes of am-
phiphilic diblock polymers whose composition lends an energetic
preference to forming spherical micelles. Computational studies,
largely based upon models derived from self-consistent mean
field theory, have identified a wide range of quasi-periodic struc-
tures and periodic structures with large periodicity. This work
started with the experimental observation of Frank Kasper σ
phases in sphere forming block copolymers, [1]. In the space-
filling arrangement the micelles form dodecagonal quasicrystals,
and the authors attributed the disorder to frustration in the
macromolecular packing. This was followed by work examining
the roles of symmetry breaking and exchange of mass, [2], issues
of stability [3], effective descriptions from Voronoi type mod-
els [4], and identification of periodic Laves phases with large unit
cells, [5]. The study of complex packing phases in diblock copoly-
mers is complicated by the possibility of micelles exchanging
mass via transport of the diblock polymer chains. This facilitates
symmetry breaking since a diversity of sphere volumes can arise
dynamically from variations induced by initial distributions.
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More recently complex packing phases have been investigated
in Miktoarm star polymers, [6]. Star-shaped polymers have a
central core with arms that radiate out symmetrically, Fig. 1 (left).
These molecules form domains from a single polymer molecule,
eliminating the possibility of mass exchange. In a dilute set-
ting in the presence of a good solvent they form soft spheres
of prescribed radius. When N star polymers are packed into a
domain whose volume is inferior to the natural volume of the
N star-polymers, they compress and roughly form a Voronoi
tessellation of the domain. In R

3 the only Voronoi tessellation
that can be formed from identical shapes is the lattice cube
which has degenerate vertices and is not a good candidate for
energy minimization. Thus it is not surprising that minimizers
are quasi-periodic, or have large-period configurations identified
computationally by tuning the aspect ratio of a periodic box.

We present a systematic analytical and computational study of
a simplified energy, the Hookean-Voronoi energy, defined for N
polymer sites placed in a periodic rectangle within the plane. We
show that the system possesses a large collection of ordered equi-
libria, establish sharp criteria that identify when these ordered
equilibria include the regular hexagonal tiling, and show that in
all cases the area-scaled regular hexagon provides a lower bound
for the system energy. Using a computational investigation, we
investigate the structure of the inherent states — the stable lo-
cal minima of the system, [8]. Despite the existence of ordered
local minima, for large values of N gradient flows of the sys-
tem originating from randomly distributed initial data generically
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Fig. 1. (left) A depiction of a ‘‘miktoarm’’ star polymer, with arms radiating from a central core, reprinted with permission from [7]. (right) Voronoi diagram generated

from N = 5 sites {x⃗1, . . . , x⃗5} on a periodic domain. The radius r1 to ∂V1 at angle θ relative to site x⃗1 is depicted by a blue arrow.

converge to inherent states that have a significant measure of

disorder and an associated energy that is above the ground state.

The system ground state may be ordered or disordered, but the

generic limit of the gradient flow is disordered and energetically

frustrated. While the motivation for this problem arises from

three dimensional packing problems, we simplify the analysis and

the computations by focusing on a two dimensional rectangular

domain. There are applications in which the two dimensional re-

duction is common, for example the vertex model of [9] in which

arrays of cells in biological tissues are assigned energy based upon

the area of their Voronoi regions, or the self-propelled Voronoi

model in [10] which includes a sum of region area and perimeter.

The Hookean-Voronoi energy combines a Voronoi partition of

the domain with a minimal Hookean formulation of elastic energy

for the packing of N ∈ Z+ identical star polymers. We consider

a rectangular domain Ωα,N ⊂ R
2 with aspect ratio α ∈ (0, 1]

and area N and construct classes of ordered, irregular hexagonal

tessellations that are equilibria of the gradient flow. For each N

and α there are O(N2) such ordered tessellations. In Theorem 1 we

establish that the per-site energy of any tessellation is bounded

from below by the energy of the regular hexagon of unit area. This

result holds even if the system admits no regular hexagonal tes-

sellation. Nevertheless, numerical evidence shows that the mini-

mum energy of the ordered tessellations is very sensitive to both

site number N and aspect ratio α and can be significantly higher

than the global minimum energy for those values. Significantly,

under the gradient flow the fraction of the total phase space that

is contained in the basins of attraction of the ordered equilibria

depends sensitively upon the values of N and α. For large values

of N , the probability of random initial data converging to an

ordered Voronoi tessellation becomes vanishing small. Indeed the

limiting equilibrium generically have defects, defined as Voronoi

regions that are not six sided, and the numerical investigation

suggests that the expected number of defects scales linearly with

system size N while the expected system energy converges to a

δ-function distribution with non-zero average energy.

Most surprisingly, the system frustration grows with size.

Specifically the per-site energy of the equilibrium obtained from

the gradient flows increases with N , and apparently saturates

as the probability distribution of equilibrium energies converges

to a limiting distribution. The simulations suggest that there is

sharp cut-off on the maximum energy that an inherent state

can possess. However the vanishing of the basins of attraction

of the ordered equilibria suggest that the number of moderately

defect-filled inherent states grows significantly faster than the

number of ordered and even weakly-disordered ones. With large

N the basins of attraction of moderately disordered equilibria

fill space. The ordered equilibrium and low-energy states with
isolated defects are rendered inaccessible to the gradient flow
and the system is frustrated. Indeed, this simple system shows
that ordered equilibria may not be good predictors of bulk (large
domain) behavior.

This paper is organized as follows. In Section 2 the Hookean-
Voronoi energy is presented and its equilibria are characterized
in terms of max-center points that are analogous to, but different
than, centroids of the Voronoi regions. In Section 3 we construct
the ‘‘single-string’’ families of ordered equilibria, characterize the
site number N and aspect ratio α which admit tessellations by
regular hexagons, and establish the unit-hexagon as a lower
bound on the per-site energy of all tessellations. In Section 4 we
present the results of the numerical simulations and address the
large N behavior of the system.

2. The Hookean-Voronoi energy

For simplicity of analysis we restrict our attention to subsets
of R2 which contain a collection of N sites, each representing a
star polymer or other deformable object with radial symmetry.
The sites are used to form a Voronoi partition of the rectangular
domain Ωα,N ⊂ R

2 with aspect ratio α ∈ (0, 1]. The domain is

taken to rectangularΩα,N = [0,
√
Nα]×[0,√N/α], normalized to

have unit area per site. We impose periodic boundary conditions
so that the domain is equivalent to the torus, Tα := R

2/Ωα,N . This
choice best approximates the ‘‘infinite’’ bulk systems we seek to
recover in the large N limit. We assume a simple Hookean spring
energy in which the arms have linear resistance to compression
and extension. The N sites are denoted x := (x⃗1, x⃗2, . . . , x⃗N ) ∈
R

2N , with each x⃗i ∈ Ωα,N . The Voronoi partition of Ωα,N divides it
into regions {Vj}Nj=1 with disjoint interior where Vj is defined to be
the subset ofΩα,N whose points are closer, in toroidal distance, to
x⃗j than to any other site. With this notation the Hookean-Voronoi
energy takes form

EHV (x) =
N
∑

j=1

∫ 2π

0

⏐
⏐rj(θ ) − r∗

⏐
⏐
2
dθ, (2.1)

where rj is the distance on Tα from x⃗j to ∂Vj along the ray making
angle θ to the positive x1 axis, Fig. 1 (right). The quantity r∗
denotes the equilibrium length of each polymer arm of the star
polymer. The energy models the compression of each polymer
arm as a spring with unit Hooke’s law constant and assumes
a sufficiently high density of polymer arms that the energy of
compression dominates the splay between arms. Since Voronoi
regions are convex the radii {rj}Nj=1 are well defined and the
Hookean-Voronoi energy is well-posed.
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It is instructive to reformulate the Hookean-Voronoi energy in
terms of the average radius of the Voronoi region, Vj, with respect
to its site x⃗, defined as

r j(x) := 1

2π

∫ 2π

0

rj(θ ) dθ. (2.2)

Expanding the square in (2.1) and using the polar-coordinate
formula for region area

EHV (x) =
N
∑

j=1

∫ 2π

0

(

r2j (θ ) − 2r∗rj(θ ) + r2∗
)

dθ,

=
N
∑

j=1

(

2|Vj| − 4πr∗r j + 2πr2∗
)

,

where |Vj| denotes the area of Vj. Since the areas of the Voronoi
regions sum to the domain size |Ωα,N | = N , we arrive at the
expression

EHV (x) = 2N
(

1 + πr2∗
)

− 4πr∗

N
∑

j=1

r j. (2.3)

Up to a constant, the Hookean Voronoi energy depends only upon
the sum of the average radii of the Voronoi sets. The average
radius has an inverse relation to the perimeter of the set. In-
deed Jensen’s inequality provides an upper bound on the average
radius in terms of the domain area.

Proposition 2.1. Let V be a convex domain with a rectifiable
boundary. Then for any x⃗ ∈ V the average radius of V with respect
to center x⃗ is well posed and satisfies

πr
2 ≤ |V |. (2.4)

Proof. Since V is convex the ray leaving x⃗ at angle θ has a unique
intersection with ∂V and hence r = r(θ; x⃗) is well-defined.
Jensen’s inequality applied to convex function s ↦→ s2 implies
(

1

2π

∫ 2π

0

r(θ ) dθ

)2

≤ 1

2π

∫ 2π

0

r2(θ ) dθ = |V |
π
. (2.5)

From the definition of r̄ , this is equivalent to (2.4). □

Remark 2.2. The result (2.4) is a form of ‘‘inverse’’ isoparametric
inequality. For any convex domain which encloses a specified
area, the average radius is maximized for the circle with the site
x⃗ at the circle’s center. This motivates the introduction of the
averaged isoparametric reciprocal

ρ◦(V ; x⃗) := πr
2

|V | ≤ 1, (2.6)

which resembles the reciprocal of the standard isoperimetric
ratio of area to the square of the perimeter.

2.1. Voronoi notation and symmetry

The gradient of the Hookean-Voronoi energy can be simpli-
fied using the symmetries of the Voronoi partition. For a given
Voronoi partition we denote the total number of unique vertices
of the regions by M = M(x), and enumerate them {v⃗j}Mj=1. How-
ever, for each individual Voronoi region, Vi, its mi vertices are also
given a double-subscript notation {v⃗i,1, . . . , v⃗i,mi

}, enumerated in
the second index so that the vertices lie counter-clockwise about
x⃗i, with v⃗i,1 making the smallest non-negative angle with the
positive x-axis. For i = 1, . . . ,N and j = 1, . . . ,mi we denote
the angle made by vertex v⃗i,j, site x⃗i and the positive x-axis by
ϕi,j. These satisfy 0 ≤ ϕi,1 < ϕi,2 < · · · < ϕi,mi

. We also introduce
the vectors

d⃗i,j := v⃗i,j − x⃗i, l⃗i,j := v⃗i,j+1 − v⃗i,j,

where here and below the vertex j is understood to be taken

mod mi. These respectively represent the vertex-site and coun-

terclockwise vertex-vertex vectors, see Fig. 2. The set of near-

neighbors of x⃗i, N (x⃗i), includes the sites whose Voronoi sets

share an edge with Vi, or more precisely the sites whose Voronoi

regions share precisely two distinct vertices with Vi. Specifically

two sites whose Voronoi regions intersect at a single vertex are

not near neighbors.

Voronoi tessellations possess a key symmetry. The vector be-

tween two near-neighbor sites is perpendicularly bisected by the

edge that the two regions share. The vector from x⃗i to the near

neighbor x⃗j that lies on the perpendicular to edge with vector l⃗i,j
is denoted y⃗i,j := x⃗j − x⃗i,. The site vector y⃗i,j is perpendicularly

bisected by the corresponding edge. This implies that the quadri-

lateral region with vertices given by the two neighboring sites x⃗i
and x⃗k, and their vertices is a kite, with area given by the cross

product

|Ai,j| =
⏐
⏐
⏐y⃗i,j × l⃗i,j

⏐
⏐
⏐ =

⏐
⏐
⏐⃗li,j

⏐
⏐
⏐

⏐
⏐
⏐y⃗i,j

⏐
⏐
⏐. (2.7)

Indeed the triangle with vertices x⃗i, v⃗i,j, v⃗i,j+1 is equivalent to the

triangle formed by the same two vertices and associated near-

neighbor x⃗k, see the shaded region in Fig. 2 (left). We call this the

kite-symmetry of the Voronoi regions.

