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The COVID-19 pandemic highlighted two critical barriers hindering rapid response
to novel pathogens. These include inefficient use of existing biological knowledge
about treatments, compounds, gene interactions, proteins, etc. to fight new
diseases, and the lack of assimilation and analysis of the fast-growing knowledge
about new diseases to quickly develop new treatments, vaccines, and compounds.
Overcoming these critical challenges has the potential to revolutionize global
preparedness for future pandemics. Accordingly, this article introduces a novel
knowledge graph application that functions as both a repository of life science
knowledge and an analytics platform capable of extracting time-sensitive insights
to uncover evolving disease dynamics and, importantly, researchers’ evolving
understanding. Specifically, we demonstrate how to extract time-bounded key
concepts, also leveraging existing ontologies, from evolving scholarly articles
to create a single temporal connected source of truth specifically related to
COVID-19. By doing so, current knowledge can be promptly accessed by both
humans and machines, from which further understanding of disease outbreaks
can be derived. We present key findings from the temporal analysis, applied to
a subset of the resulting knowledge graph known as the temporal keywords
knowledge graph, and delve into the detailed capabilities provided by this
innovative approach.

KEYWORDS

COVID-19, temporal graph analysis, knowledge graphs, keywords, unstructured data,
knowledge representation, keywords analysis

1. Introduction

The COVID-19 pandemic revealed the critical need for rapidly understanding the
nature of any infectious disease before its outbreak reaches a critical state of community
spread. Studies of previous infectious outbreaks show that public adherence to public health
guidelines is greater when the scientific knowledge base surrounding the disease is stronger
(Bults et al., 2011; Lin et al., 2011). The ability of global scientific leadership to communicate
to the public with certainty surrounding risks, symptoms, and prevention is critical.
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For example, with respect to the U.S. population in response
to COVID-19, research shows that knowledge levels within the
public are related to the likelihood of an individual engaging in
preventative measures and complying with public health guidelines
(Clements, 2020). While there has been some research focused
on the dissemination of information to the public via social
media (Chan et al., 2020), there has been far less focus on
enhancing the rate at which scientific information surrounding
COVID-19 is aggregated and mined to advance the knowledge
base. Such knowledge is critical for coherent and consistent
information sharing.

Currently, science surrounding new diseases moves at the pace
of scientists’ current knowledge and their ability to read, digest,
and synthesize information across multiple scholarly articles, and
then utilizing this knowledge and expertise to find points of
integration across the concepts and results. The potential for
natural language processing (NLP), in which automated techniques
can mine scholarly content, as a means of achieving these same
outcomes has been previously outlined (Hirschberg and Manning,
2015), even in the context of knowledge graphs construction (Luan
et al., 2018). Nevertheless, little has been done to pair NLP with
network science and temporal analysis to connect key findings
and concepts and synthesize their evolving nature over time. In
simpler terms, it is crucial to merge new discoveries with well-
established practices into a unified temporal knowledge repository.
This integrated source serves as a reliable foundation from which
relevant knowledge can be distilled, results can be validated, trends
can be identified, and new findings can be continually shared in an
iterative process. As such, this article moves from this idea covering
three important aspects:

1. Gathering and organizing fast-growing and heterogenous
knowledge in a single connected source of truth that is easy to
access for humans and machines, specifically considering the
temporal aspects in the graph modeling;

2. Identifying automated techniques to perform meaningful
temporal analysis of the resulting knowledge base; and

3. Tracing the evolution of knowledge in a formal way,
identifying patterns, and recognizing early-stage trends.

Achieving these three outcomes can improve the handling of
similar infectious diseases by the identification of common static
and dynamic patterns, providing just-in-time information, and
accelerating the search and the navigation of an enormous amount
of information. As such, the key element of this effort is the
presentation of a novel application of knowledge graphs for disease
understanding, which both aggregates current evolving science
with pre-existing knowledge bases and allows temporal exploration
of this information.

While many sources are used by professionals to find
treatments, approaches, and the latest discoveries, these are
dispersed, heterogenous, difficult to search, or disconnected. As
a result, discoveries around COVID-19 cannot be analyzed in
a proper way, and already adopted therapies cannot be easily
discovered. In the early stages of the COVID-19 outbreak, many
researchers (Michel et al., 2020; Chen et al, 2021) focused
on the gathering of knowledge from literature and organize
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it in the form of knowledge graph, mostly in the Resource
Description Framework format, making it available to downstream
applications. This approach showed the value of the knowledge
graph in gathering information from multiple sources, prompting
others to explore similar approaches for various purposes. For
example, to enhance search capabilities over the expanding
literature, Wise et al. (2020) built a COVID-19 knowledge graph
to extract complex relationships between related scientific articles.
Their goal was to implement an advanced search engine to assist
researchers and policymakers in extracting timely information to
address key scientific questions about COVID-19 from a corpus
of scientific articles. Similarly, Wang Q. et al. (2020) constructed a
knowledge graph to aid clinicians in analyzing COVID-19-related
information and tackling complex tasks like drug repurposing.
Leveraging existing knowledge bases, Cernile et al. (2021) also
built a knowledge graph from scientific publications related to
COVID-19, using CORD-19 (Wang L. et al, 2020) as a data
source. Their work demonstrated how knowledge graphs enable
rapid navigation and exploration of inter-relationships among
entities, improving the understanding of diseases such as COVID-
19.

In a similar vein, our approach centers on utilizing a knowledge
graph to consolidate the literature related to COVID-19. However,
our primary focus diverges from previous studies as we emphasize
exploring the temporal evolution of our understanding of COVID-
19. Specifically, our key objective is to develop a framework that
effectively captures the evolving nature of knowledge over time.
This unique objective introduces certain peculiarities into the graph
model, ultimately enabling distinctive analyses. To achieve this, we
build upon existing methodologies of knowledge graph creation.
For example, our pipeline to develop a temporal knowledge graph
follows an iterative and incremental lifecycle, based on an existing
Linked Data lifecycle model that has been already applied in
real-world scenarios (Hyland and Wood, 2011; Villazén-Terrazas
et al, 2011), and incorporate existing techniques such as time
slicing (Choudhury et al., 2020). By leveraging these established
methods, we ensure the meaningful utilization of prior scientific
advancements to ultimately convert multiple and heterogeneous
data sources, some of which are unstructured, into a single
connected source of truth related to the COVID-19. Leveraging
temporal information, we slice the graph into multiple time-
bounded sub-knowledge graphs. As a result, our approach presents
a novel use case for knowledge graphs, particularly in mapping
the changes in specific topics and their relevance as the COVID-
19 disease progresses. Through this innovative approach, we shed
light on the dynamic nature of knowledge within the context of
COVID-109. It is worth noting that the analyses performed on our
graph showcase different algorithms for information aggregation
and extraction, which can be applied to other diseases as well.