2.2. Calculation of the average radius

The average radius admits a closed form expression. For each

region Vi the integrand ri = ri(θ ) in (2.2) is continuous on [0, 2π ]
and smooth in θ on the sub-interval {[ϕi,j, ϕi,j+1]}mi

i=1, where for

j = mi we denote ϕi,mi+1 = ϕi,1 + 2π . For each i = 1, . . . ,N we

decompose the average radius r̄i defined in (2.2) into the sum of

r̄ij over j = 1, . . . ,mi defined through

r̄i,j := 1

2π

∫ ϕi,j+1

ϕi,j

ri,j(θ ) dθ. (2.8)

The terms r̄i,j = r̄i,j(x⃗i, v⃗i,j, v⃗i,j+1) denote the contribution to the

average radius of region Vi from the triangle formed by site x⃗i
and vertices v⃗i,j and v⃗i,j+1. For θ ∈ [ϕi,j, ϕi,j+1], the radius takes

the form

ri,j(θ ) = − 2Ai,j

(⃗li,j)⊥ · (cos θ, sin θ )T
, (2.9)

where the triangle area Ai,j is given by

Ai,j := 1

2

⏐
⏐d⃗i,j × l⃗i,j

⏐
⏐
⏐ = 1

2
d⃗⊥
i,j · l⃗i,j = 1

2
(x⃗i − v⃗i,j) · l⃗⊥i,j. (2.10)

Here and below x⃗⊥ := Rx⃗, where R is rotation by π/2. Notably

the sub-parts ri,j of ri dependent linearly upon x⃗i through Ai,j. We

re-write the denominator of ri,j(θ ) as

(⃗li,j)
⊥ · (cos θ, sin θ )T = |⃗li,j| sin(θ + ψi,j),

where the phase is given by

ψi,j = − arctan

(

l
(1)

i,j

l
(2)

i,j

)

. (2.11)

The integral can be evaluated through the substitution u =
tan((θ + ψi,j)/2) yielding the expression

r̄i,j = Ai,j

π |⃗li,j|

(

arctanh

(

d⃗i,j+1 · l⃗i,j
|d⃗i,j+1 ∥ l⃗i,j|

)

− arctanh

(

d⃗i,j · l⃗i,j
|d⃗i,j ∥ l⃗i,j|

))

.

(2.12)

3
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Fig. 2. Sample of Voronoi cells with shared vertex v⃗ labeled with key vectors. Relative vertex vectors d⃗, Voronoi edges as perpendicular bisectors, and the kite region

formed between sites x⃗i and x⃗k are shown (left). The edge vectors l⃗ are drawn adjacent to the edge, showing the opposing directions between neighboring sites due

to the counterclockwise orientation (right).

Denoting the angle between the edge l⃗i,j and the site-vertex vec-

tors d⃗i,j and d⃗i,j+1 as αi,j and βi,j respectively, measured counter-

clockwise, then the average radius has the expression

r̄i := 1

2π

mi∑

j=1

|d⃗i,j| sin(αi,j)
(

arctanh(cosβi,j) − arctanh(cosαi,j)
)

.

(2.13)

2.3. The gradient flow

Despite the closed from expression for the average radius, it

is informative to calculate the gradient of the Hookean-Voronoi

energy directly. The vertices of the Voronoi regions, collectively

enumerated as v = v(x), depend upon the choice of sites. In all

cases the vertices are a continuous function of the sites, [11]. A

vertex v⃗ is non-degenerate if the three sites that are closest to it

are at the same distance, ρ(v⃗) > 0, and all other sites are strictly

further away. In this case the tessellation is said to be Delaunay

and vertices depend smoothly upon the site locations.

Lemma 2.3. A non-degenerate vertex depends smoothly upon the

sites.

Proof. A non-degenerate vertex v⃗ and its distance ρ > 0 are

defined as the solution of the system

∥v⃗ − x⃗j∥2
2 = ρ2,

for j = j1, j2, j3 which denote the indices of the three sites closest

to v⃗. This system can be written as F (v⃗, ρ; x⃗j1 , x⃗j2 , x⃗j3 ) = 0, with

the Jacobian of F at (v⃗, ρ) taking the form

∇v⃗,ρF = 2

⎛

⎝

(v⃗ − x⃗j1 )
T ρ

(v⃗ − x⃗j2 )
T ρ

(v⃗ − x⃗j3 )
T ρ

⎞

⎠ ∈ R
3×3.

So long as ρ > 0 and {x⃗j1 , x⃗j2 , x⃗j3} are not collinear, then

det∇v⃗,ρF ̸= 0. If v⃗ is non-degenerate then the three sites are

distinct and equal distance from v⃗. Hence they cannot be collinear

and the Jacobian is invertible. Since F is smooth function of all of

its arguments, the implicit function theorem implies that v⃗ and

ρ depend smoothly upon the sites in some neighborhood. □

This gives us the following result.

Proposition 2.4. The Hookean-Voronoi energy is a continuous
function of the sites, x ∈ R

2N . If each of the sites v = v(x) is non-
degenerate, then the Hookean-Voronoi energy lies in C

3
(

[Ωα,N ]2N
)

.

Proof. The Hookean-Voronoi energy is a smooth function of the
sites x and the vertices v. If each vertex is non-degenerate, then
the vertices are smooth functions of the sites, and the result
follows. □

The gradient of the energy naturally arises from the variation
of the average radius due two effects: the variation of site x⃗i =
(x⃗

(1)

i , x⃗
(2)

i ) ∈ R
2 within a fixed domain Vi, and the variation of the

domain Vi due to motion of the vertices, v = v(x). Correspond-
ingly, for any function f : R2N × R

M ↦→ R of the sites x and the
vertices v = v(x) we express the derivative with respect to x⃗i in
the form

Dx⃗i f (x, v)
  

2×1

= ∂̄x⃗i f (x, v)
  

2×1

+
∑

v⃗∈v
(∂x⃗i v⃗)

T

  

2×2

∂v⃗ f (x, v)
  

2×1

. (2.14)

Here Dx⃗i denotes the partial Jacobian of f with respect to x⃗i with
f viewed as function only of x with v eliminated through the
relation v = v(x). The ‘‘fixed-vertex’’ Jacobian ∂̄x⃗i denotes a partial
Jacobian of f with respect to x⃗i with v fixed, ∂v⃗ f denotes the usual
partial Jacobian of f with respect to v with x fixed, and ∂x⃗i is the
usual partial Jacobian of a function of x only. With this notation
the gradient flow takes the form

dx

dt
= −DxEHV (x) = −

⎡

⎢
⎣

Dx⃗1EHV (x)
...

Dx⃗N EHV (x)

⎤

⎥
⎦ , (2.15)

subject to initial data.
The kite-symmetry of the Voronoi diagram leads to a simplifi-

cation of the gradient due to a cancellation of terms arising from
the variation of the vertices. We take Dx⃗k of Eq. (2.3) and bring
the ∂v⃗ derivatives into the integral to obtain

Dx⃗kEHV = −4πr∗

N
∑

i=1

⎛

⎝∂̄x⃗k r̄i +
1

2π

∫ 2π

0

mi∑

j=1

(∂x⃗k v⃗i,j)
T∂v⃗i,j r(θ )dθ

⎞

⎠ .

(2.16)

4
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The function r̄i depends upon x⃗k only if i = k, and the sum

over ri reduces to a single term. Using the kite-wise formulas

ri,j = ri,j(θ, v⃗i,j, v⃗i,j+1, x⃗i) for ri in (2.8) the integrals can be broken

into sums over edges of Vi, for which the ∂v⃗ terms reduce to two

per side,

Dx⃗kEHV = −4πr∗

⎛

⎝∂̄x⃗k rk + 1

2π

N
∑

i=1

mi∑

j=1

∫ ϕi,j+1

ϕi,j

(

(∂x⃗k v⃗i,j)
T∂v⃗i,j

+(∂x⃗k v⃗i,j+1)
T∂v⃗i,j+1

)

ri,j(θ )dθ

⎞

⎠ .

The double sum vanishes due to the kite-symmetry. To see

this we relabel the K edges in the Voronoi diagram as {⃗lℓ}Kℓ=1.

The two sites in the associated kite are labeled x⃗ℓ+ and x⃗ℓ− with

site x⃗ℓ+ having the larger x-coordinate or larger y-coordinate if

the x-coordinates are equal. The vertices that terminate the edges

of l⃗ℓ are labeled v⃗ℓ± respecting the counter-clockwise orientation

about x⃗ℓ+. The radius functions ri,j on each kite are relabeled rℓ±
to align with their site x⃗ℓ±. The angle end-points of rℓ+ are labeled

ϕℓ± while the θ dependence of rℓ− is linearly translated so that its

end-points are also ϕℓ± . This is possible as the two halves of the

kite are isomorphic. The double sum is regrouped into a single

sum over the Voronoi domain edges,

Dx⃗kEHV = −4πr∗

(

∂̄x⃗k r̄k + 1

2π

K
∑

ℓ=1

∫ ϕℓ+

ϕℓ−

×
(

(∂x⃗k v⃗ℓ+ )
T∂v⃗ℓ+ + (∂x⃗k v⃗ℓ− )

T∂v⃗ℓ−
)

(rℓ+ + rℓ−)(θ )dθ

)

.

Here we have introduced the function

rℓ := (rℓ+ + rℓ−)(θ, v⃗ℓ+, v⃗ℓ−, x⃗i+, x⃗i−),

which inherits properties from the kite symmetry. In particular

∂v⃗ℓ± rℓ · l⃗ℓ = 0,

since moving either vertex v⃗ℓ± in the direction parallel to l⃗ℓ does

not change the distances rℓ± of l⃗ℓ to x⃗±, respectively. Moreover,

as the two triangles in the kite are isomorphic, the function

t ∈ R ↦→ rℓ(θ; v⃗ℓ+ + t l⃗⊥ℓ , v⃗ℓ−, x⃗ℓ+, x⃗ℓ−),

has even parity about t = 0, hence its derivative at t = 0 is zero.

Similar arguments with perturbations to v⃗ℓ− allow us to deduce

that

∂v⃗ℓ± rℓ · l⃗⊥ℓ = 0.

Since l⃗ℓ and l⃗⊥ℓ span R
2, the vectors ∂v⃗ℓ± rℓ ∈ R

2 are zero, and the

integrands in Dx⃗kEHV are identically zero. The x⃗k-gradient of the

Hookean-Voronoi energy reduces to

Dx⃗kEHV = −4πr∗∂̄x⃗k r̄k, (2.17)

for k = 1, . . . ,N . The Hookean-Voronoi gradient flow reduces to

dx

dt
= 4πr∗

⎡

⎢
⎣

∂̄x⃗1 r̄1(x; v)
...

∂̄x⃗N r̄N (x; v)

⎤

⎥
⎦ . (2.18)

The gradient depends only upon the constant-vertex derivatives

of the average radii. The flow remains fully coupled since the

motion of each site shifts the vertices, thereby impacting the

neighboring site’s motion. This formulation shows that x is an

equilibrium if and only if each site x⃗i is a critical point of the

average radius of its domain Vi. We examine this in the following

sub-section.

2.4. Max-centers and equilibrium

The reduced form of the gradient of EHV motivates the intro-

duction of the max-center of a convex domain.

Definition 2.5. For a fixed, bounded, convex region V ⊂ R
2

with a piece-wise smooth boundary. The max-centers of V are

the elements of

argmax r̄(x⃗)
x⃗∈V

. (2.19)

These are the points x⃗ ∈ V that maximize the average radius of

region V .

For a domain V with a piecewise linear boundary, the max-

center is unique.

Proposition 2.6. Let V be convex with a piecewise linear boundary,

then the average radius r̄(x⃗; V ) is strictly concave function of x⃗. In

particular r̄ has a unique critical point which is a maximum and V

has a unique max-center.

Proof. We show that r̄ : V ↦→ R+ is a strictly concave function

of x⃗ and hence has a unique maximum. The integrand of r̄ is

continuous with respect to x⃗ ∈ V but is not C1(V). We adopt the

notation of Section 2.3, by setting V = Vi for some i. Taking the

fixed-vertex partial ∂̄x⃗i of (2.2), we may exchange the order of one

derivative with the integral, yielding

∂̄x⃗i r̄i(x⃗i) = 1

2π

∫ 2π

0

∂̄x⃗i ri(θ )dθ = 1

2π

mi∑

j=1

∫ ϕi,j+1

ϕi,j

∂̄x⃗i ri,j(θ )dθ.

The fixed-vertex Hessian, ∂̄2
x⃗i
, of r̄i does not commute with the full

integral and must be taken in the component-wise formulation

∂̄2x⃗i
r̄i = 1

2π

mi∑

j=1

(

[

∂̄x⃗i ri,j(ϕi,j+1)(∂x⃗iϕi,j+1)
T − ∂̄x⃗i ri,j(ϕi,j)(∂x⃗iϕi,j)

T
]

+
∫ ϕi,j+1

ϕi,j

∂̄2x⃗i
ri,j(θ )dθ

)

. (2.20)

The functions ri,j given in (2.9) are linear in x⃗i through Ai,j, hence

their x⃗i-Hessian is zero and the integral above vanishes. To eval-

uate the boundary terms we determine that

∂̄x⃗i ri,j
⏐
⏐
θ=ϕi,k = −

l⃗⊥i,j

l⃗⊥i,j · (d⃗i,k/|d⃗i,k|)
=

l⃗⊥i,j

l⃗⊥i,j · d⃗i,j
|d⃗i,k|, (2.21)

for k = j, j + 1 where we used d⃗i,j + l⃗i,j = d⃗i,j+1 to derive the last

equality. From the definition of ϕ we have

∂̄x⃗iϕi,j = −
d⃗⊥
i,j

|d⃗i,j|
2
. (2.22)

Substituting these expressions into (2.20) we express the fixed-

vertex hessian of r̄i as a sum of mi rank-one terms,

∂̄2x⃗i
r̄i = − 1

2π

mi∑

i=1

l⃗i,j

l⃗⊥i,j · d⃗i,j
·
(

(d⃗i,j+1)
T

|d⃗i,j+1|
− (d⃗i,j)

T

|d⃗i,j|

)

. (2.23)
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For any term in the summation

tr(∂̄2x⃗i
r̄i,j) = − 1

2π

l⃗i,j

l⃗⊥i,j · d⃗i,j
·
(

d⃗i,j+1

|d⃗i,j+1|
− d⃗i,j

|d⃗i,j|

)

,

= − 1

2π

d⃗i,j+1 − d⃗i,j

l⃗⊥i,j · d⃗i,j
·
(

d⃗i,j+1

|d⃗i,j+1|
− d⃗i,j

|d⃗i,j|

)

,

= − 1

2π

|d⃗i,j+1| + |d⃗i,j|
l⃗⊥i,j · d⃗i,j

(

1 − d⃗i,j+1 · d⃗i,j
|d⃗i,j+1 ∥ d⃗i,j|

)

< 0.

(2.24)

Each matrix ∂2
x⃗i
r̄i,j is rank one and negative semi-definite, and

their ranges {⃗li,j}mi

j=1 span R
2 since they are the edges of Vi and

cannot all be linearly dependent. For any non-zero vector w⃗ ∈ R
2,

the bilinear form is non-positive

w⃗T [∂̄2x⃗i r̄i]w⃗ =
mj
∑

j=i

w⃗T [∂̄2x⃗i r̄i,j]w⃗ ≤ 0,

and equals zero if and only w⃗ is in the kernel of each of ∂̄2
x⃗i
r̄i,j.

Since their ranges span, this is not possible, hence the matrix ∂̄2
x⃗i
r̄i

is negative definite. Thus the Hessian of r̄i is uniformly negative

on the compact set Vi and r̄i has a unique maximum. □

2.5. Max-center and centroidal energies

We denote the max-center of each Voronoi region Vi by x⃗i,∗.
From Proposition 2.6 the max-center is unique and depends

upon the sites only through their determination of the vertices,

x⃗i,∗ = x⃗i,∗(v(x)). Moreover the max-center is the unique solution

of ∂x⃗i r̄ = 0 for x⃗i ∈ Vi. Consequently x is an equilibrium of

the Hookean-Voronoi gradient flow (2.18) if and only if it solves

x = x∗(x). We denote the Hessian of the full energy EHV by

H = D2
xEHV .

On the torus the Hookean-Voronoi energy is invariant up to

translation of x by

ej := (e⃗j, . . . , e⃗j, . . . , e⃗j) ∈ R
2N ,

for j = 1, 2 where e⃗1 = (1, 0) and e⃗2 = (0, 1) are the canoni-

cal unit vectors. The Hessian generically has a two-dimensional

kernel corresponding to these two translational invariants. An

equilibrium of the system with a non-degenerate Voronoi de-

composition is stable if the Hessian at x = x∗ is strictly positive

yTH(x∗)y ≥ ν(x∗)|y|2, (2.25)

for all y orthogonal to the kernel {e1, e2}⊥. When these conditions

are satisfied we call ν(x∗) > 0 the coercivity of EHV at x∗.
When x is close to x∗(x), the Hookean-Voronoi energy satisfies

the relation

EHV (x) = 1

2
(x − x∗(x))

TH(x∗)(x − x∗(x)) + O
(

|x − x∗|3
)

. (2.26)

A tempting simplification is to replace H(x∗) with the identity

matrix and drop the error terms. This yields the ‘‘max-center’’

energy

EMC(x) := 1

2
|x − x∗(x)|2, (2.27)

so named in analogy to the centroidal energy frequently asso-

ciated to Voronoi tessellations. The global minima of the max-

center energy are zero, and are achieved precisely when the

sites x lie at the max-centers x∗. In particular all equilibria,

including local minima or saddles of EHV , are global minimizers of

EMC. However non-global minima and saddle points of the max-

center energy cannot be critical points of EHV . Indeed from its

construction the max-center energy is not a Lyapunov functional

for the Hookean-Voronoi flow, as it converts saddle points of EHV

to global minima of EMC.

In the sequel we argue that the replacement of the Hookean

Voronoi Energy with the max-center energy represents a sig-

nificant loss of information contained in the distribution of the

energies of the Hookean Voronoi equilibria. Indeed the max-

center energy is a better approximation of the gradient-squared

Hookean Voronoi energy, defined by

EGS−HV(x) := 1

2
|DxEHV (x)|2.

Energies of this form have been suggested in the context of

saddle-point search methods, [12]. For x near x∗ the gradient

square energy has the approximation

EGS−HV(x) = 1

2
|H(x∗)(x − x∗)|2 + O

(

|x − x∗|3
)

.

At this level of approximation EGS−HV relates to EHV through the

replacement of H(x∗) in (2.26) with H2(x∗). This has a significant

impact on gradient flow dynamics near these critical points as it

flips the signs of all negative eigenvalues of the Hessian. How-

ever a subsequent replacement of H2(x∗) with the identity does

not introduce any sign-flips, making it plausible that the max-

center energy and the gradient-squared energy give qualitatively

similar gradient flow dynamics when the sites are near their

max-centers.

The relation of the Hookean-Voronoi, max-center, and the

gradient squared Hookean-Voronoi energy have analogs with the

centroidal energy. Indeed the volumetric Voronoi energy also

called the quantizer energy, [13], defined by

FVV(x) :=
N
∑

i=1

∫

Vi

|y − x⃗i|2dy,

is minimized at x iff the sites x lie at the centroids, xc of the

Voronoi regions, see Proposition 3.1 & 3.2 of [11]. This suggests

the introduction of the centroidal energy

FC(x) =
N
∑

i=1

1

2
∥x⃗i − x⃗c,i∥2,

where x⃗c,i is the centroid of the Voronoi region Vi. The centroidal

Voronoi energy relates to the volumetric Voronoi energy in much

the same way that the max-center energy relates to the Hookean

Voronoi energy. The centroidal energy is more closely related

to the gradient-squared volumetric Voronoi energy than to the

volumetric Voronoi energy.

Generically the centroid and the max-center of a convex set

are not equal, but are often quite close. It is relatively simple cal-

culation to determine the centroid of a domain, and the centroidal

energy has attracted significant attention for their use in mesh

generation, [11] and image processing, [14]. Recently strategies

for the efficient computation of centroidal Voronoi gradient flows,

including approaches to enhance the rate of convergence to equi-

libria have been presented, [15]. Analysis has shown convergence

to hyper-uniform distributions and large N distributions of cell

energies in two dimensions, [16].

3. Ordered equilibria

A Voronoi tessellation said to be ordered if all of the Voronoi

regions are identical up to a rigid body motion. From symme-

try considerations the collection of sites that produced ordered

tessellations is invariant under the gradient flow, since each site

6
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Fig. 3. Construction of a single-string tessellation for α = 1. (left) A closed, straight-line geodesic of the equal-radius torus T1 divided into N = 10 sub-units. (right)

The mapping of the ten points onto Ω1 (red lines), and the associated single-string Voronoi tessellation.

is interchangeable, by symmetry they remain so under the flow.

Consequently the gradient-flow induced motion of an ordered

tessellation can be reduced to that of a single site moving towards

the evolving max-center of its evolving region. The Euler charac-

teristic relates the number of faces N , edges K , and vertices M of

the Voronoi tessellation

N − K + M = ξ,

where ξ is the Euler characteristic of the underlying domain. The

Euler characteristic of a torus is zero. For an ordered tessellation,

the number of vertices per site, m is fixed. Since each edge

joins two sites the edge number satisfies K = mN/2. Assuming

non-degeneracy of vertices, each vertex joins three edges, hence

M = mN/3. The Euler characteristic reduces to the relation

N(1 − m/6) = 0 and we deduce that a non-degenerate ordered

tessellation has hexagonal regions with 6 edges and 6 vertices.

3.1. Single-string Voronoi tessellations

The single-string tessellations are a subset of the ordered tes-

sellations that are critical points of the Hookean Voronoi energy.

These are associated to closed, straight-lines geodesics of the

torus Tα . In the plane, the geodesic can be extended to a line

in R
2, which may be shifted to pass through (0, 0). A closed

geodesic corresponds to a line that passes through one of the

lattice points {(s1
√
Nα, s2

√
N/α)}s∈Z2 corresponding to the Ωα,N -

periodic images of the upper-right corner of Ωα,N . The line then

forms a periodic orbit in Ωα,N . The single-string site vector x

is formed by placing N equally-spaced points along the straight

periodic orbit. Indeed, fixing lattice point index s = (s1, s2) ∈ Z
2,

then without loss of generality s1, s2 ̸= 0 and gcd(s1, s2) = 1, and

for j = 1, . . . ,N the site x⃗j of x is given by (see Fig. 3).

x⃗j =
(

js1

√
Nα

N
mod

√
Nα, js2

√
N/α

N
mod

√

N/α

)T

.

By the symmetry of the construction, the collection of vectors

{y⃗i,j} from site x⃗i to the sites of its near-neighbors are the same.

Since these vectors define the Voronoi regions, each Voronoi

region is isometric. For each N and α the number of single-sting

Voronoi tessellations is finite, as it cannot exceed the number of

coprime pairs (s1, s2) ∈ Z
2 with 1 ≤ s1, s2 ≤ N .

Proposition 3.1. For each N ∈ N+ and each aspect ratio α,

the single-string Voronoi tessellations correspond to sites that are

equilibria of the Hookean-Voronoi gradient flow (2.18).