2. Methodology

Knowledge graphs (KGs) have emerged as a core abstraction
for incorporating knowledge into intelligent systems (Hogan et al.,
2021). KGs can be generally described as an “evolving graph
data structure, composed by a set of typed entities, their attribute
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and meaningful named relationships among them, built for a
specific domain with the intent to craft knowledge for humans and
machines” (Negro et al., 2023). Thus, a KG represents a specific
domain of knowledge by means of entities and relationships in a
graph structure. KGs are easily accessible for both humans and
machines to augment their capabilities and are flexible to enable
a continuous manipulation and ingestion of various data from
different data sources. Moreover, the materialization, storage, and
access to the information included in a KG efficiently supports
offline analysis and online visualization and processing. Given
these capabilities, KGs are a powerful tool for modeling the
relations between entities in various fields, from biotechnology to e-
commerce, intelligence, law enforcement, and financial technology
(Szekely et al., 2015; Liu et al., 2019; Li et al., 2020, 2022; Xu
et al, 2020; Feng et al., 2022), among diverse language and
text-based applications, including search engines, chatbots, and
recommendation systems (Liu et al., 2020; Zhou et al., 2020).

There is at least a two-fold perspective that characterizes
KGs. The first perspective focuses on knowledge representation,
in which the graph is encoded as a collection of statements
formalized using the Resource Description Framework (RDF)
data model (Govindapillai et al., 2021). Its goal is to standardize
data publication and sharing on the Web, ensuring semantic
interoperability. In the RDF domain, the core of intelligent systems
is based on the reasoning performed on the semantic layer of
the available statements. The second perspective focuses on the
structure (properties and relationships) of the graph. This vision
is implemented in the so-called Labeled Property Graph (LPG)
(Purohit et al., 2021). It emphasizes the features of the graph data,
enabling new opportunities in terms of data analysis, visualization,
and development of graph-powered machine learning systems
to infer further information. Leveraging these advances, KGs
can help researchers tackle many biomedical problems, such as
finding new treatments for existing drugs (Himmelstein et al.,
2017), aiding efforts to diagnose patients (Choi et al., 2017), and
identifying associations between diseases and biomolecules (Shen
etal., 2017).

2.1. Knowledge graph construction with
the linked data lifecycle

KGs are generally constructed using the Linked Data lifecycle.
This lifecycle includes specification, modeling, data lifting, data
publication, and data curation for “publishing and connecting
structured data on the Web” (Ngomo et al., 2014). The specification
consists of the identification of main goals, requirements, and
constraints that drive the features and shape of the final model,
along with the data that will be integrated within the KG. Modeling
involves identifying key entity classes and the relationships among
them, along with the vocabulary that specifies the set of allowed
instances of interest. Data lifting, or data ingestion, refers to
the ingestion of data, leading to the final KG. This involves
transforming both structured and unstructured data from the
original schema to the target schema and linking entities from
multiple sources together. In some cases, the schema requires two
entities coming from different sources to be merged in a single node
of the graph. Data publication makes the KG accessible, such as
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through a standard API, a generic frontend, or a graph visualization
tool. Finally, data curation cleans, maintains, and preserves data for
reuse over time.

2.2. Data sources, modeling, and the
schema

The effectiveness of any analysis heavily relies on the quality
of the input data. Therefore, prior to delving into the temporal
exploration of COVID-19, our initial focus was on constructing a
robust KG that would serve as a solid foundation for our analysis.
Thus, we gathered several sources of information concerning
SARS-CoV-2 and COVID-19, along with pre-existing relevant data,
to conduct a comprehensive analysis of the evolving understanding
and critical aspects of a novel disease outbreak. By ensuring the
completeness and accuracy of our KG, we established a reliable
basis for subsequent analyses.

Since the early stages of the spread of this disease, diverse
information sources have been publicly available (e.g., Wahltinez
et al., 2022; Centers for Disease Control and Prevention, n.d.) with
the specific intent to accelerate the knowledge distribution and
learning curve around the disease. In addition, other knowledge
sources were already available to professionals in digital format
to feed different autonomous intelligent systems. Thus, the data
sources used in this project are completely publicly available. They
include the following:

e Hetionet (Himmelstein et al., 2017) is a network of biomedical
knowledge assembled from 29 different databases of genes,
compounds, diseases, and more.

e Uniprot (Bateman et al., 2022) is a freely accessible resource of
protein sequence and functional information.

e CORD-19 (Wang L. et al, 2020) is a resource with over
200,000 scholarly articles on COVID-19, SARS-CoV-2, and
related coronaviruses.

e Drug Repurposing Knowledge Graph (DRKG) (Ioannidis
et al,, 2020) is a comprehensive biological KG relating genes,
compounds, diseases, biological processes, side effects, and
symptoms. It includes information from six existing databases
including DrugBank, Hetionet, GNBR, String, IntAct,
and DGIdb, and data collected from recent publications
particularly related to COVID-19.

e Gene Ontology (GO) (Gene Ontology Consortium, 2004) is
the world’s largest source of information on the functions of
genes. This knowledge is both human-readable and machine-
readable and is a foundation for computational analysis of
large-scale molecular biology and genetics experiments in
biomedical research.

e Medical Subject Headings (MeSH) (Lipscomb, 2000) is
the National Library of Medicine’s controlled vocabulary
thesaurus used for indexing articles for PubMed.

When working with structured data, importing it into a KG
is relatively straightforward. For instance, the Hetionet database
is already structured as a graph of nodes and relationships,
conveniently provided in two .csv files—one containing all the
nodes and the other containing all the relationships. On the other
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hand, unstructured free text lacks explicit structure, which makes
it challenging to search for and analyze the information contained
within (Grishman, 2015). Extracting and processing such structures
are main tasks in NLP. Specifically, information extraction (IE)
is a key step in making a text’s semantic structure explicit, and
thus, useful. More precisely, IE is the process of analyzing text
to identify semantically defined entities and relationships. Further,
recognizing relevant entities and the relationships among them
are critically relevant intermediate steps. In the case of this study,
these entities include genes, proteins, symptoms, compounds and
so on, and their relationships. The task of named entity recognition
(NER) involves finding each mention of a named entity in the
text and labeling its type (Grishman and Sundheim, 1996). Note
that an entity can also be composed of multiple tokens extracted;
the same would happen for our domain, where severe acute
respiratory syndrome (SARS) must be considered as a single entity.
Moreover, the recognized entities are connected on one side to the
source paper containing them and on the other to the reference
knowledge bases (e.g., Hetionet, Uniport, etc.). In Figure 1, the class
NamedEntity in the schema results from the IE process.

In addition, due to COVID-19 being a novel disease
with new relationships to existing genes, proteins, and other
relevant elements, determining the most likely diagnosis based on
symptoms requires not only the identification of specific entities
but also the understanding of the connections between them. These
relationships are expressed within the text data through specific
sentences in which researchers mention them. Therefore, it is
essential to enrich the information in the reference knowledge
bases with new relationships inferred from the text using Entity
Relationship Extraction (ERE) techniques. This process allows us
to extract relevant relationships from the text and incorporate
them into the KG, thereby enhancing its completeness and
capturing the evolving understanding of COVID-19. One common
algorithm used for relation extraction is based on lexico-syntactic
patterns (Negro, 2021). This algorithm involves mapping syntactic
relationships among tokens or specific sequences of tags to a set
of relevant relations between key named entities. By applying a
series of semantic analysis rules, each designed to map a subgraph
of the syntactic graph (a portion of the graph containing syntactic
relationships that connect key entities), anchored by mentions
of certain entities, we can associate them with corresponding
relations in the database. This approach provides a rough yet
effective approximation. ERE plays a significant role in improving
the quality of a KG in terms of the insights extracted and the
available access patterns. By applying ERE techniques, connections
are created between the NamedEntity entries extracted from the
text, enabling seamless navigation and exploration of the graph.
This facilitates the production of a meaningful and informative
graph that captures the evolving understanding of COVID-19 and
enhances the insights that can be derived from it. In Figure 1,
these relationships are represented by self-connections on the
NamedEntity class.

After several iterations of the Linked Data lifecycle, a reasonable
schema for exploration and analysis was derived using the data
sources listed above. The full schema is complex; a subset is
provided in Figure 1. This schema captures data about genes,
diseases, compounds, and side effects, along with their interactions,
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e.g, how a disease is connected to a specific gene, how it
can be treated by a specific compound, and the side effects of
such compound, from structured and unstructured data sources.
Research manuscripts are also connected from one author to
another author by institution, and relevant relationships between
manuscript sections are retained. The full import process of data is
accomplished using GraphAware Hume Orchestra—the workflow
engine available in GraphAware Hume. Specifically, GraphAware

Hume’

was used as the main tool for data gathering, merging
and transformation as well as analytics and graph visualization.
It provides facilities for data orchestration, including support for
unstructured data, and many different algorithms for analysis and

graph visualization for knowledge exploration.

2.3. Extending knowledge graphs for
temporal analysis

The KG presented in Section 2.2 encompasses a wide range of
information, making it suitable for effective representation within a
temporal framework. Our approach primarily focuses on research
papers, authors, and keywords as the basis of analysis within
the KG. Each paper in the KG includes temporal information
derived from its publication date. By leveraging this temporal
dimension, we can map it onto a specific portion of the graph and
incorporate time as attributes within relationships. This enables the
creation of a dynamic co-occurrence graph of keywords, providing
valuable insights into the evolving landscape of COVID-19 research
over time.

To evaluate our approach, we chose to use keywords
as they offer a concise expression of authors’ understanding,
thematic context, and research summaries. Moreover, keywords are
commonly used for indexing purposes in digital libraries, making
them powerful tools for knowledge discovery (Song et al., 2013).
The resulting time-reach co-occurrence graph, which we refer
to as the “TagGraph” for simplicity, is isolated and utilized for
temporal analysis. Here, the term “tag” is preferred over “keywords”
as it represents a more generic term, allowing for the potential
application of our analysis to any textual element that can be
attached to or automatically extracted from text.

Consequently, a key objective of our work is to facilitate the
improved identification of research progress, common patterns,
trends, and emerging anomalies. Once our approach is validated
and consolidated, it may be possible to generalize it to other areas
of the graph that exhibit temporal dynamics. Furthermore, in the
future, our methodology could be applied to studying unknown
diseases as they emerge.

2.3.1. Approach

The temporal analysis of a TagGraph focuses on the evolution
of the co-occurrence of author keywords, or tags, provided directly
by a paper’s authors to categorize the major contributions of their
article. These author-selected tags are carriers of knowledge units,
or knowledge entities (Su and Lee, 2010). The co-appearance of
two author-selected tags in an article defines a certain relationship
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FIGURE 1
A portion of the knowledge graph schema. This schema captures data about genes, diseases, compounds, and side effects, along with their
interactions, e.g., how a disease is connected to a specific gene, how it can be treated by a specific compound, and the side effects of such
compound. Research manuscripts are connected from one author to another author by institution, and relevant relationships between manuscript
sections are retained.

between two topics. Multiple such instances denote the strength
of their relationships (Yang et al., 2011). The assumption is that
two tags appearing in the same article imply that the concepts
represented by these tags are correlated. The more authors that use
the same pair of tags, the more related they are. In this section, we
describe our approach for generating a TagGraph, an application
of a generic KG, which leverages relationships between tags for
extracting evolving knowledge about COVID-19.

Connections among paper topics are not static. Scientific
knowledge creation is dynamic; different avenues of research
converge, and new connections emerge among disjointed and
existing areas of science (Pan et al, 2012). This knowledge is
generally incremental besides a few revolutionary and fundamental
changes. New hypotheses are being postulated by encompassing
existing scientific concepts from multiple domains. Canals (2005)
pointed out that the diffusion of scientific knowledge can be
mapped into a network structure where knowledge propagates via
interactions among networked agents, in our case, the authors.
Thus, a TagGraph is a temporal-bounded co-occurrence graph
where nodes are tags, or keywords, and edges represent their causal
relationships over the time. In addition to causal relationships,
statistically significant and non-trivial co-occurrence patterns of
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tags also represent their semantic affinity (Montemurro and
Zanette, 2013) and relatedness (Schulz et al., 2014).

A TagGraph’s analysis is dynamic by the creation of multiple
“temporal snapshots” of a TagGraph by month. That is, a temporal
snapshot is a network G; = (Vy, E;) for thetimet =1, 2, ... T,
where V; is the set of tags appearing in papers dated at time ¢ and
E; is the set of relationships based on those papers. The vertices
and the edges at time ¢ can be new or recurring. The dynamicity
of tag co-occurrences denotes that new research topics, hypotheses,
or directions emerge over time through co-appearances of existing
tags. In terms of modeling, this has been translated in a temporal
relationship, OCCURS_WITH, where the temporal information is
an added property. An example is depicted in Figure 2.