Proof. We show that x = x∗. For the single-string construction

each Voronoi region is a fixed rigid translation of each-other

under any vector that points from site to site. Since these vec-
tors have a π rotation symmetry, each region is invariant under
rotation by π about its defining site. This symmetry maps the
associated max-center from x⃗i∗ to its π rotation image 2x⃗i − x⃗i∗.
Since the max-center is unique, the max-center and its π-rotation
image must be the same, hence x⃗i = x⃗i,∗. □

3.2. Regular Hexagonal Voronoi tessellations and volumetric excess

energy

Regular hexagonal tessellations are a special case of single-
string tessellations. From (2.13) the average radius of the regular
s-gon of unit area takes the form

r̄s = 1

π

√
s

tan(π/s)
arctanh(sin(π/s)). (3.1)

A regular hexagon, Vhex, of unit area has corresponding energy

Ehex := 2(1 + πr2∗ ) − 4πr∗r̄6. (3.2)

To facilitate comparisons of energy between different N and α we
introduce the volumetric excess energy, denoted E, of a tessellation
and of a region within the tessellation. The first is computed by
dividing the tessellation energy EHV (x) by |Ωα,N | = N , to obtain
an average energy per unit area, and subtracting the energy of a
regular hexagon of unit area,

E(x) := EHV (x)

N
− Ehex. (3.3)

The volumetric excess energy of an individual Voronoi region Vi

with average radius r̄i denotes the contribution of that region to
the tessellation’s E. From (2.3) this is defined as

E(Vi) := 2(|Vi| + πr2∗ ) − 4πr∗ r̄i − Ehex, (3.4)

so that E(x) equals the average of the {E(Vi)} of its regions.
It is natural to ask which pairs (N, α) admit a tessellation by

regular hexagons. The sites of a regular hexagonal tessellation lie
on a triangular lattice. Fixing a site at the origin, we recall the
Eisenstein integers generated by the cube root of unity,

Z[ω] ⊂ C, ω = ei
2π
3 , i =

√
−1.

The Eisenstein integers form a lattice in C corresponding to

centers of a tiling by regular hexagons with area
√
3/2. There

exists a regular hexagonal tiling of a periodic domain Ωα,N iff the
vertices of Ωα,N correspond to Eisenstein integers {0, z, z ′, z +
z ′} ∈ Z[ω] with z, z ′ orthogonal. In this case Ωα,N must be
a conformal transformation of the smallest rectangular domain
Ωhex with vertices {0, 1, (1 + 2ω), 2 + 2ω}. The following result
yields a constructive enumeration of the possible aspect ratios α
of periodic domains that admit a regular hexagonal tiling with N
regions.
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Proposition 3.2. Let N ∈ Z+ be even. Write N = PQ , with
P,Q ∈ Z+ where P is the product of all the prime factors p of N
that satisfy p ≡ 2 mod 3. The aspect ratios of a rectangular domains
that have a tessellation by N regular hexagons are precisely

H(N) =
{

N

2a2b

√
3

⏐
⏐
⏐
⏐

∀a, b ∈ Z+ : a | N

2b
, b | Q

}

. (3.5)

Remark 3.3. By convention the domains Ωα,N have aspect ratio
α ∈ (0, 1]. To respect this convention we replace an element
α ∈ H with its reciprocal, α−1, if α > 1. This corresponds to
rotating Ωα,N by π/2.

Proof. A general conformal transformation that maps Z[ω] to
itself, transformsΩhex ontoΩα,N where the vertices take the form

{0, gγ , hγ (1 + 2ω), (g + h + 2hω)γ },
with γ ∈ Z[ω] and g, h ∈ Z+. To avoid double counting, we
require that γ /k /∈ Z[ω] for any k ∈ Z, k ≥ 2. The region Ωα,N ,

has aspect ratio α = h|1 + 2ω|/g = h
√
3/g . Since it is comprised

of N hexagons of size
√
3/2 it has area |Ωα,N | = N

√
3/2. The

transformed domain has area |gγ ∥ hγ (1 + 2ω)| = gh
√
3|γ |2.

Equating these two yields the constraint

gh|γ |2 = N

2
.

In particular, N must be even. Without loss of generality h can
be chosen in the form h = N/(2g|γ |2), where we require that
(2g|γ |2) | N . The Eisenstein integers, Z[ω], are a unique fac-
torization domain. The Eisenstein primes enjoy the following
dichotomy, [17]: an element π ∈ Z[ω] is an Eisenstein prime if
and only if one of two mutually exclusive conditions holds,

1. |π |2 is a prime and π ̸≡ 2 mod 3

2. π is the product of a unit {±1,±ω,±ω2} and a prime
integer p ≡ 2 mod 3.

This motivates the prime factorization of N in the form

N = PQ =
(

p
a1
1 p

a2
2 · · · paii

)(

q
b1
1 q

b2
2 · · · qbjj

)

,

for some exponents ak, bk ∈ Z+ where the prime numbers pk ≡
2 mod 3 for k = 1, . . . , i, and qk ̸≡ 2 mod 3 for k = 1, . . . , j. The
constraint γ /k /∈ Z[ω] implies that the Eisenstein primes that
factor γ cannot satisfy condition 2. We deduce that

|γ |2 = |πφ11 |2|πφ22 |2 · · · |πφkk |2 =
(

q
c1
1 q

c2
2 · · · qcjj

)

,

for exponents ck ∈ Z+ that satisfy 0 ≤ ck ≤ bk for k = 1, . . . , j.
In particular we may choose g to be any divisor of N/(2|γ |2).
Eliminating h from the expression for aspect ratio we find the
aspect ratios that admit a tiling by regular hexagons take the form

H(N) =
{

N
√
3

2g2|γ |2
⏐
⏐
⏐
⏐
∀g | N

2|γ |2 ,∀|γ |2 | Q
}

.

Relabeling, we choose b = |γ |2 that divides Q and a = g that a
divides N/(2b), which yields (3.5). □

Remark 3.4. For N = 36, then N = 22 · 32, so that Q = 32,
with divisors b = {1, 3, 9}. For each of the three choices of b the
divisors of N/(2b) are

a1 = {1, 2, 3, 6, 9, 18}, a3 = {1, 2, 3, 6}, a9 = {1, 2}.
From (3.5), the set of admissible aspect ratios reduces to 6 unique
elements, which after taking reciprocals where necessary, take
the form

H(36) =
√
3

{
1

54
,
1

18
,
2

27
,
1

6
,
2

9
,
1

2

}

.

As depicted in Fig. 4 (left), for N ∈ [0, 5000] sets H(N) have

a rich structure. Fig. 4 (right) presents the values of E for all the

single-string tessellations of Ωα,N for N = 82 and α ∈ [0.3, 1].
The minimum ordered E at a given value of α is achieved as the

minimum of the E over these discrete families of single-string

equilibria which vary smoothly in α. For fixed N , the single-string

equilibria can be decomposed into families parameterized by as-

pect ratio α. Each family has a E that is roughly parabolic in α, and

minimized at a particular value α = α∗. The green dots indicate

the α for which the E of zero is attained at a regular hexagonal

tessellation. This figure suggests that E is always positive, equiv-

alently that the per-site energy of a tessellation is always greater

than Ehex. This is established in the next sub-section.

3.3. Maximizing the average radius

The average radius of a tessellation {Vi}Ni=1 generated by sites

x ∈ R
2N is defined by the formula,

r̄(x) := 1

N

N
∑

i=1

r̄(Vi).

We establish that E(x) ≥ 0 by showing that any collection x of

sites satisfies r̄(x) ≤ r̄6. We approach this by replacing the con-

straint that the regions of a tessellation form a Voronoi partition

with a much weaker constraint, leading to a larger collection of

regions. In this weaker formulation the average radius is a convex

function of the collection, and we show that this convex problem

is optimized at the regular hexagon.

The weaker formulation is obtained by replacing the collec-

tions of regions formed by the Voronoi tessellation with

geometrically-uncoupled collections of right triangles. These are

formed by subdividing each Voronoi region Vi in a given tessella-

tion into two right triangles by extending perpendiculars from

the site x⃗i to the edge of Vi, or to the extension of that edge

that intersects the perpendicular. For a Voronoi region with mi

edges, this generates 2mi right triangles, each described by two

parameters: the length h of the perpendicular and the angle θ that

is adjacent to the site x⃗i. Collectively the subdivision generates

K = 2

N
∑

i=1

mi

right triangles, parameterized by Y = (h1, θ1, . . . , hK , θK ) ∈
R

2K . In the case that a pair of right triangles is constructed

by extending the edge of the Voronoi region beyond its two

vertices, then the triangles overlap with their adjacent neighbors.

To accommodate this overlap one of the pair is assigned a positive

angle and the other a negative angle, with associated positive and

negative contributions to area and average radius balance, see

Eqs. (3.15) and (3.16) and Fig. 5.

3.3.1. Positive angle case

Each triangle makes a contribution to the average radius of

the tessellation. Since the tessellation has 2N − 2 < 2K degrees

of freedom, there are many hidden constraints within these pa-

rameters that reflect the geometry of the tessellation. In the weak

formulation these geometric constraints are dropped and we

maximize an extension of the average radius over the collections

of K right triangles that satisfy only two constraints: that the total

area of the triangles sums to N and that the interior angles sum

to 2πN . We first restrict attention to the case of positive angles

only, seeking to maximize the average radius the collections of K

triangles over the convex admissible set

A(K ) :=
{

Y

⏐
⏐
⏐hi ∈ [0, R], θi ∈ [0, π/2] , i = 1, . . . , K

}

. (3.6)

8



K. Jao, K. Promislow and S. Sottile Physica D 445 (2023) 133631

Fig. 4. (left) The aspect ratios α for which Ωα,N supports a tiling by N regular hexagons. (right) E of all single-string equilibria for N = 84 and α at intervals of

10−2 in [0.3, 1]. The values (0.3, 1] ∩ H(84) =
{

3
√
3

14
, 2

√
3

9
, 2

√
3

7
, 7

√
3

18
,

√
3
2

}

, corresponding to regular hexagonal tessellations are indicated by a green dot.

Fig. 5. (left) Right triangle subdivision of a five-sided Voronoi region with perpendiculars (blue dashed) and hypotenuse (red dotted). The angle θ3 is negative and

overlaps with θ2 and θ4 so that the sum of all 10 angles in 2π . (right) Four of the right triangles formed from the subdivision of the Voronoi region. As generated

the hypotenuses of the triangles satisfy h2j = h2j+1 , however this and other geometric restrictions are relaxed in the admissible set A(K ).

The upper bound R on the hypotenuse of the triangles will be

selected sufficiently large, depending only upon N .

For a non-degenerate Voronoi tessellation, Euler’s equation

with characteristic zero implies that the tessellation has 3N

edges. Each tessellation edge abuts two right triangles in each

tessellation region, so that a non-degenerate tessellation yields

K = 4 ·3N = 12N right triangles via the subdivision process. This

is the maximum value of K . Conversely the constraint on the sum

of the angles and their individual range requires that K ≥ 4N . This

yields the range K ∈ [4N, 12N]. The set A(K ) contains the set of

right triangles Y = Y (x) produced from subdividing the Voronoi

tessellation generated by x, but is much larger. Generically the

triangles corresponding to an arbitrary Y ∈ A(K ) cannot be

reassembled into a Voronoi tessellation of Ωα,N .

We generalize the constrained maximization problem to il-

luminate its structure. Given K ∈ N+ geometric regions, each

parameterized by yk ∈ R
ℓ for k = 1, . . . , K . We form Y =

(y1, . . . , yK ) ∈ R
ℓ×K and introduce a compact set A ⊂ R

ℓ×K

that defines the collections of K admissible regions. We seek

to maximize a function F : A ↦→ R subject to ℓ constraints

C(Y ) = C, where C : A ↦→ R
ℓ and C ∈ R

ℓ. More specifically

we consider a function and constraints that treat each geometric

region independently and additively, so that

F (Y ) =
K
∑

k=1

f (yk), (3.7)

and

C(Y ) =
K
∑

k=1

c(yk), (3.8)

for smooth functions f : Rℓ ↦→ R and c : Rℓ ↦→ R
ℓ.

Lemma 3.5. Consider the function F : A ↦→ R and the constraints

C : A ↦→ R
ℓ defined on the admissible set A ⊂ R

ℓ×K as given above.

If the function g introduced in (3.11) is well-defined and one-to-one

on A, then the interior critical points of the problem

max
Y∈A

F (Y ), (3.9)

9
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subject to the ℓ constraints

C(Y ) = C ∈ R
ℓ, (3.10)

occur on the diagonal of A. That is the interior critical points are of

the form Y∗ = (y∗, . . . , y∗) for some y∗ ∈ R
ℓ.

Proof. From the form of F and C in (3.7) and (3.8) the gradients

∇Y of F and C are block diagonal with the k’th sub-block given in

terms of ∇yf
⏐
⏐
yk

and ∇yc
⏐
⏐
yk
. For a critical point that is not on the

boundary of A, then each column vector of the minimizer Y∗ =
(y∗1, . . . , y∗K ) satisfies an identical Lagrange multiplier problem.

Specifically,

∇yf (y∗k) = ∇yc(y∗k)Λ,

for each k = 1, . . . , K , where Λ = (λ1, . . . , λℓ) are the k-

independent Lagrange multipliers. By assumption the ℓ×ℓmatrix

∇yc is invertible on A. We introduce the map g : Rℓ ↦→ R
ℓ,

g(y) := [∇yc(y)]−1∇yf (y). (3.11)

The columns {y∗,k}Kk=1 of an interior critical point Y∗ solve g(y∗k) =
Λ for k = 1, . . . , K . By assumption g is one-to-one, so if Y∗ is a

critical point then each column is in the range of g , in particular

y∗k = y∗ := g−1(Λ) is independent of k and Y∗ = (y∗, . . . , y∗). □

We apply this Lemma inductively to produce a sharp upper

bound on the average radius of a tessellation. A key point is that

in the limit that R → ∞, the boundary of A(K ) maps onto A(K ′)
for some K ′ < K . The proof is presented for the case of positive

angles only, Voronoi tessellations including negative angles are

eliminated as maximizers of the average radius in Section 3.3.2.

Theorem 1. For any (N, α) and any collection of sites, x, the

average radius of the associated Voronoi tessellation is bounded from

above by the average radius of the unit hexagon,

r̄(x) ≤ r̄6. (3.12)

In particular E(x) ≥ 0, with equality achieved by the regular

hexagonal tessellation when α ∈ H(N).

Proof. We fix N and α and consider the set of all right triangle

subdivisions of tessellations ofΩα,N by x ∈ ΩN
α,N . For the positive-

angle case, each subdivision forms K right-triangles for some K ∈
[4N, 12N]. To bound the average radius of these tessellations we

introduce the convexified family of constrained problems, P(K , C)

for C ∈ R
2. These problems seek to maximize

F (Y ) :=
K
∑

k=1

f (hk, θk), (3.13)

over Y ∈ A(K ), subject to the two constraints,

Ci(Y ) :=
K
∑

k=1

ci(hk, θk) = Ci, (3.14)

for i = 1, 2. We make the choices

f (h, θ ) = 1

2π
h cos θ arctanh(sin θ ) =: hf̃ (θ ), (3.15)

c1(h, θ ) = 1

4
h2 sin(2θ ) =: h2c̃1(θ ), (3.16)

c2(h, θ ) = θ. (3.17)

so that if Y = Y (x) arises from the partitioning of the Voronoi

tessellation of x into right triangles then r̄(x) = 1
N
F (Y (x)). The

natural choices for C are C1 = |Ωα,N | = N and C2 = 2πN so that

constraint on C1 enforces total triangle area N and the constraint

on C2 requires that the site angles sum to 2πN . These are the

values of C when Y = Y (x) arises as a subdivision of an N-site

tessellation ofΩα,N . Other choices arise from considering maxima

that can occur on ∂A(K ).

To apply Lemma 3.5 for the choices (3.15)–(3.17) we establish

that g defined in (3.11) is one-to-one on A(K ). We determine that

∇yc =
(

2hc̃1(θ ) 0

h2c̃ ′
1(θ ) 1

)

, (3.18)

where a prime denotes the derivative of a function of one variable

with respect to that variable. The function g takes the form

g :=
(

1
2hc̃1

0

− hc̃′
1

2c̃1
1

)
(

f̃

hf̃ ′

)

=

⎛

⎝

f̃

2hc̃1

h
2

f̃ ′ c̃1−f̃ c̃′
1
/2

c̃1

⎞

⎠ . (3.19)

The product g1g2 depends only upon θ , so that for Lagrange

multipliers Λ = (λ1, λ2) the critical point angle θ∗ satisfies

λ1λ2 = g1g2 = 1

8

(

f̃ 2

c̃1

)′

. (3.20)

The function g̃ := f̃ 2/c̃1 is concave on (0, π/2) and g̃ ′′ is strictly

negative on this set. This establishes that g̃ ′ is 1-1 on (0, π/2) and

from the simple form of the h dependence in g it easily follows

that g is 1-1 on [0, R] × [0, π/2] ↦→ R
2. From Lemma 3.5 the

critical points of F that are interior to A(K ) occur on the diagonal

of A(K ), and are of the form Y∗(K , C) = (h∗, θ∗, . . . , h∗, θ∗) ∈ R
2K

for some values (h∗, θ∗) ∈ [0, R] × (0, π/2). The angle constraint

C2(Y ) = C2 imposes the condition

θ∗ = C2

K
, (3.21)

and the area constraint C1(Y ) = C1 forces

h∗ = 2

√

C1

K sin(2θ∗)
.

In particular, defining the critical values F∗(K , C) := F (Y∗(K , C))
we have the suggestive form

F∗ = √
C1C2

cos(
C2

K
) arctanh(sin(

C2

K
))

π

√

C2

K
sin(

2C2

K
)

. (3.22)

For fixed C, the function F∗ is monotonically increasing in K , and

achieves its maximum value at K = 12N . For the natural choice

of constraint values C = (N, 2πN) we have

1

N
F∗(K ,N, 2πN) ≤ 1

N
F∗(K ,N, 2πN)

=
√
12

cos( π
6
) arctanh(sin( π

6
))

π
√

sin( π
3
)

= r̄6. (3.23)

This establishes that the hexagonal lattice, for which K = 12N ,

provides the largest interior critical point of the constrained

problem for any value of K ∈ [4N, 12N].
To establish that the constrained maximum does not occur

on the boundary of A(K ) we recast the search of the maximum

over the boundary as a problem P with modified values for K

and C. Indeed a point Y lies on ∂A(K ) if and only if there are

one or more i = 1, . . . , K for which either θi ∈ {0, π/2} or

hi ∈ {0, R}. If n1 of the angles equal 0 then the associated

triangles make no contribution to F , have no area, and make

no contribution to the total angle constraint. The interior critical

points of F over this are equivalent to the those of P(K − n1, C).

If n2 angles take the value π/2 then the equivalent problem is

P(K−n2, C1, C2−α2n2π/2) for some α2 ∈ [0, 1]. If n3 hypotenuses

are 0 then Y is a competitor for P(K − n3, C1, C2 − α3n3π/2). If

10
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a triangle has hypotenuse hi = R ≫ 1, then the area Ai ≤ N ,

and angle θi = O(N/R2) so that f (yi) = O(N/R). For fixed N , up

to terms that are small in 1/R, the maximum of F over this set

is equivalent to P(K − n4, C1 − n4α4, C2). Combining all these

boundary cases we are brought to the problem P(K ′, C′) with

K ′ = K−n1−n2−n3−n4, and C
′ = (C′

1, C
′
2) where C

′
1 = C1−α3n3,

and C
′
2 = C2 − π

2
(α2n2 + α3n3) − α4n4. Since F∗ is increasing in

K for fixed C2 and is clearly increasing in C
′
1, the interior critical

points of these boundary problems satisfy the bounds

F∗(K
′, C′

1, C
′
2) < F∗(K , C1, C

′
2) ≤ F (12N, C1, C

′
2),

Since C
′
2 ≤ 2πN the ratio C

′
2/12N ≤ π

6
. On the range C

′
2 ∈ (0, π/6)

the function F∗ is strictly increasing in C2 for fixed K , hence

F∗(K
′, C′) ≤ F∗(12N,N, 2πN).

Taking R sufficiently large that

F∗(12N,N, 2πN) − F∗(12N − 1,N, 2πN) ≫ O(N/R),

we deduce that the maximum of F over A(K ) for any K ∈
[4N, 12N] occurs as the interior critical point of A(12N). In par-

ticular for all collections of N sites

r̄(x) ≤ max
x

1

N
F (Y (x)) ≤ max

K≤12N
max
Y∈A(K )

1

N
F (Y )

= 1

N
F∗(12N,N, 2πN) = r̄6. (3.24)

This is equivalent to the statement that E(x) ≥ 0. □

3.3.2. Negative angles

If negative angles arise in the right triangle subdivision of a

Voronoi tessellation then the naive extension of the approach

outlined above fails when large values of the hypotenuse are

associated to negative angles. On the other hand, the inclusion

of negative angles as wholly independent parameter leads to a

loss of convexity. To prevent this the right triangles are kept as

pairs, grouping each negative angle triangle with a positive angle

triangle with a shared side that denotes the height of the per-

pendicular to their common Voronoi edge. Each pair of triangles

can be parameterized by 3 variables: the height d ∈ [0,∞],
and the two angles θ+, θ− ∈ [−π/2, π/2], with θ+ + θ− > 0.

Crucially, the Lemma below shows that for a single triangle pair

their contribution to the average radius is maximized when both

angles are positive.

Lemma 3.6. A single right triangle pair with area A and angle sum

φ ∈ [0, π] maximizes its average radius when θ+ = θ− = φ/2. This

maximum average radius is given by

r̄max = 1

π

√
A
arctanh(sin(φ/2))√

tan(φ/2)
. (3.25)

Proof. A right triangle pair with fixed area A, and angle sum

φ ∈ [0, π], is parameterized by height d ∈ [0,∞) and angle

θ ∈ [φ − π/2, π/2]. The average radius is given by f under

constraint c1 = A,

f (d, θ ) = 1

2π
d(arctanh(sin θ ) + arctanh(sin(φ − θ )))

= d(f̃ (θ ) + f̃ (φ − θ )) (3.26)

c1(d, θ ) = 1

2
d2(tan(θ ) + tan((φ − θ ))) = d2(c̃1(θ ) + c̃1(φ − θ )).

(3.27)

Here we have introduced f̃ (θ ) = arctanh(sin θ ), and c̃1(θ ) =
tan(θ ). The internal critical point equations of the system subject

to the area constraint are expressed in terms of the Lagrange

multiplier λ1,
⎛

⎝

f̃ (θ ) + f̃ (φ − θ )

df̃ ′(θ )
−df̃ ′(φ − θ )

⎞

⎠ = λ1

⎛

⎝

2d(c̃1(θ ) + c̃1(φ − θ ))

d2c̃ ′
1(θ )

−d2c̃ ′
1(φ − θ )

⎞

⎠ . (3.28)

Eliminating λ1 from the second and third equations yields the

relation

f̃ ′(θ )

c̃ ′
1(θ )

= f̃ ′(φ − θ )

c̃ ′
1(φ − θ )

. (3.29)

The function f̃ ′/c̃ ′
1 is even and monotonic on θ > 0 and θ < 0.

We deduce that θ = ±(φ − θ ) and see that this system only

has a solution on the ‘‘plus’’ branch, for which θ = φ/2. From
the area condition we see that d → 0 and f → 0 as θ → π/2
or θ → φ − π/2. Moreover d must remain bounded due to the

area constraint, so the maximum is attained at the internal critical

point. At this point θ = φ/2 for which

d =
√

A

tan(φ/2)
, (3.30)

and maximum of f is given by (3.25). □

Cutting a tessellation into K pairs of right triangle, we can

bound the average radius from above by maximizing

F (Y ) :=
K
∑

k=1

f (dk, θk,+, θk,−), (3.31)

over Y ∈ A(K ), subject to the area and angle constraints,

Ci(Y ) :=
K
∑

k=1

ci(hk, θk,+, θk,−) = Ci, (3.32)

for some Ci ∈ R for i = 1, 2. Here the functions f and ci are as in

Lemma 3.6 while

c2(d, θ+, θ−) := θ+ + θ−. (3.33)

From Lemma 3.6 for each pair of triangles the maximum average

radius contribution occurs when θ− = θ+ ≥ 0. Consequently neg-

ative angles are incompatible with local minima of the energy and

the maximization over the triangle pairs can be embedded within

the larger positive angle maximization problem. We deduce that

r̄(x) ≤ r̄6 for all tessellations. This addresses the negative angle

case and completes the proof of Theorem 1.