After the creation of the TagGraph temporal snapshots, the
analysis leverages Role-Dynamics (Rossi et al., 2012), which further
leverages ReFeX (Henderson et al., 2011) and RolX (Henderson
et al, 2012) algorithms. ReFeX characterizes each node by
structural graph features, while RolX performs matrix factorization
over the nodes features matrix to identify “roles” of nodes in
the graph, or nodes that have similar structural features. The
target of the Role-Dynamics approach is to analyze how such
roles evolve over time, which we evaluated from March 2020
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FIGURE 2

A portion of the projected graph, where the OCCURS_WITH relationship connects keys that have been mentioned in the same paper. The
highlighted relationship shows that the keys "SARSCoV-2" and “serology” appear often together, although with varying frequencies over the period
under consideration. As a result, each relationship is associated with a weight that is a function of time.

to March 2022. As shown in Figure 3, the general workflow for
analyzing temporal changes consisted of extracting the temporal
co-occurrence graphs; running ReFex on all the nodes for all
snapshots to extract the most relevant structural features for each;
normalizing the ReFeX features between 0 and 1 to improve the
results of the next phase; and running RolX over the full time-series.
The output of this process is the definition of a small set of roles
that effectively describe the node behaviors in a time-consistent
way and the characterization of each node as a temporal mixture
of such roles.

2.3.2. Graph projection and temporal
discretization

Due to the arbitrariness with which authors choose their
tags, including misspelling, mixing acronyms, etc., the overlap
of tags for the same concept is heavily reduced. This affects
the quality and structure of the temporal snapshots and the
consequent results of the entire process. To mitigate this issue,
tags are associated using a combination of sentence embedding
(to vectorize the tags in a latent space) and a clustering
algorithm to create groups of tags with the same meaning.
The SPECTER Bert model (Cohan et al, 2020) is used for
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the embeddings and DBSCAN (Ester et al, 1996) for the
clustering. The approach of combining those techniques for
merging and cleaning the tags represents another novelty of this
work and it improves the quality and stability of the results. The
TagGraph is then computed at the cluster level with the same
approach described in Section 2.3.1, computing it in monthly
snapshots. Thus, hereafter, a “tag” that represents this cluster
of tags.

As previously stated, the snapshots are computed
by month to have appropriate granularity and reveal
early  patterns. There are different techniques for

measuring the strength of this association. We used the
formula of the association strength (Eck and Waltman,
2009):

Cij

Salcijy sir sj) =
ey Sij

where c;; represents how many articles have both tags, while s; and
sj represent the frequency of tags i and j, respectively. Based on
this formula, we consider the relationship undirected since both
directions have the same weight.
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algorithm, which assigns a role to each keyword for each month.

Flowchart for the temporal graph analysis. From the heterogeneous graph that represents the initial knowledge graph, monthly snapshots are
extracted, describing the co-occurrence of keywords in papers published each month. The REFEX feature extraction algorithm is applied to each
snapshot, associating each keyword with a different feature vector in each snapshot. The features are then aggregated and processed using the RolX

2.3.3. Feature and role extraction

The ReFeX algorithm is run over the monthly TagGraph
snapshots. ReFeX is a structural graph feature that extracts
base features at the node level to describe the statistics of
each node neighborhood, aggregating these statistics recursively.
Node level features include node degree, ego-net degree, page
rank, eigenvector centrality, etc. The aggregation includes sums
and means. The feature vector associated to each node is then
composed by base features like degree which is a node scale
property, and degree(sum), which represents the sum of the degree

Frontiers in Research Metrics and Analytics

property of the neighborhood for this node. The recursivity of
the aggregation process makes it possible to compute features like
degree(sum)(mean)(mean)(sum), which aggregates information at a
regional scale (Figure 4). The algorithm prunes irrelevant features
at each iteration to avoid the exponential growth of the feature
vector size.

The output of the ReFeX algorithm is a tabular representation
of the behavioral features of the TagGraph through time, which
captures the complexity of the behaviors hidden in the topology of
the relationships between nodes. The RolX algorithm introduces
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Conversion of each node into a vector representing the node’s topological feature at different scales using ReFeX (Henderson et al.,, 2011).
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FIGURE 5
Compression of ReFeX feature vectors into smaller role vectors using RolX.
the idea that there exists a set of roles that the nodes can play, 3. Results
and such roles are able to explain the complexity of the observed
structural features. The algorithm computes the optimal number of Our  understanding  of  infections,  transmissions,
roles and how each role is connected to the set of available features.  treatments, and testing has evolved significantly over
RolX then generates a model able to convert a ReFeX feature vector ~ the course of the COVID-19 pandemic. Roles and
associated to each node at each time step to a much smaller vector ~ role transitions captured in the dynamics of the
representing the role mixture for that node at that time-step. The ~ TagGraph provide an autonomous mechanism to reveal
RolX assumption is that, while behaviors are complex to describe,  understandable  patterns in  knowledge evolution to

the absolute numbers of such behaviors are comparatively low. If
true, it should be possible to achieve a significative dimensionality
reduction for the feature space without compromising the richness
of the ReFeX results, as shown in Figure 5.
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3.1. Role interpretations

An initial goal of our approach is the interpretation of the
meanings of roles. While roles are extracted via matrix factorization
applied to the feature matrix produced by ReFeX, they are
difficult to interpret due to ReFeX’s automatic extraction which
uses an optimization objective function. Nevertheless, to certain
extent, it is possible to map them to some well-known graph
and node structure information, like the well-known and easy-to-
understand node measures of PageRank, betweenness centrality,
closeness centrality, degree, and the local cluster coefficient. The
PageRank algorithm measures the importance of each node within
the graph based on the number of incoming relationships and
the importance of the corresponding source nodes. Betweenness
centrality detects the amount of influence a node has over the
flow of information in a graph. Closeness centrality detects
nodes that can spread information very efficiently through a
graph. The degree centrality algorithm finds popular nodes
within a graph as it measures the number of incoming or
outgoing (or both) relationships from a node, depending on the
orientation of a relationship projection. Last, the local clustering
coefficient of a node describes the likelihood that its neighbors are
also connected.

These well-known measures are computed for each node in
each snapshot. We used these results to build five matrixes, one
for each role, where every row represents a node-snapshot pair.
On the columns of these matrixes, we put the node relevance,
i.e., the contribution of the matrix’s role for the node and the
snapshot of the row, and all the measures mentioned above. We
used these matrixes to compute the pairwise correlation between
the node relevance and every measure over all the node-snapshot
rows. The results are presented in Table 1, with correlation values
ranging between —1 and 1, where 1 means that the measure and
the role relevance are directly correlated, —1 means that there
is an inverse correlation, and 0 means no statistical correlation
exists between the measure and the role relevance. Note that
while we focused on these set of measures, it may be possible
to extract additional measures that might help better define
the roles.

From Table 1, we can interpret some of the roles based on
the correlation value. For example, Role 0 and Role 2 are directly
related to all the measures we extracted, indicating that roles 0 and
2 identify nodes that are central in the network (related to the high
value of betweenness and closeness centrality) and they are densely
connected to other important nodes (related to the high correlation
with PageRank and degree). Hence, these represent very important
tags in that specific period. On the other hand, role 1 appears to be
unrelated to any of the measures we computed. When analyzing the
results of these tags, we noticed that they reflect noisy tags, i.e., tags
that randomly appear in the network with no specific relevance of
any type. The matrix factorization collected them under the same
role 1. It is possible that uncomputed minor measures may better
define this role. Role 3 is indirectly connected to PageRank, which
means that the nodes having a high value of role 3 are not connected
to any relevant node, and the indirect correlation with degree and
closeness means that they are barely connected to anything. Thus,
role 3 represents nodes that are on the edge of the co-occurrence
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TABLE 1 Roles-graph measures and correlations.

Role Graph Measure Correlation
Role 0 PageRank 0.843
Betweenness 0.616
Closeness 0.861
Local Clustering —0.410
Degree 0.866
Role 1 PageRank 0.245
Betweenness 0.061
Centrality —0.117
Local Clustering 0.168
Degree 0.286
Role 2 PageRank 0.691
Betweenness 0.340
Closeness 0.637
Local Clustering —0.823
Degree 0.808
Role 3 PageRank —0.607
Betweenness 0.057
Closeness —0.323
Local Clustering 0.350
Degree —0.694
Role 4 PageRank —0.089
Betweenness —0.054
Closeness —0.389
Local Clustering —0.297
Degree —0.072

network, and, in many cases, completely disconnected from it. Role
4 is similar to role 3, but since it is not as indirectly connected
to degree value and PageRank as role 3, these nodes are not as
isolated and are slightly connected to the rest of the network. These
connections are not necessarily small, so these nodes could be
connected to many of the nodes and some may be important. These
relationships are depicted in Figure 6.

3.2. Story telling from temporal analysis of
TagGraphs

The initial analysis of the RolX results consisted of analyzing
role evolutions through various snapshots for each of the tags since
role interpretation is fundamental for understanding the dynamic
graph evolution embodied in TagGraphs. The purpose of this
inspection is to reveal patterns (similar behaviors in the transitions)
and signals (clearly readable spikes or strong transitions among two
or more snapshots) in the role’s relevance bar chart. This analysis
aims not only at identifying individual spikes or falls but also at
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FIGURE 6

An example of a graph containing nodes with different role distribution. Role 0 and Role 1 nodes are strongly connected and central, Role 3 nodes
are almost disconnected from the central nodes, and Role 4 nodes are structured such that they are peripheral but connected.

revealing the speed of changes and similar types of patterns as
shown in Figure 7. That is, we can clearly identify that “machine
learning” has a steady progression in role 2 and role 0 over time
as represented by the blue line. Another interesting tag, revealed
by the analysis of roles evolution, is “hydroxychloroquine;” a drug
used to treat certain autoimmune diseases that were shown to have
antiviral activity against SARS-CoV-2 in specific cell lines although
clinical trials showed no antiviral effect of hydroxychloroquine in
people. Hence, after the initial enthusiasm, this drug has not been
used as a SARS-CoV-2 antiviral. The related behavior is evident
also in the role bar chart; the initial spike in roles 0 and 2 grows
and then degrades over time. Despite some fluctuation, roles 0 and
2 end lower while role 3 increases, locating these studies at the
margin of clinical research. This type of analysis focuses on single
tags and, thus, could be used to identify patterns that can be then
used to search for commonalities in other tags. While this approach
is powerful since it can be easily automated once the signals have
been identified, it suffers in the definition of a “story” around the
data that is easier to understand and more stable across different
data sources.

The second type of analysis facilitated by the TagGraph
structure combines neighborhood exploration with the roles
extracted by RolX. Assisted by the role interpretations described
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above, we can generate more human-readable results. The analysis
starts from a few tags that represent the center, i.e., the most
relevant nodes in the co-occurrence network. By utilizing signal
analysis, certain tags exhibit a clear and strong signal for role
0 and role 2, which remains consistent throughout the entire
history sampling, including “SARS-CoV-2”, “COVID-19”, and
“Coronavirus”. Their roles transition bar charts are represented in
Figure 8. These tags are clearly key terms that represent the focus
of the research articles we processed. Notably, the RolX transitions
inspection reveals them autonomously, validating, once more, the
hypothesis that the adopted approach can reveal such patterns.
In our case, “SARS-CoV-2” represents a cluster of tags related
to the virus, “COVID-19” contains the disease-related tags, and
“Coronavirus” encapsulates the terms connected to the family of
viruses related to SARS-CoV-2. The neighborhood analysis revolves
around starting from the most significant tags for our target
analysis, namely the three tags mentioned above, and identifying
the most relevant tags connected to them. This search is performed
for each snapshot, and the results are compared to extrapolate how
understanding has evolved over time. Defining the most relevant
tags poses a primary challenge. In this stage of analysis, we focused
on examining each role in isolation and considered only the directly
connected nodes, postponing the analysis of the egonet to a future
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FIGURE 7
Role evolution comparison: the “machine learning” keyword quickly transitions from a marginal role to a relatively central one between May and
June 2020, with a consistently positive trend that makes it a highly relevant keyword. On the other hand, the "Hydroxychloroquine” keyword displays
fluctuating patterns that reflect the scientific community's interest in this molecule, with periods of higher and lower interest.

iteration of our work. Specifically, node relevance is computed o relationship_weight is the weight of the relationship
using the following formula: connecting start_node and end_node in the co-occurrent
network at time frame, t. This value is computed using the
association strength formula described in Section 2.4.2.
role_relevance is the value of the relevance for the specified
= relationship_weight(start_node, end_node, role_name at time frame, t.

node_relevance(start_node, end_node, role_name, t) °

t)*role_relevance(end_node, role_name, t) ) )
This formula takes into account not only the role relevance,

where: which remains consistent regardless of the starting node, but also
the relationship that nodes have with the central term used for

e start_node is the center of the analysis, i.e., “SARS-CoV-2”, the analysis. We computed the node relevance for all neighbors,
“COVID-19”, or “Coronavirus”. considering each role and time frame. The resulting relevancies

e end_node is on the nodes belonging to neighbour(start_node, ~ W€ then ranked in descending order, selecting the top 20
), or all tags connected in the co-occurrent network of the nodes. For example, Table 2 shows the results for “SARS-CoV-2”
time frame £. across 3 months. In role 0, the same key terms appear at the top
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FIGURE 8
Temporal trend of central keys characterized by high values associated with Role 0 and Role 2.

almost in all the time frames. Role 2 may also reveal relevant
aspects related to the virus. Role 2 shows great stability, which
means that the terms here are constantly relevant during the
evolution of researchers understanding. The top 20 list includes
frequently occurring terms such as ACE2, serology (once again),
MERS-CoV, spike protein, and transmission. ACE2, for instance,
functions as the cellular receptor for SARS-CoV-2, while spike
protein serves as the viral attachment protein. The analysis
of tags in role 2 sheds light on the primary topics associated
with infection and transmission mechanisms, testing, and
treatments. These results, extracted without human refinement,
are highly relevant and provide valuable insights into the
research domain.