4. Defects and frustration in disordered equilibria

We investigate the role of site number N and aspect ratio α in

determining the probability that a random initial configuration of

sites converges to an ordered or a disordered equilibrium through

the gradient flow of the Hookean Voronoi energy. While the

existence of ordered states and the ground state status of the

regular hexagonal tessellation established in Section 3 suggest

that ordered structures should play a dominant role in long time

behavior of the gradient flow of the Hookean-Voronoi energy,

numerical simulations show that in fact the system is frustrated,

and suggest that in the large N limit the system tends to a

non-zero per-site average frustration.

The motion of the sites under the gradient flow can induce

changes in the edge count mi of a Voronoi region via the for-

mation of a degenerate vertex with more than three edges. This

generically arises through a ‘‘vertex collision’’ in which an edge

shrinks to zero length, bringing two vertices together, eliminating

one vertex and one edge from the graph. The energy E(x) is con-

tinuous, but not differentiable at these non-generic degenerate

11
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Fig. 6. A vertex collision that generates two pair of 5- and 7-sided defect regions from a tessellation of 6-sided regions. The sites of 5-, 6-, and 7- sided regions are

indicated by pentagons, circles, and stars respectively, while sites with 6 edges and a degenerate vertex are indicated by open circles. The energy E(x) is continuous,

piece-wise smooth, but not differential at a vertex collision.

configurations. Given a tessellation that is locally composed of

6-sided regions, the generic vertex collision arises when deforma-

tion of the site vector x creates two pair of 5- and 7-sided regions,

as presented in Fig. 6. Under deformation an edge separating

two six-sided sites, labeled x⃗1 and x⃗1′ , shortens to bring its two

vertices together, forming a single degenerate vertex with four

edges that is the corner of sites x⃗1, x⃗1′ , x⃗2, x⃗2′ . Continuing with

the deformation of the sites, the degenerate vertex may split into

two vertices by forming a new edge that separates the regions of

x⃗2 and x⃗2′ . This process changes the four six-sided regions into

two five-sided and two seven-sided.

Vertex collisions can occur among regions with arbitrary num-

bers of sides, generically adding one side to each of the x⃗1 − x⃗1′

regions and subtracting one vertex from each of the x⃗2 − x⃗2′

regions.

Definition 4.1. We say that a site and its region are a defect

if each of the region’s vertices is non-degenerate and the region

does not have 6 sides.

In computations we take r∗ = 4. Although this value is

immaterial to the outcomes of the simulations, this choice scales

the relaxation time of the system and the values of E of the

intrinsic states.

4.1. Computational equilibria

The gradient flow is implemented through a second order

predictor–corrector scheme. The SciPy library is employed to

compute the Voronoi diagram from a set of points. The gradient

is computed via (2.18) using a second-order midpoint method

and an embedded first-order (Euler’s) method to obtain an error

estimate for the adaptive step size, with initial step size δstep.

Writing the gradient flow in the form y′(t) = f (t, y), we have

increments

k1 = f (tn, yn), k2 = f (tn + δstep, yn + δstepk1).

The second order update yn+1 and error estimate ϵ take the form

yn+1 = yn + δstep

2
(k1 + k2) ϵ = δstep

2
(k1 + k2) − k1.

The step size is updated using the rule

δstep → δstep

√

10s

∥ϵ∥2

, s = min{−3,−2 + log10 ∥f (tn, yn)∥2}

We establish a stopping criteria that determines if a simulation

of the gradient flow is sufficiently close to a stable equilibrium.

For each putative computational equilibrium xe we compute the

hessian

H(xe) := D2
x(xe),

and determine its spectrum. We remove the two dimensional ker-

nel, spanned by the translational vectors {e1, e2}, and determine

the minimum eigenvalue on the space perpendicular to the ker-

nel. When this quantity is positive, it is labeled ν(xe), motivated

by the coercivity defined in (2.25). The stopping condition is that

∥Dx(xe)∥2

ν(xe)
≤ δeq, (4.1)

for δeq ≪ 1 chosen suitably small. The motivation is that for x

near xe we have the expansion

Dx(x) = Dx(xe) + H(xe)(x − xe) + R,

where the remainder R ∼ ∥x − xe∥2
2. If x is an exact equilibrium

then

x = xe − H−1 (Dx(xe) + R) =: F (x), (4.2)

where we may adjust x so that x − xe is orthogonal to the

translational modes. Then for some c > 0 depending upon a

bound of D3
x⃗
in a neighborhood of xe, we have the estimate

∥H−1 (Dx(xe) + R) ∥2 ≤ δeq + c

ν
∥x − xe∥2

2.

Returning this result to (4.2) we have the bound

∥x − xe∥2 ≤ δeq + c

ν
∥x − xe∥2

2.

This shows that any equilibrium of the system that lies inside the

ball of radius α/c centered at xe in fact lies within the smaller ball

of radius δeq. Rigorous statements on this problem can be made,

see Theorem 2.2 of [18], including existence of exact equilibrium.

We treat this issue informally in this work, taking δeq = 10−5. We

say that a site-vector x is a computational equilibrium, and denote

it by xe, if it satisfies this stopping condition for the gradient flow.

As an example, we consider the computational equilibrium

xe corresponding to N = 200 and α = 1 which has 16 pairs

of 5–7 defects. The associated Voronoi tessellation is presented

in Fig. 7 (top-left). The equilibrium has E(xe) = 3.497 × 10−2,

and its constituent Voronoi regions are colored according to their

E, which range from 1.65 (light) achieved at a 5-sided defect to

−1.68 (dark) achieved at a 7-sided defect. This range of values

is typical of a disordered equilibria. The spectrum of the Hessian

of EHV at xe is computed numerically, and the smallest 40 eigen-

values are shown in Fig. 7 (top-right). The two zero eigenvalues

correspond to the kernel of the Hessian and are spanned by the
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Fig. 7. (top-left) The tessellation generated from an equilibrium xe with N = 200 sites in the α = 1 domain containing 16 pairs of 5 − 7 defects. The regions with

5, 6, and 7 sides have sites indicated with pentagon, dot, or star, respectively. Solid white lines depict periodic domain Ωα,N with adjacent domains shown for

continuity. (top-right) The 40 smallest eigenvalues of the hessian, including the two dimensional kernel, and the coercivity ν = 0.21975. (bottom) The evolution of

∥x(t) − xe∥2 versus E(x(t)) for six simulations of the gradient flow starting from initial sites x(0) that are random perturbations of xe with ∥x(0) − xe∥2 = 10k for

k = −4,−3,−2,−1, 0, and 0.5.

translational modes {e1, e2}. The coercivity ν(xe) = 0.21975

is defined by the smallest non-zero eigenvalue. The existence

of an exact equilibrium within O(δeq) of xe is supported by six

simulations of the gradient flow corresponding to initial data that

are random perturbations of xe with ∥x(0) − xe∥2 taking the

value 10−k for k = −4,−3,−2,−1, 0, and 0.5. As depicted in

Fig. 7 (bottom), each of the orbits corresponding to the smallest 5

perturbations relaxes back to xe with identical exponential rates.

The orbit corresponding to the largest perturbation diverges to a

different equilibrium.

4.2. Moderate N: Ordered versus disordered equilibrium

The Hookean-Voronoi energy possesses a large collection of

stable equilibria with a broad distribution of E whose structure

depends sensitively upon N and α. To investigate this set and

their basins of attraction under the gradient flow we generate

bins B = B(N, α, S) composed of S computational equilibria

of the Hookean-Voronoi gradient flow generated by initial sites

x(0) ∈ R
2N that are randomly uniformly distributed in ΩN

α,N .

We denote the average of a quantity F over the bin by ⟨F⟩B .
We consider six moderate values N = {61, 67, 73, 81, 84, 100}
and vary the aspect ratio in increments of 0.01 for α ∈ [0.3, 1],
forming 6 × 71 bins each with S = 5000 simulations. Each

bin is partitioned into two disjoint sub-bins, one of ordered

equilibria, Bo for which all average radii of the associated Voronoi

tessellation are equal to within the fixed tolerance δord := 10−8.

The complement is the disordered bin, Bd. While the value of

δord is small, every tessellation identified as disordered has at

least one pair of defects. For the disordered tessellations the

number of Voronoi regions that are not 6-sided are identified —

this is the defect number D(xe) of the computational equilibrium

xe. To each ordered sub-bin Bo(N, α, S) all associated single-

string equilibria are added. For each N and α the minimum E

of xe ∈ Bo(N, α, S) and the minimum and maximum E over Bd

are identified. These quantities, called the minimum ordered and

minimum and maximum disordered E respectively, are presented

in Fig. 8 as graphs over α ∈ [0.3, 1] for N = 67, N = 73, both

primes, and N = 84 = (22) · (3 · 7).
The minimum and maximum disordered E are relatively con-

stant with respect to α while the minimum ordered E is much

more sensitive. For the six values of N considered the maximum

disordered E ranges between 0.048 − 0.063 and the minimum

disordered E is even flatter, residing in the range 0.015 − 0.024.

This lower value insensitive to the bin size, unchanged for S

between 500 and 5000. The maximum disordered E increases

by about 5% as the bin size S increases from 500 to 5000 and

stable disordered states with high E and small basins of attraction

are realized. For the six values of N the minimum ordered E

ranges from 0 − 0.0597 with the highest value achieved at α =
0.425 and N = 67. Fig. 4 (right) shows that the minimum

ordered E is formed from families of single-string equilibria with

cusp at values of α for which the role of ordered minimizer is

exchanged. The range of the ordered minimum E shown in Fig. 8

is dramatic for the prime values N = 67 with a sharp peak at

α = 0.425 and N = 73 with peaks at α = 0.4 and α = 0.65.

Conversely, the more factorable value N = 84 = 22 · 3 · 7 has

a minimum ordered E with a more modest range with 5 values
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Fig. 8. The minimum volumetric excess energy for ordered (orange) and disordered (blue-solid) equilibria, and maximum E for stable disordered (blue-dotted)

computational equilibria from B(N, α, 5000) for N = 67, 73, 84 (left to right). The green dots on the N = 84 minimum ordered E curve indicate the set H(84) of

regular hexagonal tilings.

of α which support a regular hexagonal tiling with E = 0 for
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, corresponding

to regular hexagonal tessellations. The minimum E remains low

yielding only a single, minor peak of 0.024 at α = 0.58.

For a given N and α, the probability of disorder (POD) denotes

the probability an initial data with randomly distributed sites

converges to an equilibrium which has a disordered tessellation.

This was tabulated N = 73 and N = 84, showing that its

value correlates strongly to the difference between the minimum

ordered and the minimum disordered E. In Fig. 9 (top), when

the minimum ordered E exceeds the disordered E by more than

2×10−3 (green curve — left axis), then the POD approaches 100%

(purple curve right-axis). This observation is further substantiated

by the scatter plot of POD versus the difference in the minimum

ordered and disordered E depicted in Fig. 9 (bottom) for each

α ∈ [0.3, 1] and the selected values of N . The basins of attraction

of disordered equilibria are preponderant for these N when the

difference in minimum E exceeds 10−2.