Role 4, another significant role in capturing relevant patterns,
exhibits characteristics that are almost diametrically opposite to
those of role 2. It can be described as a peninsula within the
network structure, consisting of nodes located at the edges of the
network (with low betweenness centrality) and connected to less
relevant nodes (due to lower page rank values). In the list of
the 20 most frequent elements, we find terms such as TMPRSS2,
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viral load, RT-PCR, nucleocapsid protein, and ORFS. For instance,
nucleocapsid protein has been a target for serologic testing and
has been considered at various stages in the development of a
vaccine. It transitions across roles 0, 2, and 4, indicating changes
in its relevance and the corresponding research focus over time,
depending on experimental results and priorities. While nodes
representing tags on these significant peninsulas are interesting,
the true value lies in terms that consistently transition from
role 4 to role 2, or even better, role 0. In an ideal scenario,
we would observe terms that transition from consistently being
in role 4, on the periphery of research, to consistently being
in role 2, indicating their increased importance. This pattern
signifies that certain approaches or techniques have proven their
value and become dominant in the field. Conversely, when a tag
transitions from roles 0 and 2 to role 4, or worse, to roles 1
or 3, it suggests that the associated research has been discarded
or deprioritized. To conduct this analysis in a straightforward
manner, we considered terms that consistently appear in role 4
(with a frequency higher than 2) and in at least one other role,
specifically role 0 or 2. Table 3 presents some of these terms along
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TABLE 2 Top 20 SARS-CoV-2 neighbors’ tags for each role in different

snapshots.

TABLE 2 (Continued)
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2020-04 2020-05 2020-06 2020-07
2020-04 2020-05 2020-06 2020-07
Diagnosis Hydroxychloroquine | Vaccine Pneumonia
COVID-19 COVID-19 COVID-19 COVID-19
Molecular Remdesivir Treatment Screening
Coronavirus Coronavirus Coronavirus Coronavirus docking
RNA- ACE2 Pandemic Zoonoses Pathogenesis | Nucleocapsid Fever Serology
dependent protein
RNA
polymerase Serology Children Animal models Data sharing
Pandemic Viruses Serology Respiratory Spike Clinical trials TMPRSS2 Innate
infections protein immunity
2019-nCoV Hydroxychloroquine | Inflammation Viruses Wuhan China CRISPR Respiratory
infections
One Health Pandemic ACE2 Pandemic
Pneumonia Inflammation Anosmia Angiotensin-
Ebola Remdesivir Public health Inflammation converting
Epidemiology | Favipiravir Screening Pneumonia enzyme 2
Remdesivir Tocilizumab Epidemiology Serology Hydroxy. Infection Case fatality rate China
chloroquine
P i MERS-CoV Spai T t
neumonia © pain emperature Treatment Wuhan drug repurposing Outbreak
Public health | Respiratory Respiratory Spike protein
infections infections Role 4
Antivirals Pneumonia Children Transmission 2020-04 2020-05 2020-06 2020-07
Viruses Convalescent 2019-nCoV Dysgeusia Viral load IgG Drug repurposing Metabolomics
plasma Tocilizumab Viral load Saliva Saliva
Respiratory | Baricitinib Viruses Hyposmia Remdesivir | Morbidity TMPRSS2 Antigen
infections
Molecular Lopinavir MERS-CoV Humidity ACE2 Receptor binding Liver injury Molecular
docking receptor domain dynamics
Outbreak Interferon Spike protein Olfaction Molecular TMPRSS2 Animal models Nanomedicine
P dynamics
Infectious Epidemiolo, Vaccine Olfacto:
disease P &Y d sfunc?i,on ACE2 Pathogenesis School Immuno
Y informatics
Ebola virus ARDS Hydroxychloroquine | ELISA .
(EBOV) RT-PCR Codon usage Aspergillosis TMPRSS2
Infection Public health Transmission PPE ARB High-flow nasal Newborn Immunity
cannula
MERS-CoV Angiotensin- Basic reproduction Anosmia
converting enzyme number Molecular Nucleocapsid Viral load qRT-PCR
) docking protein
ole 2 Antibodies COVID-19 nasopharyngeal molecular
swab docking
2020-04 2020-05 2020-06 2020-07
Pathogenesis RT-PCR Transmission Swab
2019-nCoV ACE2 MERS-CoV ACE2 potential
Ebola 2019-nCoV Serology Zoonoses Homology Neurosurgery Co-infection Main protease
modeling
ACE2 MERS-CoV 2019-nCoV 2019-nCoV
Antiviral Baricitinib Anosmia Homology
Remdesivir RAAS ACE2 MERS-CoV modeling
MERS-CoV TMPRSS2 Screening PCR Therapeutics | Decontamination Dengue Viral load
Bats Lopinavir Transmission Evolution Myocardial Coagulopathy Occupational health | Transplantation
Homology Spike protein Epidemiology Obesity mury
modeling Ground- Spike protein Case fatality rate Challenges
Antiviral Favipiravir Inflammation Inflammation glass. i
opacities
One Health Serology Pneumonia Transmission Anti- Hepatitis C virus Main protease Greece
Drug Zoonoses Children Viruses inflammatory
repurposing Healthcare ICU Smell Cardiac
Screening Baricitinib Remdesivir Gene expression workers involvement
(Continued) (Continued)
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TABLE 2 (Continued)

2020-04 2020-05 2020-06 2020-07

CT scan MERS-CoV ORF8 Pulmonary
embolism (pe)

IL-6 N95 respirator Survival Vertical
transmission

TABLE 3 Some tags that consistently appear in role 4 and later in role 0 or
role 2, indicating a change in relevancy of the tag over time.

Tag Comment

Immunity Non-specific immunity to fight infection. First line

of defense against pathogens.

Main protease Viral protease (3CLpro) required for processing viral

proteins involved in virus replication.

MERS-CoV Middle East Respiratory Syndrome CoV.
Sarbecovirus related to SARS CoV-1 and SARS

CoV-2.

Molecular docking Process of computationally inserting small

molecules into known structures of proteins.

Nucleocapsid protein Viral protein that coats the viral genome to protect

the nucleic acid.

RBD Receptor binding domain. ~400 amino acid
segment of SARS CoV-2 Spike responsible for
binding to ACE2.

Remdesivir Direct-acting antiviral originally developed for

Ebola virus that targets the RdRp.

RNA-dependent RNA RNA-dependent RNA polymerase. Viral RNA

polymerase (RdRp) polymerase essential for viral transcription and
genome replication. Druggable target.

RT-PCR Method of amplifying DNA used for detection of
viral genomes. RT denotes use of reverse
transcriptase to convert viral RNA to DNA.

Seroprevalence Prevalence of people positive for SARS CoV-2

serology.

with a brief explanation of their role in the research surrounding
the virus.

Finally, it is intriguing to observe that conducting the same
analysis on other tags provides a similar narrative but from different
perspectives. Table 4 presents the most frequent tags resulting
from the neighborhood analysis for COVID-19, which specifically
represents the disease resulting from the infection of the SARS-
CoV-2 virus. Role 0 and 2 shed light on aspects such as public and
mental health, lockdown measures, and healthcare workers. On the
other hand, role 4 reveals tags related to computed tomography
(CT) scans, pneumothorax, and autopsy. Since the analysis is
now centered on COVID-19, which represents the disease rather
than the virus itself, the focus shifts toward treatments and their
impact on individuals and public health, including mental health.
Therefore, our TagGraph approach can support multiple narratives
depending on the focal point of the analysis. Interestingly, these
results align with most of the topics and questions that emerged
from our survey of medical professionals, which will be discussed
in the subsequent section.
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3.3. Establishing the critical need for KGs in
pandemic response: a qualitative analysis
of clinicians’ resources and knowledge
gathering of COVID-19

To shed light on the critical needs that our approach
aims to address, we conducted a qualitative study involving
clinicians and researchers. The objective of this study was
to gain a deeper understanding of the key information that
could have guided and improved their early comprehension
of COVID-19. Through this survey, we identified significant
scientific “landmarks” that served as the foundation for building,
testing, and validating our algorithms. By comprehending the
cognitive models employed by the broader scientific community,
we were better equipped to translate them into computational
models using publicly available data. This, in turn, provides
a platform for the rapid identification of coherent patterns
within the scientific literature, thereby enhancing our ability
to detect and respond to future pandemics and infectious
outbreaks effectively.

Twenty-six clinicians (self-identifying as a physician, nurse,
or other health professional) and research scientists (Ph.D. level)
consented to participate in our survey (USF IRB Study #01211).
Participants were recruited through e-mail, online message boards,
and the web. Most survey respondents currently practice or
work in the United States (73%), with others in Thailand
(8%), Bangladesh (8%), the United Kingdom of Great Britain
and Northern Ireland (4%), and locations undisclosed (7%).
Participants were informed at the beginning of the survey that
they could close their browser to discontinue or withdraw without
penalty at any time. They were provided details about the survey,
including its purpose to gather their perspectives on pieces of
information that would have been helpful in combating the virus
if known earlier, sources of information utilized by the scientific
community, cognitive maps used by scientists to connect pieces
of information, unresolved questions surrounding COVID-19, and
seminal research findings on COVID-19. Our survey asked five
open-response questions, including:

1. What do you know now that you wish you knew when
COVID-19 first became a pandemic four months ago? For
example, risk factors, spreading paths?

2. What sources of knowledge do you usually go to get your
information on COVID-19? For example, clinicians, news,
PUBMED, etc.?

3. How would you connect the different pieces of information
together, or what components of the data would you have
liked to have connected but wasn’t connected before (even
from multiple datasets)? For example, drug to molecular
target, risk factors to symptom severity, geographic location
to symptomology?

4. What do you consider to be the most critical unknown
in COVID-19 that
current research?

remains unresolved given the

5. Which piece of research (please provide citation or PMID)

do you consider to be seminal or “game changing” in shaping
our current understanding of the virus? Please also provide
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TABLE 4 Frequency of the top 10 COVID-19 neighbors’ tags across all the snapshots.

Frequency Frequency Frequency
SARS-CoV-2 21 Mortality 19 CT scan 5
Coronavirus 20 Social distancing 17 Response 4
Pandemic 20 Healthcare workers 17 PTSD 3
Public health 20 Lockdown 17 Pneumothorax 3
Inflammation 19 Anxiety 16 CT 3
Respiratory infections 15 Psychological distress 15 Practice 3
epidemiology 14 Mental health 14 Autopsy 3
Mental health 14 Pneumonia 13 Hematology (incl blood 3
transfusion)
Viruses 13 ACE2 13 Anosmia 3
Telemedicine 12 Stress 12 Radiotherapy 2

the conceptual/empirical outcome that makes this research
critical, for example, treatments, vaccines, pathways.

Three researchers from the project team coded the participant
responses for questions 1—4 to identify prominent, recurring
themes (Table 5). This process, which is a part of thematic analysis
in qualitative research, represents the thorough evaluation of
each participant’s response to provide a word or phrase, called a
code, that succinctly captures the core insight or meaning of that
response. To consolidate the results of the survey, we performed
an analysis on the concordance of the coding of responses by the
three raters. The raters had a bi-rater agreement of 0.72, showing
that two out of three raters agreed 72% of the time with the codes
individually assigned across all participant responses. However, the
consensus score across the three raters was poor at 32%. This
lower level of agreement can be attributed to the larger number
of codes available for selection (70) and the ability of the raters to
assign a single response with up to six codes, creating more room
for disagreement.

High-level insights from our survey show that modes of
transmission, particularly the infectivity of asymptomatic persons,
were particularly concerning. Over half (67%) of respondents
referred to the spread of the virus to some degree as information
they wish they knew at the onset of the pandemic. One participant
stated “The role of asymptomatic transmission, the full role of
respiratory transmission” as information they wish knew. Similarly,
participant 18 stated “Risk factors, transmission of virus by people
in different age groups, importance of wearing masks to reduce
transmission” as desired information at the onset of the virus.
Others expressed concern regarding governmental responses to this
and prior pandemics (e.g., its impact on job opportunities and
the robustness of national policies), in addition to health-related
vulnerabilities due to age.

Over half (54%) of respondents indicated PubMed, news
sources (e.g, New York Times), unspecified peer-reviewed
academic journals, other clinicians, Infectious Diseases Society
of America (IDSA), and the United States Centers for Disease
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Control and Prevention (CDC) as major sources of information
on COVID-19. Fewer mentioned sources included virtual seminars
and meetings, sites which report local COVID-19 statistics, The
New England Journal of Medicine (NEJM), and The Journal of the
American Medical Association (JAMA). We note that this survey
was conducted prior to the KG generation and analysis to both
guide and verify the outcomes of these analyses; as such, PubMed
from CORD-19 was used in the KG generation. At the time of the
survey, most respondents had yet to connect information found
at these sources, relying on publicly available data to correlate
geographical location with virus spread, vulnerable populations,
symptomology, and symptom severity. Many were curious about
the connections between “risk factors for symptom severity and
levels of public adherence to personal protective equipment use
protocols; and patient characteristics with positive or negative
responses to treatments. Others noted a desire for improved
coordination between countries, zip codes, and clinical trials,
and felt public health interventions and preventative measures
(e.g., vaccines), long-term immunity, data on prior infections,
symptom onset and severity, and long-term complications as
critical unknowns.