Each bin of stable computational equilibria contains a wide

range of E. This is illustrated through the ‘‘anti-cumulative’’ E

distribution D : R ↦→ [0, 1], defined as the percentage of stable

equilibria whose E exceed a given value. The anti-cumulative E

distribution is expressed in terms of a non-negative probability

density fD , as

D(s;N, α) :=
∫ ∞

s

fD(t;N, α) dt. (4.3)

The distribution fD is approximated from the bins B(N, 1, 5000)

for each of the values of N presented in Fig. 9 (right). This

reveals significant structure generated by low energy equilibria

with broad basins of attraction that induce sharp drops in fD .

Conversely, at higher values of E there is a continuous decline in

fD arising from a proliferation of equilibria with smaller basins of

attraction.

For N = 61 the equilibria with large basins of attraction occur

at two values of E below 0.02, collectively attract roughly 85%

of all initial data. These two jumps are followed by a flat region

that manifests no basins of attraction, and then for E > 0.03 by a

cascade of equilibria with distinct VEE, in excess of 200, that have

marginal basins of attraction. The predominance of low energy

equilibria as attractors of the flow, weakens as N increases. For

all six values of N the collective size of the basins of attraction of

stable equilibria decay rapidly with E, with fD converging rapidly

to zero for E greater than 0.05. The size of the basins of attraction

of the dominant equilibria varies substantially with N . For N = 73

the basins of attraction are highly fractured. Indeed, the dominant

equilibria have E ∼ 0.02 and 0.025, and collectively attract

only 35% of the simulations. The balance of roughly 600 distinct

equilibria have E mostly larger then 0.025 and individually attract

less than 1% of the simulations but collectively serve as end-states

for over 60% of the orbits. For N = 73 and α = 1 the probability

of disorder is approximately 100%, Fig. 9 (left), so the fractured

basins of attraction correspond to disordered equilibria.

The dependence of the number of distinct computational equi-

libria contained in B(N, α, 5000) is presented as a function of α ∈
[0.3, 1] in Fig. 10 (right). To prevent over counting equilibria that

are translations or π rotations of each-other, the N average radii

of the Voronoi tessellation of each computational equilibrium

are ordered by increasing size to form the ordered average radii

vector r̄ ∈ R
N , see Fig. 11 (right). These vectors are compared,

and the associated equilibria are labeled as distinct if the l2-

norm of the difference of their ordered average radii vectors differ

by more than δdist = 10−5. The vector r̄ is a good proxy for

distinctness as it determines the Hookean-Voronoi energy and

is invariant under symmetric transformations of the underlying

sites. The sensitivity of the basins of attraction of equilibria is

highlighted by the fact that for each of the 6 values of N the

number of distinct computational equilibria within B(N, α, 5000)

varies by more than a factor of 2 over the range of α.

Disordered Voronoi tessellations are composed of regions

{Vi}Ni=1 with a range of average radii. Many of these regions

may have negative site energy E(Vi) < 0 while, as guaranteed

by Theorem 1, the tessellation energy E(x) ≥ 0. Significantly,

the simulations show an absolute correlation between disorder

and defects: all disordered tessellations contained at least one

pair of defective regions. Presented in Fig. 6, the passage from

a disordered but non-defective tessellation to a defective one

requires a vertex collision. This places a clear threshold between

ordered tessellations and defective ones, and no equilibria are

found in this gap. It is informative to correlate the number defects

D = D(xe) with the E of the tessellation. These values were

tabulated for B(400, 1, 2500) and presented as a scatter plot

in Fig. 11 (left). While there is significant variation in E at a

fixed number of defects, there is a strong, approximately linear,

correlation between the D and E,

E(xe) ≈ ζ0(N, α) + ζ1(N, α)D(xe). (4.4)

The slope ζ1 characterizes the average gain in E per defect, with

a best linear fit given by the value ζ1(400, 1) ≈ 0.0487 × 10−2.

The value ζ0(N, α) is referred to as the ‘‘ground-state’’ E arising as

the extrapolation of E from defect filled tessellations to the ‘‘ex-

trapolated energy’’ of a zero-defect tessellation. Remarkably the

ground-state η0 has little correlation with the actual minimum

ordered E.
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Fig. 9. (top) The probability of disorder (purple curve right-axis) and difference between minimum E for ordered and disordered states (green curve left-axis) for

the cases N = 73 (left) and N = 84 (center) gathered from B(N, α, 5000) for each value of α. (bottom) Scatter plot of the difference between minimum ordered E

and minimum disordered E and the probability of disorder from B(N, α, 5000) over each value of α ∈ [0.3, 1] and N as listed.

Fig. 10. (left) The anti-cumulative E distribution fD for α = 1 and the six values of N , approximated from B(N, 1, 5000). (right) The number of distinct computational

equilibria in B(N, α, 5000) for the given values of N .

The relation (4.4) casts light on the minimum and maximum

disordered E of Fig. 8. For fixed N the range of E of disordered

tessellations is relatively constant, roughly from 0.015 − 0.06.

The minimum disordered E typically corresponds to equilibria

with few defects, with the maximum disordered E having many

defects. However order, that is the absence of all defects, can be

energetically costly and can in some cases raise the minimum

ordered E to be comparable to the maximum disordered E. The
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Fig. 11. (left) Relation of E and defect number D determined from B(400, 1, 2500). The linear fit determines the slope ζ (N, 1) and the ground-state ζ0(N, 1) =
0.502× 10−2 . (right) The ordered average radii r̄ for the four N = 400 tessellations shown in Fig. 12 (a-top left, b-top right) and (c-bottom left, d-bottom right). The

dotted horizontal line is the average radius of a regular hexagon of unit area, r̄6 = 0.5637.

Fig. 12. (top) The bin B(400, 1, 2500) yielded 78 tessellations with D = 26 defects. These two represent the lowest and the highest E among this set. (bottom) The

two tessellations from the bin with (left) the lowest number, D = 4, and (right) the highest number, D = 62, of defects.
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Fig. 13. The distribution of average radii over the bins (left) B(400, α, 2500) and (center) B(1000, α, 2500) and (right) B(2000, α, 2500) for α = 0.3, 0.4, 0.5 and 1.0.

The average radius of the unit-area regular hexagon, r̄6 , is marked by a vertical line.

system can demand a high price for order, which can be relaxed

by a modest injection of disorder. Examples of the relationship

between order and energy in B(400, 1, 2500) are presented in

Fig. 12. The top row shows the equilibria in that bin with D =
26 defects, while the bottom row shows the tessellations corre-

sponding to the two equilibria with the lowest and the highest

E. Each Voronoi region is shaded according to its E, with dark

shading (lower E) corresponding to larger regions with more

edges and lighter shading (higher E) corresponding to smaller

regions with fewer edges. The equilibria with the lowest E from

the D = 26 group have its defects arranged in an ellipse formed

by alternating 5- and 7-sided defect pairs. The ellipse forms a

boundary dividing the domain into two parts populated with

similar hexagons. The D = 26 equilibria with the highest E have

a tessellation in which its defects are arranged in isolated pairs of

5–7 defects and one chain of 6 defects. Each of its defects resides

in a background of hexagonal regions which have non-trivial

variation in their E.

The bottom row of Fig. 12 presents the tessellations corre-

sponding to the lowest, D = 4, and highest D = 62 number

of defects in B(400, 1, 2500). Given the range in E between the

equilibria with four defects and E = 0.0049 and the equilibrium

with 62 defects and E = 0.0351, it is surprising that the gradient

flow is unable to combine the many defect pairs in the higher

energy equilibrium. The equilibria with large numbers of defects

possess an array of chains of 5−7 defects of various lengths. With

a large number of defects the combinatorial possibilities for chain

lengths are considerable. However defect numbers D above 15%

of N are seldom observed, most likely because the corresponding

equilibria are unstable, and susceptible to vertex collisions that

reduce defect numbers. This raises a fundamental question about

the tolerance of defects in the Hookean-Voronoi gradient flow

and the average energy that they contribute to its equilibria, in

particular in the large N limit.

4.3. Large N limits: Universal behavior

Simulations of gradient flows of the Hookean-Voronoi energy

suggest a large N convergence of the inherent states to universal

or ‘‘bulk’’ distributions. We first focus on the large N behavior

of individual Voronoi regions by examining the distribution of

average radii within the inherent states and the dependence of

this distribution upon N and α. Fig. 13 presents the probability

distributions of the average radii computed from all the states

in bins B(N, α, 2500) for N = 400, 1000 and 2000, and aspect

ratios α = 0.3, 0.4, 0.5, and 1. For N = 400 there is visible

variation in the distribution with domain aspect ratio α which

has largely been virtually eliminated for N = 2000. The distri-

butions are almost symmetric about r̄ = r̄6, the average radius

of the unit-area regular hexagon. The spread of average radii is

on the order of 10−1, with important bumps at r̄ = 5.3 and

r̄ = 5.8 which correspond to 5 and 7 sided defects respectively.

This suggests that the density of defects does not diminish with

large N , and indeed approaches a universal form. Significantly the

average energy of a tessellation from B(N, α, S) is controlled by

the average of the average radii of the sites of the tessellation.

This is reflected in the asymmetry of the peaks in Fig. 13 which,

as guaranteed by Theorem 1, have average value slightly smaller

than r̄6. Indeed, as shown in Fig. 14 (right), the average per-site

energy of a tessellation is on the order of 10−2, one order of

magnitude smaller than the average energy of a typical Voronoi

region.

To quantify the ubiquity of defects, and their impact on the

collective behavior of the B(400, 1, 2500) we introduce the frus-

tration F , of a bin B(N, α, S) of a tessellation defined as the

product of the energy per defect and the expected number of

defects,

F(B(N, α, S)) = ζ1(N, α)⟨D⟩B. (4.5)

The frustration represents the energy gap between the average

value ⟨E⟩B and the ground-state ζ0, defined in (4.4). Like E, frus-

tration is averaged over N , representing a per-site contribution

to ⟨E⟩B from the defects that the gradient flow is unable to

eliminate. In particular we have the relation

⟨E⟩B = ζ0 + F . (4.6)

The asymptotic behavior of these three quantities at large N gives

considerable insight into the role of defects. The roughly linear

relation between E and defect number D at fixed N = 400 might

seem to suggest that ⟨D⟩B remains bounded with growing N .

To determine this relation we formed the bins B(N, 1, 2500) for

N = 100, . . . , 400 and determined the average number of defects,

⟨D⟩B(N,1,2500). Presented in Fig. 14 (left), this average defect count

is well approximated by the linear relation

⟨D⟩B(N,α,S) ∼ η1(α)N − η0,

for N ≫ 1. For α = 1 the best linear fit yields a proportionality

η1(1) = 0.088 suggesting that between 8−9% of Voronoi regions

in a given equilibria are defects for α = 1 at large N . Fig. 14

(right), compares the ground-state energy ζ0, the frustration F ,

their sum ⟨E⟩B , and the minimum ordered E. The ground-state

energy decreases with N while the frustration grows. Their sum,

the bin-averaged energy remains largely constant. This is consis-

tent with a saturating frustration and suggests that in a large N
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Fig. 14. (left) For α = 1, the average defects ⟨D⟩B computed from B(N, 1, 2500) for N = 100, . . . , 400. The best linear fit to ⟨D⟩B(N) for N ≥ 100 has slope

η1(1) ≈ 0.088. (right) The average ⟨E⟩B decomposed into the ground-state ζ0(N, 1) and the frustration F(N, 1). The minimum ordered E is presented as disconnected

dots.

limit, taking expectation weighted by size of basin of attraction,

the expected ratio of cells which are defects converges to a fixed

value and moreover these defects make a non-zero volumetric

contribution to the expected system energy. This suggests that

the ground state energy is not broadly accessible, having a vanish-

ing basin of attraction. Yet more surprising, the minimum ordered

E does not correlate with the ground-state ζ0. These simulations

show that the minimum ordered E can exceed the average ⟨E⟩B
by up to a factor of 4, and can also be zero when a regular

hexagonal tiling is admissible. A wide range of minimal ordered

E has been numerically observed out to N = 5000. If there is

convergence in the large N limit for minimum ordered energy,

it is significantly slower than that observed for the disordered

states. This suggests that care should be taken in extrapolating

between special ordered equilibria and disordered states in these

packing problems. It will require further study to determine if the

sensitivity of the minimum ordered energy to aspect ratio α and

site number N is a feature of the rectangular domain or choice of

periodic boundary conditions.

To quantify the convergence to a bulk-like state in the large

N limit we form the probability densities fP(N, α) associated to

the probability P(N, α, S) that a random initial data converges to

an equilibria of prescribed E. The densities fP(N, 1) are approx-

imated from the bins B(N, 1, 2500) for N = 100, . . . , 400. To

observe convergence, for a given value N = N0 we construct

the sliding average of the probability densities over the window

of 11 different values of N = N0 − 5, . . . ,N0 + 5. The associ-

ated probability measure is denoted ⟨P⟩[N0−5,N0+5] and its density

is referred to as the averaged probability density and denoted

⟨fP⟩[N0−5,N0+5]. As presented in Fig. 15, the averaged probability

densities tend towards a uni-modal distribution as N increases

from 250 to 395. For N ≤ 355 the averaged probability density

has a broader top on its main peak, whose central value decreases

slightly with increasing N . Significantly, for values of N < 320,

in particular represented by N = 255, the averaged densities

show oscillations with strong peaks for E in the range 0.2−1.5×
10−2. These correspond to attractivity of low-energy, low-defect

count equilibria. The attractivity of these low energy equilibria is

suppressed for larger values of N . This corresponds to a shift of

probability density away from equilibria with lower E, and lower

defect numbers, towards equilibria with higher defect numbers

and with E centered around 2.5 × 10−2. This suggests that for

larger values of N the higher defect equilibria are preponderant,

forming a basin of attraction maze that is increasingly difficult

for the gradient flow to navigate and find the low defect (semi-

ordered) equilibria. The proliferation of equilibria is reflected in

the fact that 2461 out of the 2500 equilibria in B(400, 1, 2500)

received a single hit, with the most frequently visited equilibria

receiving 4 hits. The higher-defect equilibria shield the low-defect

equilibria, and the basins of attraction of the low-defect equilibria

shrink as a proportion of the total state space.

In a second, competing effect, the maximum value of E ob-

served for a stable equilibria at a given N and α becomes lower at

larger N . The shift away from both low energy and higher energy

equilibria squeezes the averaged probability density from below

and above, pushing it towards a uni-modal shape. Comparing

Figs. 10 (left) and 15 (top-left) shows that the highest observed

energy of a stable equilibrium drops from E ≈ 5.0 × 10−2 for

N < 100 to values below 4 × 10−2 for N > 300. The trend is

monotonic with increases in N . Indeed in Fig. 15 (top-left) each

of the averaged probability densities decays rapidly to zero for

E > 3.5 × 10−2. The extent of the convergence at large N is

examined through the anti-cumulative distribution D(N, 1) and

the associated sliding averages, ⟨fD⟩[N−5,N+5] of its density. In

Fig. 15 (top-right) the averaged anticumulant densities for N =
390, . . . , 400 are compared to fD(N). For these values of N the

density fD is relatively smooth, the drops found for the N < 100

in Fig. 10 (left) have been replaced with a continuous decline. For

the larger values of E the density fD is relatively independent of

N , with only a 1% difference between fD for any of the values of

N and its average over the window. This is confirmed in Fig. 15

(right), which shows that the L2 relative error between fD(N)

and its sliding average decays to less than 1% for N > 350. A

log–log linear fit of this decay suggests that the anti-cumulative

distribution and its sliding average satisfy

∥fD(N) − ⟨fD⟩[N−5,N+5]∥L2 ≤ CN−β , (4.7)

where the value β = 2.35, yields the best fit.

We investigate the large N behavior of the probability distri-

butions fP(N, α) and their sensitivity to α. We form bins

B(N, α, 2500) for domain aspect ratios α = 0.3, 0.4, 0.5, 1.0 and

for N = 400, 1000, 2000. For larger values of N the majority of

sites are anticipated to be sufficiently far from ∂Ωα,N to arrive

at a ‘‘bulk’’ state. However for small aspect ratios, the distance

to boundary is generically smaller, and the convergence is antic-

ipated to be slower in N . Fig. 16 (right) shows the probability
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Fig. 15. (top-left) The averaged tessellation probability densities ⟨fP⟩[N−5,N+5] for values of N as indicated, as determined from B(N, 1, 2500) for N = 100, . . . , 400.

(top-right) The density for the averaged anti-cumulative tessellation distribution ⟨fD⟩[390,400] (solid black) together with the densities for each of the anti-cumulative

tessellation distributions fD(N), for N = 390, . . . , 400 (dashed lines). The densities for distributions D(392) and D(397) are indicated via solid, colored lines for

comparison. (bottom) The l2 relative error between the sliding average ⟨fD⟩[N−5,N+5] and fD(N) for N = 105 . . . 395. The graph y = 10120 · N−2.35 (red line) is

provided for reference.

Fig. 16. The probability densities for the averaged probability distributions fP(N, α) generated from B(N, α, 2500) for each of the indicated values of α and for N = 400

(left), N = 1000 (center), and N = 2000, (right). The dotted line graph depicts the asymptotic density fP,∞(·,N), defined in (4.8) with fP,∗ and Ē∗ approximated from

fP(2000, 1) and scaled to N = 400 (left) and 1000 (center).

densities for the P generated from the bin B(400, α, 2500) for

each of α = 0.3, 0.4, 0.5, and 1.0. For α ≤ 0.5 the central peak

is shifted left and is broader when compared to the peak for

α = 1. Moreover the low energy equilibria are suppressed. The

upper bound on E of stable equilibria is robustly independent

of α. This suggests that the impact of the boundary is still felt

for N = 400. For a given aspect ratio α the average distance to

the boundary is proportional to d∂ :=
√
Nα. For α = 0.3 and

N = 400, the value d∂ ≈ 10.9 is comparable to that for α = 1 and

N = 120. From Fig. 14 (right) the α = 1 and N = 120 bin does

not display convergence to a bulk limit. The situation changes

dramatically for N = 1000 and N = 2000. For these values of N

the distributions become more localized. The dependence upon

α is reduced, with smaller α corresponding to a slightly lower,

broader peak. This motivates the conjecture that the large N bulk

distribution is independent of α and is self-similar in N about

a fixed energy Ē∗. Specifically we conjecture the existence of a
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limiting bulk distribution which takes the form

fP,∞(Ē;N) =
√
NfP,∗

(
Ē − Ē∗√

N

)

. (4.8)

The form of fP,∗ and value of Ē∗ determine the bulk distribution

the energy of the inherent states. To compare to simulations

we approximate fP,∗ from fP(2000, 1) with Ē∗ = 2.227 × 10−2,

and plot the scaled distributions fP,∞ in Fig. 16 (left)-(center) as

dotted-black curves for N = 400 and N = 1000 respectively. A

consequence of this conjecture is the limit

lim
N→∞

fP(N, α) = δĒ∗ . (4.9)

In the bulk limit the distribution of energies of invariant states is

a δ-function at a prescribed frustration level Ē∗.

5. Discussion and conjectures

This work establishes that the Hookean-Voronoi energy gen-

erates a complex landscape with a broad range of inherent states.

We have examined the stable equilibria determining the den-

sity of defects and the sizes of the basins of attraction of the

inherent states when grouped according to their energy level.

For smaller values of site number N , particularly N < 150,

these distributions are very sensitive to both the number of

sites N and to the aspect ratio α of the rectangular domain. For

these values the basins of attraction are generically dominated by

several low-energy equilibria which attract a significant portion

of the total phase space. As N increases a growing collection

of stable, moderate-defect-number equilibria form small basins

of attraction that increasingly dominate, and fracture, the phase

space. These moderate energy equilibria exploit their numerical

superiority to crowd out the basins of attraction of the lower

energy, more ordered equilibria, decreasing the share of the total

phase space that they attract and raising the system frustration.

On the other hand, an upper limit in E appears above which all

equilibria seem to be unstable. This upper limit decreases with

increasing N , approaching a limit that establishes a sharp cut-

off on the density of stable equilibria at higher E for larger N .

These two effects push the probability density of the equilibrium

energy distribution into a uni-modal curve which seems to define

the ‘bulk state’ of the system. We conjecture that these two

effects generate a self-similar distribution of energies of inherent

states that converges to a δ function localized at a prescribed

bulk-energy E∗.
It is natural to consider the impact of thermal annealing —

the temporally limited addition of white noise to the gradient

flow to eject the system from local minima so that it can find

lower energy minima. This is a standard method to quench a

system’s frustration. As can be inferred from Fig. 7 (bottom), the

minimum energy to destabilize an equilibrium, is approximately
1
2
ν(xe)∥x(0) − xe∥2

2 ≈ 10−1. This value is one order of magni-

tude larger than the variation between the E of the disordered

equilibria, which is roughly 2 × 10−2. This rough estimate of the

energy barrier between minima is in agreement with numerical

simulations which find ‘‘escape energies’’ of E ≈ 2 × 10−1 for

N = 400 equilibria with E ≤ 3 × 10−2. The escape energy

decreases slightly for equilibria with E near the upper limit of

4.5 × 10−2. This suggests that annealing would require insertion

of energy at a level that lifts the system above the energy of

the maximum stable states. Subsequent removal of the annealing

perturbations would merely lead the system to relax back onto

the energy landscape dominated by disordered equilibrium. In

this sense the Hookean Voronoi system may resemble a spin

glass, a frustrated system in which energy barriers also dominate

variation between local minima, [19,20].

There are several fundamental questions to be addressed. The
first is the observation that an equilibrium can be disordered only
if it has defects. In the more than 106 simulations conducted in
this study, defect free equilibria only arose from ordered tessel-
lations, indeed only from single-string equilibria. This motivates
the twin conjecture that ordered equilibria only arise from the
single string tessellations and that stable equilibrium is either
ordered or has defects. Ordered tessellations can be continuously
perturbed into disordered ones, but introducing a defect into
a defect-free tessellation requires pushing the system through
a vertex collision. This introduces a gap between ordered and
disordered equilibrium. This gap may be related to the lack of
correlation between the ground state energy ζ0 and the minimum
energy of the ordered (single string) packings. This emphasizes
the observations that ordered states are not good proxies for
system behavior, especially at large values of N .

A second question is the role of boundary conditions. Changes
in boundary conditions to a rigid wall or to oblique periodic
domains may have significant impact on the bulk statistics, in
particular if these conditions nucleate regular hexagonal tilings.
These changes could lead to arctic circle type phenomena ob-
served in domino tilings in which an ordered layer at the bound-
ary breaks into a disordered region at a sufficient distance, see
[21,22]. It is important to quantify the structural stability of
disorder in two-dimensional packing problems, and if this disor-
der is qualitatively different in three-dimensional setting. Quasi-
ordered structure in the inherent states has been observed in
other packing models in two space dimensions. This included
particle–particle interaction models such as those based upon a
Lenard-Jones type potential, [23] and the k-space overlap poten-
tial the builds excluded volume based upon the area of overlap of
circles centered at near neighbors [24]. The Lenard-Jones models
produce an relatively rough inherent state energy landscape that
supports a first-order phase transition with a relatively large
melting entropy between ordered and disordered states. Con-
versely the k-space overlap model generates a large N energy
landscape with frustration characterized by inherent states with
mild variations in energy, as is found in the Hookean-Voronoi
energy presented here.

The most fundamental question raised by this study concerns
the large N or ‘‘bulk’’ limit of the Hookean-Voronoi energy. The
numerical studies presented suggests that P(N, α) approaches a
universal large N limit, and that this limit supports a non-zero

frustration E∗. If the asymptotic limit (4.8) holds, what deter-
mines the structure of fP,∗ and the value of E∗? The simulations
presented here cannot rule out that for yet larger values of
N the average of the distribution fP(N, α) tends to zero. The
limiting bulk behavior seems to arise from a combinatorial domi-
nation of moderate-defect inherent states over low-defect, quasi-
ordered ones, and a mechanism that drives instability in higher
energy equilibria. A rigorous justification of a bulk limit in the
Hookean Voronoi system may require novel combinatorial and
probabilistic arguments.
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