Nearly a third (30%) of respondents had yet to find what
they would consider a seminal source of data that could shape
our understanding of the virus. We refer the reader to sources
that were provided at the following references: Sheahan et al.
(2017), Andersen et al. (2020), Baum et al. (2020), Davies et al.
(2020), The RECOVERY Collaborative Group (2020), He et al.
(2020), Mehta et al. (2020), Nishiura et al. (2020), Shang et al.
(2020), Wrapp et al. (2020), and Zost et al. (2020). We note that
no sources were duplicated among responses. In summary, these
results, such as a heavy reliance on news for data gathering and
the lack of a seminal reference source that could have propelled
scientific discovery regarding COVID-19, highlight a critical need
for two important resources—an automated methodology for
identifying emerging trends and knowledge concerning rapidly
developing global diseases, and expedited consolidation and release
of information in an easily digestible format.
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TABLE 5 Codes associated with survey questions one through four with their total frequency (in percentage) across all responses per question

according to three raters.

Q1: What do you know
now that you wish you

knew when COVID-19 first

became a pandemic 4
months ago?

Q2: What sources of
knowledge do you
usually go to get
your information on
COVID-19?

Q3: How would you connect
different pieces of information
together, or what components
of the data would you have
liked to have connected?

Q4: What do you consider to
be the most critical unknown
in COVID-19 that remains
unresolved given the current
research?

Transmission (20.4)

News (14.9)

Risk factors-severity (19.3)

Immunity (22.2)

Asymptomatic spread (15.7)

PUBMED (12.0)

Geography-infections (8.4)

Prevention (12.2)

PPE (13.9) Broad (8.0) Self (the participant would connect Successful treatments (8.9)
information on their own, using their own
expertise) (7.2)
Risk factors (11.1) CDC (6.9) Geography-symptoms (6.0) Reinfection severity (6.7)
Pandemic response (8.3) Clinicians (6.9) Clinical-virological (4.8) Symptom effects (6.7)
Treatments (6.5) NEJM (6.3) Patient history-treatment response (4.8) Long-term effects (6.7)
Viral dynamics (5.6) State DOH (6.3) Transmission-mortality (4.8) Detailed pathophysiology (6.7)
Pre-symptomatic spread (4.6) Colleagues (5.7) Risk factors-demographics (3.6) Infectious period (5.6)
Social distancing (4.6) IDSA (5.1) Social status-severity (3.6) Government strategy (5.6)
Coagulopathy (3.7) Google (5.1) Hospitalizations-cases (3.6) Infection rate (4.4)

Environmental susceptibility (3.7)

Universities (4.6)

Tests-positivity (3.6)

Symptom onset (3.3)

Antiviral susceptibility (1.9)

JAMA Network (3.4) Behaviors-transmission (3.6) Official transmission (3.3)
SHEA (3.4) Transmission-illness (3.6) Testing accuracy (3.3)

Lancet (2.9) Viral structure-transmission (3.6) Asymptomatic infections (2.2)
WHO (1.7) Various data sources (3.6) cause of infection severity (2.2)

No pre-prints (1.7)

Geography-mortality (2.4)

MMWR (1.1)

Social status-morality (2.4)

Social media (1.1)

Environment-transmission (2.4)

MedScape (1.1)

Research data sharing (2.4)

Promed (1.1)

Clinical data sharing (2.4)

Pre-prints (0.6)

Primary data access (2.4)

Countermeasures -transmission (1.2)

4. Discussion

This article presents our temporal analysis conducted on the
TagGraph, a knowledge graph generated by incorporating author-
provided tags or keywords from scholarly articles. The purpose
of this analysis is to facilitate temporal graph analysis for the
exploration and comprehension of textual documents related to
diseases. It is important to note that the TagGraph represents only a
small portion of a larger knowledge graph that we have constructed
for future investigations.

Our study highlights the significance of dynamic graph analysis,
which provides roles and relevancies, and neighborhood analysis,
which involves considerations of frequency and intersections.
These analytical approaches enable the identification of patterns
that can be easily described and understood. The primary
achievement of our efforts lies in the ability to combine multiple
complex analyses on a temporal knowledge graph and provide
evidence and patterns that can be articulated in natural language,
making them accessible to a wider audience. Furthermore, since the
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results can be generated without human intervention, the proposed
approach can be automated and applied to various research topics
and different disease outbreaks.

While our initial results are promising, there are numerous
potential research avenues to explore. From an analysis perspective,
there is room for enhancing the tags cleanup and merging
process by testing alternative clustering algorithms and integrating
ontologies, taxonomies, and dictionaries. These techniques, when
combined, can result in a more refined set of initial tags, merging
synonyms appropriately, and removing noisy and irrelevant tags.
Furthermore, the proposed approach can be extended to other
areas of the knowledge graph we have constructed, such as
named entities that are automatically recognized. By applying the
same methodology to these entities, we can uncover additional
insights and patterns. Additionally, there are opportunities to
explore alternative techniques for determining the number of
roles and for factorization. By employing different approaches,
we can better isolate interconnected patterns that would facilitate
a clearer understanding of each role within the context of the
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tag knowledge graph, enhancing the communicative power of the
results. Moreover, it would be worthwhile to investigate a deep
learning-based approach to temporal graph analysis, as suggested
by Rossi et al. (2020). Leveraging the capabilities of deep learning
models could provide further advancements in understanding
temporal dynamics and patterns within the knowledge graph.

From a data source point of view, there is an entire set
of unexplored sources related to filed patents describing, for
example, vaccines or procedures, that are not captured in our
results. Other relevant sources are user-generated content in
social networks or blog posts (Twitter, Facebook, Tumblr, etc.),
news, country regulations and guidelines, public WHO, and other
healthcare-related communication. These sources can provide
other perspectives on the disease outbreak; patents can reveal
the most valuable research results, public communication and
country regulations can provide information about treatments best
practices, or behavior, and social networks can provide people
sentiment and general understanding. These research directions
have the potential to enhance the effectiveness and interpretability
of our approach, expanding its applicability to a broader range of
domains and further improving the communication of valuable
insights derived from temporal graph analysis.
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